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Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are common health problems related to aging. Despite the 
differences in their diagnostic methods, several cross-sectional and longitudinal studies have revealed the close link 
between sarcopenia and NAFLD. Sarcopenia and NAFLD are linked by several shared pathogenetic mechanisms, 
including insulin resistance, hormonal imbalance, systemic inflammation, myostatin and adiponectin dysregulation, 
nutritional deficiencies, and physical inactivity, thus implicating a bidirectional relationship between sarcopenia and 
NAFLD. However, there is not sufficient data to support a direct causal relationship between sarcopenia and NAFLD. 
Moreover, it is currently difficult to conclude whether sarcopenia is a risk factor for nonalcoholic steatohepatitis (NASH) 
or is a consequence of NASH. Therefore, this review intends to touch on the shared common mechanisms and the 
bidirectional relationship between sarcopenia and NAFLD. (Clin Mol Hepatol 2023;29(Suppl):S68-S78)
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INTRODUCTION

The global epidemic of obesity and metabolic syndrome in 
an aging population has led to growing health problems in-
cluding nonalcoholic fatty liver disease (NAFLD) and sarcope-
nia. Sarcopenia is defined as the progressive and generalized 
loss of skeletal muscle mass, strength, and/or function with a 
risk of adverse outcomes such as physical disability, hospital-
ization, and mortality.1,2 Despite the differences in their diag-
nostic methods, several studies have revealed the close link 
between sarcopenia and NAFLD.3-16 This review focuses on 
the shared mechanisms and a bidirectional relationship be-
tween sarcopenia and NAFLD.

OPERATIONAL DEFINITION OF SARCOPENIA

Sarcopenia, previously considered an aging-related syn-
drome, is now recognized as a progressive disease associated 
with type 2 diabetes mellitus (T2DM), metabolic syndrome, 
liver disease, and cardiovascular disease.17-20 It is primarily as-
sociated with aging and secondarily with diseases mediated 
by systemic inflammation and insulin resistance (IR).21 In 
2018, the European Working Group on Sarcopenia in Older 
People defined sarcopenia by low levels across three param-
eters: muscle strength, muscle quantity/quality, and physical 
performance. The presence of low muscle strength is the pri-
mary parameter to suspect sarcopenia, while the presence of 
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low muscle mass (quantity) and quality are confirmatory. The 
coexistence of these factors represents severe sarcopenia.2 
Therefore, all these parameters enable improved under-
standing and awareness of sarcopenia.

SHARED MECHANISMS OF SARCOPENIA AND 
NAFLD

Sarcopenia and NAFLD share common underlying mecha-
nisms, including IR, hormonal imbalance, systemic inflamma-
tion, myostatin and adiponectin dysregulation, nutritional 
deficiencies, and physical inactivity (Fig. 1).22

Insulin resistance

IR is the main pathologic mechanism causing both sarco-
penia and NAFLD. IR results from the loss of skeletal muscle 
mass. It causes increased lipolysis with the consequent re-
lease of free fatty acids (FFA) from adipose tissue. IR also in-
hibits growth hormone (GH)/insulin growth factor-1 (IGF-1) 
axis that normally plays a protective role in muscle regenera-
tion and age-related muscle loss.17,23,24 It causes compensato-
ry hyperinsulinemia, which leads to promotion of gluconeo-
genesis, upregulation of sterol regulatory element binding 

protein 1c, inhibition of β-oxidation, increased FFA delivery, 
and altered triglyceride (TG) transport. These events leads to 
accumulation of TGs in skeletal muscle and the liver, often re-
ferred to as ectopic fat.25,26

Impaired suppression of gluconeogenesis promotes prote-
olysis and reduces protein synthesis,7 which results in age-re-
lated muscle depletion and sarcopenia.27-29 Insulin activates 
the mammalian target of rapamycin (mTOR), 4E-binding pro-
tein 1, and ribosomal S6 kinase 1. These are involved in pro-
tein synthesis, maintenance of muscle mass, and skeletal 
muscle anabolism.30 Skeletal muscle IR leads to increased 
muscle degradation with decreased mitochondrial content, 
function, and oxidative capacity.31 A study demonstrated that 
T2DM was independently associated with sarcopenia, lead-
ing to metabolic disorders and physical disability in older 
adults with T2DM.32 Furthermore, sarcopenia aggravates IR, 
since skeletal muscle is a primary insulin-responsive organ.33 
Likewise, myosteatosis, defined as fatty infiltration of muscle, 
is associated with reduced muscle function, IR, and a high 
risk of mortality in cirrhotic patients.34,35 Both sarcopenia and 
obesity simultaneously induce more severe IR and glycemic 
dysregulation.33

