
Noname manuscript No.
(will be inserted by the editor)

In-Memory, Distributed Content-Based Recommender
System

Simon Dooms · Pieter Audenaert ·
Jan Fostier · Toon De Pessemier ·
Luc Martens

Received: date / Accepted: date

Abstract Burdened by their popularity, recommender systems increasingly take
on larger datasets while they are expected to deliver high quality results within rea-
sonable time. To meet these ever growing requirements, industrial recommender
systems often turn to parallel hardware and distributed computing. While the
MapReduce paradigm is generally accepted for massive parallel data processing,
it often entails complex algorithm reorganization and suboptimal efficiency be-
cause mid-computation values are typically read from and written to hard disk.
This work implements an in-memory, content-based recommendation algorithm
and shows how it can be parallelized and efficiently distributed across many ho-
mogeneous machines in a distributed-memory environment. By focusing on data
parallelism and carefully constructing the definition of work in the context of
recommender systems, we are able to partition the complete calculation process
into any number of independent and equally sized jobs. An empirically validated
performance model is developed to predict parallel speedup and promises high
efficiencies for realistic hardware configurations. For the MovieLens 10M dataset
we note efficiency values up to 71% for a configuration of 200 computing nodes (8
cores per node).

Keywords recommender system · distributed · parallel · speedup

S. Dooms - T. De Pessemier - L. Martens
Wica, iMinds-Ghent University
G. Crommenlaan 8 box 201, 9050 Ghent, Belgium
E-mail: simon.dooms@intec.ugent.be
E-mail: toon.depessemier@intec.ugent.be
E-mail: luc.martens@intec.ugent.be

P. Audenaert - J. Fostier
IBCN, iMinds-Ghent University
G. Crommenlaan 8 box 201, 9050 Ghent, Belgium
E-mail: pieter.audenaert@intec.ugent.be
E-mail: jan.fostier@intec.ugent.be

2 Simon Dooms et al.

1 Introduction

Recommender systems (RS) are systems designed to tackle the information over-
load problem by suggesting users relevant content. These systems typically learn
from previous user behavior or use content information to drive their personaliza-
tion engines. The popularity of RS is still growing as they are being deployed in
very divergent domains like food [4], movies [32], events [13], music [35], books [27],
travel [24], news [7], etc. At first, RS were often used with small datasets (e.g.,
the MusicFX system with 25 users and 91 items [26]) but since then datasets
have massively expanded in size and nowadays a RS needs to be able to process
datasets like the MovieLens 10M dataset1 (10M ratings, 10k items and 72k users),
the Netflix dataset2 (100M ratings, 17k items and 480k users) or the Yahoo! Mu-
sic dataset3 (300M ratings, 600k items and 1M users) and they need to do it fast
because users expect responsiveness and real-time behavior. However, because of
these escalating dataset dimensions, very often online recommender systems are
forced to implement a calculation process where recommendations are calculated
in batch offline and are refreshed only on a daily basis.

Since sequential computers (or uniprocessors) are reaching the limits of maxi-
mum clock frequency, parallelism is often considered the solution [22] to cope with
increasing dataset sizes and limited time constraints. A popular paradigm in the
parallel data processing domain is MapReduce [23]. The MapReduce approach
requires an algorithm to reformulate its logic in essentially two functions: Map()
and Reduce(). An underlying framework (i.e., such as Hadoop) then takes care of
the distribution of work across multiple computing nodes. Although work distri-
bution is effortless, reformulating a given algorithm in the MapReduce mindset
can be a tedious task and typically involves multiple MapReduce phases to be
chained together. Since every single phase starts and ends with data access to
and from disk, chained phases introduce disk access overhead which limits overall
efficiency. Additional overhead is introduced by the setup of the distributed file
system e.g. the Hadoop Distributed File System (HDFS) [10], where MapReduce
programs depend upon. A well-known library that implements many scalable al-
gorithms including some recommendation algorithms on the Hadoop framework is
Mahout4.

In this work, we show how a content-based recommendation algorithm can be
parallelized and distributed over multiple computing machines without underlying
MapReduce operations or file system restrictions. Because our approach executes
completely in-memory (i.e., only RAM is used to store mid-computation values),
disk access is reduced to a minimum and high efficiency values can be obtained.
Although many more complex recommendation algorithms exist, neighborhood-
based recommendation algorithms (such as the one in this work) are still relevant
as they are often preferred in industrial use cases [31]. Such neighborhood-based
algorithms introduce a neighborhood of similar items (or users) to act as guides
towards interesting items (or users) in the recommendation process.

1 http://www.grouplens.org/node/73
2 http://www.netflixprize.com
3 http://kddcup.yahoo.com/datasets.php
4 http://mahout.apache.org

In-Memory, Distributed Content-Based Recommender System 3

After the introduction of the MovieLens 10M dataset in Section 3, we detail
in Section 4 an out-of-the-box content-based algorithm and show how it can be
parallelized in an efficient way (Section 5). Section 6 tackles the issue of load
imbalance and goes into more details regarding work definition and distribution
in the context of recommender systems. In Section 7, we investigate performance
by constructing an analytical speedup model which we empirically validate. We
conclude our work with Section 8 in which we revise the strengths and limitations of
our proposed parallel and distributed approach for content-based recommendation
computations.

2 Related Work

2.1 Internal scalability

Related work that deals with the problem of scalable recommender systems, usu-
ally focuses on internal scalability of algorithms. Algorithms are tuned to focus on
only the most relevant data and try to speed up the overall process by taking com-
putational shortcuts (e.g., [29,30,33]). Especially for neighborhood-based methods
a lot of scalability improvements exist. One of the most obvious is restricting the
size of the neighborhood [3,18]. By processing only k (instead of all) neighbors, the
recommendation process can finish faster. The value of k can however greatly in-
fluence the accuracy of the recommendations: k set too high may bring additional
noise, while k set too low may reduce recommendation quality [20]. Herlocker et
al. [17] suggest that for most real-world situations k set to something between
20 and 50 seems reasonable for the MovieLens dataset. In this work however, we
do not focus on the qualitative aspect (i.e., accuracy) of our system but rather
on optimizing its parallel performance. Therefore, in our algorithm we work with
non-restricted neighborhoods to show the distributed system is able to handle this
upper-bound situation.

2.2 External scalability

Rather than internal scalability, this work focuses on external scalability where we
consider parallelism and extra hardware as the solution to our big data problem.
Instead of changing the recommendation algorithm, the calculation of the algo-
rithm is merely restructured and distributed over multiple computing instances.
The final results calculated on a single node will be identical to the results calcu-
lated on a multi-node computing architecture. In general two types of parallelism
can be defined: data parallelism and functional parallelism. In the case of data
parallelism, multiple processors work on different parts of the data. Usually the
same code is executed on all processors and therefore this scheme is sometimes
referred to as SPMD (Single Program Multiple Data) [15]. Functional parallelism
involves splitting computations into subtasks that can then be executed in parallel
by different processors. In this case, the processors run different code on different
data which is called MPMD (Multiple Program Multiple Data) [15].

