
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Huihui Ji,
Second Affiliated Hospital and Yuying
Children’s Hospital of Wenzhou Medical
University, China

REVIEWED BY

Zhi-Wei Wang,
Wenzhou Medical University, China
Yi Luan,
Yale University, United States
Lihui Li,
Shanghai University of Traditional
Chinese Medicine, China

*CORRESPONDENCE

Leina Ma

leinama@gmail.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 18 January 2023

ACCEPTED 24 February 2023

PUBLISHED 14 March 2023

CITATION

Chen S, Lin J, Zhao J, Lin Q, Liu J,
Wang Q, Mui R and Ma L (2023) FBXW7
attenuates tumor drug resistance and
enhances the efficacy of immunotherapy.
Front. Oncol. 13:1147239.
doi: 10.3389/fonc.2023.1147239

COPYRIGHT

© 2023 Chen, Lin, Zhao, Lin, Liu, Wang, Mui
and Ma. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 14 March 2023

DOI 10.3389/fonc.2023.1147239
FBXW7 attenuates tumor drug
resistance and enhances the
efficacy of immunotherapy

Shimin Chen1,2,3†, Jichun Lin1,2,3†, Jiaojiao Zhao1,2,3†, Qian Lin1,
Jia Liu4, Qiang Wang5, Ryan Mui6 and Leina Ma1,2*

1Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University,
Qingdao, China, 2Qingdao Cancer Institute, Qingdao, China, 3School of Basic Medicine, Qingdao
University, Qingdao, China, 4Department of Pharmacology, School of Pharmacy, Qingdao University,
Qingdao, China, 5Oncology Department, Shandong Second Provincial General Hospital, Jinan, China,
6Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the

Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by

ubiquitinating targeted protein. Through degradation of its substrates, FBXW7

plays a pivotal role in drug resistance in tumor cells and shows the potential to

rescue the sensitivity of cancer cells to drug treatment. This explains why patients

with higher FBXW7 levels exhibit higher survival times and more favorable

prognosis. Furthermore, FBXW7 has been demonstrated to enhance the

efficacy of immunotherapy by targeting the degradation of specific proteins, as

compared to the inactivated form of FBXW7. Additionally, other F-box proteins

have also shown the ability to conquer drug resistance in certain cancers. Overall,

this review aims to explore the function of FBXW7 and its specific effects on drug

resistance in cancer cells.
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1 Introduction

Based on their mechanisms, drug resistance can be categorized into two types: primary

and acquired drug resistance (1).

Primary resistance occurs during the initial stages of treatment when the tumor shows

no response to the therapy. This is due to either pre-existing genetic alterations or the rapid

adaptation of tumor cells to therapy (2). Tumor cells with pre-existing genetic alteration are

not affected by drugs, and therefore, their oncogenic signaling pathways continue to

function normally. Tumor cells that rapidly adapt to therapy may present rewiring of the

oncogenic signaling pathway once the drug takes effect and suppresses the signaling

pathway, leading to drug resistance (2).

Acquired drug resistance can be induced by three mechanisms, including genetic

drivers, activation of bypass signaling, and histologic transformation (2). In the first

mechanism, the activity of driver oncogenes confers drug resistance on cancer cells. Driver
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oncogenes are triggered by gene mutations, gene amplification, and

gene fusions, leading to the activation of downstream signaling

pathways involving mitogen-activated protein kinase (MAPK) and

phosphoinositide 3 kinase (PI3K) (3). In the second mechanism,

“bypass” signaling occurs in tumor cells, suppressing the targeted

pathway of drugs (2). The third mechanism is histologic

transformation, such as squamous transformation, which is one

of the primary reasons for resistance to First-line Osimertinib in

EGFR-mutant lung cancer (4).

The E3 ligase plays a crucial role in the process of protein

ubiquitination by transferring ubiquitin to the lysine residues of the

substrates with the cooperation of the E1 and E2 enzymes.

Additionally, the E3 ligase is involved in cellular non-degradable

functions such as DNA repair, metabolism, and protein complex

assembly (5). Dysfunction of the E3 ligase caused by its mutation

regulates many signaling pathways, promoting the development of

cancer (5).

As an E3-ligase, the SCF complex ubiquitinates targeted

proteins, establishing the foundation for subsequent degradation.

The SCF complex comprises four constructions: Skp1, Cul-1, Rbx1,

and an F-box protein (6). Based on the variable types of interaction

domains binding to substrates, F-box could be classified into three

isoforms: FBXW(interaction domains are WD40 repeats), FBXL

(interaction domains are leucine-rich repeats), and FBXO

(interaction domains are “others”) (7). The primary function of

FBXW7 is to recognize and ubiquity targeted proteins, providing

conditions for proteasome to identify the targeted protein and

eventually degrade them (Figure 1).

In various cancers, FBXW7 is determined to have an effect. For

example, the lack of FBXW7 in mice enhances cancer metastasis in
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both the cell-autonomous and the non-cell-autonomous ways (8). It

is also found that FBXW7 suppresses gastric cancer (GC) metastasis

by inducing Brg1 degradation (9). Both in vitro and in vivo studies

reveal that the knockdown of FBXW7 enhances the invasion and

migration in GC (10). In addition, FBXW7 is also associated with

the prognosis of the patients, including the survival of post-

operative patients who had colorectal liver metastases (11).

Colorectal liver metastases patients with high FBXW7 have better

disease-free survival. FBXW7 deficiency is associated with poor

prognosis in human ovarian cancer as well (12). A clinical study has

concluded that the 3 years of disease-free survival of the low and

high Fbxw7 groups were 12.5% and 47.0%, respectively (13). What’s

more, some experiments using FBXW7 knockout mouse models

constructed by knocking out the gene in embryonic stem cells have

also demonstrated that abnormal expression of FBXW7 leads to

tumor formation (14).

