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Virome analysis via high-throughput sequencing (HTS) allows rapid and massive

virus identification and diagnoses, expanding our focus from individual samples

to the ecological distribution of viruses in agroecological landscapes. Decreases

in sequencing costs combined with technological advances, such as automation

and robotics, allow for efficient processing and analysis of numerous samples in

plant disease clinics, tissue culture laboratories, and breeding programs. There

aremany opportunities for translating virome analysis to support plant health. For

example, virome analysis can be employed in the development of biosecurity

strategies and policies, including the implementation of virome risk assessments

to support regulation and reduce the movement of infected plant material. A

challenge is to identify which new viruses discovered through HTS require

regulation and which can be allowed to move in germplasm and trade. On-

farmmanagement strategies can incorporate information from high-throughput

surveillance, monitoring for new and known viruses across scales, to rapidly

identify important agricultural viruses and understand their abundance and

spread. Virome indexing programs can be used to generate clean germplasm

and seed, crucial for the maintenance of seed system production and health,

particularly in vegetatively propagated crops such as roots, tubers, and bananas.

Virome analysis in breeding programs can provide insight into virus expression

levels by generating relative abundance data, aiding in breeding cultivars

resistant, or at least tolerant, to viruses. The integration of network analysis and

machine learning techniques can facilitate designing and implementing

management strategies, using novel forms of information to provide a

scalable, replicable, and practical approach to developing management

strategies for viromes. In the long run, these management strategies will be

designed by generating sequence databases and building on the foundation of
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pre-existing knowledge about virus taxonomy, distribution, and host range. In

conclusion, virome analysis will support the early adoption and implementation

of integrated control strategies, impacting global markets, reducing the risk of

introducing novel viruses, and limiting virus spread. The effective translation of

virome analysis depends on capacity building to make benefits available globally.
KEYWORDS

crop breeding, microbiomes, pest management, phytosanitary standards, seed systems,
surveillance, viromes
Introduction to the plant virome

Advances in high-throughput sequencing (HTS) technologies

have expanded our understanding of virus communities and their

impacts on ecosystems, including the ongoing COVID-19

pandemic (Fauci et al., 2020; CDC, 2022). Emerging plant viruses

are a threat to crops globally. Advances in plant virus ecology are

needed to fully understand the effects of global change such as

agricultural intensification and climate change, and how these

interact with virus traits such as mode of transmission (Adams

et al., 2014; Salem et al., 2016; Jeger, 2020; Siriwan et al., 2020; Uke

et al., 2021). Interactions between virus species are another major

epidemic driver (Syller, 2011; Tollenaere et al., 2016). An important

new phase of the study of virus communities is putting this

information to work to support better agriculture. Translating

analyses of virus communities to support effective management

strategies depends on integrating HTS data and agricultural

system knowledge.

The virome concept emerged in parallel with the general

microbiome concept (Wylie et al., 2012; Berg et al., 2020).

Virome analyses can include the study of viruses in a single host,

or at multiple scales, such as host plants or vector species, the set of

hosts within a location, or environmental samples such as from

water or soil (Kreuze et al., 2009; Al Rwahnih et al., 2011; Rosario

et al., 2015; Leke et al., 2016; Hadad et al., 2019; Wylie et al., 2019;

Alcalá-Briseño et al., 2020; Bacnik et al., 2020; Britt et al., 2020;

Kwok et al., 2020; Fontenele et al., 2021). Implementing HTS

allowed virome analysis to thrive through viral metagenomics,

combined with new sampling options (i.e., individual, bulked, and

mixed samples) and expanded virus sequence databases. Our

understanding of viromes is rapidly advancing, including viral

diversity, genetic composition, genomic organization, and

phylogenetic relationships among virus species in ecosystems

(Kreuze et al., 2009; Al Rwahnih et al., 2011; Leke et al., 2016;

Wylie et al., 2019). The virome perspective expanded our

understanding of how viruses and plants interact, building on

knowledge about the most prevalent and well-described viruses,

which are often the most damaging to current crop systems. A

frontier for epidemiology is understanding the interactions and

antagonistic effects of virus species and their vectors, especially for

viruses that produce subtle or no visual symptoms when infecting
02
alone (Jeger et al., 2023). Most studies focus on economically

important crops, but secondary hosts may function as reservoirs

for crop viruses, and virus spillover may occur between natural and

crop ecosystems (Alexander et al., 2013; Bernardo et al., 2017;

Ingwell et al., 2017; Alcalá-Briseño et al., 2020). Studying the

dynamics of viruses between crops and weeds is necessary for

implementing effective management strategies. Understanding

these interactions at a large scale in complex agroecological

systems may inform effective management strategies.

Climate change is shifting the distribution of plant-host and

insect-vector populations (Jones, 2016; Bebber et al., 2019; Chaloner

et al., 2021; Wang et al., 2022). The connectivity of the agricultural

landscape also influences the introduction and dispersal of

pathogens, often increasing the risk of global pathogen emergence

(Fahrig et al., 2011; Garrett et al., 2020; Xing et al., 2020; Jones,

2021). Scientists and practitioners must consider pathogen risks and

societal impacts to effectively address and mitigate these challenges.

