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Abstract: Considering the uncertainty of transporting goods from numerous origins to diverse 

destinations is a critical task for the decision-maker (DM). The ultimate goal of the DM is to make the 

right decisions that optimize the profit or loss of the organization under the vagueness of the 

uncontrollable effects. In this paper, mathematical models are proposed using fuzzy non-linear 

membership functions for the transportation problem considering the parameters’ uncertainty that can 

help the DM to optimize the multi-objective transportation problems (MOTP) and to achieve the 

desired goals by choosing a confidence level of the uncertain parameters. Based on DM’s selection of 

the confidence level, a compromise solution of the uncertain multi-objective transportation (UMOTP) 

is obtained along with the satisfaction level in percent for the DM. Two non-linear fuzzy membership 

functions are considered: the exponential and the hyperbolic functions. Using both membership 

functions, the sensitivity analysis was implemented by considering different confidence levels. 

According to the experimental results, the hyperbolic membership function gives 100% DM’s 

satisfaction in many instances. Moreover, it shows stability against the exponential and linear functions.  
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1. Introduction  

Transportation problem (TP) is a very distinct kind of cost-effective linear programming problem 

that helps the decision-maker (DM) to optimize the cost parameters. The ordinary transportation 

problem is associated with transporting goods from p deliverers to q receivers filling the obtainability 

of the supply equivalent to the demands. Sometimes the cost parameters such as supply, demand, and 

costs are not described preciously. In this situation, the question of uncertainty arises. Many researchers 

have shown their ingenuity in developing effective methods for the optimization of a TP. The 

fundamental concept of TP was developed by Hitchcock [1] in a mathematical form of the distribution 

of products from numerous sources to frequent warehouses and then [2] showed the best utilization of 

the system. Thie and Keough [3] have shown the models to solve the transportation problem as a linear 

programming problem, which is very efficient by using the simplex method that makes the problem 

very much calculative. On the other side, Zadeh [4] have given a brief description of a new technique 

for decision-making in a fuzzy environment. Lee and Moore [5] optimized transportation problems 

with multiple objectives applying the goal-programming concept. Zimmermann [6] applied the fuzzy 

linear programming concept with multi-objectives to solve MOTP. Isermann [7] have shown an 

algorithm for linear MOTP and Leberling [8] have given the idea of hyperbolic membership function 

for multi-objective linear programming problem. Ringuest and Rinks [9] suggested an interactive 

algorithm for the linear MOTP that makes it easy to find the compromise solution of the transportation 

problem for the set of non-dominated solutions. Arsham and Kahn [10] introduce a simple model for 

general transportation problem for stepping-stone method. Chanas et al. [11] and Delgado et al. [12] 

revealed a general model for fuzzy linear programming. Bit et al. [13] introduced an additive fuzzy 

programming model for the many criteria transportation problem considering the fuzzy membership 

function to construct a significant decision function. Yaghin and Darvishi [14] integrated decisions of 

the physical supply channel on the global scale including supplier selection, order allocation, and 

transportation planning under uncertainty. Verma et al. [15] apply fuzzy programming technique to 

solve multi-objective transportation problems with some nonlinear membership functions. El-Wahed 

and Abo-Sinna [16] discussed the mixture fuzzy-goal programming tactic to the optimization of 

multiple objective decision making problems. The values of the uncertain parameters are obtained by 

using uncertain normal distribution suggested by B. Liu [17–22] for uncertain measures theorem. 

Maity et al. [23] apply uncertain measures theorem to measure the problem with cost reliability. 

Baky [24] have drown a brief description of multi-level use of fuzzy goal programming where Ojha et 

al. [25] and Kundu et al. [26] show the applicability of fuzzy model in both single and multiple 

objective TP. In 2015, Guo et al. [27] applied the TP model in uncertain environment for e-Navigation 

and Maritime Economy. Uddin et al. [28] and Umarusman [29] have demonstrated the use of fuzzy 

goal programming with genetic algorithm in min-max approach for MOTP. Recently, Singh et al. [30] 

presented the concept of interactive fuzzy goal programming to solve the MOTP. Moreover, Uddin et 

al. [31] described TP considering all parameters uncertain with goal programming applying linear 

membership function. Recently, Darvishi et al. [32], Yaghin and Darvishi [33] have integrated inbound 
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logistics decisions and multi-site aggregate production planning (APP) over the tactical planning 

horizon in textile industry using fuzzy logic. Fuzzy logic was considered in the planning of textile 

production management [33]. Ali et al. [34] apply the LR-type fuzzy in a multi-objective supply chain 

problem. Khan et al. [35] and Kaliyaperumal and Das [36] use non-linear programming to optimize 

multi-objective problems. Muhammad et al. [37], Kamal et al. [38], Mahajan and Gupta [39] and Khan 

et al. [40] are also apply the fuzzy goal programming technique for sustainable development. Kacher 

and Singh [41] developed a fully fuzzy MOTP with the consideration of fuzzy harmonic mean. A recent 

literature review can be found in [42] with a full description of the models of TP.  

Based on the aforementioned literature, the uncertain multi-objective TP is still attracting the 

attention of the recent researches. However, most of the resent works considered the linear membership 

function for representing uncertainty. Only a few attempts were found considering the hyperbolic 

membership function or the exponential membership function. This shortage motivates this study to 

consider the uncertain multi-objective TP with nonlinear membership functions. Besides, it attempts 

to answer the question of what is the best membership function to be used amongst hyperbolic, 

exponential, or linear? Moreover, it proposes to develop a decision support tool by which the DM can 

interpret the MOTP. Another question was highlighted: Is there any tool that can help the DM to 

interpret the obtained solution rapidly? Considering these research interests, there is a need for a 

method that will help the DM to calculate in percent the desired goal with uncertain parameters using 

non-linear membership function corresponding to his confidence level. 