Among all subtypes of the FBXW family, the FBXW7 mutation

occurs most frequently in cancers (6). In all types of FBXW7

mutations that occurred in malignant tumors, missense

substitutions account for 72.70%, while nonsense substitutions and

insertion/deletion mutations occur 13.82% and 7.89%, respectively

(15). Endometrial carcinoma, colorectal adenocarcinoma, and

esophagogastric adenocarcinoma are the top three tumors with the

highest incidence of FBXW7mutations (15). According to the data of

the online database, FBXW7 can mutate at multiple sites, and

FBXW7 mutations can be found in various tumors (Figures 2A, B).
2 FBXW7 ubiquitinates its downstream
substrates to regulate drug resistance

FBXW7 has a range of target substrates, which are subject to

regulation by the E3 ligase through ubiquitination. Most of these

substrates are well-known oncogenic proteins frequently

overexpressed in various human cancers, leading to FBXW7 being

considered a tumor suppressor that negatively regulates these

proteins (16). Through these substrates and corresponding

pathways, FBXW7 has been found to have positive effects on

drug resistance (Supplementary Table 1). Notably, the influence

of FBXW7 is not limited to a specific tumor or drugs; rather, it can

be observed in a broad spectrum of tumor treatments. The effects of

FBXW7 on drug resistance are mediated by its ubiquitination of

downstream substrates (Figure 3).
2.1 FBXW7 regulates drug resistance by
degrading transcription factors

c-MYC, a member of the MYC family, plays a critical role in

regulating cell proliferation, apoptosis, and metabolism. Studies

have shown that medulloblastoma cells with a FBXW7 mutant

(T205D) exhibit a higher level of c-MYC signal compared to those

with wild-type FBXW7. Overexpression of FBXW7 enhances the

apoptosis of the medulloblastoma cells. However, FBXW7 levels are
FIGURE 1

The figure shows the construction of FBXW7 and compares the way
that FBXW7 wild type and FBXW7 mutation led to drug sensitivity
and drug resistance respectively.
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significantly reduced in medulloblastoma, contributing to drug

resistance (17). Likewise, decreased levels of FBXW7 in T-ALL

cell lines promote tolerance to a g-secretase inhibitor through the

higher expression of c-MYC (18). c-MYC is also involved in

regulation of drug resistance in various cancers, such as

endometrial cancer, where it induces drug resistance by

upregulating the expression of ATP-binding cassette subfamily B

member 1 (ABCB1) (19).In glioma stem cells, knocking down c-

MYC causes cell cycle arrest and promotes apoptosis, thereby

decreasing glioma resistance to drugs (20).

c-Jun, a highly unstable transcription factor, has been shown to

play a role in drug resistance in hypopharyngeal carcinoma and

human hepatoma cells. In vivo experiments demonstrate that

patients resistant to docetaxel/cisplatin/5-fluorouracil (TPF) have

the upregulation of c-Jun in their hypopharyngeal carcinoma tissues

(21), while overexpression of c-Jun inhibits human hepatoma cells

from being sensitive to sorafenib during treatment (22). After being

phosphorylated by glycogen synthase kinase-3 (GSK3), c-Jun can be

recognized by FBXW7 and subsequently degraded. In vitro studies

have proved that the deletion of FBXW7 leads to c-Jun
Frontiers in Oncology 03
accumulation (23). c-Jun may also indirectly cause drug

resistance through other proteins, such as WEE1, which is a cell

cycle regulator. c-Jun promotes WEE1 expression, protecting

cisplatin-exposed ovarian cancer cells from cell cycle arrest and

leading to the survival and proliferation of cisplatin-resistant

cells (24).

Phosphorylated HSF1 participates in regulating multidrug

resistance in human lung cancer cells, promoting paclitaxel

sensitivity (25). Although the mRNA level of HSF does not show

remarkable changes in drug resistance cancer cells, post-

translational modification indicates a positive impact on

Multidrug Sensitivity (MDR1) (25). The overexpressed FBXW7

combines with pHSF1 at Ser303/307, promoting its degradation. In

uterine cancer sarcoma cells, HSF1 knockdown increases lipid ROS

and iron levels, inhibits cell growth, and promotes sensitivity to

doxorubicin and gemcitabine treatment. Targeting HSF1 thus

reverses drug resistance of doxorubicin and gemcitabine in

uterine cancer sarcoma via the ferroptosis pathway (26).

The high expression of Nuclear Factors of Activated T-cell

(NFAT) is a common feature of many human cancers, and it has
A

B

FIGURE 2

The situation of FBXW7 mutation is performed using cBioportal on the TCGA database (http://www.cbioportal.org/) (A) Mutation sites of FBXW7 and
their mutation types. Different colors of spots indicate mutation types. Green spots represent missense mutation; black spots represent truncating
mutation; brown spots represent splice mutation; purple spots represent struction variation or fusion mutation. (B) Mutation counts of FBXW7 in
various cancer types. The color of these dots represent various type of mutation. This coordinate axis shows 30 types of cancers.
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been linked to tumor growth, sunitinib resistance, and improved

PD-L1 expression via the PI3K/AKT/GSK-3b signaling pathway

(27). FBXW7 induces NFAT1 degradation, leading to PD-L1

downregulation and subsequent immunoreaction, which is

correlated with prognosis (28). NFAT proteins play many roles in

tumors, including participating in cancer cell proliferation,

inhibiting cell apoptosis, inducing invasion and migration, etc. In

addition, NFAT proteins can also induce drug resistance through

calcineurin-dependent and independent pathways (29).

Snail1, a transcription factor involved in Epithelial-

Mesenchymal Transition(EMT), combines and inhibits the

Ecadherin promoter to suppress cell adhesion and enhance cell

migration (30). During EMT, epithelial cells transfer into motile

mesenchymal cells (31). This phenomenon plays a crucial role in

tumor metastasis, stem cell phenotype of cancer, and chemo-

resistance (32). Interestingly, in the NSCLC tissues, FBXW7

negatively impacts Snail1’s protein levels but not its mRNA levels

(30). The restoration of Snail1 could confer drug resistance on the
Frontiers in Oncology 04
FBXW7-silenced human lung cancer cells, particularly to cisplatin

and sorafenib, by promoting EMT (30).