In previous work [11], we employed functional parallelism by dividing the rec-
ommendation process into separate phases that could then again be decomposed

4 Simon Dooms et al.

into smaller chunks of work which could be mapped onto multiple worker nodes.
While resulting processing times scaled linearly with applied hardware, efficiency
was lost by the overhead introduced by chaining multiple phases together (each
of which require reading and writing intermediate data results from and to per-
manent storage). In this work, we focus on data parallelism in order to simplify
the parallel recommendation process, reduce the overhead of separate phases, and
avoid load imbalance issues.

2.3 Distributed systems

In [16] and [34], a distributed collaborative filtering (DCF) algorithm DCFLA is in-
troduced. The scalability of the system is guaranteed by distributing a user-profile
management scheme using distributed hash table-based routing algorithms. The
authors compared the performance of 4 CF approaches and showed how the scal-
ability of their DCFLA approach surpasses that of the traditional CF algorithm.
Performance results in terms of speedup or efficiency values however remained
undiscussed.

When recommender systems are deployed in a distributed environment, re-
search and industry often turn to MapReduce as underlying paradigm. In [36], a
user-based collaborative filtering (UBCF) algorithm is implemented on Hadoop
(which is an open-source MapReduce framework implementation). The authors
illustrate that it is not easy to directly apply the MapReduce model to UBCF and
show how it can be done by splitting up the logic in 3 phases. The results showed
a linearly increasing speedup, for hardware configurations of up to 8 computing
nodes. Schelter et al. [31] developed a MapReduce algorithm for the pairwise item
comparison and top-N (i.e., recommend the best N items) recommendation prob-
lem. For the R2 - Yahoo! Music dataset they achieved a speedup value of about 4
using 20 computing machines (i.e., parallel efficiency of 20%). Jiang et al. [21] im-
plemented an item-based collaborative filtering recommendation algorithm on the
Hadoop platform. They chained 4 MapReduce phases and their parallel efficiency
was about 90% using 8 computing nodes (using the MovieLens 10M dataset).
While MapReduce has certainly proven its use for recommender systems [8,9] in
general, we believe the paradigm may sometimes lack the flexibility to take specific
algorithm properties into account to reach high parallel efficiency values. In our
work, we show that specifically for the content-based recommendation algorithm
we can divide ‘work’ evenly and independently such that by tweaking certain pa-
rameters of the distribution process, a given hardware configuration is optimally
engaged without inter-node communication and mid-computation disk access, thus
paving the way towards higher parallel efficiency.

3 Dataset specification

Throughout this work, we employ the MovieLens 10M dataset to provide our
experiments with input data. This dataset contains 10 million ratings and 95,580
tags applied to 10,681 movies by 71,567 users of the online movie recommender
service MovieLens. Data is provided as three files: ratings.dat (252MB), tags.dat
(3MB), and movies.dat (500KB). Interestingly, while every user in the MovieLens

In-Memory, Distributed Content-Based Recommender System 5

dataset has rated at least 20 movies, some users have rated considerably more. As
shown in Fig. 1, 50% of all ratings originate from only 15% of all users. This unequal
distribution of ratings can easily introduce load imbalance issues when carelessly
distributing users across worker nodes (a challenge which we face in Section 6).
For more detailed information about this dataset we refer to recommender systems
literature (such as [28,6]).

Fig. 1 The number of ratings per user for the MovieLens 10M dataset.

All described experiments were run on the Ghent University HPC cluster that
we had at our disposal (see [11] for more details on the cluster infrastructure).
This work was implemented in Python and our code can be found on the GitHub
platform5.

4 Parallel CB recommender

Here, we define the recommendation algorithm that will be used throughout this
work. Since we focus mainly on optimally distributing and running the algorithm
in parallel on a grid computing infrastructure, a default out-of-the-box content-
based (CB) recommendation algorithm (as described in [20]) was used as starting
point. The CB algorithm calculates the (Jaccard) similarity between items based
on the item metadata (i.e., MovieLens files: movies.dat and tags.dat) and recom-
mends new items to users based on these similarities. We use the MovieLens (10M)

5 http://xxx

6 Simon Dooms et al.

dataset as input and deploy the algorithm to predict the user ratings for unknown
(user, item) pairs.

Calculating the recommendation value for a certain user and item requires the
comparison of similar items previously rated by the user. Although the number of
such processed similar items is usually limited in size to reduce the computational
burden and minimize possible noise [20], we do not restrict the neighborhood size
to illustrate the true scalability of our method. In fact, the only optimization that
is incorporated in the algorithm is the temporary storage (caching) of calculated
similarity values to prevent unnecessary recalculations. However, since these val-
ues can easily become too abundant to store (with limited RAM), they are cleared
with every item iteration as is shown in the algorithm below.

Algorithm. Complete recommendation calculation
parallel for item in items

cached item similarities ← {empty}
for user in users

if user has not rated item
calculate Rec(user, item)

End if
End for

End parallel for

PROCEDURE - Rec(user, item) {Calculates the recommendation value for the
(user, item) pair}

vote ← 0
weights ← 0
for rated item in items rated by user

weight ← Simil(item, rated item)
vote ← vote + (weight × rated item rating)
weights ← weights + weight

End for
Return vote / weights

End PROCEDURE

PROCEDURE - Simil(item 1, item 2) {Calculates the similarity value of the
(item 1, item 2) pair}

if similarity in cached item similarities
Return similarity

else
top ← The number of metadata item attributes that item 1 and item 2

have in common (intersection)
bottom ← The total number of metadata item attributes of item 1 and

item 2 (union)
similarity ← top / bottom
store similarity in cached item similarities
Return similarity

End if
End PROCEDURE

In-Memory, Distributed Content-Based Recommender System 7

The calculation of Rec(user, item) thus requires the rating data of the user
together with the item data of the item and any other rated items by the user. We
note that although the algorithm used in this work is content-based, user ratings
are still important as they are used in the weighted average formula of the target
user in the recommendation calculation procedure. Because we want to distribute
the calculation work over multiple computing nodes, both user data (i.e., ratings)
and item data will have to be considered in the distribution process. Moreover,
because both data types are taken into account, the distribution paradigm laid out
in this work can be extended to fit collaborative filtering algorithms that focus on
rating data only.

5 Parallel strategies

We want to split the work of a complete recommendation calculation into smaller
pieces of work that require less input data and can be distributed over available
worker nodes. In the context of a recommender system, input data consists of user
data (usually ratings) and item data. The actual work consists of the calculation of
the recommendation value (i.e., numeric value indicating the interest of the user)
for every (user, item) pair in the system. This is usually visualized as a user-item
matrix as depicted in Fig. 2. Every dot in the matrix represents a recommendation
value to be calculated. The value of some dots may already be known, as users
may have rated some items (indicated by Rs). These ratings are considered the
perfect prediction of the interest of the user for that item.

The way in which the work (i.e., dots) is divided over available worker nodes
will have an impact on the amount of input data needed for that node. In the
following subsections we present three parallel strategies for dividing the work of
a recommender system and their data related consequences.