There are a wide range of new tools and frameworks for improving

virome data analysis, virus discovery and diagnostics, and

applications such as phytosanitary practices and regulation

(Massart et al., 2014; Massart et al., 2017; Massart et al., 2019;

Maclot et al., 2020; Kumar et al., 2021; Moubset et al., 2022). Our

goal in this paper is to synthesize current knowledge of virus

discovery and state-of-the-art technologies, and the potential for

translation of big data to benefit stakeholders, from national

agencies to individual farmers. Approaches such as machine

learning and network analysis can inform translation of virome

analysis into management strategies to mitigate the effects of plant

pathogens in a changing world.
Translating virome analysis: From ecology
and molecular analysis to surveillance and
management

Our ability to characterize the virome of an individual plant, a

plant community, or an ecological niche is a major scientific

advance, creating many possibilities for translating virome

information to improve crop disease management across scales,

methodologies, and disciplines (Figure 1). A fuller analysis of the

virome includes characterizing associations and potential
frontiersin.org
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interactions among viruses, virus distributions across host species,

types of virus environments and changes across time. Complex

virome datasets have been analyzed as ecological networks, with

associations and ecological patterns such as host-virus and vector-

virus associations and virus-virus co-associations (McLeish et al.,

2019; Alcalá-Briseño et al., 2020), spatial distribution within the

landscape (Alcala-Briseno et al., 2021; McLeish et al., 2021), and

global and local movement (Alcalá-Briseño et al., 2020; Alcala-

Briseno et al., 2021; McLeish et al., 2021; Baker et al., 2022).

Network analysis can represent the interactions in these

communities as links in a network, potentially representing virus

species incidence in environments and other attributes such as

relative abundance, means of transmission, vectors, virus-virus

interactions, etc. (Luis et al., 2015; Poudel et al., 2016; Garrett

et al., 2018). Analyses need to address long-studied ecological

properties of viromes– such as species richness and other

measures of diversity – and go beyond these to include structures

that can be explored in network analysis, such as virus co-infections,

host-virus distribution and assemblage, virus–vector interactions,

and the host preferences of vectors (Figure 2). There is also potential

to build on these network analyses by incorporating new network

characteristics, such as including host phenotypic responses as

variables in networks (Poudel et al., 2016), and including three-

way and higher interactions among virus species (Battiston et al.,

2020). These new types of data will inform strategies for monitoring

emerging viral pathogens, when the data are available and

accessible, and specialized software can be developed for real-

time analyses.

New-generation diagnostic tools based on HTS offer extensive

qualitative and quantitative information to understand virome

ecological properties. This data can be analyzed using machine

learning to help design precise intervention strategies. HTS has

higher sensitivity that can help rapidly identify virus species that
Frontiers in Plant Science 03
pose a risk for disease emergence, providing better understanding of

previously unimportant viruses (Alcalá-Briseño et al., 2017; Fox

et al., 2019) that may pose a critical risk when they co-occur with

other synergistic virus species (Fox et al., 2019; Elvira Gonzalez

et al., 2021). Improved methods have contributed to pathogen

detection in plant diagnostic clinics, seed production initiatives,

and ports of entry (Miller et al., 2009; Kumar et al., 2021), allowing

the implementation of higher phytosanitary standards by

companies and regulatory institutions for known and emerging

pathogens (EPPO, 2021). However, novel viruses usually lack

sufficient biological and epidemiological data to evaluate potential

severity, transmission, and host range, complicating regulatory

decision-making. To compensate for missing information,

machine learning approaches can use classification algorithms to

identify groups of greater interest and predict management

strategies that could be the most effective treatment for a disease

caused by one virus or several viruses, as we illustrate below.

Virome data, in terms of both virus incidence and associations,

can be translated to target on-farm management strategies for

particularly important viruses and virus combinations in a region.

Ultimately, as sequencing becomes less and less expensive,

diagnostic agencies and farm managers may screen their crop by

implementing new generation diagnostic tools that can be used in

surveillance strategies for viruses in agriculture and other systems

(Boonham et al., 2014; Li et al., 2020b; Cassedy et al., 2021). Virome

information across scales – farms, clusters of farms, and regions –

could be used to customize management decisions given virus

incidence and other ecological variables. Information about more

complex systems – with factors such as secondary vegetation,

intercropping, vectors, and varying crop genotypes and

phenotypes – can be translated to inform management strategies,

as illustrated for Mexican papaya orchards (Alcalá-Briseño et al.,

2020). Virome network analysis can also reveal associations among
FIGURE 1

Virome analysis reveals complex interactions in mixed and single infections, with impacts from global to local scales. Translating information at each
scale has both important potential as well as challenges for implementation. Effective translation can improve on-farm management, crop breeding
and seed systems, and phytosanitary activities.
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multiple viruses within hosts or within regions (Garrett et al., 2018;

Alcalá-Briseño et al., 2020; Cao et al., 2021), associations that could

increase yield losses in local or global systems (Clark et al., 2012;

Redinbaugh and Stewart, 2018; Kreuze et al., 2020).