ZEB2 is another transcription factor involved in EMT,

promotes EMT and cell invasion in colorectal cancer (CRC) cells.

ZEB2-induced EMT enhances the expression of Excision Repair

Cross-Complementation group 1 (ERCC1) and other materials

related to the nucleotide excision repair (NER) pathway, leading

to resistance to oxaliplatin (33). In vitro studies have shown that the

deficiency of FBXW7 desensitizes the CRC cells to 5-fluorouracil (5-

FU) and oxaliplatin chemotherapeutics induced by ZEB2/

EMT (34).
2.2 FBXW7 regulates drug resistance by
degrading cell cycle regulators

p53 acts as a tumor suppressor gene, inducing the cell cycle to

arrest at a particular period and enhancing cell apoptosis. As a
FIGURE 3

This figure indicates the role of FBXW7 on drug resistance in different tumors. In different tumors, the substrates of FBXW7 which take effects are not
exactly the same, and the types of drugs whose sensitivity is regulated by FBXW7 also vary among different tumors.
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substrate of FBXW7, p53 can be degraded after ubiquitination (35).

Both in vitro and in vivo assessments have indicated that in CRC,

the reduction of FBXW7 promotes cells to have a higher tolerance

to oxaliplatin by the abnormal transcription of phosphorylated p53

at Serine 15 (36). p53 has been implicated in many contexts in

relation to tumor drug resistance. It has been shown to contribute to

the acquisition of resistance to treatment with targeted MAPK

inhibitors (37). For example, inhibition of p53 blocks the slow-

cycling phenotype and sensitizes melanoma cells to BRAF/MEK

inhibition (38). In addition, p53 ubiquitination can upregulate

IL5RA and ultimately accelerate CDDP resistance in uveal

melanoma (39). What’s more, p53 contributes to the induction of

EMT and drug resistance through direct interaction with PRP4 and

actions to promote the upregulation of HIF-1a and miR-210 (40).

Cryptochrome 2 (CRY2), a significant circadian clock protein

related to the cell cycle, is reported to have a higher expression in

CRC, which could be reversed by FBXW7. Overexpression of

FBXW7 enhances the sensitivity of CRC to oxaliplatin along with

the descending of CRY2 (41). The interaction between FBXW7 and

CRY2 is regulated by metastasis-associated lung adenocarcinoma

(LUAD) transcript 1 (MALAT1) (42).

Cyclin E is essential for the normal functions of the cell cycle,

especially in G1 and S phases. FBXW7 degradation in CRC induces

the stability of Cyclin E, which is regulated by Polo-like kinase 2

(PLK2) and RPTOR-independent companion of mTOR complex 2

(RICTOR) (43, 44). Increased levels of Cyclin E1 lead to drug

resistance in many cancer cells, including ovarian cancer that is

resistant to the standard platinum-taxane chemotherapy, the

human epidermal growth factor receptor -2 (HER2) positive

breast cancers resistant to trastuzumab and breast cancer resistant

to cyclin-dependent kinase 4/6 (CDK 4/6)-inhibitors (45). In

HER2+ breast cancer, overexpression of Cyclin E causes increased

non-classical phosphorylation of SMAD Family Member 3

(SMAD3), conferring trastuzumab resistance (46).
2.3 FBXW7 regulates drug resistance
by degrading proteins of
Notch-signaling pathways

Notch signaling regulates the cell differentiation decisions (47).

The decreased levels of FBXW7 cause the accumulation of Notch1

in cholangiocarcinoma (48). Overexpression of Notch1 intracellular

domain (NICD) is also observed in the primary chronic

lymphocytic leukemia (CLL) cells activated by FBXW7 mutation

(49) . S imi l a r l y , mic e w i th FBXW7 muta t ion show

haploinsufficiency for Notch degradation (47). Once FBXW7 is

inhibited, Notch pathway can be activated, as well (50). High

expression of Notch1 is associated with the EMT in ovarian

cancer tissue, conferring chemo-resistance on ovarian cancer cells

(51). Notch activity is associated with both tumor immune evasion

and tumor resistance to therapy. The loss of Notch activity in

glioma mouse models impairs major histocompatibility complex

(MHC-I) and cytokine expression and inhibits the recruitment of

anti-tumor immune cell populations. In addition, Notch-depleted
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glioma cells develop resistance to interferon-g and TAMs re-

education therapy (52).
2.4 FBXW7 regulates drug resistance
by degrading proteins of
mTOR -signaling pathways

mTOR, the mammalian target of rapamycin, regulates protein

synthesis. In many cancers, the mTOR signaling pathway is

activated, which plays crucial parts in anti-apoptotic to trigger

drug resistance (53). The activation of the mTOR pathway results

in drug resistance in many cancers, inducing breast cancer resisted

to trastuzumab, tamoxifen and endocrine therapy, prostate cancer

resisted to vincristine, and ovarian cancer resisted to cisplatin (53).

FBXW7 targets mTOR and mediates mTOR degradation in the

tumor through direct physical combination with mTOR (54). On

the other hand, the inhibition of FBXW7 expression activates the

mTOR signaling pathway (55). mTOR pathway plays a central role

in the regulation of protein synthesis, ribosomal protein translation

and cap-dependent translation. In particular, it plays a central role

in mediating mRNA translation of proteins associated with cell

cycle progression. Dysregulation of mTOR signaling is frequently

associated with tumorigenesis, angiogenesis, tumor growth and

metastasis (53). For example, by activating the PI3K/AKT/mTOR

signaling pathway, C2orf40 inhibits metastasis of nasopharyngeal

carcinoma cell and regulates chemoresistance and radiation

resistance (56). FXYD5 enhances resistance of HCC cells to

sorafenib (57) and lncRNA enhances resistance to 5-fluorouracil

in gastric cancer cells (58). In addition to these treatments, the

mTOR pathway also affects immunotherapy. Experimental

evidence suggests that modulation of mTOR signaling can alter

the response to immune-checkpoint inhibitors (59). mTOR also has

an effect on the differentiation of memory T cells. mTOR inhibition

has been shown to favor the generation of CD8+ memory T

cells (60).
2.5 FBXW7 regulates drug resistance by
degrading antiapoptotic protein

MCL-1 is member of the B cell lymphoma 2 (Bcl-2) family that

plays a key role in the regulation of cellular apoptosis. In colon

cancer cells, FBXW7 is a critical component of regorafenib therapy.

