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Abstract

In this paper, we develop a simple method to approximate the transient behavior of

queueing systems. In particular, it is shown how singularity analysis of a known generating

function of a transient sequence of some performance measure leads to an approximation

of this sequence. To illustrate our approach, several specific transient sequences are inves-

tigated in detail. By means of some numerical examples, we validate our approximations

and demonstrate the usefulness of the technique.
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1 Introduction

Queueing models and queueing theory have been used for a number of decades to model and

analyze the performance of queueing systems appearing in various applications, most notably

in (digital) communication systems. In general, input processes are characterized and various

output variables are analyzed. The input processes comprise the arrival process, the service

times process and the scheduling discipline. The steady-state system content, customer delay

and unfinished work are examples of output variables which are regularly analyzed.

A popular technique to analyze queueing systems is the generating function technique. With

this technique, the relation between stochastic variables is translated into a relation between

their Laplace-Stieltjes transforms or z-transforms when dealing with continuous variables or

discrete variables respectively. The transform of the stochastic variable of interest is then ob-

tained and interesting performance measures are calculated, either analytically or numerically.

These performance measures range from the mean value to the density function or probability

mass function. The standard books of Takagi [18] give a nice overview of analyses of some basic

queueing models by means of the transform approach.

Although there is a vast literature on transform-based steady-state analyses of queueing

systems, results on the transient behavior of these queueing systems are much scarcer. For

particular queueing systems, one may find explicit expressions for the time-dependent proba-

bility generating function of the queue content. This is e.g. the case for the M/M/1 queueing

system [17] and the M/E − r/1 queueing system [15]. Inversion of these generating func-

tions is possible but involve Bessel functions. Various authors have obtained expressions of the

z-transform of the series of the probability generating functions of the queue content at consec-

utive epochs in time. Bruneel [8] performs a transient analysis of the discrete-time MX/Geo/1

queue. The z-transform of the probability generating functions of the queue content is obtained

in terms of known probability generating functions and the z-transform of the probability that

the queue is empty at the consecutive slot boundaries. An ad-hoc method is provided to find

the latter probabilities. Later, Walraevens et al. [20] extend Bruneel’s approach to queueing

systems with priorities. Asrin and Kamoun [5] and Kamoun [16] investigate the transient be-

havior of an ATM buffer with arrival traffic stemming from a fixed number of on/off-sources

with geometric on- and off-times and with geometric off- and deterministic on-times respec-

tively. The authors obtain a.o. the z-transform of the probability generating functions of the

queue content.

From literature, one observes that transform-based approaches often lead to “time trans-

forms” of the performance measures of interest. For instance, if f(t), t ≥ 0, denotes the mean
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system content at time t, then F ∗(s) =
∫

∞

0
e−stf(t)dt is the corresponding Laplace transform.

Another example is when fn, n ≥ 0 denotes the variance of the delay of the (n+1)-st customer,

then F (z) =
∑

∞

n=0 fnzn is the corresponding z-transform.

Given the transforms F ∗(s) or F (z), a second non-trivial part of the analysis is then finding

f(t), t ≥ 0 or {fn, n ≥ 0} respectively. This is especially difficult in the context of transient

analyses, since most generating functions in these analyses can only be characterized implicitly

via functional equations. In this paper, we introduce a technique to approximately invert

these transforms. In particular, we focus on the inversion of z-transforms. However, a similar

technique can be used to invert Laplace-Stieltjes transforms.

Different approaches to invert generating functions can be found in the literature. A first

approach consists of the numerical inversion of the transform [1, 3, 7, 10]. A second approach

uses contour integration and/or Taylor series expansion to invert the transform [8, 20]. Both

methods however encounter their own problems. The numerical inversion technique involves

the calculation of the generating function in a number of (complex-valued) arguments. It

thus suffers from the fact that numerous calculations are necessary to accurately obtain the

required transient characteristics. The occurrence of implicitly defined functions makes this

even more cumbersome since these functions may have to be calculated iteratively in each

argument. Secondly, since transient sequences do not necessarily approach zero (or do not even

converge), the aliasing error introduced by numerical inversion techniques can be large. Abate

and Whitt [2] show for instance a technique where the error depends on the maximum of |fn|
for all n. This technique is effective when probability generating functions are inverted since the

fn are all probabilities in that case and are thus bounded by 1, but leads to incorrect results

when used to invert a generating function of an unbounded sequence. The contour integrals

approach on the other hand is quite ad-hoc, which makes it difficult to apply to different

inversion problems. Furthermore, this technique usually leads to a recursive procedure for the

calculation of the transient sequence, which can get quite cumbersome.

