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An improved U-Net-based in situ
root system phenotype
segmentation method for plants

Yuan Li, Yunlian Huang, Mengxue Wang and Yafeng Zhao*

School of Information and Computer Engineering, Northeast Forestry University, Harbin, China
The condition of plant root systems plays an important role in plant growth and

development. The Minirhizotron method is an important tool to detect the

dynamic growth and development of plant root systems. Currently, most

researchers use manual methods or software to segment the root system for

analysis and study. This method is time-consuming and requires a high level of

operation. The complex background and variable environment in soils make

traditional automated root system segmentation methods difficult to implement.

Inspired by deep learning in medical imaging, which is used to segment

pathological regions to help determine diseases, we propose a deep learning

method for the root segmentation task. U-Net is chosen as the basis, and the

encoder layer is replaced by the ResNet Block, which can reduce the training

volume of the model and improve the feature utilization capability; the PSA

module is added to the up-sampling part of U-Net to improve the segmentation

accuracy of the object through multi-scale features and attention fusion; a new

loss function is used to avoid the extreme imbalance and data imbalance

problems of backgrounds such as root system and soil. After experimental

comparison and analysis, the improved network demonstrates better

performance. In the test set of the peanut root segmentation task, a pixel

accuracy of 0.9917 and Intersection Over Union of 0.9548 were achieved, with

an F1-score of 95.10. Finally, we used the Transfer Learning approach to conduct

segmentation experiments on the corn in situ root system dataset. The

experiments show that the improved network has a good learning effect

and transferability.

KEYWORDS

in situ root system, Minirhizotron method, U-Net, segmentation, transfer learning
1 Introduction

The root system is an important part of the plant and is the main nutrient organ for

plant growth and metabolism. Root morphological parameters are the main factors

reflecting the growth status of the root system (Crush et al., 2010), and the growth

status of the root can accurately reflect the health of the whole plant (Wei et al., 2015).

Therefore, it is essential to study root phenology. Current root phenotyping methods are
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divided into indoor and field methods (see Figure 1) (Li et al., 2022).

(1) The main methods used for indoor studies are the Gel Root

Chamber method(Liu et al., 2013), the clear-pot method(Richard

et al., 2015), X-ray computed tomography(CT)(Teramoto et al.,

2020), and MRI (Van Dusschoten et al., 2016). Both the Gel Root

Chamber and Net Pot methods use a soilless model and focus on

plants with small root systems, which do not fully simulate the

variable outdoor environment and are prone to bacterial infection.

X-ray computed tomography and magnetic resonance imaging

require excavation of the surrounding soil, and the rays will

inevitably affect the roots to some extent, making them

impossible to apply on a large scale for monitoring and research

(Metzner et al., 2015; Rogers et al., 2016). (2) Research methods for

field root studies are mainly divided into destructive identification

methods and in situ identification methods. The destructive

identification methods are Excavation(Zheng et al., 2020), Soil

core(Wasson et al., 2014), Basket(Lou et al., 2015; Voss-Fels et al.,

2018; Kitomi et al., 2020), Mesh bag, and Soil profile. The

Excavation method is to observe the roots that are dug up and

cleaned. The Soil Core Method involves drilling a smaller soil core

than the root growth volume below the plant, then investigating

indicators of root depth, biomass, and root length density in the

core. The Basket method involves digging small baskets and

investigating the number of roots in the pores at different

locations. All these methods can cause damage to the roots, so

they are not suitable when researching rare plants. With the

development of technology, smarter and more efficient in situ

identification methods have been explored, mainly including the
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Minirhizotron method (Bates, 1937), Ground Penetrating Radar

method, and Capacitance method, which allow real-time

monitoring of the root system. The Capacitance method is used

to estimate root mass by reading the measured capacitance values.

This method is often influenced by soil type, root type, and root

development period. The Ground Penetrating Radar method uses

an antenna to transmit and receive reflected electromagnetic waves,

it is fast but only suitable for sandy soil(Alani and Lantini, 2020).