Regorafenib treatment requires phosphorylation and ubiquitination

of MCL. Specifically, GSK3 phosphorylates MCL-1, which triggers

its ubiquitination by the wild-type FBXW7-MCL-1 complex (61).

In FBXW7-deficient T-ALL cell lines, overexpression of MCL-1 is

observed, leading to the resistance of ABT-737, a Bcl-2 antagonist

(62). However, upregulation of MCL-1 expression in FBXW7-

deficient T-ALL cells increases sensitivity of ABT-737, suggesting

that the deletion of FBXW7 causes the drug resistance to Bcl-2

antagonist in T-ALL cell lines through anMCL-1 mediated pathway

(62). Similarly, lack of FBXW7 expression induces upregulation of

MCL-1 in cholangiocarcinoma, resulting in resistance to cisplatin
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(48). Mcl-1 inhibitors can overcome intrinsic and acquired

regorafenib resistance in CRCs by restoring the apoptotic

response. The same conclusion can be obtained in CRCs with

FBXW7 mutations (63).
3 FBXW7 is affected by
upstream regulation

The expression of FBXW7 which regulates targeted proteins

through ubiquitination, is itself regulated by other molecules (64).

These upstream effects can be divided into three categories: the

effect on FBXW7 transcription, the effect on FBXW7 translation,

and the effect on FBXW7 protein stability (Supplementary Table 2).
3.1 The effects on FBXW7 transcription

3.1.1 Methylases regulate FBXW7 transcription
In sunitinib-resistant cells, the SET domain containing 2

(SETD2) is downregulated compared with sensitive cells. The

H3K36me3 marks are present in the FBXW7 gene allowing

SETD2 to achieve epigenetic regulation of FBXW7 DNA through

H3K36me3 (27). In pancreatic cancer, deletion of SETD2 leads to

decreased expression of FBXW7, increasing the accumulation of

MYC, an FBXW7 substrate, without significantly altering other

FBXW7 substrates, such as mTOR and Cyclin E (65).

As a type II arginine methyltransferase, protein arginine

methyltransferase 5 (PRMT5) establishes repressive histone

makers to silence the target gene including FBXW7 (66).

PRMT5’s oncogenic features include the inhibition of anti-tumor

genes such as E-cadherin and FBXW7 (66). Structurally, PHD finger

protein 1 (PHF1), PRMT5-WDR77 and cullin4B-ring E3 ligase

complex (CRL4B) act as a complex, occupying the FBXW7

promoter. Functionally, the downregulation of PHF1, PRMT5, or

CRL4B significantly reduces the corresponding proteins’ binding

level to increase FBXW7 expression at the transcriptional and

protein levels (66).

3.1.2 Transcription factors regulate
FBXW7 transcription

CCAAT/enhancer-binding protein-d(C/EBPd) binds to DNA

via leucine zipper scissors and participates in transcriptional

regulation. In addition to its role in cell apoptosis, it directly

suppresses the expression of FBXW7, leading to subsequent

effects such as the stability of mTOR and activation of the Notch

pathway (50, 67).

Hairy enhancer split (Hes5), a downstream effector of the

Notch1 pathway, negatively regulates FBXW7 as a transcriptional

repressor. Studies on mice have shown that deficiency of Hes5 leads

to the restored induction of Fbxw7 haploinsufficiency (47). A

positive feedback loop consisting of NICD/Hes5/FBXW7 was

identified in colon cancer cells, where the negative regulation of

FBXW7 by Hes5, particularly its repressive effect on the

transcription of FBXW7, is extremely significant (47).
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Forkhead box A1 (FOXA1) also binds to the promoter of

FBXW7 in sunitinib-resistant renal cells, facilitating its

expression. The downregulation of FBXW7 induced by FOXA1

reduction is responsible for the sunitinib-resistant in renal

cancer (35).
3.2 The effects on FBXW7 translation

3.2.1 miRNAs inhibit FBXW7 translation
Of the 69 F-box proteins, only a dozen are regulated by non-

coding RNA, including FBXW7 (68). Although different miRNAs

play a role in different tumors, they all generally inhibit the

translation of FBXW7, resulting in decreased FBXW7 protein

expression and indirect drug resistance (Supplementary Table 3).

Most miRNAs repress FBXW7 expression by binding to the 3’-

untranslated region (3’-UTR) of FBXW7 mRNA. Inhibition of

FBXW7 by miRNA weakens its regulatory effect on downstream

substances, affecting the sensitivity of each tumor to drugs.

Exosome transfer of miR-25-3p regulates glioblastoma (GBM)

cell proliferation and Temozolomide (TMZ) resistance by

inhibiting FBXW7 and subsequently promoting the expression of

oncoproteins such as c-MYC and Cyclin E. Overexpression of miR-

25-3p significantly inhibits wild type FBXW7, while knockdown of

miR-25-3p significantly increases wild type FBXW7 in GBM cells.

For FBXW7 with binding site mutation, the effect induced by miR-

25-3p overexpression or knockdown can be eliminated (69). In

addition to GBM, miR-25 also inhibits FBXW7, increasing the

resistance of hepatocellular carcinoma to sorafenib (70).

Overexpression of miR-27b-3p mimics in myeloma fibroblasts

significantly inhibits FBXW7 mRNAs and protein. On the contrary,

forced expression of miR-27b-3p inhibitors in myeloma fibroblasts

inhibits the level of miR-27b-3p and induces a significant increase

in the concomitant increase of FBXW7 mRNAs and protein. Based

on these results, FBXW7 is the target mRNA of miR-27b-3p (71).