Therefore, in this contribution, we look for an approximate easy-to-use technique to calculate

transient characteristics from their generating functions. The typical inversion problem is

described as follows: if F (z), defined as the z-transform of a sequence {fn, n ≥ 0}, i.e.,

F (z) =
∞

∑

n=0

fnz
n, (1)

is a given function (either explicitly or as a function of implicitly defined functions) which is

analytic at least in the open unit disk, calculate the sequence {fn, n ≥ 0}. We modify the aim
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in this paper slightly to the calculation of as much information as possible about the behavior

of the sequence {fn, n ≥ 0} using singularity analysis. In transient analyses, fn may be a real

number between 0 and 1, a real positive number or even a complex-valued function. Examples

are respectively the probability that a discrete-time system is empty at the beginning of slot

n + 1, the mean packet delay of the (n + 1)-st customer arriving in a queueing system and the

probability generating function (pgf) of the system content at the beginning of slot n + 1 in

a discrete-time system. We concentrate on real non-negative numbers in this paper, but the

technique can potentially be extended to negative and complex-valued numbers or functions.

So we assume the fn to be real non-negative numbers in the remainder.

We describe the developed technique in section 2. The technique is based on the dominant-

singularity approximation and is widely used in case of probability generating functions, but is

largely unknown as a technique to invert generating functions of transient characteristics. We

first look at some convergence/divergence properties of the sequence at hand, before explaining

the main procedure. We will also pay special attention on how to handle the implicitly defined

functions generally appearing in the transforms.

We then apply the technique to some particular queueing systems in section 3. We firstly

investigate the discrete-time MX/Geo/1 queue and approximate the transient probability that

the system is empty at the beginning of slots, the transient mean system content and the

transient mean packet delay. We then look at a queue with a correlated arrival process, namely

an arrival process originating from on-off sources. Finally, we study the transient behavior

of the low-priority system content in a two-class priority queue. In all these applications, we

demonstrate that the approximate technique yields reasonable results in most cases. In some

scenarios, the approximation is too crude but at the very least the approximate results show

how the sequence reaches its limiting value in case of converging sequences, such as the mean

system content of a stable system, or how the sequence diverges (e.g. the mean system content

of a non-stable system).

2 Analysis

We first discuss some convergence/divergence properties of the sequence before using singularity

analysis to approximate the complete sequence.
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2.1 Convergence properties of the sequence

In this subsection, we show how convergence properties of a sequence {fn, n ≥ 0} can be

deduced from its generating function F (z). We therefore use the generalization of the final

value theorem [14], formulated as

Theorem 1 (Generalized final value theorem). If L = limN→∞

∑N
n=0 fn/N exists, then limz→1(1−

z)F (z) = L.

Here, L equals the average of all fn. Obviously, for sequences that converge, L = limn→∞ fn.

However, theorem 1 also includes periodic or almost-periodic functions (which do not converge)

with a finite average.

2.2 Approximation of the sequence

The approximate calculation of the sequence {fn, n ≥ 0} from its generating function F (z)

is based on singularity analysis of generating functions. This is widely used to calculate the

probability mass function from probability generating functions [9] and even more frequently

in combinatorics [12]. However, it does not seem to be used yet in case of the analysis of the

transient behavior of queues. As mentioned in [13], the basic principle of singularity analysis

is “the existence of a correspondence between the asymptotic expansion of a function near

its dominant singularities and the asymptotic expansion of the function’s coefficients”. We

especially make use of the following theorem [6]:

Theorem 2 (Darboux’s theorem). Suppose H(z) =
∑

∞

n=0 hnzn with positive real coefficients

hn is analytic near 0 and has only algebraic singularities αk on its circle of convergence |z| = R.

In other words, in a neighbourhood of αk we have

H(z) ∼
(

1 − z

αk

)

−ωk

Gk(z), (2)

where ωk 6= 0,−1,−2, . . . and Gk(z) denotes a nonzero analytic function near αk. Let ω =

maxk Re(ωk) denote the maximum of the real parts of the ωk. Then we have

hn =
∑

j

Gj(αj)

Γ(ωj)
nωj−1α−n

j + o(nω−1R−n), (3)

with the sum taken over all j with Re(ωj) = ω.

5



Here H(z) ∼ G(z) means that H(z)/G(z) → 1 as z goes to the chosen complex number.

Further, hn = o(gn) means that hn/gn → 0 as n → ∞. Finally, Γ(ω) denotes the Gamma-

function of ω (with Γ(n) = (n − 1)! for n discrete).

Applying Darboux’s theorem on the generating function F (z) of the transient sequence

{fn, n ≥ 0}, we conclude that once the behavior of F (z) is characterized in its dominant

singularities, the first term of (3) yields an approximation of fn for sufficiently high n. In

order to avoid a too obvious approximation of the sequence {fn, n ≥ 0}, we will use Darboux’s

theorem on a newly defined function H(z) - related to F (z) - rather than on F (z) itself in some

cases. This is discussed next, before formally stating the procedure.