Diagnostics generating new types of information can benefit

crop breeding and seed system programs, testing whether

germplasm is free of viruses and profiling viromes in resistant or

tolerant genotypes that may be useful for further breeding and seed

multiplication. Considering virome information can be especially

important for breeding of vegetatively propagated crops, where the

viral load accumulates in the host over time, reducing productivity

and seed quality (Gibson and Kreuze, 2015; Thomas-Sharma et al.,

2016; Jacobsen et al., 2019). When germplasm is shared among

breeding programs, screening can benefit from virome analysis to

ensure both known and novel viruses are not inadvertently

exchanged. For crops propagated via true seed, exchange of

germplasm among breeding programs is also complicated by

seed-transmissible viruses, and could benefit from greater

sensitivity of diagnosis (Dombrovsky and Smith, 2017; Kumar

et al., 2019). Systems are needed to ensure virus-free germplasm

for breeding programs to develop improved quality, yield, or
Frontiers in Plant Science 04
resistance (or at least tolerance) to viral diseases that impact crop

production (Kumar et al., 2019). Ultimately, virome science needs a

systems framework for translating virome analysis, integrating

information about virus ecology, evolution, and epidemiology to

mitigate virus impacts on plant systems. Here we synthesize

approaches that would be important components of this

ongoing project.
Biosecurity: Phytosanitary strategies
and surveillance

Phytosanitary strategies

Rapid identification of the causal agents of viral epidemics

supports the development and implementation of phytosanitary

measures for rapid containment or eradication. The timing of

interventions is key to prevent the entry of exotic pathogens and

slow down pathogen spread. For example, an outbreak of a new

disease in yam bean was stopped in its tracks due to rapid
B

C

A

FIGURE 2

The spatial resolution of virome analysis, from low-resolution (counties and farms) to high-resolution (hosts), and virus associations at each scale.
(A) Geographic representation of counties in a region, farms within a county, and hosts within a farm. Each layer could contain a different subset of
viruses (a different virome). (B) Bipartite networks representing associations between two types of nodes, where circles represent viruses (v1 to v4),
and where evaluation can be at multiple scales, for example: by region, where squares represent counties (i, j, k), by farm, where squares represent
plots (1 to 4), and by host, where squares represent individual plants (a to e). (C) A one-mode network, where links between viruses represent their
shared geographic or host associations and links between locations indicate similarity of their viromes, by region or by farm. Links between hosts
represent similar viromes.
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identification (within a month) of the causal agent as a novel virus,

yam bean mosaic virus, followed rapid amplification-based

diagnostic development to eradicate infected plants and seed lots

(Fuentes et al., 2012). Another example is early identification by

HTS diagnostics of the causal agents that together cause maize

lethal necrosis (MLN) in East Africa (Wangai et al., 2012; Mahuku

et al., 2015), identifying maize chlorotic mottle virus (MCMV,

Machlomovirus) and sugarcane mosaic virus (SCMV, Potyvirus)

(Redinbaugh and Stewart, 2018). MCMV and SCMV can be seed

transmitted, at low rates depending on the variety, and both are

vectored by insects – Chrysomelid beetles in the case of MCMV and

aphid species in the case of SCMV (Hilker et al., 2017; Redinbaugh

and Stewart, 2018; Regassa et al., 2021). Diagnostics can indicate

needed management strategies, however, smallholder farmers may

not be able to afford inputs such as pesticides, certified clean seed

and other management strategies (De Groote et al., 2020). A survey

of farmers in Kenya from 2013 to 2018 reported a reduction inMLN

by removing infected plants, implementation of resistant varieties

and other control measurements (De Groote et al., 2020). The

International Maize and Wheat Improvement Centre (CIMMYT)

implemented rapid development of tolerant and resistant maize in

Kenya, which likely helped to control MLN incidence (De Groote

et al., 2020). However, despite efforts to train farmers and

individuals on managing disease epidemics, there are still

challenges to be addressed so that all farmers have access to

needed information (Parsa et al., 2014; Buddenhagen et al., 2022;

Streulens et al., 2022).

Another example where virome analysis can have an important

role is the cross-continental epidemic of cassava mosaic disease

(CMD, Figure 3). Cassava is a staple food crop in Sub-Saharan

Africa and a primary industrial commodity in Southeast Asia.

Cassava mosaic disease (CMD) causes yield losses reaching 30-

50%, contributing to food insecurity and economic and social

instability (Legg et al., 2011; Delaquis et al., 2018; Uke et al.,

2021). In South Asia, single and mixed infections of two

begomoviruses, Sri Lankan cassava mosaic virus (SLCMV) and
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Indian cassava mosaic virus (ICMV), cause CMD (Legg et al., 2011;