Clinical data shows that the expression of miR-32 is increased in

multiple myeloma (MM) tissues, and cells with high expression of

miR-32 are often accompanied by low expression of FBXW7. In

addition, in vitro experiments also found that miR-32 transfected

cells have lower expression of FBXW7 and higher expression of

cancer-related proteins c-Jun and c-MYC. On the other hand, anti-

miR-32 transfected cells show higher FBXW7 expression and lower

c-Jun and c-MYC expression. These studies indicate that the

expression of miR-32 was negatively correlated with the

expression of FBXW7 mRNA (72). A similar phenomenon is

observed in breast cancer cells as well, where miR-32 is often

overexpressed, inhibits cell apoptosis and promotes proliferation

and migration. MiR-32 binds to the 3’-UTR of FBXW7, suggesting

that FBXW7 is a direct target of miR-32. Overexpression of miR-32

decreases the level of FBXW7 protein, which are also negatively

correlated with the level of FBXW7 mRNA. Comparing the FBXW7

mRNA 3 ‘-UTR mutants with the FBXW7 mRNA 3’-UTR wild-

type shows that miR-32 can down-regulate its expression by directly

targeting the 3’-UTR of FBXW7. Even the FBXW7 3’-UTR mutant

group shows decreased expression compared to the blank

control (73).
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The expression of miR-92a is significantly upregulated in

cervical cancer (CC) tissues and cell lines, it inhibits the

expression level of FBXW7 by directly binding to the 3’-UTR of

FBXW7 mRNA. This results in a negative correlation between the

expression of FBXW7 and the level of miR-92a in CC tissues. The

overexpression of miR-92a can significantly promote the transition

of the cell cycle from the G1 phase to the S phase and enhance the

invasiveness of CC cells. However, FBXW7 can reverse the

carcinogenic effect of miR-92a (74).

miR-92a-3p significantly suppresses FBXW7 with wild-type 3’

non-coding region but not in FBXW7 with a 3’ non-coding region

mutation. In addition, the level of FBXW7 in CRC cells with miR-

92a-3p was significantly decreased (75). The high expression of

miR-92a-3p activates the Wnt/b-catenin pathway, which

suppresses the mitochondrial apoptosis by directly inhibiting

FBXW7, thereby promoting stem cell differentiation, endothelial

cell metastasis, and 5-FU/oxaliplatin resistance in CRC (75).

In hepatocellular carcinoma (HCC), overexpression of miR-

155-3p induces FBXW7 to be downregulated at both mRNA and

protein levels. Specific inhibitors of miR-155-3p increase FBXW7.

In terms of mechanism, the 3 ‘-UTR region of FBXW7 mRNA

contains a binding site of miR-155-3p, which can directly bind to

FBXW7 mRNA and regulate the expression of FBXW7 through

translation inhibition (76).

miR-182 reduced the FBXW7 protein levels through targeting

FBXW7 3’-UTR directly in breast cancer cells, but has no significant

effect on mRNA levels. Conversely, inhibition of miR-182 increased

the FBXW7 protein levels in human breast cancer cells (77). At the

same time, miR-182 can only have an effect on wild-type FBXW7,

but cannot change the mutant FBXW7 (78). The similar

phenonenon can also be found in other cancers. In CC cells and

renal cancer cells, miR-182-5p directly binds to the 3’-UTR of

FBXW7 mRNA and inhibits the expression of wild-type FBXW7

proteins because FBXW7 contains a hypothesized binding site for

miR-182-5p in its 3’-UTR (79, 80).

Studies have indicated that miR-223 targets FBXW7 and

stimulates its degradation (81). The detection of luciferase activity

report shows that miR223-3p can directly combine with the 3

‘-UTR of FBXW7. MiR-223-3p partially plays its carcinogenic role

by reducing the expression of FBXW7, thereby promoting the

invasion and metastasis of breast cancer cells (55). The inhibitory

effect of miR-223 on FBXW7 leads to the promotion of adriamycin

resistance in GC cells (82). Also, miR-223-induced decrease of

FBXW7 expression causes resistance to cisplatin in non-small cell

lung cancer (83). In CRC, miR-223 promoted adriamycin resistance

in cancer cells by inhibiting FBXW7 (84).

MiR-363 was found to reduce the expression of FBXW7 in GC

cells with wild-type 3’-UTR, but it had no effect on the expression of

transfected mutant FBXW7 3’-UTR. Moreover, the overexpression

of miR-363 was associated with a decrease in the mRNA expression

of FBXW7 in GC cells, indicating that miR-363 negatively regulates

FBXW7 mRNA levels in GC tissues (85).

Studies in HCC cells indicate that miR-367 can directly target

FBXW7 and negatively regulate FBXW7 expression in HCC cells

(86). Studies in non-small cell lung cancer have also reported

FBXW7 as a downstream target of miR-367 (87). Co-transfection
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of miR-367 mimics with luciferase reporter structure containing

FBXW7 3’-UTR showed that the cellular luciferase activity of

transfected miR-367 mimics was down-regulated, suggesting that

miR-367 regulates its expression by directly targeting the 3’-UTR of

FBXW7 (87).

In HeLa cells, FBXW7 is inhibited by miR-586 after

transcription. The presence of miR-586 mimics significantly

inhibited the level of FBXW7, leading to a decrease in

endogenous FBXW7 protein and mRNA levels. Conversely, the

miR-586 inhibitors increase the FBXW7 expression. However,

when 3’-UTR of FBXW7 is mutated, miR-586 has largely no

effect (88).

Exosomes of the cisplatin resistant GC cells have also been

found to enhance cisplatin resistance by targeting FBXW7 with

miR-500a-3p in vitro and in vivo, but FBXW7 can rescue cisplatin

resistance by inhibiting cancer stem cells properties. In mice with

abdominal tumorigenesis of the GC cells, the reintroduction of

FBXW7 was observed to inhibit tumor growth and metastasis under

cisplatin treatment (89). Finally, decreased expression of miR-5000-

3p inhibited the proliferation and migration of laryngeal cancer

cells, while upregulation of MIR22HG expression led to an increase

in FBXW7 expression and protein level. Luciferase reporting

experiments also demonstrated that upregulation of miR-5000-3p

can reduce wild type FBXW7 reduction, but it also has no

significant effect on FBXW7 mutation (90).