We denote limz→1(1 − z)F (z) by L, L being the average of the sequence {fn, n ≥ 0} as in

Theorem 1. Assume for the moment that L is positive and finite. Then, F (z) has a singularity

in z = 1, since limz→1(1 − z)F (z) 6= 0. If we further have that

F (z) ∼ G(z)

1 − z

in the neighbourhood of 1, with G(z) a non-zero analytic function near 1 (with G(1) = L),

then z = 1 is a pole with multiplicity 1 of F (z). If this is furthermore the only pole on the

circle of unity (which is the circle of convergence in this case), Darboux’s theorem results in

fn ≈ L

for all n. Although this is obviously an approximation of the fn (it is the average of the

numbers in the sequence), we would like some more information on the behavior of the sequence.

Therefore we avoid this pole in 1 by performing Darboux’s theorem on

H(z) = F (z) − L

1 − z
, (4)

rather than on F (z). Note that H(z) is the generating function of the sequence {fn−L, n ≥ 0}.
Note further that H(z) can still have a singularity in z = 1, if z = 1 was not a simple pole of

F (z).

The general procedure to approximate the sequence {fn, n ≥ 0} from its generating function

F (z) is described as follows:

Approximation procedure.

(i) Calculate L = limz→1(1 − z)F (z).

(ii) If 0 < L < ∞, H(z) = F (z) − L/(1 − z); otherwise H(z) = F (z).
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(iii) Determine the radius of convergence R of H(z),

(iv) determine the singularities αk of H(z) on its circle of convergence,

(v) determine the behavior of H(z) in the neighbourhood of these αk (see expression (2)),

(vi) and calculate hn as in the first term of the right hand side of expression (3).

(vii) If 0 < L < ∞, calculate fn = hn + L for all n ≥ 0; otherwise fn = hn.

Remark: If L = ∞, the average of all numbers in the sequence {fn, n ≥ 0} equals ∞.

In this case, H(z) = F (z), this function has a singularity in z = 1 and R equals 1. If the

singularity in 1 is a pole, it has a multiplicity of at least 2.

2.3 Implicitly-defined functions

Determining the dominant singularities of H(z) and the behavior of H(z) in the neighbourhood

of these singularities is a remaining difficulty, especially because of the occurrence of implicitly-

defined functions in the expressions of generating functions of transient characteristics. In

general, the expression of F (z) contains a function Y (z) defined as

Y (z) = g(Y (z), z), (5)

with g(x, z) a known function. We thus want to find the dominant singularity of Y (z) and the

behavior of Y (z) in the neighbourhood of this singularity. This has been studied in numerous

papers in the field of combinatorics [6, 11]. Under the condition that g(x, z) fulfills some mild

requirements (see [6] for details),

Y ′(z) → ∞,

for z going to the dominant singularity zb, while Y (zb) is finite. Note that the conditions for this

to be true are usually met except for some pathological cases. Then, Y (z) has a square-root

type behavior in the neighbourhood of zb, i.e.,

Y (z) ∼ Y (zb) − KY

(

1 − z

zb

)1/2

.

By calculating Y ′(z) from (5) it can be seen that zB is a solution of

∂g

∂x
(Y (zb), zb) = 1. (6)
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We further remark that the pair (zb, Y (zb)) can be calculated (numerically) from the set of

equations (5) and (6).

3 Some applications

In this section, we discuss some applications. Firstly, we work out the analysis of some tran-

sient sequences in the discrete-time MX/Geo/1 queue in great detail in subsection 3.1. Some

numerical examples are also shown for these sequences. We then look at the transient mean

system content in some more general discrete-time queueing systems, namely in a queue with

an arrival process governed by on-off sources in subsection 3.2 and the transient mean low-

priority content in a two-class priority queue in subsection 3.3. By means of some figures, the

approximations are compared with exact values and some conclusions are drawn about the

accuracy of the approximations.

3.1 The discrete-time MX/Geo/1 queue

3.1.1 The probability of an empty buffer

In [8], the transient system content at the beginning of slots is analyzed for a discrete-time

MX/Geo/1 queue. The number of arrivals per slot are independent and identically distributed

(i.i.d.) and the service times are geometrically distributed with mean 1/σ. It is shown that the

generating function of the sequence {Vj(0), j ≥ 0} - with Vj(0) the probability that the system

is empty at the beginning of slot j + 1 - plays a key-role in the transient analysis of the system

content. Therefore, we hereby first analyze the transient probabilities that the system is empty

at the beginning of slots. Denoting the generating function of the sequence {Vj(0), j ≥ 0} by

V (z), i.e.,

V (z) ,

∞
∑

j=0

Vj(0)zj,

the following expression is found in [8] for this generating function:

V (z) =
σ + (1 − σ)Y (z)

σ[1 − Y (z)]
U0(Y (z)), (7)
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with Y (z) the unique solution inside the unit disk of the x-plane for all |z| < 1 of

x − z[σ + (1 − σ)x]E(x) = 0. (8)

Here, E(z) is the pgf of the number of arrivals during a random slot and U0(z) is the pgf of the

system content at the beginning of the first slot. We denote ρ as the load of this system, i.e.,

ρ = E ′(1)/σ.