The Minirhizotron method is non-destructive, it has the feature

of not affecting plant growth and is not affected by soil types. First,

we bury the transparent tube bundle into the soil below the plant

before sowing, and after the plant starts to grow, the root system will

be attached near the tube wall, and then we feed the endoscope into

the transparent tube bundle and scan the image of the root system

on the tube wall, we can extract the root indicators from the image

by observing the root system image. Svane et al. (2019) developed

an automated microtubule monitoring platform, using the

Videometer MR multispectral imaging system to obtain spectral

images and the Videometer software to extract root images, which

greatly improved the detection efficiency of the microtubule

method. Wang et al. (2019) developed SegRoot software based on

machine learning algorithms, which initially achieved automated

separation of the root system and soil background in

minirhizotron-scanning images. These technological innovations

are driving the continuous improvement of the minirhizotron-

scanning detection system and are expected to make it the

preferred method for high-throughput in situ detection of root

phenotypes in the field.
FIGURE 1

Main methods for studying root phenotypes.
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In conjunction with the development of deep learning, there

have been practices and contributions to promote the point that

automated separation of the root system from the soil background.

In 2019, Smith et al. (2020) proposed the use of U-Net to segment

collected chicory root images with an F1-score of 0.7. In 2020, Xu

et al. (2020) explored and analyzed plant root image segmentation

using U-Net network models of different depths based on Transfer

Learning and semantic segmentation of U-Net networks, Shen et al.

(2020) performed used the DeepLabv3+ method for segmentation

tasks in homogeneous soils. In 2021, Kang et al. (2021) introduced a

sub-pixel convolutional DeepLabv3+ semantic segmentation model

for cotton root images by using a sub-pixel convolutional layer

instead of the bilinear interpolation up-sampling approach and

adding additional interpolation functions in the convolutional layer.

Current methodological updates have led to pixel accuracy of more

than 95% for the automatic separation effect of root systems from

soil background. However, lighter and more transferable

segmentation models still need to be further explored.

The main difficulties in root segmentation are as follows: (1)

long training time for deep learning, difficult data collection, the

influence of different soil backgrounds on the segmentation task,

and difficulty in datasets with high generalizability. (2) Complex

background, the extreme imbalance between the root system and

the background, and the presence of small object interference. To

address these issues, we improved the U-net. Firstly, we used

ResNet50 (He et al., 2016a) as the backbone network, which

allows better extraction of image features and access to higher-

level semantic information, while preserving information lost at

different levels. Secondly, we added the PSA attention PSA(Zhang

et al., 2023) in the up-sampling process, this method enables the

network to focus on features at different scales, and focusing on

features at multiple scales can better segment the minutiae. Finally,

to solve the problem of uneven root distribution in the dataset, the

Dice-Focal loss (Gammoudi et al., 2022) hybrid loss function is used

to further improve the training effect. In this paper, control

experiments and transfer learning experiments are conducted to

validate and compare the performance of the improved model on
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different datasets, proving that the improved network has good

transferability and better learning ability.
2 Materials and methods

The experiment was carried out in 2022 in the seedling

laboratory of Northeast Forestry University in Harbin, China, in a

temperate continental monsoon climate. The lab is equipped with a

sophisticated monitoring system, control system, and irrigation

equipment, which allow real-time monitoring of temperature,

humidity, CO2 concentration, and light intensity in the room. See

Figure 2B for the scenario.
2.1 Image collection

2.1.1 Minirhizotron installation
The minirhizotron tube is made of acrylic and the tube diameter

size is chosen to be 4cm, both ends of the tube are sealed. The part

exposed above the soil is covered with opaque tape to prevent light

from entering the tube, which does not interfere with plant growth

and does not allow foreign objects to enter and cause observation

problems. Seven months before starting the image collection, the tube

is buried in the soil near the plant at a 45-degree angle until the plant

roots have grown. The diagram of the equipment installation is shown

in Figure 2A. In this paper, a total of 350 individual plants with 150

peanut plants and 200 corn plants were used to collect a total of 2000

images of peanut roots and1900 images of corn roots as data sets.