3.2.2 lncRNAs enhance FBXW7 translation
In contrast to miRNA, long-non-coding RNA (lncRNA) plays a

facilitative role for FBXW7. In general, lncRNA acts as a molecular

sponge in cells, reducing the binding of miRNA and FBXW7

mRNA by competitively binding to the sites on FBXW7 mRN A,

thereby reducing the inhibitory effect of miRNA on FBXW7.

This inhibition of miRNAs results in an increase in FBXW7

expression, which leads to the degradation of the corresponding

substrate and an increase in tumor sensitivity to drugs. However,

the specific lncRNAs that play a role in different tumors vary.

Supplementary Table 4 illustrates the corresponding relationships

(Supplementary Table 4).

In laryngeal cancer cells, the high expression of lncRNA-

MIR22HG inhibits proliferation and migration, but its expression

is down-regulated. LncRNA-MIR22HG regulates the expression of

FBXW7 in the laryngeal cancer cells by competitively binding of

miR-5000-3p, erasing its expression. E2F6 has been found to inhibit

the transcription of lncRNA-MIR22HG in the laryngeal cancer

cells (90).

LncRNA-MT1JP is significantly lower in the GC tissues than in

the adjacent normal tissues, and the increase of lncRNA-MT1JP is

significantly correlated with lymph node metastasis and advanced

stage. Overexpression of lncRNA-MT1JP inhibits cell proliferation,

migration, and invasion, promoted cell apoptosis in vitro, and

inhibits tumor growth and metastasis in vivo. Therefore, the GC

patients with a high expression of lncRNA-MT1JP have a better

survival rate. lncRNA-MT1JP regulates the expression of FBXW7

by competitively binding to miR-92a-3p.The RNA level of FBXW7

was significantly increased in the overexpressed lncRNA-MT1JP

cells (91).
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LncRNA-MIF induction increases FBXW7 mRNA and protein

levels. These data suggest that lncRNA-MIF may shorten the half-

life of c-MYC by increasing the expression of Fbxw 7. There is no

direct correlation between lncRNA-MIF and FBXW7, but lncRNA-

MIF can act as a microRNA sponge to regulate the expression of

FBXW7. LncRNA-MIF specifically interacts with miR-586 in the

cytoplasm to competitively bind miR-586 and reduces its inhibitory

effect on FBXW7. Therefore, lncRNA-MIF can indirectly

upregulate FBXW7 (88).

Lnc-CASC2 expression is significantly down-regulated in HCC

tissues, especially in invasive and recurrent cases. In vitro and in

vivo experiments demonstrate that CASC2 can inhibit the

migration and invasion of HCC cells by down-regulating the

EMT process. CASC2 competitively binds miR-367 in the HCC

cells by functioning as a molecular sponge. In conclusion, CASC2

positively regulates the expression of FBXW7 by sponge miR-

367 (86).

Lnc-LINC00173 acts as a molecular sponge of miR-182-5p and

reverse-regulates the level of miR-182-5p in the CC cells.

Overexpression of lnc-LINC00173 decreases the level of miR-182-

5p in HeLa cells, while downregulation of lnc-LIN00173 increases

the expression of miR-182-5p in the CC cells. Since FBXW7 is the

target of miR-182-5p, lnc-LINC00173 positively regulates the

expression of FBXW7 by inhibiting miR182-5p in the CC cells,

thus inhibiting the cell proliferation (79).

3.2.3 METTL3 and m6A -mediated FBXW7 RNA
modification enhance FBXW7 translation

METTL3 is a “writer” enzyme that is part of the m6A

methyltransferase complex. In LUAD, the high expression of

METTL3 induces the m6A modification in FBXW7 mRNA,

rescuing the levels of FBXW7 protein expression (92). The m6A

methylation modification site is present in FBXW7 mRNA, and the

expression of METTL3 and FBXW7 is correlated. In LUAD,

overexpression of METTL3 promotes m6A modification, which

enhances the translation of FBXW7. In vivo experiments have also

demonstrated that overexpression of FBXW7 can rescue the anti-

tumor effects attenuated by METTL3 knockdown (92).

3.2.4 Piwil1 inhibits FBXW7 translation by
reducing mRNA stability

Piwi Like RNA-Mediated Gene Silencing 1 (Piwil1), a member

of the argonaute proteins subfamily, is highly expressed in GBM.

Knock out of Piwil1 increases the level of FBXW7, as Piwil1

negatively regulates the stability of FBXW7 mRNA. However,

Piwil1 regulates FBXW7 through an unknown mechanism, rather

than directly binding to FBXW7 mRNA (93).
3.3 The effects on FBXW7 protein

3.3.1 PLK1 and ERK1/2 suppress the level of
FBXW7 by degrading FBXW7 protein

Polo-like kinase 1 (PLK1) participates in various stages of cell

division. In medulloblastoma, the suppression of PLK1 promotes

the stability of FBXW7 by downregulation of FBXW7 poly-
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ubiquitination and degradation, indicating that PLK1 has a

negative effect on FBXW7 (17). The PLK1 inhibitor BI6727

stabilizes the FBXW7 protein in Burkitt lymphoma cells, further

supporting its negative regulatory effect on FBXW7 (94).

In drug resistance cells, high expression of ERK1/2 induces

FBXW7 degradation (25). In vivo studies have revealed that

downregulation of ERK1/2 reverses the expression of FBXW7 at

Ser303/307 in the mouse embryonic fibroblasts (25).