To apply the analysis of the previous section, we first calculate limz→1(1 − z)V (z), which

equals the average of the sequence {Vj(0), j ≥ 0}. Since the Vj(0) are probabilities, this average

will be a number between 0 and 1. By substituting expression (7) in this limit we get

lim
z→1

(1 − z)V (z) = lim
z→1

[

[σ + (1 − σ)Y (z)]U0(Y (z))

σ

1 − z

1 − Y (z)

]

. (9)

Since Y (z) is analytic and |Y (z)| < 1 inside the unit circle, | limz→1 Y (z)| ≤ 1. Thus the

right-hand side of (9) can only be different from 0 if limz→1 Y (z) = 1. Therefore, we turn to

equation (8). Y (z) is the unique solution of (8) inside the unit disk for all |z| < 1. We first

note that (x, z) = (1, 1) is always a solution of (8). However this does not necessarily mean

that Y (1) = 1, since (x, z) = (1, 1) could also be the limit of a solution Y ∗(z) of (8) outside the

unit disk of the x-plane for |z| < 1. We thus look for all solutions inside and on the unit disk

of (8) for z = 1, since one of these solutions equals Y (1). Y (1) is a solution of

x − σE(x)

1 − (1 − σ)E(x)
= 0, (10)

which is obtained by substituting z by 1 in (8) and by multiplying both sides with 1/[1− (1−
σ)E(x)]. We note that the multiplying factor has no zero inside or on the unit disk. Further,

note that σE(x)/[1 − (1 − σ)E(x)] is the pgf of the number of arrivals during the service time

of a random customer.

It turns out - not unexpectedly - that three cases may be distinguished, namely, ρ < 1,

ρ = 1 and ρ > 1. We treat the three cases separately in the remainder.

Case 1: ρ < 1. In this case, it can be proved my means of Rouché’s theorem (or by the

generalized version proved in [4]) that (10) has exactly one solution inside and on the unit disk.

Since x = 1 is a solution, this is the unique solution inside and on the unit disk of (10) in this

case. Therefore Y (1) = 1. So, in order to calculate limz→1(1 − z)V (z) we use de l’Hôpital’s
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rule in (9) yielding

lim
z→1

(1 − z)V (z) =
1

σ
lim
z→1

1

Y ′(z)
.

The first derivative of Y (z) can be found by substituting x by Y (z) in (8) and taking the first

derivative of both sides of this equation. The limit for z to 1 then yields

lim
z→1

Y ′(z) =
1

σ(1 − ρ)
, (11)

and thus

lim
z→1

(1 − z)V (z) = 1 − ρ. (12)

This was expected since this is indeed the steady-state probability of an empty buffer in a

stable system. We then have to use Darboux’s theorem on (see the approximation procedure)

V (z) − 1 − ρ

1 − z
=

σ + (1 − σ)Y (z)

σ[1 − Y (z)]
U0(Y (z)) − 1 − ρ

1 − z
.

The dominant singularity of this function is either the square-root branchpoint of Y (z) or a

singularity of U0(Y (z)). In a later paragraph, we discuss this for some specific arrival processes

and a given initial system content distribution.

Case 2: ρ = 1. In the special subcase that σ = 1 and E(x) = x, the only solution of (8)

inside the unit disk of the x-plane for all |z| < 1 equals Y (x) = 0. Thus Y (1) = 0 in this

case and limz→1(1 − z)V (z) = 0. In all other subcases of the case ρ = 1, it can be proved (see

Appendix) that Y (1) = 1 if ρ = 1. This is thus the same as in the case ρ < 1. The reasoning

of this latter case thus applies to the case ρ = 1. Equations (11) and (12) lead to

lim
z→1

Y ′(z) = ∞,

and

lim
z→1

(1 − z)V (z) = 0,

respectively. zb = 1 is a square-root branchpoint of Y (z) since Y (1) = 1 and Y ′(1) → ∞.

Clearly, z = 1 is the dominant singularity in this case.
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We conclude that limz→1(1 − z)V (z) = 0 when ρ = 1.