Wang et al., 2016), while in Southeast Asia, CMD is currently

caused by SLCMV alone. Specific assays would need specific

primers to detect each virus and may miss co-infections,

increasing the time and cost of processing, but HTS-diagnostics,

in theory, can capture all viruses within a given sample. In the last

five years, exchange of contaminated seed (stakes) and viruliferous

whiteflies have spread SLCMV to Cambodia, Vietnam, South

China, Thailand, and Lao PDR (Delaquis et al., 2018; Siriwan

et al., 2020; Chittarath et al., 2021). Combinations of virus species

may increase impacts on plants, and there may also be interactions

between viruses and phytoplasmas or other bacterial and fungal

pathogens. Surveillance of CMD in Southeast Asia and its whitefly

vector (Leiva et al., 2022) is key to reducing spread of SLCMV and

to timely detection if additional viruses are introduced, along with

indexing programs to generate clean seed and use of resistant

cultivars (Malik et al., 2022). Collaborations among national

institutions and through international networks are central for

the development and implementation of programs to establish

clean seed production and management strategies to mitigate

diseases (Kumar et al., 2019; Uke et al., 2021).
Virome surveillance

Pathogen surveillance can be conducted with multiple

interconnected goals, including detection of outbreaks, pathogen

characterization, and geographic characterization – along with

characterizing the current phytosanitary measures and quarantine

regulations and whether they are sufficient (Carvajal Yepes et al.,

2019; Kumar et al., 2019). Effective surveillance is based on data

collection to determine the pathogen’s etiology and current

distribution, and to parameterize epidemiological models of

potential pathogen spread and management effects (Parnell et al.,

2017; Garrett, 2021; Mastin et al., 2022). Eventually, virome

surveillance will be based on routine collection of genomic and
FIGURE 3

Left: Characteristic leaf symptoms of cassava mosaic disease (CMD), a disease associated with 12 different species of begomoviruses, affecting
cassava in Africa, East Asia and Southeast Asia (Legg et al., 2015). Center: Cassava plant in Southeast Asia showing mixed symptoms of CMD (caused
by Sri Lankan cassava mosaic virus) and cassava witches’ broom disease, a co-infection common in the region (Siriwan et al., 2020). Right: Leaf and
root symptoms of cassava frogskin disease associated with a unique virome from the Americas (Pardo et al., 2022). Photos: W. Cuellar.
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ecological data, building understanding and improving knowledge

of emerging and re-emerging viruses in production areas (Carvajal

Yepes et al., 2019). A range of methodologies can be used, including

ELISA and PCR, however HTS-diagnostics also allows the detection

of new or emerging viruses (Kumar et al., 2019), important for the

identification of risk factors associated with viral emergence. Plant

viruses are often asymptomatic and can spread unnoticed until

significant economic losses have occurred (Uke et al., 2021).

“Passive” virome surveillance based on samples submitted to

plant diagnostic networks and disease clinics, and “active” virome

surveillance based on sampling by phytosanitary agencies,

researchers and other organizations, can both contribute to

effective detection (Carvajal Yepes et al., 2019; Kumar et al., 2019;

Iles et al., 2021; Kumar et al., 2021). Virome surveillance is crucial to

attempts to eradicate and limit pathogens and to warn growers

about new pathogens they may need to manage. Analysis of host

distribution and disease dispersal across the agricultural landscape

helps identify geographic priorities for surveillance and

management interventions (Xing et al., 2020; Garrett, 2021).

Researchers and international agencies continue to develop new

diagnostic tools implementing machine learning and AI to provide

early warnings of outbreaks and support prompt and effective

responses (Pavan et al., 2011; Ouma et al., 2019).

Despite current phytosanitary standards and surveillance,

emerging pathogens are disseminated via botanical seeds and

vegetative planting material for distribution locally or globally,

affecting smallholder farmers and large production areas. Recent

proposals for a global surveillance system to mitigate pathogen

introductions are being discussed (Carvajal Yepes et al., 2019). The

increasing scalability and affordability of new sequencing

technologies, combined with robotics and progress in nucleic acid

extraction and enrichment, allow rapid virus identification (Ho and

Tzanetakis, 2014; Roossinck et al., 2015; Massart et al., 2019).

Integrating new diagnostic capabilities with well-matched

sampling schemes will allow quick identification and mapping of

abundance. Generation of large sequence data can be analyzed with

classification algorithms supporting virus taxonomic classification.

Species demarcation criteria are well established by the

International Committee of Taxonomy of Viruses (ICTV), relying

primarily on sequence similarity and the phylogenetics of genomes,

genes or proteins (Simmonds et al., 2017). Additional analyses can

be integrated using machine learning (Garrett et al., 2022), scaling

up from the on-farm management examples discussed below. These

advances support the development of a global surveillance system

for plant disease, to mitigate the impact of emerging pathogens, to

protect farmers’ livelihoods and food security.
Risk assessment and on-
farm management

Virome risk assessments

Pest risk assessments (PRAs) evaluate the potential for

introduction, establishment and spread of pathogens and pests,
Frontiers in Plant Science 06
the magnitude of risk, and the economic impact for a specific region

based on key risk variables such as environmental suitability, vector

availability, crop area, and productivity (EFSA et al., 2018). The

most common application of virome analysis has been in

economically important crops such as maize, chili peppers, barley,

grape, berries, and tropical fruits (Al Rwahnih et al., 2011; Jo et al.,

2017; Jo et al., 2018; Wamaitha et al., 2018; Alcalá-Briseño et al.,

2020; Saad et al., 2021). Potential disease severity and

transmissibility are generally considered the most important traits

when developing phytosanitary standards (Kumar et al., 2021),

where pathogen epidemics are often more likely in areas with high

monoculture density. Potential sources of viral dissemination are

assessed, such as leaves, stems, flowers, fruits, and seeds that may

move into a country. Seeds are the greatest concern since their

distribution can rapidly disseminate an as-yet unidentified problem,

such as the case of tomato brown rugose fruit virus (ToBRFV).

ToBRFV originated in the Middle East and was disseminated

globally within five years to nearly 50 countries, being eradicated

in some parts of Europe, while many countries are working towards

its eradication since it threatens tomato production worldwide

(Salem et al., 2016; Luria et al., 2017; Oladokun et al., 2019;

Batuman et al., 2020; Turina and Salem, 2022). In PRAs, the risk

of contaminated plant material entering the territory is evaluated

based on the current conditions in the region (EPPO, 2021). Using

this type of information, National Plant Protection Organizations

(NPPOs) and Regional Plant Protection Organizations (RPPOs)

can determine whether the entrance of a virus or viruses should be

regulated based on the potential impact of the virus when infecting

alone and when associated with other virus species that already are

present in the country.