Chronic inflammation

Inflammation and oxidative stress have been linked to the 
pathogenesis of NAFLD. Intramuscular lipid accumulation in-
duces the secretion of proinflammatory cytokines from adi-
pose tissue and generates oxygen-free radicals in the liver by 
inhibiting mitochondrial function for β-oxidation, leading to 
lipid peroxidation. Cytokines, such as interleukin-6 (IL-6), tu-
mor necrosis factor-α (TNF-α), and transforming growth 
factor-β (TGF-β) induce chronic low-grade inflammation.36,37 
Compared to healthy subjects, patients with isolated steato-
sis and steatohepatitis had increased TNF-α levels.38 TNF-α 
causes lipid accumulation in the liver through activation of 
de novo lipogenesis (DNL).39 It also stimulates nuclear factor 
𝜅B, the main transcriptional factor for proinflammatory cyto-
kines that contribute to the development of NAFLD and mus-
cle catabolism.36,39,40 Catabolic inflammation further worsens 

Abbreviations: 
CRP, C-reactive protein; FFA, free fatty acid; GH, growth hormone; IGF-1, insulin growth factor-1; IL-6, interleukin-6; IR, insulin resistance; NAFLD, nonalcoholic fatty liver 
disease; NASH, nonalcoholic steatohepatitis; TG, triglyceride; T2DM, type 2 diabetes mellitus; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α; VDR, 
vitamin D receptor
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Figure 1. Bidirectional relationship between sarcopenia and NAFLD. 
NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steato-
hepatitis.
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sarcopenia among older patients because of the release of 
numerous inflammatory mediators from immune cells and 
adipocytes that contribute to the development of IR.41 Pa-
tients with sarcopenia demonstrate chronic inflammation, 
increased levels of C-reactive protein (CRP) and proinflamma-
tory cytokines, and decreased levels of anti-inflammatory cy-
tokines.3 IL-6 and CRP levels are also positively associated 
with total body fat mass and inversely associated with ap-
pendicular lean body mass.4,42 

Vitamin D

Vitamin D is involved in the modulation of IR, NAFLD, meta-
bolic syndrome, and sarcopenia.43 It plays an essential role in 
myogenesis, myoblast proliferation and differentiation, pro-
duction and growth of skeletal muscle cells, and skeletal 
muscle inflammation.44-47 It exerts its effects through the nu-
clear vitamin D receptor (VDR), which is expressed in the liver 
and skeletal muscle.48,49 Downregulation of VDR expression 
by vitamin D deficiency and aging may lead to sarcopenia.36 
Studies shows that subjects with sarcopenia have significant-
ly lower vitamin D levels.6,50 Decreased levels of vitamin D are 
associated with decreased muscle strength, poor muscle 
function, and an increased risk of sarcopenia among older 
adults.51 However, vitamin D supplementation increases VDR 
expression in skeletal muscle, preventing the development 
of sarcopenia.52

The relationship between vitamin D and NAFLD has been 
already acknowledged. A meta-analysis including 17 cross-
sectional and case-control studies showed that patients with 
NAFLD had decreased levels of serum vitamin D.43 Hypovita-
minosis D was strongly associated with the presence of 
NAFLD independent of metabolic syndrome, T2DM, and IR.50 

Furthermore, vitamin D downregulates the expression of 
SREBP-1c, acetyl-coenzyme A carboxylase, and fatty acid 
synthase that modulate DNL, while peroxisome proliferator-
activated receptor 𝛼 and carnitine palmitoyltransferase-1 
that mediate hepatic fatty acid oxidation are upregulated by 
vitamin D.53 An animal study demonstrated that vitamin D 
deficiency worsened NAFLD by activating the inflammation-
mediated pathway43. Vitamin D deficiency also causes IR via 
upregulation of hepatic IR, inflammatory, and oxidative stress 
genes.54,55 Moreover, VDR-knockout mice spontaneously de-
veloped hepatic steatosis.55 Most studies, to date, have 
shown that vitamin D plays a pivotal role in the development 

of sarcopenia and NAFLD. On the contrary, other studies 
demonstrated no significant relationship between vitamin D 
level and NAFLD/sarcopenia.56,57