2.1.2 Image acquisition and labeling
The image acquisition equipment uses a 4.9mm dual-lens

endoscope which is connected to a computer for data storage,

using the side camera of the endoscope near the inner wall. The

original pixels of the images were 1920*1080 pixels and the images

were saved in JPG format. After rejecting the unqualified images,

the image annotation process is carried out.
BA

FIGURE 2

Experimental scenario. (A) Minirhizotron installation, (B) Greenhouse scenes.
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For image annotation, manual annotation was performed using

the Lableme software (a graphical interface image annotation

software, inspired by http://labelme.csail.mit.edu/. It is written in

Python and uses PyQt for the graphical interface. It can annotate

images as polygons, rectangles, circles, polylines, line segments, and

points). All image labeling was carried out by an experienced

teacher. The resulting label image has a root pixel value of 1 and

a background pixel value of 0. The color scheme of the label is

RGB=[128, 0, 0] for the root and RGB=[0, 0, 0] for the background,

and the label is saved in png format. Each image takes about 10

minutes to annotate. The labels and labeled images are shown

in Figure 3.
2.2 Model

2.2.1 Segmentation model
U-Net(Ronneberger et al., 2015) was originally proposed as a

solution to the problem of medical image segmentation, and as a

whole is an Encoder-Decoder structure. The encoder part: two 3x3

convolutional layers (ReLU) + one 2x2 max-pooling layer form a

down-sampling module, which consists of iterations of the down-

sampling module. The number of channels is doubled with each

down-sampling. The original thesis uses valid convolution

(convolution starts when the filter is all inside the image), so for

each valid convolution, the height and width of the feature map are

reduced by 3-1 = 2 pixels respectively, as there is no padding. The

decoder part: a 2x2 up-sampling convolutional layer (ReLU) +

Concatenation (crop the feature map corresponding to the output

of the left half and then add it to the up-sampling result of the right

half) + two 3x3 convolutional layers (ReLU) iteratively, with the last

layer turning the number of channels into the desired number of

categories by a 1x1 convolution. After each up-sampling transpose

convolution, the height and width are doubled, while the channel is

halved and used for merging with the shallow feature map on the

left. The main benefit is that the deeper the network layer, the larger

the field of view of the feature map obtained. The shallow

convolution focuses on texture features, while the deeper network

focuses on the essential kind of features, so both deep and shallow

features are meaningful. While each down-sampling refines the

features, some edge features are inevitably lost, and the lost features
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are not recovered from the up-sampling. Through the stitching of

features, a recovery of edge features can be achieved.

Suppose the initial image is 224x224, after feature extraction,

there will be four different feature maps of 112x112, 56x56, 28x28,

and 14x14. Then we up-sample or deconvolve the 14x14 feature

map to get a 28x28 feature map, which is stitched with the previous

28x28 feature map, and then convolve and up-sample the stitched

feature map to get a 56x56 feature map, which is then stitched with

the previous 56x56 feature map, convolved, and up-sampled again.

After four up-sampling, a prediction of 224x224 with the same size

as the input image is obtained. The complete structure of U-Net is

shown in Figure 4.

2.2.2 Model improved
(1) The main role of the encoder part of U-Net is to extract

features, the proposal of ResNet (Deep residual network)(He et al.,

2016b) in 2016 is a milestone event in CNN computer image

processing, which solves the problem of saturation, the decline in

accuracy due to the deeper depth of the neural network and the

deterioration of the network performance with the number of

layers. Compared with the original structure, using the residual

network as the main structure for feature extraction can better

extract features and reduce the loss of features. The structure of the

residual network is shown in Figure 5.

ResNet has two types of residual networks. The ResNet50 used

in the paper belongs to the deep network constructed by Bottleneck

residual Block (see b in Figure 5). It first undergoes 1*1 convolution
BA

FIGURE 3

Image annotation map. (A) Photographs of the root system, (B) Sample of annotated image.
FIGURE 4

U-Net structure.
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for dimensionality reduction and 3*3 spatial convolution mainly

used to extract image features. The 1*1 convolutional layer increases

the non-linear capability of the network and improves

its expressiveness.