5.1 Splitting in Userjobs

We could partition the user-item matrix in horizontal subsets to distribute the
users that must be processed across the available worker nodes (Fig. 3). When
these subsets are mapped onto worker nodes, every node must then calculate the
recommendation value for each of these users in the subset and every item in the
system.

Because the users are divided over different jobs (we refer to these as ‘userjobs’),
the user input data can be split accordingly into smaller subsets. Consequently,
worker nodes will be able to work with smaller datasets which can help reduce
RAM requirements. A rather technical downside of this division scheme is that
with a bigger number of userjobs, fewer computed intermediate item similarity
values can be re-used. For a (user, item) pair, an item similarity value will be
calculated between the item and all the items rated by the user. The more users
are handled by a single worker node, the more of these intermediate values can be
re-used. A large number of userjobs indicates a small number of users per job and
so fewer recycling of intermediate similarity values.

8 Simon Dooms et al.

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

R rated value

· unrated value (needs calculation)

 rating data required for 	
�(��, ��)

Fig. 2 The user-item matrix indicating the work related to a complete recommendation cal-
culation of every (user, item) pair.

5.2 Splitting in Itemjobs

Alternatively, we could partition the user-item matrix into vertical subsets and
distribute the items across the available nodes (Fig. 4). Every job (i.e., ‘itemjob’)
must now process the recommendation value for each item of the subset and every
user in the system.

The obvious advantage of this method is that since every user in the system is
now matched with a subset of items by every worker node, the amount of redundant
item similarity computations is reduced to zero. On the other hand, because all
users are processed, all user input data (i.e., rating data) needs to be loaded by
every itemjob which may turn out to be too big for the RAM of a single worker
node.

5.3 Hybrid userjob, itemjob splitting

Since both splitting in userjobs and itemjobs have benefits and downsides, a meet-
in-the-middle approach seems a good option. In this case, we split the grid of user
and item pairs into disjoint subsets of users and items to be distributed across the
available worker nodes. This approach allows partial recycling of similarity values
while reducing the required user input data. The number of userjobs and itemjobs
can be freely chosen and specifically tailored towards the available computing

In-Memory, Distributed Content-Based Recommender System 9

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

 rating data required per userjob

 similarity calculated within userjob

 identical similarity (�
��(��, ��))

Fig. 3 The user-item matrix split into a number of userjobs (every userjob processes all items).

hardware. In Section 7, we address the issue of choosing the right number of
userjobs and itemjobs.

The hybrid userjob, itemjob approach introduces the most flexibility and can
even be turned into one of the previous approaches by setting the value of the
number of userjobs (or itemjobs) to ‘1’. Therefore, this hybrid data parallelism
strategy was adopted by our recommender system.

6 Load Balancing

In this section we focus on load balancing and work distribution of our content-
based recommendation algorithm. If work is not evenly distributed among available
workers then load imbalance issues may arise. These occur when synchronization
points are reached by some workers earlier than others [15] and so workers display
significantly divergent walltimes (i.e., time to solution). Load imbalance greatly
impacts the efficiency of algorithms because resources are underutilized while fast
workers wait for slow workers to finish. If work is load balanced, it can be evenly di-
vided over computing nodes without the need for extra inter-node communication
(as would be the case in a master-slave scenario). This relaxes network constraints
and allows for active engagement of all computing nodes.

For a system to be load balanced, work must be evenly distributed among its
workers. Specifically in the context of recommender systems, this introduces two

10 Simon Dooms et al.

�� �� �� �� �� ��

 �� · · · · R ·

 �� R · · · · ·

 �� · · R · R ·

�� · R · · · ·

�� · R · · R ·

�� R · · · · ·

 rating data required per itemjob

 Fig. 4 The user-item matrix split into a number of itemjobs (every itemjob processes all
users).

subproblems: How do we define work, and how can it be evenly distributed? In
the next two subsections we elaborate on each of these problems.

6.1 The Definition of Work

A straightforward way of expressing the amount of work processed by a worker
is by computation time. Longer computation times indicate more work has been
done. However, before the recommendation calculations are performed, the actual
computation time is unknown. What is known, are the total number of users,
items, available ratings, etc. If one of these metrics shows a positive correlation
with the calculation time, it can be used as a shorthand definition of work.

In Section 5, the notion of userjobs and itemjobs was introduced. Because of
this distinction, we want to be able to define work in terms of both user-related
metrics and item-related metrics. We devised two experiments focusing on these
subsets of metrics.

6.1.1 Work in terms of Users

Intuitively, more processed users will result in longer computation times. The
number of ratings that are provided by these users however may also be important.
To avoid confusion, we note that when we refer to ratings we are referring to the
user-provided ratings that are already available in the dataset (Rs in Fig. 2).

The algorithm in Section 4 shows that to calculate Rec(user, item) all the
ratings of that user will be taken into account. So a job processing users with a
low number of ratings may finish faster than a job with many ratings per user. We

In-Memory, Distributed Content-Based Recommender System 11

Fig. 5 Scatterplots indicating for a configuration of 40 worker nodes (i.e., 40 userjobs, 1
itemjob) the correlation of the number of users (left) and the number of given ratings (right)
with the calculation time of each job.

define two recommendation metrics as possible candidates for a user-related work
definition: the number of users and the total number of ratings provided by these
users.

We measured the correlation and performed a simple regression analysis of
these metrics with the actual resulting computation time for a configuration of 40
worker nodes (1 core per node). Each user was randomly assigned to one of these
nodes and each node processed all of the items available in the MovieLens dataset
(i.e., 40 userjobs, 1 itemjob). Since the set of items processed by each worker
was the same, the influence of processed users (and therefore also ratings) on the
computation time could be isolated. Fig. 5 shows two scatterplots indicating the
computation time (of the 40 userjobs) in function of the number of users per job
(left) or number of ratings (given by these users) per job (right).

While the number of users is not bad at predicting the execution time (R2 =
0.286), the number of ratings is an almost perfect predictor (R2 = 0.9251). We
learn from this that in order to achieve a load balanced system we should take
the number of available ratings processed by each worker node into account rather
than the number of users.

To further illustrate this concept, we compared the calculation times when
evenly distributing the number of users versus distributing the users in such a way
that the total amount of ratings given by these users is (as good as) equal for each
node. Fig 6 shows the results, and as expected, the distribution of users shows a
random like calculation time pattern while the distribution of ratings results in a
load balanced system.

Because work (or calculation time) is largely connected with the number of
available ratings, we should strive towards an equal distribution in the number of

12 Simon Dooms et al.

Equally distributing users across worker nodes

E
xe

cu
tio

n
tim

e
(s

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 makespan = 549s, userjobs = 40, itemjobs = 1

Worker Node (1−40)

Equally distributing ratings across worker nodes

E
xe

cu
tio

n
tim

e
(s

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 makespan = 159s, userjobs = 40, itemjobs = 1

Worker Node (1−40)

Fig. 6 The resulting calculation times when equally distributing the number of users across
worker nodes (left) versus distributing the number of users such that their total number of
given ratings are equal across worker nodes (right).

ratings among worker nodes. Equally distributing the users is not enough because
of the large divergence in number of ratings per user for our dataset.