Myokines

Skeletal muscle is an endocrine organ that releases myo-
kines58,59 after muscle contraction or strength training.60 Myo-
kines are involved in the autocrine regulation of muscle me-
tabolism and the paracrine/endocrine regulation of other 
tissues and organs including the liver, adipose tissue, and 
brain.61-63

Myostatin, a member of the TGF-β family, is predominantly 
expressed in skeletal muscles.64,65 It is an inhibitor of muscle 
mass and a key regulator of adipogenesis.65-68 It mediates 
Smad 2/3 activation, inhibiting myogenesis and protein syn-
thesis by suppressing the Akt-mediated mTOR signaling 
pathway.69 This causes muscle atrophy. Muscle proteolysis is 
stimulated through FoxO-dependent activation of the ubiq-
uitin-proteasome pathway and autophagy.69 Myostatin also 
increases adipose tissue mass and inhibits adiponectin secre-
tion.22,70,71 Animal studies have demonstrated that blockage 
of myostatin significantly increases muscle mass, improves 
insulin sensitivity, and protects against liver steatosis.72,73 Ani-
mal models have demonstrated increased expression of ac-
tivin type IIB, a myostatin receptor expressed in stellate cells, 
in liver fibrosis.74,75 Stellate cell cultures exposed to myostatin 
increase the expression of profibrotic proteins.76 Therefore, 
myostatin, IR, and liver fibrogenesis are interconnected.

Irisin, an exercise-induced myokine, is inversely associated 
with the degree of fatty liver in obese patients and is a po-
tential cause of sarcopenia and NAFLD. It increases energy 
expenditure through peroxisome proliferator- activated re-
ceptor α-dependent downstream signaling and improves in-
sulin sensitivity and hepatic steatosis by upregulating fibro-
blast growth factor-21; these effects were independent of 
reduction in body weight and adiposity in a mouse mod-
el.77,78 It increases glucose uptake by enhancing glucose 
transporter type 4 translocation and β-oxidation of FFA 
through AMP-activated protein kinase activation in muscle 
cells.79 Irisin expression in muscle and serum irisin level are 
reduced in obese subjects.80 

IL-6 has a dual metabolic effect. Muscle contrations stimu-
late acute IL-6 release from muscles,81,82 with the levels in-
creasing as the duration and intensity of muscle contraction 
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increase.83,84 IL-6 improves hepatic glucogenesis, lipolysis in 
adipose tissue, pancreatic β-cell viability, and insulin secre-
tion.81,85,86 It also enhances glucose uptake and fatty acid oxi-
dation through adenosine monophosphate-activated pro-
tein kinase (AMPK) and phosphoinositide 3-kinase signaling 
processes.87,88 However, IL-6 acts as a pro-inflmmatory cyto-
kine in chronic inflammatory states such as obesity, infection, 
and cancer.89 A study have demonstrated that increased IL-6 
levels are associated with NASH, hepatic fibrosis, and IR.90

Physical inactivity

The lack of physical activity causes loss of muscle mass and 
reduces energy consumption, resulting in obesity and hepat-
ic steatosis.91 Both sarcopenia and NAFLD are worsened by 
chronic inflammation, oxidative stress, and IR.92 During exer-
cise, production of pro-inflammatory cytokines is decreased 
while anti-inflammatory cytokine production, muscle protein 
synthesis, regeneration, and glucose uptake are increased. 
Physical activity mitigates the risk of sarcopenia progres-
sion.93 Exercise can improve metabolic health status even 
without significant weight loss.94

Other mechanisms

Adiponectin, a hormone secreted from adipose tissue, me-
diates glucose and lipid metabolism in insulin-sensitive tis-
sues such as liver and muscle. In the liver, adiponectin pro-
motes glucose use and enhances fatty acid oxidation by 
improvement of insulin action via activation of AMPK.95,96 In 
addition, adiponectin has an anti-inflammatory effect by 
neutralizing TNF-α, and improves hepatic steatosis and in-
flammation.97