(2) The attention mechanism was first proposed by Tsotsos

et al. (1995) and applied in the field of visual images. In 2014, Mnih

et al. (2014) applied it to a neural network RNN for image

classification. In computer vision, the applied attention

mechanisms are divided into three main blocks: (i) channel

attention mechanism, (ii) spatial attention mechanism, and (iii)

self-attention mechanism.

Zhang et al. (2023) proposed a new backbone architecture called

EPSANet, which uses a new module called Pyramid Split Attention

(PSA), the PSA module offers low cost and high performance. First,

the input feature maps are extracted to obtain multi-scale feature

maps in the channel direction and cross-channel interaction is
Frontiers in Plant Science 05
performed. Then the features at multiple scales are fused by the SE

attention module(Hu et al., 2018). Finally, the weights of attention

are applied to the corresponding feature maps by softmax to obtain

feature maps with richer multi-scale feature information as the

output. To allow the strong semantic information at the higher level

to better guide the information at the lower level, we introduce the

PSA module in the decoder part. the structure of the PSA module is

shown in Figure 6.

As a plug-and-play attention mechanism module, PSA can

maintain a relatively high resolution in the channel and spatial

dimensions, resulting in less information loss. At the same time, to

solve the problem of computational and memory explosion when

modeling channels and spaces without dimensionality reduction,

PSA uses polarization filtering, which is used to enhance or weaken

features at each node. By introducing the PSA attention mechanism,

a more fine-grained non-linear function can significantly improve
BA

FIGURE 5

Residual structure. (A) Residual structure, (B) Bottleneck residual Block.
FIGURE 6

PSA attention structure.
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feature utilization, which is reflected in the segmentation task in

terms of greater refinement in edges and small regions, resulting in

improved performance.

(3) In addition to using a more powerful backbone network for

feature extraction and the PSA mechanism for better improving the

feature processing power, a Dice-Focal loss function is used to

address the problem of imbalance between the background and the

target region.

In the dataset used, 80% of the images had an extreme

imbalance between the root system and the background, with the

root system occupying only a small portion of the whole image.

Dice loss(Milletari et al., 2016) has good performance for scenarios

with a severe imbalance between positive and negative samples, and

the training process focuses more on the foreground region.

However, using Dice loss alone has a negative impact on

backpropagation and tends to make the training unstable. Focal

loss(Lin et al., 2017) was originally used in the image field to solve

the model performance problem caused by data imbalance. It can

adaptively adjust the percentage of loss values for each pixel. The

new loss function is:

L = LDice + Lfl = C − o
C−1

c=0

TPp(c)

TPp(c) + aFNp(c) + bFPp(c)

−
1
N o

C−1

c=0
o
N

n=1
gn(c)(1 − pn(c))

TPp(c) = o
N

n=1
pn(c)gn(c)

FNp(c) = o
N

n=1
(1 − pn(c))gn(c)

FPp(c) = o
N

n=1
pn(c)(1 − gn(c))

Among the above equations, c denotes the pixel class of the

image; TPp(c), FNp(c), and FPp(c)) are the true positives, false

negatives, and false positives of class c, respectively; pn(c) is the

prediction rate of the nth pixel of class c; gn(c) is the nth expert

annotation value of class c; C2 denotes the number of classes; N

denotes the number of pixels in the training batch; a and b are the

equilibrium false positives and false negatives coefficients.
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The complete structure of the improved diagram is shown

in Figure 7.
2.3 Evaluation

To objectively evaluate the effectiveness of the model in the root

segmentation task, three metrics, F1-score, pixel accuracy(PA), and

Intersection Over Union(IOU), were taken to evaluate the model in

this paper. The calculations are publicly shown below.
F1 = 2 ·
precision · recall
precision + recall

PA =
TP + TN

TP + FP + FN + TN

IOU =
TP

TP + FP + FN

The F1 value is a combined assessment of both the precise and

recall metrics, which can effectively reflect the overall effectiveness.