6.1.2 Work in terms of Items

To define work in terms of items the obviously available metric is the number of
items that are processed by a worker node. However, with the algorithm presented
in Section 4, the workload associated with an item may differ. To calculate the
recommendation value Rec(u, i) all the ratings of user u must be taken into
account (for loop in Rec(user, item) procedure). We can express the true workload
of item i by analyzing the number of times this for loop will be iterated on. This
amount of iterations depends on the number of ratings of u and on the fact that
u may or may not have already rated i. If u has rated i, Rec(u, i) will not be
calculated and the amount of iterations will be zero. Therefore, for a given set of
users, the number of iterations for an item will be equal to the sum of the ratings of
the users minus the sum of the ratings of the users that have rated i (because they
will be skipped). We define a metric item iterations or iter(i), as the total number
of iterations that must be run for an item i to calculate the recommendation values
rec(u, i) for all users u.

iter(i) := |number of iterations for item i|
:= |all ratings| − |skipped ratings|

:= |all ratings| −
∑

(∀u|u rated i)

(|ratings of u|)

In-Memory, Distributed Content-Based Recommender System 13

Equally distributing items across worker nodes

E
xe

cu
tio

n
tim

e
(s

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 makespan = 239s, userjobs = 1, itemjobs = 40

Worker Node (1−40)

Equally distributing item iterations across worker nodes

E
xe

cu
tio

n
tim

e
(s

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 makespan = 41s, userjobs = 1, itemjobs = 40

Worker Node (1−40)

Fig. 7 Calculation times for equally distributing the number of items (left) versus equally
distributing the number of item iterations (right).

Again we set up a simple regression experiment for the two item-related metrics
(number of items versus number of item iterations) with the actual computation
time. The items were randomly distributed over 40 worker nodes (1 core per node)
and every node processed every user (i.e., 1 userjob, 40 itemjobs). When inspecting
the predictive capabilities of our metrics, both number of items (R2 = 0.9342) and
the number of item iterations (R2 = 0.943) were found to be very good predictors
for the calculation time.

When work was actually divided equally according to these two metrics and
results were compared, the number of item iterations proved to be slightly better
in terms of load balance (Fig. 7).

To conclude, we note that to obtain a load balanced system we should strive
to an equal distribution of both number of ratings and number of item iterations
over the available worker nodes.

6.2 Work Distribution

In this subsection we detail how we distribute work (which we defined in the previ-
ous subsection) equally among worker nodes. Only if work is equally distributed, a
load balanced situation can be achieved and therefore a higher parallel efficiency.

14 Simon Dooms et al.

6.2.1 The partition problem

The problem of equally distributing work across homogeneous workers is not new,
it is in fact a very well-studied problem in the theory of approximation algorithms
[19], often referred to as ‘makespan minimization’. In this problem setting, a num-
ber of jobs (with different estimated processing times) need to be scheduled across
a number of (identical) worker nodes, such that the maximum time for any node to
finish its work (i.e., the makespan) is minimized. In the context of our recommender
system, we will need to partition users and items in subsets to be processed by
worker nodes such that the resulting subsets show an equal amount of ratings and
item iterations. To do this, we need to solve the makespan minimization problem,
but since it is considered to be NP-complete [19], a fully polynomial algorithmic
approach might not exist. However, countless approximation schemes have been
proposed to tackle this problem (e.g., [5,14,25,1]).

The problem with optimization schemes such as Monte Carlo, genetic algo-
rithms, etc. is that they often require a large number of iterations to converge
to an acceptable solution. The runtime of the partitioning of work among worker
nodes will however be of crucial importance to the final performance of the system.
This partitioning will have to be executed sequentially and thus strongly limits the
parallel efficiency. Moreover, we must make sure not to put more effort (i.e., time)
into optimizing the partitioning than would be won by the improved load balanc-
ing. Since speed is so important, instead of applying more advanced optimization
solutions we first employ a very simple O(n), greedy partitioning algorithm.
Algorithm. Work distribution

Let jobs be a list of jobs
Sort jobs according to estimated workload (high to low)
for each job

assign job to worker node with currently lowest workload
End for

The accuracy of this solution depends on the specifics of the input data and
the number of desired partitions. If all users and items are equal in terms of our
definition of work then the algorithm will provide an optimal solution. On the
other hand, if they are extremely divergent and lots of partitions are needed, the
results (in terms of ‘makespan minimization’) may be poor.

While we found this solution to be sufficiently accurate (i.e., leading to suffi-
ciently load balanced systems) for most of the hardware configurations we ran our
algorithm with, some cases do require some extra attention. In the next subsec-
tion we show how the accuracy of this simple greedy algorithm can be heuristically
improved.

6.2.2 Robin Hood extension

To improve the accuracy of our proposed greedy partitioning algorithm, we employ
a method we refer to as the ‘Robin Hood’ extension. The idea is to iteratively take
work from ‘the rich’ and give it to ‘the poor’ in order to balance out the wealth
inequality. In this context, we define wealth as the workload of a worker node after
initial partitioning. Since we defined ‘work’ in Section 6.1, we can compute this
workload of a worker node by summing up either the number of ratings (when

In-Memory, Distributed Content-Based Recommender System 15

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Item iterations difference reduction (Robin Hood extension)

Iterations of the Robin Hood extension (1−500k)

M
ax

im
um

 d
iff

er
en

ce
 p

er
ce

nt
ag

e
of

 it
em

 it
er

at
io

ns
 (

lo
g)

5e
−

08
5e

−
07

5e
−

06
5e

−
05

5e
−

04
0.

00
5

0.
05

userjobs = 1, itemjobs = 40

Fig. 8 The declination of the item iterations difference between worker nodes after each
iteration of the Robin Hood extension (up to 500k iterations). Note that the y-axis is on a
logarithmic scale and expressed as a percentage of the total number of item iterations.

dividing in userjobs) or the number of item iterations (when dividing in itemjobs)
that need to be processed by the node. When the workload for every worker node
is known, we select the richest (i.e., highest workload) worker node and the poorest
(i.e., lowest workload) worker node. We then randomly pick a user (or item) from
the rich node and add it to the users (or items) of the poor node. Doing so, we
level out the maximum workload difference (i.e., makespan) associated with the
worker nodes. This process can be repeated until a desired threshold of minimum
makespan has been reached or a maximum number of iterations has been run.

As stated, this extension of the partition algorithm may only be needed in a
few cases where the partitioning algorithm performs worse then a certain threshold
of inequality. To illustrate the behavior of the Robin Hood extension, we executed
it after partitioning the items of the MovieLens dataset over 40 itemjobs (and 1
userjob) with the simple greedy partitioning algorithm. We set the extension to
run 500,000 iterations and we plotted the minimum makespan after every iteration
(Fig. 8). As shown in the figure, the Robin Hood extension allows to rapidly reduce
the makespan difference within only a few thousand iterations. While the makespan
is reduced, work is more evenly divided over the available worker nodes and so it
becomes more difficult to improve.