PRAs need to account for global change factors such as climate

and trade. Global climate change and extreme weather events drive

crop losses, and can damage agricultural infrastructure, along with

changing distributions of arthropod vectors and weeds that act as

hosts (Garrett et al., 2020). When natural disasters destroy local

infrastructure, there is particular risk that new pathogens will be

introduced to the region; emergency needs make it difficult to

implement effective sanitary measures (Lantagne et al., 2014).

Informal seed exchange is a common practice globally that can

disseminate infected plant material among neighbors and through

entire regions (Delaquis et al., 2018; Andersen et al., 2019; Andersen

Onofre et al., 2021; Nduwimana et al., 2022). The increase in

international trade and e-commerce has also facilitated pathogen

spread. ToBFRV, discussed above, is an example of these effects,

being dispersed through certified international trade of

contaminated seed (Oladokun et al., 2019; Van De Vossenberg

et al., 2020). Ulluco tubers imported through e-commerce into the

UK tested positive for viruses (Fox et al., 2019). Standardizing

testing protocols across phytosanitary institutions, early warning

systems, constant reassessment of PRAs, and promoting best

agricultural practices such as using certified plant material, crop

rotation, and resistant and tolerant plants would enhance

phytosanitary measures.

The application of new diagnostic technologies raises a key

question: which viruses among those observed in a plant virome

should be regulated? The implementation of virome studies
frontiersin.org
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accelerated the discovery of viruses at a pace that surpasses the

speed of experiments to characterize virus species and their host

range. Phytosanitary regulations need to incorporate automated

surveillance effectively in real-time, which represents a challenge in

terms of methodologies, policies, and phytosanitary standards

(Massart et al., 2017; Carvajal Yepes et al., 2019). The capacity of

regulatory agencies may be overwhelmed by big data describing

dozens or hundreds of species in each batch. Local agencies require

bioinformatic capacity to develop efficient tools and expertise to

interpret trends and highlight significant findings. Otherwise, there

is a risk of paralyzing phytosanitary agencies, or conversely a risk of

not making use of key information to address problem species

before they spread widely. Automating diagnostics is necessary, and

standalone practices for the analysis of genomic data to categorize

by taxonomic identity have been implemented (Massart et al., 2019;

Iles et al., 2021; Silva et al., 2021). Additional information – such as

characterization of the relationships among viruses, modes of

transmission, incidence, and co-infections – can be incorporated

into machine learning for phytosanitary regulation.
On-farm management strategies

Our understanding of the ecology of viruses across scales is

growing, from individual samples to studies comprising multiple

host, farms, and regions. This information can be complemented

with agroecological metadata for a geographic location, cultivar,

growth stage, weather, and other variables, generating large datasets.

For example, individual plant samples can reveal virus-virus

interactions that may explain symptomatology (Escalante et al., 2018;

Okada et al., 2018). Surveillance of multiple host species and vectors

could indicate which alternative hosts are important virus reservoirs

and which weed species require active management to protect crops

(Ng et al., 2011; Alcalá-Briseño et al., 2020; Mansouri et al., 2021).

Monitoring viromes in farms and regionally could provide advance

warning of virus incidence and potential disease outbreaks for farm

managers and phytosanitary agencies. Understanding the

phylogenetics and phylogeography of each virus locally, regionally,

and globally will allow for a better understanding of how viruses were

disseminated or introduced (Fuentes et al., 2019; Fuentes et al., 2021a;

Fuentes et al., 2021b; Fuentes et al., 2022). Effective management of

seed degeneration in vegetatively propagated crops can be achieved

through the integration of seed health assessments and pest risk

evaluations (Thomas-Sharma et al., 2017). Decision-making is

enhanced by insight into the viruses in crops and weeds, including

information on their transmissibility, host range, and vectors. This

information can be used to guide phytosanitary practices and

eradication programs on farms. At a regional scale, scenario analysis

can evaluate how virome traits, management options, and growers’

decision-making processes combine to influence whether policies are

successful for reducing the socioeconomic impacts of crop epidemics

(Gilbertson et al., 2011; Garcia-Figuera et al., 2021; Etherton

et al., 2023).

Larger and more complex viromes with multiple layers of

information can be analyzed with machine learning algorithms
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such as decision trees, Bayesian and neural networks, and other

support vector machines (Kotsiantis, 2007; Liakos et al., 2018;

Chouhan et al., 2019; Topçuoğlu et al., 2020; Garrett et al., 2022).

Virus characterization and taxonomic assignment are based on

sequence similarity, serological properties, and other biological

information such as transmission types, vector species, etc. (King

et al., 2011; Lefkowitz et al., 2017; Simmonds et al., 2017). Machine

learning approaches can help identify viromes that likely require

similar management strategies, which we define here as “virome

management units” (VMUs, see Box 1). VMUs are an analog to

operational taxonomic units but based on information about

management requirements rather than simply based on

taxonomic similarity. Categorizing the potentially dozens of virus

species in a virome into a smaller number of VMUs may make

management more practical, reproducible, and potentially more

automated and effective. Designing VMUs may be particularly

useful in more complicated scenarios, such as managing viromes

in intercropping systems, whole-farm virome management across

multiple crop species and rotation schemes, or managing regional

viromes across high cropland diversity.