Case 3: ρ > 1. Since A(z) = σE(z)/[1− (1− σ)E(z)] is a monotonously increasing function

in [0, 1] and since A(0) ≥ 0, A(1) = 1 and A′(1) > 1, (10) has a real solution in the segment

[0, 1[, denoted by r. r is the limit of one of the solutions of (8) for z → 1. Since a real number in

[0, 1[ cannot be the limit of a function outside the unit disk and since Y (z) is the only solution

of (8) inside the unit disk, r = Y (1). Thus Y (1) < 1 and limz→1(1−z)V (z) = 0. The dominant

singularity of V (z) is again the square-root branchpoint of Y (z) or a singularity of U0(Y (z)).

Examples. We now calculate the transient probabilities of an empty buffer for some specific

input distributions and input parameters. We assume that the service times equal 1 slot (σ = 1)

and that the system is empty at the beginning (U0(z) = 1). We discuss the results for two

different distributions of the arrival batch sizes.

In a first example, we assume the number of per-slot arrivals to be geometrically distributed

with mean ρ, i.e.,

E(z) =
1

1 + ρ − ρz
.

In this case, an explicit expression can be found for Y (z); V (z) is given by

V (z) =
1 − ρ + ((1 + ρ)2 − 4ρz)1/2

2(1 − z)
. (13)

As a result two singularities of V (z) may be dominant - depending on the value of ρ - namely

zr = 1 and/or the square-root branchpoint zb of Y (z) given by

zb =
(1 + ρ)2

4ρ
. (14)

In accordance with the approximation procedure, we have to invert the following functions:

V (z) − 1 − ρ

1 − z
= − 1 − ρ

2(1 − z)
+

(

1 − z

zb

)1/2

G(z) (ρ < 1)

V (z) = (1 − z)−1/2 (ρ = 1)

V (z) = − ρ − 1

2(1 − z)
+

(

1 − z

zb

)1/2

G(z) (ρ > 1)

.
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Here,

G(z) =
1 + ρ

2(1 − z)
.

Further applying the approximation procedure, we find the probability that the system is empty

at the beginning of slot j + 1

Vj(0) ≈































1 − ρ +
ρ(1 + ρ)

(1 − ρ)2j3/2
√

π

(

(1 + ρ)2

4ρ

)

−j

if ρ < 1

1

j1/2
√

π
if ρ = 1

ρ(1 + ρ)

(ρ − 1)2j3/2
√

π

(

(1 + ρ)2

4ρ

)

−j

if ρ > 1

.

We illustrate the approximate analysis by means of some figures. In Figure 1, the transient

probability Vj(0) of having an empty system is plotted versus the discrete-time parameter j for

ρ = 0.2, 0.4, 0.6, 0.8 and 1. We also show the exact results which are calculated by using the

iterative procedure discussed in [8]. These exact results are represented by dots on the figures.

We see from this figure that the approximation goes to the correct steady-state value. For low

loads, it seems that the approximation is already good for rather low j. For higher loads (< 1),

the approximation is less accurate. However, for ρ = 1, the approximation is excellent. Figure

2 shows a logarithmic plot of the transient probability Vj(0) of having an empty system versus

the discrete-time parameter j for some overload scenarios, namely for ρ = 1, 2, 3, 4 and 5. We

again also depict the exact values, found via recursion. For high loads, the approximation is

excellent.

[Figure 1 about here.]

[Figure 2 about here.]

In the next example, the number of per-slot arrivals are assumed to be Poisson distributed

with mean ρ, i.e.,

E(z) = eρ(z−1).

In this case, V (z) is given by

V (z) =
1

1 − Y (z)
,
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with Y (z) implicitly defined by

Y (z) = zeρ(Y (z)−1). (15)

such that |Y (z)| < 1 for |z| < 1. Again two singularities may be dominant - depending on the

value of ρ - namely zr = 1 and the square-root branchpoint zb of Y (z) given by

zb =
1

ρe1−ρ
. (16)

Expression (16) is found by taking the derivative of both sides of (15), substituting z by

Y (z)/eρ(Y (z)−1) and noting that limz→zb
Y ′(z) = ∞. This yields Y (zb) = 1/ρ, which in turn

finally yields (16). So what remains to be found is the behavior of V (z) in the neighbourhood

of zb. First Y (z) can be written as

Y (z) ∼ Y (zb) − KY (1 − z/zb)
1/2 (17)

in the neighbourhood of zb. KY is found as the square root of

K2
Y =zb lim

z→zb

(Y (zb) − Y (z))2

zb − z

which leads to

KY =

√
2

ρ
,

by using de l’Hôpital’s rule, by writing Y ′(z) as a function of z and Y (z), and by taking the

limit for z going to zb. Thus in the neighbourhood of zb, Y (z) and V (z) are respectively given

by

Y (z) ∼ 1

ρ
−

√
2

ρ
(1 − z/zb)

1/2

and

V (z) ∼ 1 − 1/ρ −
√

2(1 − z/zb)
1/2/ρ

(1 − 1/ρ)2 − 2(1 − z/zb)/ρ2
.