16 Simon Dooms et al.

6.2.3 Dividing in Userjobs and Itemjobs

In the context of recommender systems, data parallelism is a very promising con-
cept because it allows the processing of extremely large datasets on commodity
PCs. More interestingly even, it introduces a degree of flexibility in the sense that
data can be partitioned into pieces that maximize the utilization of worker re-
sources (e.g., RAM) and therefore computational efficiency. We divide our data
grid (users-items matrix) by first splitting the users into U chunks of users to be
processed by an equal amount of userjobs, and then for each userjob splitting the
items into another I itemjobs. The final number of jobs will consequently be the
product of the number of userjobs and itemjobs.

total number of jobs = userjobs× itemjobs

As detailed in Section 5, a worker node processing recommendation values for
(user, item) pairs must be able to hold all the ratings and item data of these users
and items in RAM. Therefore the largest resource requirement in the system is
the RAM of a computing node. Since user feedback data is usually more abundant
than item data (here ratio 70:1) we start by dividing the user data. These data
are split into equally-sized but smaller parts (i.e., userjobs). By equally-sized we
mean in fact equal in terms of the metrics we defined in Section 6.1. Since we are
dealing with user data, the relevant metric here is number of ratings. We use the
partition method as described in Section 6.2.1 to divide the users in a number
of parts such that each part contains an equal number of ratings. The number of
userjobs can be freely chosen, but as mentioned, this will drastically impact the
worker nodes resource requirements.

Then we continue to split the input data in terms of items (i.e., itemjobs)
for every userjob. As we defined number of item iterations as a good predictor
for workload in terms of items, we divide the items in a number of parts such
that each part contains about an equal number of iterations. Since the number of
iterations depends on the ratings that must be processed, itemjob division must
be carried out after the userjob division.

Since both the userjobs and itemjobs are divided in a way that optimizes load
balance, running both processes sequentially will also lead to a load balanced
system. A graphical overview of the distribution of work in terms of users and
items can be found in Fig. 9.

While the number of userjobs and itemjobs can be freely chosen, the choice does
also impact the final load (im)balance state of the system. When dividing a set of
numbers into x subsets of numbers with an (as much as possible) equal sum, the
value of x is of great importance. It is easier to split up the numbers equally over
2 subsets, than over 4 subsets. Since the employed partition algorithm is heuristic
in nature, the solution it generates depends on the difficulty of the problem. To
investigate the effect of the number of userjobs and itemjobs on the final load
imbalance of the system we ran some benchmarks.

We ran a number of job division processes (without Robin Hood extension)
with varying userjob and itemjob parameters and compared their resulting max-
imum item iterations difference (Fig. 10). The difference in terms of number of
ratings was negligible (because there are 10 000 times less ratings than item iter-
ations to divide) and is therefore not displayed.

In-Memory, Distributed Content-Based Recommender System 17

items

u
se

rs

userjobs division itemjobs division work deployment

Fig. 9 Overview of the work distribution from input data in terms of users and items to the
final mapping of the data on worker nodes.

Worst case iteration difference

Itemjobs

M
ax

im
um

 it
em

 it
er

at
io

ns
 d

iff
er

en
ce

 (
M

ili
on

s)

2 4 8 16 32 64 128 256 512 2048 8192

0
2

4
6

8
10

1 userjob 2 userjobs 1s baseline

Fig. 10 The maximum iterations difference for a work division (without robin hood extension)
with varying number of userjobs and itemjobs.

Fig. 10 shows the opposite effects of the number of userjobs and itemjobs on
the resulting difference. A larger number of userjobs implies working with smaller
subsets of ratings that consequently need to be divided further into itemjobs.
Therefore, more userjobs implies a smaller item iterations difference while more
itemjobs implies a bigger item iterations difference because of the increased com-
plexity of the problem.

A difference of 4 million item iterations (indicated on the figure) in our sys-
tem corresponded with 1s difference in computation time (which is only 0.002% of

18 Simon Dooms et al.

the total time). It is clear that for most configurations the item difference will be
negligible with respect to the total calculation time. The results and benchmarks
presented here, apply specifically to the MovieLens dataset. Other datasets might
introduce other ratios of ratings, users and items and so these benchmarks would
have to be repeated to determine the accuracy of partitioning. If the load imbal-
ance caused by the partition algorithm turns out to be too big, the Robin Hood
extension can be used.

We conclude this section by refocusing on the need for a load balanced system
in order to achieve higher parallel efficiency. We defined ‘work’ in the context of
a recommender system and correlated available metrics to resulting calculation
times. Using these definitions of work we are able to evenly distribute the work
across available worker nodes by applying a partitioning algorithm and optionally
a heuristic improving extension. By defining userjobs and itemjobs, input data can
be very flexibly divided into smaller chunks to optimize resource utilization while
preventing load imbalance.

7 Performance Model

In this section we evaluate the performance of our proposed content-based rec-
ommendation algorithm. The final recommendations of the calculation process
executed on a single machine will be identical to the final recommendation results
of our distributed approach and so we do not consider accuracy (among other
qualitative metrics) to be relevant in the evaluation of our system.

The performance of a parallel algorithm is not easily measured as it can be
influenced by many things. As [15] suggests, performance may be limited by load
imbalance issues, the amount of serialized parts of the concurrent execution, and
communication overhead that may be introduced because of the increased amount
of worker nodes. In the previous section, we succeeded in partitioning the com-
plete recommendation problem into any predefined number of subtasks with equal
complexity. These recommender subtasks can then be mapped onto worker nodes
without introducing load imbalance issues. Our algorithm and parallel strategy
are devised in such a way that jobs are executed independently and so no commu-
nication overhead is introduced by increasing the number of worker nodes. Serial
code fragments, on the other hand, could not be avoided. That is, some code can
only be executed by one processing node and therefore limits the performance of
our system.

In previous sections, we mainly focused on the recommendation calculation
part of our algorithm, but for a realistic performance model, we have to consider
the complete recommendation process. This process also includes processing input
data and running the work division as detailed in Section 6.2. To gain insight in
the performance of the complete recommendation process we started by measuring
the execution time of every part of the process. We define these parts in function of
how well they can be parallelized: serial, parallelU , parallelI , or parallelC . Parts
that are serial can not be parallelized and have to be executed sequentially. Parts
that are parallel on the other hand can be run in parallel on a number of worker
nodes. We define three types of parallel to make a distinction between parts that
are able to run in parallel on a number of userjobs (parallelU), number of itemjobs

In-Memory, Distributed Content-Based Recommender System 19

serial parallel user parallel item parallel core

parallel user

parallel user

parallel item

parallel item

parallel item

parallel core

parallel core

parallel core

parallel core

n
u

m
b

er
 o

f
u

se
rj

o
b

s

n
u

m
b

er
 o

f
it

em
jo

b
s

n
u

m
b

er
 o

f
co

re
s

Total parallel execution time

Fig. 11 A schematic view of the total execution time of the complete recommendation process
in terms of how different parts of the algorithm can be parallelized.