Where precision indicates the percentage of all samples where the

model predicted a positive case, and recall indicates what percentage

of all samples with positive true labels were predicted.

precisionðPÞ = TP
TP + FP

recall (R) =
TP

TP + FN

Pixel accuracy(PA) represents the percentage of correctly

predicted pixel values to the total pixel values, and Intersection
FIGURE 7

Complete structural diagram.
Confusion matrix
Real

Positive Negative

Predicted
Positive
Negative
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FN
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Over Union represents (IOU) the ratio between the intersection and

the concatenation of predicted results and true labels for a category.
3 Results

This section of the article contains three main parts of

experiments. The first part of the experiment demonstrates the

changes in each assessment metric before and after the model

improvement, and this validation part of the dataset is all from

self-collection. The second part conducts ablation experiments to

demonstrate the validity of each improvement step. The third part

validates the transferability of the model by taking a portion of the

corn root data collected in Jinan, Shandong Province by the same

group, the corn root data set will be annotated in the same way. The

difference is that the soil characteristics of the two sites differ. The

soil for peanut cultivation is meadow black soil and the soil for corn

cultivation is tidal soil. In the experiments of peanut root

segmentation, a total of 2000 images were used, and the training

set, validation set, and test set were divided according to 8:1:1.

The experiments were conducted using a 64-bit Windows 10

operating system, NVIDIA GeForce RTX 3090 graphics card with

24GB of video memory, 14-core Intel(R) Xeon(R) Gold 6330 CPU

at 2.00GHz, and 180GB of RAM. Python version 3.8.10 was used as

the language and Pytorch version 1.8.0 was used as the development

framework for deep learning. A total of 100 rounds of training were

conducted using the Adam optimizer, with momentum set to 0.9

and the learning rate decreasing by cosine annealing. In the training

model using root images, a mixture of dice loss and focal loss was

chosen as the loss function, the batch size was set to 28, a total of

100 epochs were trained, and the initial learning rate was set

to 0.0001.
Frontiers in Plant Science 07
3.1 Improved model analysis

In Figure 8, the main evaluation metrics of the network before

and after the improvement are compared. The improved model

shows faster convergence and better performance, reflecting a

stronger deep-learning capability. In terms of the performance of

the main evaluation parameters, both models show a jittering

upward trend in the general trend, with three evaluation criteria

of the improved model stabilizing after 55 rounds, while the pre-

improved network only shows stability after 75 rounds. In addition,

the improved model outperformed the pre-improved model in all

three metrics. A comparison of the before and after improvement

models is shown in Table 1.

In terms of pixel accuracy, it reached over 99%, an increase of

4.24% accuracy relative to the improvement, a 2.25% increase in

Intersection Over Union, and a 2.15% increase in the F1-score

compared to the pre-improvement model higher, the improved

model showed good segmentation performance. The visualization

of the segmentation effect before and after the improvement is

shown in Figure 9.

(Xu et al., 2022) improved Unet and conducted experiments on

the hydroponically grown soybean seedling roots, the pixel accuracy

of the experiments reached 99.64. (Lu et al., 2022) improved the U-

net model to P-T-U-Net model (U-Net based on prior knowledge

and transfer learning). Pixel accuracy (PA) of 97.7 and a mean F1-

score of over 90 were achieved in segmenting the pepper roots.

(Thesma andMohammadpour Velni, 2023) produces realistic high-

resolution root images with reduced pixel-level imbalance by

cGAN. Experimental segmentation models on GAN-generated

images yielded high pixel accuracy (over 99%). Compared with

the latest papers mentioned above, the data used in this paper are all

from real root images, which maximally simulate the actual growth
A B

C

FIGURE 8

Analysis of main indicators. (A) Pixel Accuracy, (B) Intersection Over Union, (C) F1-score.
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environment of plants, our proposed method has experimented on

different data sets, and the experimental results are much better.