In the present study, diverse attempts were taken to predict the parameters of the MOTP in an 

uncertain environment. Accordingly, this model will be very helpful for the decision-maker in a very 

complicated situation to take the right decisions. The key contributions of the present research can be 

summarized as follows: 

⚫ All parameters such as the supply, demand, and cost are considered uncertain. 

⚫ Different objectives are considered: beside the benefits, the penalty cost for transportation 

and damage cost due to delay or early transportation are considered as uncertain. 

⚫ The decision maker can choose a confidence level for each of the uncertain parameter to 

make it a certain one. 

⚫ Non-linear membership functions of fuzzy programming approach were considered to model 

the situation. 

⚫ The DM can find out his overall satisfaction in percent (%) corresponding to the chosen 

confidence level which will be a tremendous job to take right decision and as a whole for the 

desired profit of the organization.  

The rest of this paper is furnished as in Section 2, the proposed mathematical model for non-linear 

membership function is designed and discussed. In Section 3, an illustrative example for the 

applicability of the proposed model is discussed. Then Section 4 presents a comparative analysis with 

discussions of the different membership functions. Finally, the conclusions and perspectives are 

presented. 
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2. Mathematical model 

Nomenclature: 

𝑎𝑗: Supply parameter (in number of units) 

𝑏𝑗: Demand parameter (in number of units) 

𝐶𝑖𝑗: Cost parameter for ith origin to jth destination (in monetary units)  

ƛ: Uncertain variable 

ℜ: Uncertain distribution 

∅: Normal uncertain distribution 

𝛺: Uncertain measure function  

𝑒: Expected value of the parameter 

𝜎: Standard deviation 

𝜔: Confidence level 

𝜉: Satisfaction level of the DM 

𝜇𝐸(𝑍𝑘): Exponential membership function for the kth objective 

𝜇𝐻(𝑍𝑘): Hyperbolic membership function for the kth objective 

𝑋𝑖𝑗: Amount to be transported from ith origin to jth destination 

ℜ
−1(𝑥): Inverse normal uncertain distribution.  

2.1. Multi-objective transportation problem  

Transportation problems are generally designed to transport a number of products from some 

stocks (or sources) to different ends. Let us consider there are𝑝sources and 𝑞 demands. The sources 

can be factory or production facilities, warehouse etc. and these are denoted by the symbols 

𝑎1, 𝑎2, ……𝑎𝑝  and the destinations can be warehouse, outlets etc. and are generally denoted the 

symbols 𝑏1, 𝑏2, ……𝑏𝑞. Let the transportation costs 𝐶𝑖𝑗 are related to transport a number of units from 

𝑖𝑡ℎ origin to 𝑗𝑡ℎ destination and 𝑥𝑖𝑗is the unknown quantity to be transported from the 𝑖𝑡ℎ origin to 

𝑗𝑡ℎ destination. In these circumstances, the conventional transportation model is written as: 

( )
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Under the feasibility condition of ∑ 𝑎𝑖 ≥ ∑ 𝑏𝑗
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𝑗=𝑖

𝑚
𝑖=1  .

 
In the present challenging market condition, various objectives such as minimizing the 
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transportation costs, minimize the transportation time, maximize the profit, minimize the damage cost 

due to delay or advanced transport of the products are very rational with transportation. On the other 

hand, these cost parameters are independent to each other and that is why they are considered as 

conflicting. In such environment, the MOTP can be demonstrated as follows: 

( )
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Under the feasibility condition of ∑ 𝑎𝑖 ≥ ∑ 𝑏𝑗
𝑛
𝑗=𝑖

𝑚
𝑖=1  . 

Where 𝐶𝑖𝑗
𝑘   is the unit cost for transportation, 𝑎𝑖 (𝑖 = 1,2, …… , 𝑝)  is the supply and 

𝑏𝑗(𝑗 = 1,2,…… , 𝑞) is the order parameter for the 𝑘𝑡ℎ (𝑘 = 1,2, …… ,𝐾) objective function of the 

MOTP. In general, the number𝐶𝑖𝑗
𝑘 ,𝑎𝑖 and 𝑏𝑗are considered as crisp. Incorporating the inverse measure 

theorem, Eq (2) can be written as follows: 
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We know that the inverse of the normal uncertain variable 𝑁(𝑒, 𝜎)  is as ℜ
−1(𝑥) = 𝑒 +

√3𝜎

𝜋
𝑙𝑛 (

𝜔

1−𝜔
) where 𝜔 is the level of confidence of the decision maker. 

2.2. The proposed model for non-linear membership functions 

The computational algorithm for fuzzy exponential membership function is constructed below for 

achieving the optimal solution and also the satisfaction level of the decision maker as follows: 

Step 1: Obtain the crisp values of the parameters using inverse normal uncertain distribution. 
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Step 2: Construct the given MOTP for uncertain parameters to an ordinary TP using the crisp number 

obtained from step 1. 

Step 3: Solve each single objective TP ignoring all others objectives. 

Step 4: Using the result obtain from step 3, determine the corresponding values of each objective 

function and then construct the payoff matrix as shown in Table 1: 

Table 1. The structure of the Payoff matrix.  

 𝑍1(𝑋) 𝑍2(𝑋) . . . 𝑍𝑘(𝑋) 

𝑋(1) 𝑍11 𝑍12 . . . 𝑍1𝐾 

𝑋(2) 𝑍21 𝑍22 . . . 𝑍2𝐾 

. . . . . . . 