The following expressions for the probability that the system is empty at the beginning of slot
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j are then found by applying the approximation procedure:

Vj(0) ≈



































1 − ρ +
ρ√

2(1 − ρ)2j3/2
√

π

(

1

ρe1−ρ

)

−j

if ρ < 1

1√
2j1/2

√
π

if ρ = 1

ρ√
2(ρ − 1)2j3/2

√
π

(

eρ−1

ρ

)

−j

if ρ > 1

.

Similar figures can be plotted like in the case of geometrically distributed batch sizes and the

same conclusions can be drawn.

3.1.2 The mean system content

Next, we look at the mean transient system content in the MX/Geo/1 queue. Again we start

from a result obtained in [8]: the generating function of the sequence {ūj, j ≥ 0} - with ūj the

expected system content at the beginning of slot j + 1 - is denoted by Ū(z) and given by

Ū(z) =
ū0

1 − z
+

z[σ + (1 − σ)Y (z)]

(1 − z)(1 − Y (z))
U0(Y (z)) − (σ − E ′(1))z

(1 − z)2
.

As in paragraph 3.1.1, the service times are geometrically distributed with mean 1/σ, E(z) is

the pgf of the number of arrivals during a slot and U0(z) denotes the pgf of the system content

at the beginning of the first slot. Further, Y (z) is again the unique solution inside the unit disk

of the x-plane for all |z| < 1 of (8). The same three cases as in the previous example can be

distinguished. We briefly summarize some properties for the three cases. For more details, we

refer to paragraph 3.1.1.

Case 1: ρ < 1. In this case Y (1) equals 1. We have

lim
z→1

(1 − z)Ū(z) = ū0 + lim
z→1

z[(σ + (1 − σ)Y (z))U0(Y (z))(1 − z) + (σ − E ′(1))(1 − Y (z))]

(1 − Y (z))(1 − z)
.

By using de l’Hôpital’s rule and the implicit definition of Y (z), this expression is transformed

to

lim
z→1

(1 − z)Ū(z) =
ρ(1 − λ)

1 − ρ
+

E ′′(1)

2σ(1 − ρ)
.
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This is the mean steady-state system content at the beginning of a random slot in a stable

system, as expected. Following the approximation procedure, we use Darboux’s theorem on

Ū(z) −

ρ(1 − λ)

1 − ρ
+

E ′′(1)

2σ(1 − ρ)

1 − z
.

The dominant singularity is again either the square-root branchpoint of Y (z) or a singularity

of U0(Y (z)).

Case 2: ρ = 1. In the special subcase that σ = 1 and E(x) = x, we have Y (1) = 0. We then

find

lim
z→1

(1 − z)Ū(z) = ū0 + U0(0).

We could thus use the approximation procedure to find an approximation of the probabilities

of the mean system content. However in this pathological subcase, Ū(z) can be easily inverted

exactly. Except for this special subcase, Y (1) equals 1 when ρ = 1. The reasoning of case 1

thus applies leading to

lim
z→1

(1 − z)Ū(z) = ∞.

In this case R = 1 is the radius of convergence.

Case 3: ρ > 1. In this case, Y (1) < 1 and as a result we have

lim
z→1

(1 − z)Ū(z) = ∞.

Again, the radius of convergence R equals 1.

An example. In this paragraph, we assume that the service times equal 1 slot (σ = 1) and

we assume that the system is empty at the beginning (U0(z) = 1 and ū0 = 0). We discuss the

results for geometrically distributed arriving batch sizes with mean ρ, i.e.,

E(z) =
1

1 + ρ − ρz
.
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In this case, Ū(z) is given by

Ū(z) =
z

[

−(1 − ρ) + ((1 + ρ)2 − 4ρz)1/2
]

2(1 − z)2
. (18)

The same two singularities as for the probability of an empty system may be dominant, namely

zr = 1 and the square-root branchpoint zb of Y (z) as given in (14). The following expressions

for the mean system content at the beginning of slot j are found:

ūj ≈



























ρ

1 − ρ
− ρ(1 + ρ)3

(1 − ρ)4j3/2
√

π

(

(1 + ρ)2

4ρ

)

−j

if ρ < 1

2j1/2

√
π

if ρ = 1

(ρ − 1)j if ρ > 1

.

We illustrate the approximate analysis by means of some figures. In Figure 3, the transient

mean system content ūj is plotted versus the discrete-time parameter j for ρ = 0.2, 0.4, 0.6,

0.8 and 1. We have also shown the exact results (dots on the figure) which are again calculated

by using the iterative procedure explained in [8]. Again for low loads, it seems that the ap-

proximation is already good for rather low j. For higher loads (< 1), the approximation is less

accurate. However, for ρ = 1, the approximation is excellent. Figure 4 shows a logarithmic plot

of the transient mean system content ūj versus the discrete-time parameter j for some overload

scenarios, namely for ρ = 1, 2, 3, 4 and 5. We have again shown the exact values, found via

recursion. For high loads, the approximation seems to be rather good for all j and improves

for increasing load.