Figure 9 above mainly shows the segmentation effect of the

segmentation method before the improvement and the

segmentation method used in this paper. (A) shows the captured

root system image, (B) shows the labeled mask image, (C) shows the

segmentation effect of the U-Net network, and (D) shows the

improved network segmentation effect. The red box represents a

significant discrepancy from the real mask image, after visual

comparison. The pre-improved network basically achieves an

overall accurate segmentation, but often connects gaps at the fine

edges. The improved network shows better segmentation in the fine

edge but mistakes the background for the root system at one point

in (D) in Figure 9. The visualization analysis demonstrates that the

improved network does indeed perform better segmentation.
3.2 Ablation experiments

This section focuses on ablation experiments. The U-Net with

only the improved backbone network ground is named R_U-Net,

the U-Net with the PSA attention mechanism added is named P_U-
Frontiers in Plant Science 08
Net, and the U-Net using the new loss function is named D_U-Net.

Their main metrics are compared as shown in Table 2

The focus of the three improvements is different, U-Net is a

typical encoder-decoder structure, and the backbone network part

is mainly to extract features. To extract features better, we replace

the original backbone network with ResNet. After using ResNet,

Pixel accuracy (PA) is improved by 2.83%, Intersection Over Union

represents (IOU) is improved by 1.88%, and F1-score is improved

by 0.72%. Figure 10 visualizes the change in feature extraction

capability of the improved network.

In Figure 10, the closer the color is to the red part above, the

deeper the feature is associated with the root. (A) shows the original

U-Net network, and (B) shows the U-Net after replacing the

backbone network, (C) indicates the addition of the PSA

attention module. it is obvious that the effect of (A) in Figure 10

on the root edge segmentation in the image is not obvious, but the

effect of noise suppression in the image is more obvious. After

improving the backbone network, the effect of extracting features

related to the root system is stronger. The red part of the figure is

significantly increased, and the edge contour part is more detailed.

The PSA mechanism module is added to the up-sampling

section, mainly to improve its ability to utilize features and
errors

A B

DC

FIGURE 9

Visualization of segmentation effects. The red dashed boxes represent significant differences from the real mask. (A) In situ root system, (B) Labeled
real mask map, (C) Unet segmentation effect display, (D) PRUnet segmentation effect display.
TABLE 1 Comparison of evaluation parameters before and after improvement.

PA IOU F1

U-Net 94.93 93.23 92.95

PRU-Net 99.17 95.48 95.10
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sin.org

https://doi.org/10.3389/fpls.2023.1115713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1115713
improve segmentation accuracy. With the addition of the PSA

module alone, Pixel accuracy (PA) is improved by about 1.48%,

Intersection Over Union represents (IOU) by about 1.79% and the

F1-score to 94.88%. The positive optimization effect of the attention

mechanism module on the model network is successfully

demonstrated. In Figure 10, it can be seen that the addition of the

PSA module has a positive optimization effect on the extraction of

inconspicuous fine roots and more obvious features, making the

extraction effect more obvious.

After using the new loss function, the improvement is small, but

the speed of model convergence is found to be improved during the

training process, and the number of rounds needed to be iterated is

reduced with the same set of training hyperparameters for both

networks. The original network shows a stable trend in loss around

75 rounds, and the improved network shows a stable trend after 68

rounds. The improved network is less volatile and shows more

stable results. The comparison curve of its loss is shown

in Figure 11.

The improved network outperforms the convergence speed of

the original model. It also proves to a certain extent that the

improved model has a more powerful learning ability and can

accelerate the convergence speed. Its application is beneficial to the

overall effect of the model.
3.3 Transfer learning analysis

Transfer Learning is a hot problem in deep learning. To

demonstrate the transferability of the model before and after

improvement, another data set collected by our group in Jinan,

Shandong Province is used for transfer learning in this section, with

corn as the crop and tidal soil as the culture soil. Some pictures of

the two datasets are compared as shown in Figure 12. The cultivated

soil of peanuts is biased towards black, while the cultivated soil of
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corn is biased towards yellowish brown, which can clearly

distinguish the difference between cultivated crops. At the same

time, to explore the application strategy of the data, different

amounts of training data were taken for training in this section,

and the number of training sessions required for them to reach a

stable effect was recorded.