As a simpler illustration of the potential for the use of VMUs

(Box 1), we discuss an example for a single host species, based on

the virome associated with MLN in Kenya reported by Wamaitha

et al. (2018). Subsets of the virome are divided based on taxonomic

information and management metadata, illustrating candidate

management units. VMU characteristics may include degree of

seed transmissibility, vector type, degree of mechanical

transmission, and the effectiveness of potential management

options: sanitation, use of clean seed, antifeedants and

insecticides, and resistant (or at least tolerant) cultivars, if

available. Decision trees can be used to divide virus species in

virome data, starting with a root node, repeatedly partitioning the

data into sub-groups represented as branches (Figure 4). Once a

model has been trained, tested, and validated, it can be used to

predict output classes for new virus species in terms of which VMU

is the best fit for each species.
Virome indexing, seed systems, and
crop breeding

Virome indexing for germplasm and
seed systems

Virus indexing is the testing of germplasm to ensure it is free of

viruses, a particularly important step for vegetatively propagated

crops and tissue culture propagation, especially when germplasm is

moving between breeding programs and companies, and between

countries. The most common virus indexing methods include

grafting of plants on indicator hosts, use of serological methods

such as ELISA, and molecular detection through conventional PCR

and qPCR (Boonham et al., 2014; Kumar et al., 2019; Silva et al.,

2021). One of the caveats of these detection assays is that they

are usually designed to target specific known viruses, meaning
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BOX 1 On-farm management based on grouping viruses in virome management units.

Machine learning can identify groups of viruses that can be managed together according to their most effective control strategy. We use the term “virome management
unit” (VMU) to refer to a subset of viruses within a virome that have similar characteristics relevant to management needs. This concept can be used to simplify
management planning for viromes with many virus species, such as in the context of whole-farm or regional virome management. VMUs can be evaluated based on
information about virus transmission, vector types, and management strategies used for each virus and their effectiveness, including tools such as sanitization, insecticides,
and resistant or tolerant cultivars. As an illustration, consider the virome associated with MLN in Kenya (Wamaitha et al., 2018), with 15 virus species reported in four
genera – Potyvirus, Polerovirus,Machlomovirus, and Mastrevirus. In this example, potyviruses and machlomoviruses are vectored by aphids and beetles, respectively, and
both groups are mechanically transmitted. Poleroviruses are only aphid-transmitted but not mechanically transmitted. Seed transmission is reported for potyviruses and
machlomoviruses, but not for poleroviruses and mastreviruses. Sanitation would work for mechanically transmitted viruses like potyviruses and machlomoviruses, but not
for poleroviruses, while using virus-free seed would contribute to management of seed-transmitted viruses. Lack of information represents a challenge during classification,
such that some VMUs may be defined in the short-run without classification information.

In this illustration of the VMU concept, VMUs were delimited using a supervised machine learning algorithm in R (R Core Team, 2022), a decision tree algorithm in
the party package (Hothorn et al., 2006). In this decision tree, ovals represent a variable relevant to management that was used to categorize viruses into VMUs. Each
rectangular node represents the decision output category, the VMU to which a virus or group of viruses is assigned. The MLN virome from Kenya is based on 244 maize
samples, and n is the total number of entries that were assigned to each decision node (e.g., n = 54 in Node 3). Four distinct VMUs were identified in this maize virome.
VMU1 consists of maize streak virus, an African native grass virus. VMU2 includes only potyviruses. VMU3 includes the poleroviruses. VMU4 includes the
machlomovirus MCMV. VMU2 which are seed transmitted and mechanically transmitted can benefit from use of certified virus-free seed and sanitation practices. VMU4
could primarily benefit from using varieties resistant or tolerant to the MCMV virus, and virus-free seed. In some cases, such as VMU1, more biological information is
needed to identify effective management strategies with high confidence. Resistance genes were identified as relevant for MCMV in VMU 4; maize with tolerance to
MCMV can help mitigate the effects of MLN epidemics. Although there are maize hybrids resistant to SCMV, based on resistance genes like Scmv 1 and 2 (Jones et al.,
2018; Redinbaugh et al., 2018), this classification did not include MCMV and SCMV in the same management group. Practical applications of VMU classification will be
strengthened by more extensive data and exploration of the best algorithms for classification.

FIGURE 4

Virome management units associated with maize lethal necrosis, as described below.
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that a limited number of pathogens is tested in certified clean

seed programs. Traditional diagnostics assays often fail at detecting

novel viruses and genetic variants; however, with the implementation

of HTS, all viruses can be recovered, as discussed above (Roossinck

et al., 2015; Simmonds et al., 2017). Both DNA and RNA viruses can

be detected using virions, small RNAs, dsRNAs, or total RNA,

and these methods can be implemented in bulk or individual

samples (Kreuze et al., 2009; Alcalá-Briseño et al., 2020; Moubset

et al., 2022). Generating virus-free germplasm through indexing

programs to (re)establish clean seed for individuals, associations,

and germplasm banks prior to movement is very important to avoid

the spread of plant pathogens. For example, the International Potato

Center (CIP), a CGIAR center, distributes hundreds of indexed

germplasm accessions free of pathogens to more than 100

countries globally (Figure 5). National programs such as the US

National Clean Plant Network (NCPN) work to provide high-

quality and virus-free plant material by working in partnership

with growers, researchers, and the industry, developing and
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implementing indexing protocols to prevent the spread of

pathogens. The NCPN also provides diagnostic services and

educational resources to help growers and industry professionals

identify and manage plant viruses. Similar programs are in place in

many countries globally.