[Figure 3 about here.]

[Figure 4 about here.]

3.1.3 The mean packet delay

We have chosen this example to demonstrate the approximation when the sequence is an almost-

periodic function. The sequence under consideration is {d̄j, j ≥ 0} with d̄j the mean transient

customer delay of the j + 1-st arriving customer in a discrete-time FIFO MX/D/1 queue with

single-slot service times. The pgf of the arriving batch sizes is given by

E(z) = 1 − ρ

2
+

ρ

2
z2. (19)

16



The customers thus arrive in pairs. The generating function of the sequence {d̄j, j ≥ 0} is

calculated in [19] (for general E(z)) and is given by

D̄(z) =
d̄0

1 − z
+

z

(1 − z)2
+

E(z) − E(0)

(1 − E(0))(1 − z)(E(z) − 1)
+

(Y (z) − E(0))D0(Y (z))

(1 − E(0))(1 − z)Y (z)(1 − Y (z))
,

(20)

with D0(z) the pgf of the customer delay of the first arriving customer and Y (z) the unique

solution inside the unit disk of the x-plane for all |z| < 1 of

x − E(xz) = 0.

Again the three possible cases ρ < 1, ρ = 1 and ρ > 1 can be distinguished as in the previous

examples. We only focus on the stable case here, i.e., ρ < 1, since the purpose of this example

is to show that oscillating behavior is ’detected’ using singularity analysis. For ρ < 1 we have

lim
z→1

(1 − z)D̄(z) = 1 +
E ′′(1)

2ρ(1 − ρ)
.

This expression is valid for general batch sizes; it is indeed the mean delay of a randomly arriving

customer in the steady state of a stable MX/D/1 queue with a FIFO scheduling discipline.

For the batch size distribution as specified in (19), Y (z) is given by

Y (z) =
1 − [1 − ρ(2 − ρ)z2]

1/2

ρz2
. (21)

Assuming that the first customer does not have to wait (i.e., its delay equals 1 slot and thus

D0(z) = z and d̄0=1) expression (20) has four possible dominant singularities namely zr = 1,

zb =

√

1

ρ(2 − ρ)
,

−zr and −zb. We use the approximation procedure to obtain an approximation of the sequence

{d̄j, j ≥ 0}. The dominant singularity of

D̄(z) −
1 +

E ′′(1)

2ρ(1 − ρ)

1 − z
(22)
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is -1 and we obtain

d̄j ≈ 1 +
E ′′(1)

2ρ(1 − ρ)
− (−1)j

2
.

Thus using the procedure on this example, the oscillating behavior rather than the transient

behavior is exposed. Indeed, the previous formula gives the steady-state mean delay of a

customer arriving first in his batch (j even) or arriving second (j odd).

Note that if one would want to examine the transient behavior in this case, one could do

something similar as was done in the approximation procedure: subtract 1/[2(1 + z)] of the

expression in (22) to avoid the singularity in -1. In this way the singularities in -1 and 1 are

both avoided and the dominant singularities are zb and −zb. Thus using Darboux’s theorem

on this function approximates the mean transient customer delay.

3.2 A queue with on-off sources

In this example, we analyze the transient probabilities that a discrete-time queue fed by N

on-off sources is empty at the beginning of slots. We assume that the sources send no packets

when they are in the off state and send messages of a fixed number m of packets at the rate

of one packet per slot when they are in the on state. A source that is in the off state during a

certain slot switches to the on state at the end of that slot with probability q. It then stays in

the on state for at least m slots to send a message and then either goes back to the off state

with probability 1− q or stays in the on state with probability q to generate another message.

This queueing system is analyzed by Kamoun [16]. Amongst other characteristics, an ex-

pression for Vj(0), the probability that the system is empty at the beginning of slot j+1, j ≥ 0,

and their generating function V (z) is given in the case that m = 2. We will here approximate

the Vj(0) by inverting V (z) using the approximate technique from this paper and compare them

with the exact results given in [16]. V (z) is given by

V (z) =
1

1 − Y (z)
, (23)

with Y (z) the unique root inside the unit disk of the x-plane of the equation

x = zλ(x)N
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for |z| ≤ 1. Here, λ(z) denotes the unique root for x of the characteristic equation

xm − (1 − q)xm−1 − qzm

that equals 1 in z = 1.

We apply the approximation procedure to expression (23) in the case that m = 2. Again

a distinction can be made based on the value of the load ρ, which is in this queueing system

given by (see [16])

ρ =
Nqm

1 + (m − 1)q
.