Parallelizability Time (s) Time (%)

serial (s) 41 0.02339

parallelU (PU) 29 0.01675

parallelI (PI) 0.01 0.00001

parallelC (PC) 174 936 99.95985

Total: 175 006 100

Table 1: The execution times for a complete recommendation calculation process
with 1 worker node (1 userjob, 1 itemjob, 1 core).

(parallelI), or on all the jobs at the same time including multiple processing cores
per job (parallelC).

An example of what might be considered parallelU is the processing of user
input data. After a certain node has read the input data from disk (which we
do not take into account here), these data need to be parsed and stored into a
memory structure. Every worker node needs to do this, but only for the subset of
user input data that was divided by the userjob work division. Therefore we refer
to this work as parallelizable in terms of userjobs.

We ran the complete recommendation process with a single worker node and
one active processing core as a performance baseline. For this, we set the number
of userjobs and itemjobs to ‘1’ (so all users and items are processed by a single
job). Table 1 shows the resulting execution times for each part in function of the
way they can be parallelized. As expected, the recommendation calculation itself,
which can be fully parallelized (PC), accounts for the most processing time.

To gain some insights into the parallel performance of this algorithm, we calcu-
late the speedup for a fixed-size problem (Amdahl’s law [2]). In its simplest form,
speedup Sp is defined by formula (3). If s is the amount of serial work and p the
amount of parallel work, we define T (1) as the execution time on 1 worker node
and consequently T (N) the execution time on N worker nodes.

20 Simon Dooms et al.

T (1) = s+ p (1)

T (N) = s+
p

N
(2)

Sp =
T (1)

T (N)
(3)

We adapt this formula to introduce our notion of userjobs U , itemjobs I, and
processing cores C. The total number of worker nodes in our context will be equal
to U × I and every one of these worker nodes may be equipped with C processing
cores. So we redefine the speedup in terms of U , I, and C.

Sp =
T (1, 1, 1)

T (U, I, C)
(4)

To calculate the speedup of our system, we must know the baseline time
T (1, 1, 1) (which we measured in Table 1) and T (U, I, C), which is the time for the
system to complete the calculations with U userjobs, I itemjobs and C cores (per
worker node). We define T (U, I, C) as

T (U, I, C) = s+
PU

U
+
PI

I
+

PC

U × I × C (5)

If we complete the baseline figures (as percentages) from Table 1 in equa-
tions (4) and (5), we can express the speedup model for our algorithm in terms of
userjobs, itemjobs and cores:

Sp(U, I, C) =
100

.02339 + .01675
U + .00001

I + 99.95985
U×I×C

(6)

To validate this speedup model we compared the predicted values with em-
pirically determined speedup values. For a number of (independent) variations
of userjobs, itemjobs and cores, we ran the complete recommendation process
and measured T (U, I, C). Since also T (1, 1, 1) is known, we were able to com-
pute the actual speedup and compare it to the predictions of the model. Fig. 12
visualizes the model together with the actual speedup values for the different vari-
ations. When we perform a simple regression analysis, we find that our model
has an R2 = 0.9982. The maximum speedup error in the model was 9% (for
(U, I, C) = (2, 2, 6)), the average error rate was 4%. We therefore consider our
model to be valid with an average error rate below 5% and usable as predictor for
the speedup value of our recommender system.

With this model we are now able to explore speedup values for any desired
range of (U, I, C) settings. Fig. 13 shows the speedup values for a different number
of cores with an equal amount of userjobs and itemjobs varying from 1 to 2048. It
is interesting to see that the speedup value converges to a number between 4000
and 4500. This limitation is the consequence of the fraction of non-parallel code
as predicted by Amdahl’s Law [2,15] which states that

lim
N→∞

Sp(N) =
1

s
. (7)

The execution time of the parallelizable parts of the code can be made in-
finitesimally small (for large values of worker nodes N), so that the resulting final

In-Memory, Distributed Content-Based Recommender System 21

50 100 200 400 800 1200

50

100

200

400

800

1200

Total amount of processing cores (U x I x C) (log)

S
pe

ed
up

 (
im

pr
ov

em
en

t t
ow

ar
ds

 u
ni

pr
oc

es
so

r
ba

se
lin

e)
 (

lo
g)

Speedup model validation

 predicted model speedup
 measured real speedup

Fig. 12 Validation of the speedup model by comparing model-predicted speedup values with
empirically determined speedup values. Note that both the x-axis and the y-axis are on a
logarithmic scale.

Speedup for U,I

Number of worker nodes (Userjobs * Itemjobs)

S
pe

ed
up

1² 2² 4² 8² 16² 32² 64² 128² 256² 512² 2048²

10
00

20
00

30
00

42
75

1 core 2 cores 4 cores 8 cores

Fig. 13 Speedup as predicted by the speedup model for various (U, I) settings.

execution time consists almost completely of (and is therefore also limited by) the
serial fraction of the code. If we calculate formula (7) with the known value of the
serial fraction (Table 1), we find our speedup limitation (formula (9)).

22 Simon Dooms et al.

lim
U,I,C→∞

Sp(U, I, C) =
1

s
(8)

lim
U,I,C→∞

Sp(U, I, C) =
100

0.02339
= 4275 (9)

Although the performance of our algorithm may be limited by a speedup value
of 4275, this limit is only reached for very high values of userjobs and itemjobs
(>512). If both the amount of userjobs and itemjobs is 512, the resulting number
of jobs will be 5122(=262 144). If every job is mapped on a worker node, this would
require an unreasonably large cluster. Therefore we conclude that the scalability
of our algorithm will be limited by the availability of computing hardware before
its theoretical limit of speedup is reached.

We define parallel efficiency εp for our system in terms of userjobs, itemjobs,
and cores as the following.

εp(U, I, C) =
Sp(U, I, C)

U × I × C (10)

Using the speedup model as input, we are able to explore the scalability of
our algorithm in terms of efficiency for any desired range of (U, I, C) settings. If
we would run our recommender system on a cluster with 200 available worker
nodes each with 8 processing cores (U , I, C equal to 10, 20, 8), we can expect
a speedup value of 1142 which gives us a parallel efficiency of 71.4%. If we now
compare our parallel efficiency values with results found in similar related work,
such as 90% efficiency for a Hadoop-based item-based CF recommender with 8
nodes [21], we find that our solution easily achieves higher efficiency values (and
so higher speedup values) for the same configuration (U , I, C equal to 4, 2, 1),
namely 99.8%.

In Fig. 14 we plotted both speedup and efficiency (with four processing cores).
Both graphs intersect at 50% for a number of worker nodes equal to 322(= 1024).
The minimum parallel efficiency that should be maintained depends greatly on
the availability of the hardware infrastructure and related costs.

It is clear that to come to an appropriate amount of userjobs, itemjobs and
cores, a trade-off will have to be made between how fast the algorithm comes to
a solution and how efficiently resources are used. Hager et al. [15] suggest the
construction of a cost model and minimizing the product of walltime and infras-
tructure cost as a sensible balance. As was mentioned before, the available RAM
of worker nodes may also be limited so that a certain minimum number of user-
jobs will be needed to meet hardware requirements. More userjobs implicates more
fragmentation of the user input data and therefore reduced RAM requirements per
worker node.