In general, under the premise of the same training effect, the

fewer samples of training set required by the model represents the

better performance of the model. The common division ratio of

the training set and test set is 7:3, 8:2, or 9:1, and there are also a few

using the ratio of 15:1. Eighty corn root images were taken as the

test set and 600 corn root images were used as the training set. The

new model is further trained by the previous training model, and

the model converges in about 15 rounds, greatly reducing the time

consumed for training, the final stable effect of the model before and

after improvement was recorded. Subsequently, 120 images were

added to the training set each time, and the model was trained using

the same method and recorded. The experimental results are shown

in Figure 13.

From Figure 13, we can see that the training effect of the

improved model is positively correlated with the number of

training samples at the stage of the training set of 600 to 840

images, and there is little difference in the training effect of the

model when the number of images exceeds 840. It proves that the

improved model has good generalizability with sufficient data

volume. The change in segmentation effect before and after

transfer learning is shown in Figure 14, demonstrating that the

network has good transfer learning performance.
4 Discussion

The condition of the plant root system is closely related to the

growth condition of the plant, there are several research methods
TABLE 2 Ablation experiments.

PA IOU F1

U-Net 94.93 93.23 92.95

R_U-Net 97.76 95.11 93.67

P_U-Net 96.41 95.02 94.88

D_U-Net 95.47 93.44 93.17
frontier
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FIGURE 10

Feature extraction visualization. (A) Original network, (B) After replacing the backbone with ResNet, (C) After adding the PSA module.
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for the growth condition of the plant root system. The

Minirhizotron method is a non-destructive research method that

allows visual observation of root growth. Visually observing the root

system from complex soils requires a lot of effort, so the complete

root system needs to be separated from the soil to make the

observation more direct and convenient.

The first requirement in the segmentation task is to obtain high-

quality images that can successfully observe the root system. To

maximize the quality of the observation images, the tubes are cleaned

in advance, the observation tubes are buried in the soil months in

advance, and the observation shots are taken using a side-by-side

endoscope, which greatly prevents scratches and dust effects on the

tube walls. In 2020, Xu et al. (2020) used U-Net to perform transfer

learning on a dataset of tens of thousands of sheets and achieved

satisfactory results. Shen et al. (2020) used the Deeplab-v3 network to

segment the root system in homogeneous soil, but this method was

too time-consuming. In this paper, we improve the U-Net network to

improve its learning ability and conduct comparison experiments to

verify that the improved network has improved the network learning

ability while ensuring speed.

To further demonstrate the effectiveness of the network

improvements in this paper, ablation experiments are conducted

in this paper, and each step of improvement is added to the original

network separately. The data are analyzed, and the effect of different

improvements is recorded in detail in Table 2. To visualize the
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segmentation effect of the improved network is visualized

(Figure 9), and the improved network can be intuitively felt to

have a better segmentation effect on the edges and details of the

image. Finally, in this paper, the improved network is tried to

transfer learning and trained from scratch on different datasets, and

the desired segmentation results are achieved (Figure 13).

Compared with the traditional manual segmentation method, the

segmentation time for a single image is reduced from tens of

minutes to tens of seconds. This is a great time saving and we

believe that the use of this method will greatly facilitate the study of

root morphology. During the training process of the transfer

learning experiment, we also found that increasing the amount of

data does not enhance the segmentation effect. With 840 images as

the training set, the training results of the network already tend to

be optimal, and adding more data sets would be a waste of time.

In addition to the application of the Minirhizotron method, the

newly developed model may be extended to medical, remote

sensing, and unmanned vehicles. In the field of medicine, the

segmentation of medical images can assist in determining human

diseases and identifying the location of lesions, which will greatly

improve medical efficiency. Wang et al. (2022) conducted a detailed

survey on deep learning segmentation networks. Comparisons were

made in terms of backbone network selection, network block

design, and loss function improvement. Bhattarai et al. (2023)

extended an existing semantic segmentation network, trained in a

multi-task framework, and applied their studied network model to

two challenging medical semantic segmentation datasets. In the

field of remote sensing, statistics of land resources, smart agriculture

and forestry, and environmental change monitoring can be realized.