. . . . . . . 

. . . . . . . 

𝑋(𝑘) 𝑍𝐾1 𝑍𝐾2 . . . 𝑍𝐾𝐾 

Where 𝑋(1), 𝑋(2), . . . . . . . . . , 𝑋(𝐾) are the optimal solutions and 𝑍1𝐾 , 𝑍1𝐾 , . . . . . . . . . , 𝑍𝐾𝐾 are the 

corresponding values of the single objective functions. 

Step 5: From step 4, for each single objective, find the 𝑀𝑘and the corresponding 𝐿𝑘 for each solution 

set, where 𝑀𝑘 = Maximum(𝑍1𝐾 , 𝑍2𝐾 , . . . . . . . . . , 𝑍𝐾𝐾) and 𝐿𝑘 = Minimum(𝑍1𝐾 , 𝑍2𝐾 , . . . . . . . . . , 𝑍𝐾𝐾), 

𝑘 = 1,2, . . . . , 𝐾. Then an initial fuzzy model can be written as follows: 

Find   𝑋𝑖𝑗 ,  𝑖 = 1,2,3, . . . . . , 𝑝,  𝑗 = 1,2,3, . . . , 𝑞

                   𝑍𝐾 ≤ 𝐿𝐾,   𝑘 = 1,2, . . . . , 𝐾
Subject to: 

               ∑𝑥𝑖𝑗 ≤ 𝑎𝑖

𝑛

𝑗=1

,  𝑖 = 1,  2,  3, . . . . . . . . . . . . . . . , 𝑝

               ∑𝑥𝑖𝑗 ≥ 𝑏𝑗

𝑚

𝑖=1

,  𝑗 = 1,  2,  3, . . . . . . . . . . . . . . . , 𝑞

                ∀ 𝑥𝑖𝑗 ≥ 0,  𝑖 = 1,2, . . . . . . 𝑝;  𝑗 = 1,2, . . . . . . . , 𝑞}
 
 
 
 
 

 
 
 
 
 

.    (4)  

Assuming that any maximization objective can be transformed to a minimization one as pre-

processing step. 

Step 6: Describe exponential membership function 𝜇𝐸(𝑍𝑘) for the 𝑘𝑡ℎ objective function. 

Step 7: Convert model, in step 5, as a crisp model as Eq (5) for exponential fuzzy membership function 

and as Eq (6) for hyperbolic one: 
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Maximize: 𝜉
Subject to:

                𝑒−𝑠𝜓𝑘(𝑋) − (1 − 𝑒−𝑠)𝜉 ≥ 𝑒−𝑠 ,  𝑘 = 1,2, . . . . , 𝐾

                ∑𝑋𝑖𝑗 = 𝑎𝑖

𝑞

𝑗=1

,  𝑖 = 1,2, . . . . , 𝑝

                ∑𝑋𝑖𝑗 = 𝑏𝑗

𝑝

𝑖=1

,  𝑗 = 1,2, . . . . , 𝑞

                𝑋𝑖𝑗 ≥ 0,  𝜉 ≥ 0, ∀𝑖, 𝑗 }
 
 
 
 
 

 
 
 
 
 

,   

where 𝜓𝑘(𝑋) =
𝑍𝑘−𝐿𝑘

𝑀𝑘−𝐿𝑘
. 

(5)  

Maximize  𝜉
Subject to:

               𝑍𝑘(𝑋)𝛼𝑘 + 𝜂 ≤ (
𝑀𝑘 + 𝐿𝑘

2
)𝛼𝑘

               ∑𝑋𝑖𝑗 = 𝑎𝑖

𝑞

𝑗=1

,  𝑖 = 1,2, . . . . , 𝑝

               ∑𝑋𝑖𝑗 = 𝑏𝑗

𝑝

𝑖=1

,  𝑗 = 1,2, . . . . , 𝑞

               𝜉 ≥ 0, 𝑋𝑖𝑗 ≥ 0,  ∀𝑖, 𝑗 }
 
 
 
 
 

 
 
 
 
 

,      

where 𝜂 = 𝑡𝑎𝑛ℎ
−1(2𝜉 − 1). 

(6)  

Step 8: Solving the model, required solution and the satisfaction level of the DM for the MOTP 

obtained. 

To understand the computational algorithm straight forwardly, a flowchart is presented below. 

Moreover, an example is illustrated for ascertaining the usefulness of the mentioned transportation 

problem beside the pertinence of the computational system in the next segment. 
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Figure 1. Flow chart of the proposed model using exponential/hyperbolic membership function. 

3. Illustrations  

To affirm the feasibility of the models, let us consider a multi objective TP with uncertainty in 

objective parameters. The decision maker desires to transport the merchandises from three sources 

𝑆1,  𝑆2,  𝑆3 to four destination points 𝐷1, 𝐷2, 𝐷3, 𝐷4and wishes to optimize the objective functions 

as follows: 

(i) Minimization of transportation cost (Z1). 

(ii) Maximization of profit (Z2). 

(iii) Minimization of damage cost (Z3). 

Note: First, we assumed that the stochastic profit matrix can be converted to a stochastic cost matrix 

as a prepressing step. We call it “transformed profit 𝐶𝑖𝑗
2”. This transformation can be performed by 

subtracting the stochastic profit matrix from a large number with zero variance. Accordingly, the 

proposed algorithm can be applied straight forwardly.  

 1 
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In the uncertain working environment, it is difficult for the DM to estimate his decision outcomes. 