The thyroid hormone receptor interactor 12 (TRIP12), an E3

ubiquitin ligase of the HECT domain, is a negative regulator of

FBXW7 stability. Knockdown of TRIP12 does not affect FBXW7

mRNA levels but increases the amount of endogenous FBXW7a
protein. In contrast, increased proteasomal degradation of FBXW7

protein accumulation and secondary FBXW7 substrate MCL-1 due

to TRIP12 inactivation sensitizes cancer cells to antitubulin

chemotherapy (95).

TRP120 ligase, a functional HECT E3 ligase, is a substrate for

the tumor suppressor FBXW7. TRP120 ligase maintains the

stability of Notch and other tumor proteins involved in cell

survival and apoptosis by degrading FBXW7, thereby

downregulating the innate immune host defense system and

promoting ehrlichiosis (96).
4 Immunity therapy

4.1 FBXW7 and the immune system in
cancer cells

FBXW7 plays a role in regulating the immune system in cancer

cells. Eyes absent homolog 2 (EYA2) is degraded by FBXW7-

mediated ubiquitination. Downregulation of EYA2 leads to weak

mesenchymal phenotypes, increased immunogenicity of cancer

cells, reduced carcinogenicity, including tumor growth and

metastasis, and increasing infiltration level of natural killer cells

(NK cells) and cytotoxic T cells (97).

FBXW7 also influences macrophages, as its deficiency leads to

improved expression of chemokine C-C Motif Chemokine Ligand 2

(CCL2) in serum, resulting in the recruitment of macrophages and

monocytic myeloid-derived cells and eventually resulting in tumor

metastasis (8). Additionally, FBXW7 regulates macrophages

through an mTOR-related pathway. The downregulation of

FBXW7, inhibited by calcium/calmodulin-dependent protein

kinase IV (CaMKIV), leads to increased mTOR in macrophages,

which results in the Lipopolysaccharide (LPS)-induced mediation

of macrophages subsequently (98).

The lack of FBXW7 promotes cell proliferation of double-

positive T-cells due to the accumulation of c-MYC, but it does

not make an obvious change in single-positive T-cells (99).

Furthermore, FBXW7 is highly expressed in the germinal center

of B and B1 cells, where it maintains the homeostasis of mature B

cells and B-1 cells. It also plays a critical role in BCR-mediated B cell

proliferation and survival. The absence of FBXW7 in B cells impairs

the Ig switching and the germinal center function, including

switching recombination and the affinity maturation of

antibodies, resulting in a weakened memory antibody response.
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This effect may be due to the effect of FBXW7 on B-cell lymphoma 6

(BCL6), an essential protein that initiates and maintains the

germinal center response. FBXW7 provides a potential treatment

for GC-related and autoantibody-induced autoimmune

diseases (100).
4.2 FBXW7 and immunotherapy

4.2.1 FBXW7 and PD-L1 protein
FBXW7 regulates the PD-L1 protein indirectly. In tumors

where FBXW7 is silenced, the expression of PD-L1 is significantly

increased through the transcriptional regulation of signal

transducer and activator of transcription 3 (STAT3) (101).

Once the activity of FBXW7 is inhibited, c-MYC protein

accumulates, resulting in the up-regulation of PD-L1. Therefore,

the expression level or mutation status of FBXW7 and c-MYC

proteins may also reflect the efficacy of combined therapy (102).

The loss of function (mutation or deletion) of tumor suppressor

gene FBXW7 and the overexpression of c-MYC oncoprotein are

related to the expression level of PD-L1 and poor prognosis in some

malignant tumors (102).

4.2.2 FBXW7 and immunotherapy outcomes
FBXW7 has been shown to play a crucial role in promoting

anti-tumor immunity (97). The inactivation of FBXW7 has been

associated with the development of resistance to the PD-1 blockade

in immunoreactive animals, likely due to alterations in the immune

microenvironment. Specifically, FBXW7 has been linked to the

downregulation of type I interferon induction and major MHC-I

expression, as well as the decreased expression of dsRNA sensors

such as melanoma differentiation-associated protein 5 (MDA 5)

and retinoic acid-inducible gene I (RIG-I) (103). Conversely,

FBXW7 can enhance PD-1 blockade therapy by promoting the

degradation of EYA2. Targeting EYA2 tyrosine phosphatase activity

in mice with tumors exhibiting a reduced mesenchymal phenotype

has been shown to enhance cancer cell immunogenicity, resulting in

suppressed tumor growth and improved anti-PD-1 therapeutic

response (97). The restoration of dsRNA perception in FBXW7

deficient cells was sufficient to sensitize them against anti-PD-1

(103). For example, overexpression of mitochondrial antiviral-

signalling protein(Mavs) makes the FBXW7 deficient tumor

sensitive to PD-1 blocking, delays the growth of Fbxw7-deficient

tumors and prolongs the survival of anti-PD-1-treated Fbxw7-

deficient tumor-carrying mice (103).

Taken together, these findings suggest that screening for

FBXW7 status could be a valuable predictor of clinical response

to anti-PD-1 immunotherapy, and that targeting FBXW7 may be a

promising strategy for enhancing anti-tumor immunity (104).

Dysfunctional FBXW7 is implicated in defective antigenic

peptides formation, tumor development, and malignant tumor

manifestations, all of which increases resistance to PD-1 therapy

in melanoma. In contrast, reactivation of FBXW7 can improve

response to PD-1 blockade (103).
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The efficacy of anti-PD-L1/PD-1 immunotherapy is known to

be influenced by the level of PD-L1 protein associated with tumor

cells (105). Interestingly, data from online databases show that

esophageal adenocarcinoma and urothelial carcinoma patients with

high expression of FBXW7 exhibit longer survival times following

anti-PD-L1 therapy compared to those with low FBXW7 expression

(Figures 4A, B). A similar trend is observed in GBM patients who

are treated with anti-PD-1 therapy (Figure 4C). These results

suggest that FBXW7 expression is a potential prognostic indicator

for the response to immunotherapy in cancer patients.
4.3 Other clinical therapy

Although the loss of FBXW7 makes tumors resistant to many

drugs, there are treatments that work on cells lacking FBXW7. For

instance, Lycorine hydrochloride (LH) attenuates the level of MCL-

1 by upregulating FBXW7 in the GC cells. The cell cycle stops at the

S phase as a result of insufficient MCL-1, followed by the BCL2-

drug-resistant GC cells apoptosis. LH has been reported to have a

positive effect on inhibiting cells growth and tumorigenesis (106).