For general purposes, we suggest to set the number of used cores (C) to the
number available in a single computing node and the number of userjobs (U) so
that the associated RAM requirements match the available RAM. The number of
itemjobs I can then be set such that the total number of jobs is a factor of the
total number of computing nodes.

Our proposed algorithm combined with the parallel strategy described in this
paper offers complete flexibility as to the number of subtasks the recommendation
problem should be partitioned in, and can therefore easily be optimized for any
given set of cost constraints or for any given hardware configuration.

In-Memory, Distributed Content-Based Recommender System 23

Optimal U,I (4 cores)

Number of worker nodes (Userjobs x Itemjobs)

S
pe

ed
up

1² 2² 4² 8² 16² 32² 64² 256² 1024²

10
00

21
39

30
00

42
75

0
30

50
70

10
0

SpeedupEfficiency

E
ffi

ci
en

cy

Fig. 14 Model speedup and efficiency for worker nodes with 4 cores and various (U, I) settings.

7.1 The performance on an other dataset

The true performance of the system will in the end be very dependent on the
available hardware infrastructure, applied (U, I, C) settings and the dataset at
hand. To gain more insight into the generalizability of our results, we did a small
experiment with varying (U, I, C) settings on another dataset. We used a dataset
borrowed from our previous research experiments on a cultural events website [13,
12]. From this website we collected 40,000 ratings, from 10,000 users on 40,000
events, which is considerably smaller than the MovieLens 10M dataset.

U I C Time (s) Speedup Efficiency (%)
1 1 1 6691 1 100
2 2 1 2020 3.3 83
4 4 1 587 11.4 71
8 8 1 164 40.8 64
16 16 1 43 155.6 61
32 32 1 12 581.7 57
2 2 4 525 12.7 80
4 4 4 157 42.5 66
8 8 4 42 159.3 62
16 16 4 12 557.5 54
10 20 8 8 836.2 52

Table 2: Performance results of the system with a smaller dataset.

24 Simon Dooms et al.

These results show that the efficiency of the performance of the recommender
system on this dataset is slightly less than for the MovieLens dataset. For the
calculation with 200 nodes, each having 8 cores, the efficiency drops from 71.4%
(for MovieLens) to 52%. This is to be expected since the cultural dataset is much
smaller (about 50 times). A smaller dataset indicates less work, while the typical
overhead of reading data and executing the job division stays about the same, thus
decreasing the overall efficiency.

These results however indicate an interesting transition from an offline rec-
ommendation scenario to a possible real-time recommender, without the need for
a customized incremental recommendation algorithm. The full recommendation
calculation on a single machine takes about two hours, which would force the
recommender system to calculate recommendations in an offline batch scenario.
However, if a computing infrastructure with 200 worker nodes (8 cores per node)
is available then the calculation takes only 8 seconds which paves the way towards
real-time (content-based) recommendation for an online recommender. So while
our distributed recommender will show higher efficiency values for bigger datasets,
even for small datasets the merits of increasing the recommendation calculation
performance can be shown.

8 Conclusions and future work

In this work, we implemented an out-of-the-box content-based recommendation al-
gorithm and showed how it could be efficiently parallelized and distributed across
a distributed computing infrastructure. By focusing on data parallelism, the rating
prediction recommendation task could be divided into equally sized and indepen-
dent chunks of work which could then easily be mapped onto available worker
nodes.

The total number of jobs can be expressed in terms of number of userjobs and
itemjobs which introduces an increased level of flexibility. Setting the appropriate
number of userjobs and itemjobs enables optimal use of RAM memory and allows
to match the number of jobs to the number of available worker nodes. By carefully
constructing the definition of ‘work’ in the context of recommender systems we
were able to influence and improve the state of load imbalance between worker
nodes. To actually divide the work (i.e., solve the makespan minimization problem)
we introduced a simple greedy heuristic algorithm that showed an appropriate
level of accuracy for most scenarios but could be supplemented with our proposed
‘Robin Hood’ extension if needed. Since the workload of chunks of work is load
balanced, they can be evenly spread out across machines without the need for any
inter node communication (as is the case for the MapReduce master-slave model).

An empirically validated performance model was built that allowed to model
and predict the performance of our system in terms of parallel speedup and ef-
ficiency for any given configuration of userjobs, itemjobs and processing cores
(U,I,C). Results, for the MovieLens 10M dataset, showed that although speedup
converges to 4275 after a certain number of worker nodes are put to the task
(>5122), this limit is sufficient for realistic hardware configurations. With im-
proved speedup the efficiency of our system decreases and so a cost model that
takes both into account in the context of the available hardware infrastructure at
hand will be needed. Thanks to its flexible design, the parallel and distributed rec-

In-Memory, Distributed Content-Based Recommender System 25

ommendation algorithm presented in this work can be tailored to satisfy any set of
cost constraints and thus makes optimal use of any given hardware configuration.

Our approach does not impose any file system requirements and can be run on
any machine capable of running Python code. A disadvantage compared to a stan-
dard MapReduce setting is the lack of built-in fault tolerance. While MapReduce
effortless handles corrupt or faulty computing nodes, we have to account for this
situation manually and redistribute the work to other machines. Another downside
is that the parallel approach presented in this work, has been specifically tailored
to the content-based recommendation algorithm and therefore can not be applied
to other algorithms without at least some minor modifications.

While we believe to have obtained higher parallel efficiency values than MapRe-
duce solutions, the choice of which system to apply will in the end depend on the
specific use case at hand.

In future work, we plan on evaluating and comparing our distributed rec-
ommendation approach with MapReduce implementations in a controlled envi-
ronment on exactly the same hardware and for the same datasets. We are also
currently working on parallelizing and distributing the computation of other col-
laborative filtering algorithms such as item-based collaborative filtering (IBCF).

Acknowledgements The described research activities were funded by a PhD grant to Simon
Dooms of the Agency for Innovation by Science and Technology (IWT Vlaanderen). The
computational resources (Stevin Supercomputer Infrastructure) and services used in this work
were provided by Ghent University, the Hercules Foundation and the Flemish Government -
department EWI.