But he/she can easily decide the level of confidence𝜔  to achieve the desired goal. Then, the 

unpredictable parameters can be converted to a crisp number using the normal distribution𝑁(𝑒, 𝜎). 
Whereas, 𝑒 stands for expected value of the uncertain parameter and 𝜎 for the deviation. To achieve 

this goal, the uncertainty is considered using the inverse normal uncertain distribution. In other words, 

the uncertain TP cost 𝐶𝑖𝑗
1 , transformed profit 𝐶𝑖𝑗

2  and damage cost 𝐶𝑖𝑗
3  for each unit of goods from 𝑖 

origins to 𝑗  destinations for 𝑖 = 1,2,3  and 𝑗 = 1,2,3,4  are obtained using the inverse normal 

uncertain distribution for the confidence level 𝜔 chosen by the DM. Similarly, both the demands and 

supply are measured using inverse normal uncertain distribution.  

ℜ−1(𝑥) = 𝑒 +
√3𝜎

𝜋
𝑙𝑛 (

𝜔

1−𝜔
) and the supply are measured using inverse uncertain normal 

distribution. ℜ
−1(𝑥) = 𝑒 +

√3𝜎

𝜋
𝑙𝑛 (

1−𝜔

𝜔
). 

In each of the case, the DM uses the same confidence level to determine all the uncertain 

parameters. The data used to illustrate the proposed approach is taken from the work presented in 

Uddin et al. [29], as listed in Table 2.  

3.1. Using exponential membership function 

For confidence level 𝜔 = 0.75 Table 2 can be changed to Table 3 respectively using confidence 

level 𝜔 = 0.75 and the inverse normal uncertain distribution.  

Table 2. Data to illustrate the example. 

Entity  Data matrix  

Uncertain transportation cost 𝐶𝑖𝑗
1 : 

 D1 D2 D3 D4 

S1 (20, 2) (18, 2) (22, 3) (24, 3) 

S2 (10, 1) (12, 2) (15, 3) (13, 1) 

S3 (22, 3) (20, 3) (24, 2) (23, 2) 

Uncertain transformed profit 𝐶𝑖𝑗
2 : 

 D1 D2 D3 D4 

S1 (5, 1) (6, 1.5) (4, 1) (3, 0.5) 

S2 (6, 1) (5, 1.5) (5, 0.5) (4, 1) 

S3 (9, 1) (8, 1.5) (8, 2) (10, 2) 

Uncertain damage cost 𝐶𝑖𝑗
3 : 

 D1 D2 D3 D4 

S1 (4, 1) (4, 1) (3, 1) (5, 2) 

S2 (3, 1) (6, 1) (4, 1) (4, 1) 

S3 (4, 1.5) (3, 1) (4, 1) (5, 1.5) 

Uncertain demand: 

 

 b1 b2 b3 b4 

 (40, 3) (36, 4) (35, 5) (40, 3) 

Uncertain supply: 

 

 a1 a2 a3  

 (55, 4) (60, 5) (70, 4)  
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Now, the solution of each single objective of the TP are presented using “TORA”.  

𝑋2 = (11,  0,  0,  42,  19,  0,  19,  0,  31,  32,  0,  0) 

𝑋1 = (0,  38,  15, 0, 42, 0, 0, 15, 0, 0, 23, 27) 

𝑋3 = (15,  0,  38,  0,  27,  0,  0,  30,  0,  38,  0,  12) 

Table 3. Crisp values for the uncertain transportation data for confidence level 𝜔 = 0.75. 

Entity  Data matrix  

Crisp value for cost 𝐶𝑖𝑗
1 : 

 

 D1 D2 D3 D4 

S1 21.22 19.22 23.83 25.83 

S2 10.61 13.22 16.83 13.61 

S3 23.83 21.83 25.22 24.22 

Crisp value for the transformed profit 𝐶𝑖𝑗
2 : 

 

 D1 D2 D3 D4 

S1 5.61 6.92 4.61 3.31 

S2 6.61 5.92 5.31 4.61 

S3 9.61 8.92 9.92 11.22 

Crisp value for damage cost 𝐶𝑖𝑗
3 : 

 D1 D2 D3 D4 

S1 4.61 4.61 3.61 6.22 

S2 3.61 6.61 4.61 4.61 

S3 4.92 3.61 4.61 5.92 

Crisp value for demand:  b1 b2 b3 b4 

 41.8 38.4 38.05 41.83 

Crisp value for supply:  a1 a2 a3  

 52.6 57 67.56  

The different values of Zk corresponding to Xk are listed in the following pay-off matrix Table 4. 

Table 4. The Payoff matrix of the illustrative example. 

 𝑍1(𝑋) 𝑍2(𝑋) 𝑍3(𝑋) 

𝑋(1) 2968.8 1193.69 715.84 

𝑋(2) 3368.8 980.4 776.68 

𝑋(3) 3038.79 1049.51 648.6 

Mk 3368.8 1193.69 776.68 

Lk 2968.8 980.4 648.6 

From the pay-off matrix, one can find the maximum Mk and the minimum Lk thresholds for each 

objective, as listed in the last rows of the above matrix.  