Anabolic hormones, such as GH and IGF-1, decline with ag-
ing process, which affects the progressive loss of muscle 
mass.98 Fat accumulation and aging impair the GH/IGF-1 sig-
naling pathway, leading to deterioration of muscle mass syn-
thesis.99,100 In an experiental mouse model of NAFLD, NAFLD 
was associated with decreased muscle mass and strength, 
and reduced IGF-1 level, implicating that IGF-1 reduction 
might play a role in the development of NAFLD-related sar-
copenia.101

BIDIRECTIONAL RELATIONSHIP BETWEEN 
SARCOPENIA AND NAFLD

Numerous studies have reported a relationship between 
NAFLD and sarcopenia (Tables 1, 2). Sarcopenia is a risk factor 
for the presence and severity of NAFLD (Table 1).7,22,102,103 The 
prevalence of sarcopenia is significantly increased in NAFLD 
and NASH compared to that in non-NAFLD (17.9% and 35.0% 
vs. 8.7%, respectively).3 NAFLD patients with sarcopenia had 
a 2-fold higher risk of developing NASH and significant fibro-
sis independent of obesity and IR.3 However, most studies 
were cross-sectional in design and the causal relationship 
between sarcopenia and NAFLD remains unclear. A recent 
study demonstrated that NAFLD was developed in 14.8% of 
its participants during a 7-year follow-up, with an increased 
incidence in participants with the lowest tertile of skeletal 
muscle mass at baseline. Baseline skeletal muscle mass was 
also positively associated with the resolution of existing 
NAFLD, regardless of metabolic risk factors.10 Sarcopenia was 
associated with poor clinical outcomes, including severe he-
patic fibrosis and increased mortality, in NAFLD patients.104-106 
Hence, low skeletal muscle mass may cause the development 
of NAFLD. In a multicenter prospective study, hepatic steato-
sis at baseline was significantly associated with the risk of 
sarcopenia in older adults. Lower muscle mass and strength 
were more common in NAFLD patients.16 In another study, 
the loss of skeletal muscle mass was faster in subjects with 
NAFLD compared to those without NAFLD. When stratified 
by fibrosis severity, skeletal muscle mass loss was faster in 
NAFLD subjects with an intermediate-to-high probability of 
advanced fibrosis than in those without (Table 2).107 

Muscle quality also plays a critical role in the development 
of NASH. Myosteatosis determines muscle strength and func-
tion, and metabolic and liver-related clinical outcomes.108-110 It 
is a prognosticator for NASH development.108,111,112 Studies 
have suggested that myosteatosis is a clinically useful surro-
gate marker for NASH108 by demonstrating that severe myos-
teatosis, but not sarcopenia, predicts NASH development 
and fibrosis progression.111 The prevalence of myosteatosis is 
increased in obese subjects with NASH; hence, myosteatosis 
could reflect the histological features of NASH.110 Muscle al-
terations are linked with fibrosis severity in subjects with 
NAFLD.3-5,9,22,113-117 These suggest that the role of sarcopenia in 
NASH development is unclear. Both sarcopenia and myoste-
atosis have been linked to advanced fibrosis and cirrho-
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sis.22,34,118-121 However, the relatively low skeletal muscle mass 
observed in NAFLD patients may derive from increased body 
fat percentage.15,110 Muscle wasting is often seen in patients 
with advanced fibrosis, implicating reverse causality be-
tween low skeletal muscle mass and NAFLD severity.9,14 Pa-
tients with liver cirrhosis had concomitant sarcopenia (43%), 
sarcopenic obesity (low muscle mass with obesity) (26%), 
and myosteatosis (52%).34 Hence, advanced fibrosis is more 
likely to cause sarcopenia rather than sarcopenia causing fi-
brosis progression.

CONCLUSIONS

It is currently difficult to conclude whether sarcopenia is a 
risk factor or a consequence of NASH. However, sarcopenia 
and NAFLD are linked by several shared pathogenetic mech-
anisms, implicating a bidirectional relationship between sar-
copenia and NAFLD. Therefore, further studies are needed to 
investigate the effects of low muscle function and perfor-
mance on NAFLD progression. In addition, prospective stan-
dardized trials with accurate diagnoses of sarcopenia and 
NAFLD are warranted to elucidate the cause-and-effect rela-
tionship between sarcopenia and NAFLD.
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