Aside from increasing FBXW7 expression, other drugs such as

tigecycline and histone deacetylase (HDAC) inhibitors can target

the Fbxw7-deficient cells and reverse the harm caused by the

reduction of FBXW7 in humans. Tigecycline, for instance, has

been shown to be toxic to FBXW7 knockout cells in the

heterograft colorectal adenocarcinoma cells. tumor cells that lack

FBXW7 show no response to paclitaxel, but this effect is attenuated

by tigecycline. Other drugs, such as tigecycline or oligomycin, which

activate the integrated stress response (ISR), are also toxic to

FBXW7-deficient cells (107). Entinostat MS-275, a Class 1 HDAC

inhibitor, has been found to be highly effective in treating Fbxw7-

deficient NSCLC cells. MS-275 therapy has been shown to

overcome paclitaxel resistance, suggesting that HDAC inhibitors

may have a therapeutic potential in treating FBXW7- deficient

NSCLC with invasive paclitaxel-resistant (15).
5 Other F-box proteins regulate drug
resistance in cancer

F-box proteins play a pivotal role in the progression and

development of various human malignancies by regulating the

turnover of critical factors involved in a range of cellular

processes (108). Apart from FBXW7, other F-box proteins also

impact tumor drug resistance by regulating the corresponding

substrate proteins (Supplementary Table 5).

High mRNA expression of FBXO 4 is significantly associated

with better survival in luminal B-type BC patients (109). In patients

with stage III breast cancer, high expression of FBXWO4 and

FBXL3 mRNA is associated with better survival. FBXO4 regulates

the therapeutic outcome in metastatic breast cancer, by

contributing to the stability of intercellular adhesion molecule-1

(ICAM-1) (110). In head and neck squamous cell carcinoma, the
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reduction of FBXO 4 and its substrate Fxr1 correspondingly to the

suppression of tumorigenesis (111).

FBXO5, also known as early mitosis Inhibitor 1(EMI1), is

involved in cell sensitivity to poly ADP-ribose polymerase

(PARP) inhibitors by targeting RAD51 degradation in breast

cancer (112).

FBXO6 controls the degradation of checkpoint kinase 1 (Chk1)

and confers the sensitivity to certain anticancer drugs, including

camptothecin, in tumor cells, such as non-small cell lung cancer,

GBM, and breast cancer (113). FBXO6 also inhibits cell

proliferation, induces apoptosis, and enhances cell sensitivity to

cisplatin by Chk1 in non-small cell lung cancer (114).

BCL-2 upregulation is one of the causes of ibrutinib resistance in

mantle cell lymphoma (115). However, FBXWO10 targets BCL-2 and

induces its degradation (116). Therefore, upregulating FBXO10 may

be an effective way to overcome resistance to ibrutinib in MCL (117).

CD147 (Basigin), a transmembrane glycoprotein of the

immunoglobulin superfamily, is associated with chemotherapy
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resistance in various human malignancies (118). FBXO22

mediates the polyubiquitination and degradation of CD147 by

recognizing CD147-ICD, causing a reversal of cisplatin resistance

in cancer cells (119).

Deletion of FBXL5 and B-cell translocation gene 3(BTG3)

increases cell invasion and cisplatin resistance in CC (120). In GC

cells, loss of FBXL5 increased cisplatin resistance by activating ERK

and p38. Sufficient FBXL5 combined with Rho GDP dissociative

inhibitor b(RhoGDI2) reduced the cisplatin resistance of RhogDi2-

mediated GC cells (121). FBXL5 targets ubiquitination and

degradation of human single-stranded DNA binding protein 1

(HSSB1), leading to ATM activation and enhanced radiosensitivity

and chemotherapy sensitivity in lung cancer (122).

The down-regulation of FBXL7 inhibits the SURVIVIN

degradation, leading to increased the SURVIVIN protein levels

and increased drug resistance (123). The down-regulation of the

FBXL7 expression also increases the sensitivity of ovarian cancer

cells to paclitaxel (124).
A B

C

FIGURE 4

The survival rate of patients with high and low expression is performed using Kaplan Meier plotter. (https://kmplot.com/analysis/index.php?p=service) (A)
Esophageal adenocarcinoma patients who accept all anti-PD-L1 treatment shows that people with high levels of FBXW7 owns a longer survival time. (B)
Urothelial carcinoma patients who accept all anti-PD-L1 treatment shows that people with high levels of FBXW7 owns a longer survival time. (C)
Glioblastoma patients who accept all anti-PD-1 treatment shows that people with high levels of FBXW7 owns a longer survival time.
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6 Conclusion

In conclusion, FBXW7 has been shown to be associated with

patient survival and prognosis with higher FBXW7 linked to longer

disease-free and overall survival. Of particular interest is its impact

on drug resistance in tumors. FBXW7 targets the degradation of

various molecules, including MCL-1, NFAT1, p53, CRY2, c-MYC,

ZEB2, Snail1, pHSF1, Notch1, PD-1, Cyclin E, mTOR, and c-Jun to

regulate the corresponding pathway and ultimately reduce drug

resistance. Other molecules, such as FOXA1, SETD2, Hes5, C/EBP-

d, PRMT5, METTL3, Piwil1, PLK1, ERK1/2, and a series of miRNA,

indirectly modulate the sensitivity of cancer cells to drugs by

regulating FBXW7.

Moreover, FBXW7 has an impact on the immune

microenv i ronment and i t can affec t the e fficacy of

immunotherapy by amplifying the therapeutic effect of anti-PD-

L1. For the FBXW7-deficiency cells, certain drugs have shown

therapeutic potential. However, further and more extensive

experiments are necessary to fully understand the impact FBXW7

reduction and mutation in cells.
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