 2968.8  ≤ 𝑍1  ≤ 3368.8,    980.4  ≤ 𝑍2  ≤ 1193.69
and 648.6 ≤ 𝑍3  ≤ 776.68 

} .     (7)  

The exponential membership function is formulated as follows:  

𝑒−𝑠𝜓𝑘(𝑥) − (1 − 𝑒−𝑠) 𝜉 ≥ 𝑒−𝑠, where 𝜓𝑘(𝑋) =
𝑍𝑘 − 𝐿𝑘
𝑀𝑘 − 𝐿𝑘

.  (8)  
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Based on Eq (8), one can have the exponential membership function as follows: 

𝜓1(𝑥) =
𝑍1 − 𝐿1
𝑀1 − 𝐿1

=
𝑍1 − 2968.6

3368.8 − 2968.8
=
𝑍1 − 2968.6

400

𝜓2(𝑥) =
𝑍2 − 𝐿2
𝑀2 − 𝐿2

=
𝑍2 − 980.4

1193.69 − 980.4
=
𝑍1 − 980.4

213.29

and 𝜓3(𝑥) =
𝑍3 − 𝐿3
𝑀3 − 𝐿3

=
𝑍3 − 648.6

776.68 − 648.6
=
𝑍3 − 648.6

128.08 }
  
 

  
 

.    (9)  

Taking 𝑠 = 1 in Eq (8) together with the Eq (9), the exponential membership function can be 

written as an equivalent crisp model as follows: 

Maximize 𝜉 

Subject to: 

𝑒𝑥𝑝 {−(

21.22𝑥11 + 19.22𝑥12 + 23.83𝑥13 + 25.83𝑥14 + 10.61𝑥21 + 13.22𝑥22 + 16.83𝑥23
+13.61𝑥24 + 23.83𝑥31 + 21.83𝑥32 + 25.22𝑥33 + 24.22𝑥34 − 2968.6

400
)}

− 0.63𝜉 ≥ 0.37 

𝑒𝑥𝑝 {
−(

5.61𝑥11 + 6.92𝑥12 + 4.61𝑥13 + 3.31𝑥14 + 6.61𝑥21 + 5.92𝑥22 + 5.31𝑥23
+4.61𝑥24 + 9.61𝑥31 + 8.92𝑥32 + 9.92𝑥33 + 11.22𝑥34 − 980.4

)

213.29
} − 0.63𝜉

≥ 0.37 

𝑒𝑥𝑝 {−(

4.61𝑥11 + 4.61𝑥12 + 3.61𝑥13 + 6.22𝑥14 + 3.61𝑥21 + 6.61𝑥22 + 4.61𝑥23
+4.61𝑥24 + 4.92𝑥31 + 3.61𝑥32 + 4.61𝑥33 + 5.92𝑥34 − 648.6

128.08
)} − 0.63𝜉

≥ 0.37 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ 52.6 

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ 57 

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ 67.56 

𝑥11 + 𝑥21 + 𝑥31 ≥ 41.8 

𝑥12 + 𝑥22 + 𝑥32 ≥ 38.4 

𝑥13 + 𝑥23 + 𝑥33 ≥ 38.05 

𝑥14 + 𝑥24 + 𝑥34 ≥ 41.83 

𝑥𝑖𝑗 ≥ 0  for all intger 𝑖, 𝑗. 

Using “LINGO” software, the optimal compromise solution is obtained as follows:  

𝑋∗ = (𝑥11 = 26.6300,  𝑥12 = 3.4887,  𝑥13 = 22.4812,     𝑥14 = 0.000,  𝑥21 = 15.170, 

𝑥22 = 0.00,  𝑥23 = 0.00,  𝑥24 = 41.830,  𝑥31 = 0.00,  𝑥32 = 34.9112, 𝑥33 = 15.5687,  

𝑥34 = 0.00 )` 

The values of the objective functions are 𝑍1(𝑋
∗) = 3052.887 , 𝑍2(𝑋

∗) = 1025.237 and 

𝑍3(𝑋
∗) = 665.4063. The overall satisfaction of the DM is 𝜉 = 0.6990, that is, the overall satisfaction 

is 69.90%. The following Table 5 shows the different objective values and the satisfaction level of the 

DM for different confidence levels.  
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Table 5. Results for exponential membership function for different confidence levels.  

𝜔 𝜉 Objective values Feasibility Satisfaction 

(%) Z1 Z2 Z3 

00-0.49 --- --- --- --- Infeasible  --- 

0.50 Deviation vanishes and problem exists in certain parameters   

0.51 0.3264 2703.93 884.33 535.83 Feasible  32.649% 

0.55 0.4111 2733.02 900.273 550.17 Feasible  41.11% 

0.60 0.4462 2797.80 945.64 573.7 Feasible  44.62% 

0.65 0.5158 2918.63 975.63 599.41 Feasible  51.58% 

0.70 0.5365 2998.33 1009.23 630.55 Feasible  53.65 % 

0.71 0.8995 2986.69 975.66 661.32 Feasible  89.95% 

0.72 0.9420 2975.95 970.74 660.97 Feasible  94.20% 

0.73 0.9038 2797.78 986.31 653.32 Feasible  90.38% 

0.74 0.8629 2757.58 996.35 655.95 Feasible  86.29% 

0.75 0.6990 3052.88 1025.23 665.4 Feasible  69.90 % 

0.76 0.6329 3076.89 1038.30 674.18 Feasible  63.29% 

0.77 0.5735 3101.43 1051.45 683.00 Feasible  57.35% 

0.78 0.5549 3111.67 1057.35 690.65 Feasible  55.49% 

0.79 0.5123 3133.11 1068.76 697.00 Feasible  51.23% 

0.80 0.5091 3231.33 1113.65 719.65 Feasible  50.91 % 

0.81-1.00 - - - - Infeasible  - 

Note: ‘---’indicates not applicable. 