Wang et al. (2022) accomplished the semantic segmentation task of

crop growth images in high-resolution agricultural remote sensing

images, which can effectively improve agricultural intelligence. In

the field of piloted driving, driverless technology for vehicles can be

achieved by segmenting the scenes around the vehicle and planning

them. Liu and Guan (2022) investigated pixel-level obstacle

detection in complex driving scenarios, which meet the

requirements of unmanned systems for obstacle detection accuracy.
FIGURE 11

Loss comparison.
BA

FIGURE 12

Partial data display. (A) Peanuts cultivated in black soil, (B) Corn cultured in tidal soil.
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Revisiting the whole experimental process, there are three parts

worth discussing.

One is faster access to better-quality data sets. In the process of data

collection, there is often a large amount of substandard data. Common

substandard cases include blur caused by camera shake, obscuration by

dust, reflections caused by light sources, etc. Therefore, a lot of

screening is needed, and a lot of manpower is wasted. Secondly, we

are looking for annotation tools with faster annotation speed. Before

training starts, we need to annotate labels manually. Not only does it

take a lot of time to annotate each image, but even the most

experienced agroforestry experts will have some misjudgments about

the root system and inevitably introduce errors. Faster annotation of

labels will be needed in future studies. Third, the network model needs

to be retrained each time, each training needs to consume a lot of time,

and we still need to do a lot of work for fast application.

To address the above three issues, the following work can be

done next. Firstly, for the acquisition of the dataset, considering that
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the most influential is the different root backgrounds, GAN

networks can be used to generate different root backgrounds for

data generation.2019, Tian et al. (2019) used CycleGAN to learn the

characteristics of anthracnose apple images and transfer them into

healthy apple images, using GAN networks will generate

backgrounds with different textures, making the model more

generalizable. Thus introducing GAN networks to generate

different backgrounds can make the dataset adaptively data

enhanced and get more generalizable experimental results.

Secondly, in terms of annotation methods, we can choose not

only the latest annotation tools but also pre-trained models or

self-supervised learning models to assist in the annotation. Related

work was carried out by Lin et al. (2016). Finally, we also provide

three ideas for the problem of too long model training time.

(a).Choosing the appropriate pre-trained model, which can

reduce the number of model convergence rounds and achieve the

desired at a faster speed. Han et al. (2021) have worked on the

importance of pre-training models and how to train suitable pre-

training models. (b). Selecting lightweight models for improvement

to achieve the desired training effect, which is the idea used in this

paper. (c). Using models of continuous learning, Hua et al. (2022)

have proposed a continuous learning model without

hyperparameters in the NLU domain, using old information and

new information added continuously for learning, yielding more

generalizable performance. Wang and Zhao (2022) made an

exploration of continuous learning for tree species recognition,

which to some extent solved the explosive forgetting problem of

deep learning and made it possible to train a large range of data.
FIGURE 13

Data volume and training effect.
A B
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FIGURE 14

The segmentation effect before and after transfer learning. (A) In situ root system, (B) Labeled real msak map, (C) Segmentation effect without using
transfer learning, (D) Segmentation effect aftr transferi learning.
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Conclusion

In this paper, a trainable convolutional neural network method is

proposed to improve the learning ability of the network by changing

its structure. In the peanut segmentation task, the three evaluation

metrics are pixel accuracy of 0.9917, Intersection Over Union of

0.9548, and F1-score of 95.10. The improved network is successfully

demonstrated to have a good segmentation effect and learning ability.

In addition, we use the transfer learning approach to test on different

datasets, the test explores the data application strategy and proves the

generalizability of the model. The improved network maintains a high

segmentation level for different soil backgrounds and different crops,

successfully demonstrating the good transferability of the improved

network. Compared with manual methods, the proposed method in

this paper can effectively improve the efficiency of root segmentation

in soil and provide an effective aid for root segmentation tasks.
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