References

1. Ahmadizar, F.: A new ant colony algorithm for makespan minimization in permutation
flow shops. Computers & Industrial Engineering (2012)

2. Amdahl, G.: Validity of the single processor approach to achieving large scale computing
capabilities. In: Proc. spring joint computer Conf., pp. 483–485. ACM (1967)

3. Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Proc. Int.
Conf. Intelligent Techniques for Web Personalization, pp. 1–36. Springer-Verlag (2003)

4. Berkovsky, S., Freyne, J.: Group-based recipe recommendations: analysis of data aggre-
gation strategies. In: Proc. 4th ACM Conf. Recommender Systems, RecSys ’10, pp.
111–118. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864732. URL
http://doi.acm.org/10.1145/1864708.1864732

5. Bilolikar, V., Jain, K., Sharma, M.: An annealed genetic algorithm for multi mode resource
constrained project scheduling problem. Int. J. of Computer Applications 60(1), 36–42
(2012)

6. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves
the behavior of recommender systems. Knowledge-Based Systems 23(6), 520–528 (2010)

7. Chhabra, S., Resnick, P.: Cubethat: news article recommender. In: Proc. 6th ACM Conf.
Recommender Systems, RecSys ’12, pp. 295–296. ACM, New York, NY, USA (2012).
DOI 10.1145/2365952.2366020. URL http://doi.acm.org/10.1145/2365952.2366020

8. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online
collaborative filtering. In: Proc. 16th Int. Conf. World Wide Web, pp. 271–280. ACM
(2007)

9. De Pessemier, T., Vanhecke, K., Dooms, S., Martens, L.: Content-based recommendation
algorithms on the hadoop mapreduce framework. In: Proc. 7th Int. Conf. Web Information
Systems and Technologies. Ghent University, Department of Information technology (2011)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008)

26 Simon Dooms et al.

11. Dooms, S., De Pessemier, T., Martens, L.: A file-based approach for recommender
systems in high-performance computing environments. In: Proc. 22nd Int. work-
shop on database and expert systems applications, pp. 529–533. IEEE (2011). URL
http://dx.doi.org/10.1109/DEXA.2011.3

12. Dooms, S., De Pessemier, T., Martens, L.: An online evaluation of explicit feedback mech-
anisms for recommender systems. In: Proc. 7th Int. Conf. Web Information Systems and
Technologies, pp. 391–394 (2011)

13. Dooms, S., De Pessemier, T., Martens, L.: A user-centric evaluation of recommender al-
gorithms for an event recommendation system. In: Workshop on Human Decision Making
in Recommender Systems (Decisions@RecSys’11) and User-Centric Evaluation of Recom-
mender Systems and Their Interfaces - 2 (UCERSTI 2) affiliated with 5th ACM Conf.
Recommender Systems (RecSys 2011), pp. 67–73 (2011)

14. Gomez-Gasquet, P., Segura-Andres, R., Franco, D., Andres, C.: A makespan minimization
in an m-stage flow shop lot streaming with sequence dependent setup times: Milp model
and experimental approach. In: 6th Int. Conf. Industrial Engineering and Industrial Man-
agement, pp. 332–339 (2012)

15. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and
Engineers, 1st edn. CRC Press, Inc., Boca Raton, FL, USA (2010)

16. Han, P., Xie, B., Yang, F., Shen, R.: A scalable p2p recommender sys-
tem based on distributed collaborative filtering. Expert Systems with Ap-
plications 27(2), 203 – 210 (2004). DOI 10.1016/j.eswa.2004.01.003. URL
http://www.sciencedirect.com/science/article/pii/S0957417404000065

17. Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Information retrieval 5(4), 287–
310 (2002)

18. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. In: Proc. 22nd Int. ACM SIGIR Conf. Research and
development in information retrieval, pp. 230–237. ACM (1999)

19. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM 34(1), 144–162 (1987). DOI
10.1145/7531.7535. URL http://doi.acm.org/10.1145/7531.7535

20. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an introduc-
tion. Cambridge University Press (2010)

21. Jiang, J., Lu, J., Zhang, G., Long, G.: Scaling-up item-based collaborative filtering rec-
ommendation algorithm based on hadoop. In: Services (SERVICES), 2011 IEEE World
Congress on, pp. 490–497. IEEE (2011)

22. Keckler, S., Olukotun, K., Hofstee, H.: Multicore processors and systems. Springer (2009)
23. Lämmel, R.: Googles mapreduce programming modelrevisited. Science of Computer Pro-

gramming 70(1), 1–30 (2008)
24. Levi, A., Mokryn, O., Diot, C., Taft, N.: Finding a needle in a haystack of reviews:

cold start context-based hotel recommender system. In: Proc. 6th ACM Conf. Recom-
mender Systems, RecSys ’12, pp. 115–122. ACM, New York, NY, USA (2012). DOI
10.1145/2365952.2365977. URL http://doi.acm.org/10.1145/2365952.2365977

25. Liu, M., Zheng, F., Wang, S., Xu, Y.: Approximation algorithms for parallel machine
scheduling with linear deterioration. Theoretical Computer Science (2012)

26. McCarthy, J.F., Anagnost, T.D.: MusicFX: an arbiter of group preferences for com-
puter supported collaborative workouts. In: Proc. ACM Conf. Computer supported
cooperative work, CSCW ’98, pp. 363–372. ACM, New York, NY, USA (1998). DOI
10.1145/289444.289511. URL http://doi.acm.org/10.1145/289444.289511

27. Pera, M.S., Ng, Y.K.: Personalized recommendations on books for k-12 readers. In: Proc.
5th ACM workshop on Research advances in large digital book repositories and comple-
mentary media, BooksOnline ’12, pp. 11–12. ACM, New York, NY, USA (2012). DOI
10.1145/2390116.2390124. URL http://doi.acm.org/10.1145/2390116.2390124

28. Peralta, V.: Extraction and integration of movielens and imdb data. Tech. rep., Technical
Report, Laboratoire PRiSM, Université de Versailles, France (2007)

29. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in
recommender system-a case study. Tech. rep., DTIC Document (2000)

30. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition
algorithms for highly scalable recommender systems. In: 5th Int. Conf. Computer and
Information Science, pp. 27–28. Citeseer (2002)

In-Memory, Distributed Content-Based Recommender System 27

31. Schelter, S., Boden, C., Markl, V.: Scalable similarity-based neighborhood methods with
mapreduce. In: Proc. 6th ACM Conf. on Recommender Systems, pp. 163–170. ACM (2012)

32. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Moviexplain: a recommender sys-
tem with explanations. In: Proc. 3rd ACM Conf. Recommender Systems, RecSys ’09,
pp. 317–320. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639777. URL
http://doi.acm.org/10.1145/1639714.1639777

33. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches
for large recommender systems. J. of Machine Learning Research 10, 623–656 (2009)

34. Xie, B., Han, P., Yang, F., Shen, R.M., Zeng, H.J., Chen, Z.: Dcfla: A distributed
collaborative-filtering neighbor-locating algorithm. Inf. Sci. 177(6), 1349–1363 (2007).
DOI 10.1016/j.ins.2006.09.005. URL http://dx.doi.org/10.1016/j.ins.2006.09.005

35. Yang, D., Chen, T., Zhang, W., Lu, Q., Yu, Y.: Local implicit feedback mining for
music recommendation. In: Proc. 6th ACM Conf. Recommender Systems, RecSys ’12,
pp. 91–98. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365973. URL
http://doi.acm.org/10.1145/2365952.2365973

36. Zhao, Z., Shang, M.: User-based collaborative-filtering recommendation algorithms on
hadoop. In: 3rd Int. Conf. Knowledge Discovery and Data Mining (WKDD’10), pp. 478–
481. IEEE (2010)