Figure 2 exposes an explicit view of DM satisfaction over the confidence level using the 

exponential membership function (EMF) of the fuzzy programming. It shows the satisfaction of the 

DM is almost static for the confidence level from 0.51 to 0.70 and then dramatically increase for 0.71 

and 0.72. After that the level of confidence of the DM gradually go down at the up to 0.85. However, 

the present transportation problem provides infeasible solution for confidence level 0.00 to 0.49 and 

for 0.81 to onwards. The reason behind of this result is that the demand becomes greater than supply 

for choosing the confidence level 0.86 to onwards. A salient observation in accordance with the 

performed numerical illustration is the decision maker achieves the highest satisfaction level (94.20%) 

when he selects the confidence level 0.72. Deviation of the parameter vanishes, and the problem 

becomes in certain environment when DM chooses the confidence level 0.50. 

Again, Figure 3 shows the behaviour of the objectives of the TP for various confidence level of 

the DM using the exponential membership function (EMF). The graph shows the increasing pattern of 

the objective’s values except the TP cost slightly decreasing from 0.72 to 0.74 and profit slightly 

decreasing at 0.74 while again static up to the end. The damage cost using exponential membership 

function for this present transportation problem showing increasing behaviour everywhere of the 

confidence level where the problem has feasible solution. 
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Figure 2. Satisfaction level versus Confidence level for exponential membership function. 

 

Figure 3. Confidence level versus objective value for exponential membership function. 

3.2. Illustrative example using hyperbolic membership function 

Table 6. Crisp values for the uncertain transportation data for confidence level 𝜔 = 0.80. 

Entity  Data matrix  

Crisp value for cost 𝐶𝑖𝑗
1 : 

 

 D1 D2 D3 D4 

S1 21.52 19.52 24.28 26.28 

S2 10.76 13.52 17.28 13.76 

S3 24.28 22.28 25.52 24.52 

Crisp value for the transformed profit 𝐶𝑖𝑗
2 : 

 

 D1 D2 D3 D4 

S1 5.76 7.14 4.76 3.38 

S2 6.76 6.14 5.38 4.76 

S3 9.76 9.14 9.52 11.52 

Crisp value for damage cost 𝐶𝑖𝑗
3 :  D1 D2 D3 D4 

S1 4.76 4.76 3.76 6.52 

S2 3.76 6.76 4.76 4.76 

S3 5.14 3.76 4.76 6.14 

Crisp value for demand:  b1 b2 b3 b4 

 42.3 39.0 38.8 42.28 

Crisp value for supply:  a1 a2 a3  

 52.0 56.2 66.96  
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For 𝜔 = 0.80 Table 2 can be changed to Table 6 respectively.  

Now, the solution of each single objective of the TP using “TORA” are 

𝑋1 = (0,  39,  13,  0,  42,  0,  14,  0,  0,  26,  28) 

𝑋2 = (10,  0,  0,  42,  0,  17,  39,  0,  32,  22,  0,  0) 

𝑋3 = (13,  0,  39,  0,  29,  0,  0,  27,  0,  39,  0,  15) 
Using the results, we have the pay-off matrix as follows in Table 7: 

Table 7. The Payoff matrix. 

 𝑍1(𝑋) 𝑍2(𝑋) 𝑍3(𝑋) 

𝑋(1) 3071.56 1260.98 754.76 

𝑋(2) 3489.84 1027.16 869.2 

𝑋(3) 3146.96 1114.34 984.82 

Mk 3489.84 1260.98 984.82 

Lk 3071.56 1027.16 754.76 

From the pay-off matrix, one can identify the maximum Mk and the minimum Lk thresholds for 

each objective. 

i.e., 3071.56  ≤ 𝑍1  ≤ 3489.84,    1027.16  ≤ 𝑍2  ≤ 1260.98
and 754.76  ≤ 𝑍3  ≤ 984.82

} . (10)  

The hyperbolic membership function can be represented as follows:  

𝑍𝑘(𝑋)𝛼𝑘 + 𝜂 ≤ (
𝑀𝑘 + 𝐿𝑘

2
) 𝛼𝑘 where 𝛼𝑘 =

6

𝑀𝑘 − 𝐿𝑘
    (11)  

Based on Eq (11), one can have the hyperbolic membership function as follows: 

𝑍1(𝑋) (
6

𝑀1 − 𝐿1
) + 𝜂 ≤ (

𝑀1 + 𝐿1
2

) (
6

𝑀1 − 𝐿1
) 

𝑍1(𝑋) (
6

3489.84 − 3071.56
) + 𝜂 ≤ (

3489.84 + 3071.56

2
) (

6

3489.84 − 3071.561
) 

𝑍1(𝑋) (
6

418.28
) + 𝜂 ≤ (

6561.4

2
) (

6

418.28
)
} 

𝑍2(𝑋) (
6

𝑀2 − 𝐿2
) + 𝜂 ≤ (

𝑀2 + 𝐿2
2

) (
6

𝑀2 − 𝐿2
) 

𝑍2(𝑋) (
6

1260.98−1027.16
) + 𝜂 ≤ (

1260.98+1027.16

2
) (

6

1260.98−1027.16
), 

and 

(12)  

𝑍2(𝑋) (
6

233.82
) + 𝜂 ≤ (

2288.14

2
) (

6

233.82
)}         (13) 

 𝑍3(𝑋) (
6

𝑀3 − 𝐿3
) + 𝜂 ≤ (

𝑀3 + 𝐿3
2

) (
6

𝑀3 − 𝐿3
) (14) 
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𝑍3(𝑋) (
6

984.82 − 754.76
) + 𝜂 ≤ (

984.82 + 754.76

2
) (

6

984.82 − 754.76
) 

𝑍3(𝑋) (
6

230.06
) + 𝜂 ≤ (

1739.58

2
) (

6

230.06
)} . 