When considering how to manage viromes in germplasm or

seed systems, it is important to distinguish between virus species

that are already present in a region and those that may represent

new introductions. For those viruses that are already endemic in a

region, quality declared seed that maintains viruses at a low level

may be the best economic value when seed completely free of a virus

is impractical to produce for the time being (Choudhury et al., 2017;

Mastenbroek et al., 2021). It may also not be practical to purchase

off-farm seed to replace all seed every year (Thomas-Sharma et al.,

2017; Navarrete et al., 2022). Defining quality standards for quality

declared seed represents a balance between making seed available at

a reasonable price and reducing epidemic rates. Considering this

balance for a virome, rather than for a single virus species,
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represents an interesting challenge. For species in a virome that are

new to a region and offer a substantial threat, reducing seed levels to

zero is key, along with tracking the potential spread of new species

through seed systems, evaluating management strategies, and

understanding how farmers may adapt to the new disease

scenario (McQuaid et al., 2016; Almekinders et al., 2019;

Andersen et al., 2019; Ferris et al., 2020; Andersen Onofre et al.,

2021; Nduwimana et al., 2022). Movement of at least a limited

amount of contaminated plant materials might be inevitable in

some cases, although indexing programs and implementation of

new diagnostic tools based on HTS could help limit new

introduction of viruses and other plant pathogens.
Breeding programs and viromes

Systems ensuring virus-free germplasm support trade and seed

distribution and are particularly important for developing

resistance to viral diseases and reducing their impact on crop

yields. Germplasm sharing among breeding programs in regions

where different viruses are present may have helped to spread

viruses globally (Kumar et al., 2019), and new generation

diagnostics complemented with virome analysis have been used

to ensure known or novel viruses are not exchanged (Massart et al.,

2017). For crops that are propagated via true seeds, exchanging

germplasm among breeding programs is similarly complicated by

seed transmissible viruses (Dombrovsky and Smith, 2017).

Screening germplasm to identify viruses is often especially

important for breeding of vegetatively propagated crops where

the viral load accumulates in the host over time, reducing the

productivity or seed quality of crops (Gibson and Kreuze, 2015;

Thomas-Sharma et al., 2016; Jacobsen et al., 2019; Andrade-Piedra

et al., 2022). Indexing germplasm using HTS can also be used to

generate gene expression profiles for testing how genotypes express

resistance or tolerance, which can benefit breeding programs by

providing recommendations for further breeding and propagation

of clean seed. The development and use of high-throughput disease

phenotyping facilitates such new approaches to understanding the
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impacts of viruses in different host genotypes. Ultimately, crop

breeding may address resistance to viromes rather than to only one

or two viruses, when the viromes of agroecological zones have been

characterized and methods are available for exposing breeding

materials to the relevant viromes.

HTS in crop breeding has been used to fingerprint the genomes

of plant accessions and to characterize the diversity of breeding

populations (Bhat et al., 2016; Vlk and Řepková, 2017). For

example, HTS has been used to identify markers for resistance to

viruses, where the genetic markers are used in genomic selection

and genome-wide association mapping, and have been associated

with differential expression in RNAseq experiments (Bhat et al.,

2016; Vlk and Řepková, 2017; Bhat et al., 2021). Identification of

markers by HTS in crops has supported development of resistance

to pathogens such as cucumber mosaic virus (CMV), barley mosaic

viruses, and potato virus Y (PVY) (Manivannan et al., 2018; Li et al.,

2020a; Saidi and Hajibarat, 2021). HTS technologies that support

virome indexing and fingerprinting of plant breeding populations,

revealing important qualitative and quantitative traits, can improve

plant breeding programs and seed systems. Gene expression

responses to viral infections can be associated with resistance

genes, such as the eIF4E recessive resistance gene in barley (Shi

et al., 2019). PAL1 is another example of an overexpressed gene that

confers resistance to cassava brown streak disease (Kavil et al.,

2021). Complex interactions can sometimes protect crops, such as

the tripartite interaction in papaya, which generated tolerance to

papaya ringspot disease through an antagonistic effect of PapMV

that elevated the expression of a pathogenesis-related protein (PR-

1), reducing PRSV RNA accumulation (Chávez-Calvillo et al.,

2016). Single or bulked samples have also been successfully used

to identify resistance genes, and viruses (Roossinck et al., 2015; Shi

et al., 2019; Kavil et al., 2021). Phenotypic and genotypic data can

provide information for the development of disease-resistant

cultivars, but the genetic structure underlying disease resistance

regulatory networks is generally not simple. Identifying effective

markers relies on the integration of good data for both phenotypes

and genotypes to identify genomic regions for breeding (Bhat et al.,

2016; Dasgupta et al., 2021).
Discussion: Realizing the full potential
of virome analyses

Undoubtedly the role of HTS-diagnostics and virome analysis

in plant pathology will continue to expand in the future. But to have

an impact on plant viral epidemics in real world settings, more is

needed than technology alone. Frameworks for technology

application must consider supporting factors including local

access to equipment, computing power and data storage capacity,

and staff capacity building for the interpretation of the complicated

outputs of modern bioinformatic tools.