Using Eqs (12–14) the hyperbolic membership function can be written as an equivalent crisp 

model as follows: 

Maximize 𝜉 

Subject to: 

(
21.52𝑥11 + 19.52𝑥12 + 24.28𝑥13 + 26.28𝑥14 + 10.76𝑥21 + 13.52𝑥22 + 17.28𝑥23
+13.76𝑥24 + 24.28𝑥31 + 22.28𝑥32 + 25.52𝑥33 + 24.52𝑥34

) (
6

418.28
) 

+𝜂 ≤ (
6561.4

2
) (

6

418.28
) 

(
5.76𝑥11 + 7.14𝑥12 + 4.76𝑥13 + 3.38𝑥14 + 6.76𝑥21 + 6.14𝑥22 + 5.38𝑥23
+4.76𝑥24 + 9.76𝑥31 + 9.14𝑥32 + 9.52𝑥33 + 11.52𝑥34

) (
6

233.82
) 

+𝜂 ≤ (
2288.14

2
) (

6

233.82
) 

(
4.76𝑥11 + 4.76𝑥12 + 3.76𝑥13 + 6.52𝑥14 + 3.76𝑥21 + 6.76𝑥22 + 4.76𝑥23
+4.76𝑥24 + 5.14𝑥31 + 3.76𝑥32 + 4.76𝑥33 + 6.14𝑥34

) (
6

230.06
) 

+𝜂 ≤ (
1739.58

2
) (

6

230.06
) 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ 52 

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ 56.2 

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ 66.96 

𝑥11 + 𝑥21 + 𝑥31 ≥ 42.3 

𝑥12 + 𝑥22 + 𝑥32 ≥ 39 

𝑥13 + 𝑥23 + 𝑥33 ≥ 38.8 

𝑥14 + 𝑥24 + 𝑥34 ≥ 42.28

 

𝜂 = 𝑡𝑎𝑛ℎ
−1(2𝜉 − 1) 

𝜉 ≥ 0, 𝑥𝑖𝑗 ≥ 0  for all intger 𝑖, 𝑗. 

Using “LINGO” software, the optimal compromise solution is obtained as follows:  

𝑋∗ = (𝑥11 = 30.00,  𝑥12 = 7.34,  𝑥13 = 14.65,     𝑥14 = 0.000,  𝑥21 = 13.00, 

 𝑥22 = 0.00,  𝑥23 = 0.00,  𝑥24 = 43.00,  𝑥31 = 0.00,  𝑥32 = 32.65, 𝑥33 = 25.34,  

𝑥34 = 0.00 )` 

 

Figure 4. Satisfaction level versus Confidence level for hyperbolic membership function. 
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Figure 5. Confidence level versus objective value for hyperbolic membership function. 

The values of the objective functions are𝑍1(𝑋
∗) = 3250.71, 𝑍2(𝑋

∗) = 1127.30 and 𝑍3(𝑋
∗) =

729.84. The overall satisfaction of the DM is𝜉 = 0.7030, that is, the overall satisfaction is 70.30%. 

The following Table 8 shows the different objective values and the satisfaction level of the DM for 

different confidence levels. 

Table 8. Results for hyperbolic membership function for different confidence levels.  

𝜔 𝜉 
Objective values Feasibility Satisfaction (%) 

Z1 Z2 Z3 

00-0.49 --- --- ----- --- Infeasible  --- 

0.50 Deviation vanishes and problem exists in certain parameters   

0.51 0.3416 2703.80 884.65 535.90 Feasible  34.16% 

0.55 0.6076 2733.02 900.27 550.17 Feasible  60.76 

0.60 0.8693 2775.79 932.65 570.11 Feasible  86.93% 

0.65 1.00 2876.73 940.12 594.44 Feasible  100% 

0.70 1.00 2960.22 980.15 626.90 Feasible  100% 

0.71 1.00 2870.00 985.55 672.69 Feasible  100% 

0.72 1.00 2618.98 1006.22 642.82 Feasible  100% 

0.73 1.00 2646.48 1017.60 648.61 Feasible  100% 

0.74 1.00 2654.76 1022.94 647.75 Feasible  100% 

0.75 1.00 3040.13 1011.05 668.96 Feasible  100% 

0.76 0.9770 3076.68 1038.73 674.50 Feasible  97.70% 

0.77 0.9190 3101.21 1051.87 683.32 Feasible  91.90% 

0.78 0.8990 3111.67 1057.36 690.65 Feasible  89.90% 

0.79 0.8367 3133.11 1068.76 697.00 Feasible  83.67% 

0.80 0.7030 3250.71 1127.30 729.84 Feasible  70.30 % 

0.81-1.0 --- --- --- --- Infeasible  --- 

Note: ‘---’indicates not applicable. 

Figure 4 exposes an explicit view of the DM’s satisfaction level against the different confidence 
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level to achieve the crisp value of the uncertain parameters using the hyperbolic membership function 

(HMF) of the fuzzy programming. It shows the satisfaction of the DM is dramatically increasing from 

confidence level 0.51 to 0.65 and then almost static 0.65 to 0.75 and then have a nose down from 0.76 

to onward. However, the present transportation problem, solution is not feasible for confidence level 

0.00 to 0.49 and for 0.81 to onwards. The reason behind of this result is that the demand becomes 

greater than supply for choosing the confidence level 0.81 to onwards. The DM shows 100% 

satisfaction for the confidence level 0.65 to 0.75 and for the rest it decreases in every cases. Deviation 

of the parameter vanishes and the problem becomes in certain environment when DM chooses the 

confidence level 0.50. 

Again, Figure 5 implies all three objectives for the current problem using the hyperbolic 

membership function are increasing except for the TP cost and damage at point 0.70. In this point, TP 

cost goes down slightly and again goes up before going almost straight for the next three point. The 

damage cost using hyperbolic membership function for this present transportation problem showing 

increasing behaviour everywhere of the confidence level where the problem has feasible solution. 

4. Comparative results and discussions 

From the previous discussions, it is clear that there are slight differences in the objective values 

and the corresponding satisfaction level of the DM for applying different membership function of fuzzy 

approach. In Table 9, we will have an explicit overview of the objective values applying the fuzzy 

membership functions for various choice of the DM in between the confidence level of 0.70–0.85.  

In Figures 6 to 9, we have a very concrete observations of various parameters of the uncertain 

transportation problem using fuzzy membership functions. Figure 6 reveals the satisfaction level of 

the DM for various confidence level using the fuzzy membership functions, linear, exponential and 

hyperbolic. It is clear from the graph that the satisfaction of DM always better for hyperbolic other 

than the exponential and linear. For hyperbolic membership function, DM satisfaction level is 100% 

through confidence level 0.65 to 0.75. On the other hand, for linear and exponential, the DM 

satisfaction pick their high at 0.72. Again, Hyperbolic and exponential membership function shows 

their infeasibility after 0.80 where linear is solvable up to 0.85.  

Figure 7 unwrapped the transportation cost against the confidence level for the fuzzy membership 

functions. All the three functions have shown almost same pattern throughout the region except 0.70 

to 0.75. The hyperbolic membership function has shown more fluctuation regarding the satisfaction of 

DM then other two in the area 0.72 to 0.74 whereas the others have same oscillation on that region. 

All the three membership functions have given equal TP cost from 0.75 to 0.80. The DM have highest 

satisfaction for transportation cost using the membership functions for confidence level 0.72. 

Figure 8 represents the profit corresponding to the confidence level using the fuzzy membership 

functions. All the membership functions have shown increasing behaviour throughout the interval 

except at 0.70 where they have slight downward pattern and then again increasing continue towards 

the end. From the graph it is observed that linear membership function has shown maximum number 

of profit within our expectation. 

From Figure 9, we observed the damage cost of the transportation problem when transporting 

using the mentioned fuzzy membership functions in uncertain parameters. The graphs presented have 

shown almost same objective values at all the points where solutions are feasible except have some 

more increment at 0.71 with immediate nose at 0.72 continue up to 0.74. The DM have the height 
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satisfaction for the damage cot around 660.00 for the chosen confidence level 0.72. 
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Figure 6. Satisfaction level versus Confidence level for the three membership functions. 

 

Figure 7. Confidence level versus Objective (Z1: TP Cost) for uncertain MOTP. 

 

Figure 8. Confidence level versus Objective (Z2: Profit) for uncertain MOTP. 

 

Figure 9: Confidence level versus Objective values (Z3: Damage) for uncertain MOTP. 
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The problem we have discussed can be adopted in many logistic applications including 

procurement, production, sales, recycling, or even consolidation of shipments. The implications of 

considering the problem uncertain parameters can be useful for reflecting the real situation while 

solving it optimally. For the current turbulent working environment, DMs/managers are seeking for 

tools that can guide them to take the right decision. Decision can be taken by applying this method 

according to the identified confidence level. The model permits the DMs to calculate the satisfaction 

level for different uncertain situations. Consequently, the DM can predict his/her desired goal in 

percent relying on his confidence level before taking decisions. This methodology can also be used by 

owners, contractors especially in the planning or risk analysis phases. 

This study provides a significant contribution that achieves many managerial implications within 

the logistic sectors: 

• It can be used by the DM as an optimization tool. In this case, the DM can select the solution 

according to the desired objective that could be transportation cost, damage cost or even the profit.  

• It presents a decision support system for working with uncertain transportation environment. 

In which the DM can compute the expected satisfaction level based on his certainty of parameters 

estimation (i.e., confidence level). 

• DM should estimate the confidence level properly in order to avoid the infeasibility of the 

transportation problem. Whereas, the confidence level affects the variance of the parameters that may 

lead to increase the demand against the supply. 

• The hyperbolic membership function gives stable results against the exponential and linear 

functions, therefore, the DM could rely on the hyperbolic function.  

5. Conclusions 

In this study, uncertain MOTP has been studied throughout the proposed methods. The unknown 

uncertain parameters were resolved by uncertain normal distribution. Multiple number of models has 

been designed for MOTP in uncertain parameters using the fuzzy non-linear membership functions 

with their mathematical algorithm and we have shown the applicability of this algorithms by a heuristic 

example of same data table with a variety of confidence level of the DM for each case. Sometime the 

problem becomes infeasible for a chosen confidence level due to the violation of the feasibility 

condition of the transportation problem. The satisfaction in percent of DM were obtain for the chosen 

confidence level. Relying on the comparative result, Results show that the hyperbolic function has 

shown multiple time 100% of the DM in a region but solution is not feasible for a large scale of 

confidence level but exponential membership function has given more feasible and continuously 

suitable solution to the DM than hyperbolic. However, the hyperbolic function gives more satisfaction 

level than the other functions. Priority is one of the realistic features for the DM and hence 

priority/weight can be incorporated to goal as an uncertain parameter in the current MOTP. Fractional 

differential equation can be applied to estimate the uncertain MOTP with specific goal to each 

objectives converting the fuzzy function into fractional order differential equations. 
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