Australia and New Zealand, island nations with unique endemic

biota, apply stringent biosecurity practices to reduce catastrophic

introductions of invasive species (Simberloff, 2019; Pysek et al.,

2020). New Zealand has an effective seed screening protocol with
FIGURE 5

Thirty-two countries requested germplasm material for potato,
sweetpotato, and Andean roots and tubers in 2020 from the
Genebank of the International Potato Center (CIP) in Lima, Peru (data
retrieved from https://cipotato.org/genebankcip/process/distribution_
acquisition/). Virome analysis can help to ensure that viruses that may
endanger crop production are not present in germplasm.
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only an estimated 1.9% of lots being contaminated, but containing

over 190 genera of weeds (Rubenstein et al., 2021), where weed seed

also has the potential to introduce new viruses detrimental to crop

production or natural plant systems. Virus screening in Australia

employs a combination of visual methods, bioassays, ELISA, PCR

and qPCR approaches, in which thresholds for acceptable viral

contamination are determined through a regularly adjusted

‘appropriate level of protection’ evaluation (Whattam et al., 2021).

As elsewhere, HTS approaches are undergoing evaluation.

Although HTS approaches have long been touted as a powerful

solution to post-entry screening (Rodoni, 2009), authorities must

grapple with the challenges, including developing thresholds and

quarantine lists for viral contamination, and protocols for dealing

with novel virus pathogens. In the United States, HTS viral indexing

has been used in a ‘provisional release propagation’ practice to allow

growers to begin bulking imported materials in delineated areas

while traditional indexing methods confirm the results (Villamor

et al., 2019).

Another global trend is the emphasis on reforestation to

sequester carbon and provide other ecosystem services

(Brancalion et al., 2020; Holl and Brancalion, 2020). Related

programs such as Sembrando Vida in Mexico and Central

America are designed to mobilize planting material for cropping

systems and forestry (Secretaria Del Bienestar, 2020). The field of

restoration ecology also is based on movement of planting

materials, to restore what had been the previous plant community

(Harrington, 1999; Erickson and Halford, 2020). For example, the

National Seed Strategy of the US Bureau of Land Management

addresses use of native seed (National Academy of Sciences

Engineering and Medicine, 2023). All these projects include

potentially large-scale movement of plant materials that are

sometimes subject to little analysis of associated pathogens. In the

past, detailed consideration of pathogens was impractical, and it

may still be impractical in many cases, such as restoration projects

that include many wild plant species whose pathogens have not

been studied. As virome analysis becomes a more practical tool,

there will need to be important decisions about which viruses can be

present in these projects. Some viruses may have important roles in

maintaining the composition of wild plant communities, while

other viruses may disrupt communities and give an advantage to

invasive plant species (Rúa et al., 2011; Roossinck, 2019). Other

viruses that will be discovered may have little effect, and too much

attention to their management may reduce the benefits of these

programs. An effective balance will need to be found, using new

virome information to guard against destructive spread of viruses

while minimally disrupting restoration.

Access to tools and support for virome-based analyses is scarcer

in low-income countries. Many countries still struggle with

maintenance of conventional plant health surveillance and

screening systems, which demand significant resources to operate,

even for valuable commercial crops like cassava in Southeast Asia, a

cash crop for more than 8 million farmers (Malik et al., 2020).

International donor support was needed to convene stakeholders to

stimulate regional cooperation, and the first publications reporting

the spread of SLCMV in the region involved researchers with
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sequencing capacity from China (Wang et al., 2016), CGIAR

Research Centers (Minato et al., 2019; Leiva et al., 2020;

Chittarath et al., 2021), and Japan (Uke et al., 2018). Across the

global South, HTS technologies currently are not widely adopted

and are often still inaccessible, and there are serious barriers to the

use of complex viral community data in phytopathology screening,

highlighting the need for accessible analysis in the short run, and

capacity building in the long run.

For now, a dose of realism and humility is required given the

track record of adoption of current, comparatively simple methods,

such as PCR-based checks, in countries with limited resources.

Plant virus epidemics are increasingly a globalized phenomenon

(Miller et al., 2009). Widespread adoption of virome-based methods

opens a whole new level of possibilities for plant virus research, but

for their effective implementation to address plant epidemics to be

realized, global approaches are needed. Open access software

pipelines (e.g., Nextflow, Python, R and Linux) and repositories

of viral sequence data (e.g., NextStrain) should be promoted.

Machine learning and other AI approaches have unprecedented

power to process this huge volume of data into actionable outputs.

But they can only supplement, not replace, the capacity of

phytosanitary authorities, field technicians, and research staff who

are the source of data inputs. Around the world these agents

continually compete for government funds in a crowded

marketplace of urgent needs. Virome analytics should also serve a

primary function of raising awareness among policymakers and

funding mechanisms of the realities of viral ecosystems and the

implications for a globalized world should viromes go unmonitored

– the recent public awareness of viral disease spread due to the

COVID-19 pandemic may make policymakers more receptive to

these issues.

Fully embracing virome technologies means not only the

development of increasingly user-friendly tools for accessibility,

but also dedication to long-term training and capacity building for

implementers around the world, and supporting critical

infrastructure for sampling, analysis, and interpretation. People

remain at the core of the application of these technologies.
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