The important difference with the previous analysis is that in this case Y (z) has two branch-

points on its circle of convergence, one on the positive axis and one on the negative axis. The

further calculations are similar as in section 3.1. Therefore, we omit them and show a numerical

example instead. Figure 5 depicts the probability of having an empty buffer at the beginning

of the (j + 1)-st slot for a queue with N = 4 on-off sources and a load ρ equal to 0.2, 1 and

2 respectively. We have shown the consequent exact results (obtained from [16]) with marks.

From the figure, we can once again see that the obtained approximations are good. Particularly

striking in this example is that the plots are not converging monotonously to the steady-state

value, but that some oscillating behavior with a period of 2 slots is observed. This effect is

beautifully predicted by our approximate analysis and thus matched by the curves for our ap-

proximations. Indeed, instead of only one dominant singularity on the positive real axis, the

generating function V (z) has a second dominant singularity on the negative real axis, which

accounts for the oscillating behavior (see also the discussion in subsection 3.1.3). We may thus

conclude that this oscillating behavior is directly related to the number and location of the

dominant singularities on the circle of convergence. Our procedure quantifies this oscillating

behavior as well as the converging or diverging course of the sequences.

[Figure 5 about here.]

3.3 The low-priority system content in a two-class priority queue

As a final application, we discuss the low-priority system content in a discrete-time priority

queue. The numbers of per-slot packet arrivals are i.i.d. and the numbers of high-priority and

low-priority packet arrivals in a slot have a general two-dimensional distribution. The service

times are equal to one slot. The transient behavior of this system is analyzed in [20]. In
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this subsection, we apply our procedure to the transform function Ū2(z) of {ū(j)
2 , j ≥ 0}, the

mean low-priority system content at the beginning of slots. This transform function is given

by (see [20])

Ū2(z) =
ū

(0)
2

1 − z
+

zU
(0)
T (YT (z))

(1 − z)(1 − YT (z))
− zU

(0)
1 (Y1(z))

(1 − z)(1 − Y1(z))
+

ρ2z

(1 − z)2
, (24)

with U
(0)
T (z) and U

(0)
1 (z) the pgfs of the total and high-priority system content at the beginning

of the first slot, Y1(z) and YT (z) the unique solutions for x inside the unit disk of x = zA1(x)

and x = zAT (x) respectively for |z| < 1; A1(z) and AT (z) are the pgfs of the numbers of

per-slot high-priority arrivals and the total number of arrivals in a slot respectively.

We again use the approximation procedure on the expression of the generating function (24)

of the time-dependent sequence {ū(j)
2 , j ≥ 0} to obtain approximations of this sequence. We

discuss an example in the remainder.

An example

We assume the system to be empty at the beginning, thus U
(0)
1 (z) = 1, U

(0)
T (z) = 1 and ū

(0)
2 = 0.

The high-priority and low-priority arriving batch sizes are Poisson distributed with mean ρ1

and ρ2 respectively. ρT is defined as the total load and is given by ρ1 + ρ2.

In this case, Ū2(z) is given by

Ū2(z) =
z

(1 − z)(1 − YT (z))
− z

(1 − z)(1 − Y1(z))
+

ρ2z

(1 − z)2
.

Three singularities may play a role, namely 1, the square-root branchpoint z1,b of Y1(z) and

the square-root branchpoint zT,b of YT (z). It can easily be proved that these branchpoints are

given by

z1,b =
1

ρ1e1−ρ1

and

zT,b =
1

ρTe1−ρT
.

Which of the singularities is dominant depends on the load of both classes. One can for instance

show that z1,b is never dominant, except when it equals 1, i.e., when ρ1 = 1. The calculations are

again rather similar to those in section 3.1. The following expressions for the mean low-priority
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system content at the beginning of slot j are found:

ū
(j)
2 ≈















































ū
(∞)
2 +

ρT

(

1

ρT e1−ρT

)

−j

√
2π(ρTe1−ρT − 1)(1 − ρT )2j3/2

if ρT < 1
√

2j1/2

√
π

if ρT = 1

(ρT − 1)j if ρ1 < 1 < ρT

ρ2j if ρ1 ≥ 1

,

with ū
(∞)
2 the mean low-priority system content of a stable system in the steady state and given

by [21]

ū
(∞)
2 = ρ2 +

ρ2
T

2(1 − ρT )
− ρ2

1

2(1 − ρ1)
.

We illustrate the approximate results by means of two figures. In Fig. 6, the mean transient

low-priority system content ū
(j)
2 is depicted versus the discrete-time parameter j for ρ1 = 0.2

and ρT = 0.4, 0.6, 0.8 and 1. We have also shown the exact results (dots on the figure) which

are calculated by using the iterative procedure explained in [20]. For low loads, it seems that

the approximation is already good for rather low j. For higher loads (< 1), the approximation

is less accurate. In this case, we observe that the curve for the case ρT = 1 is not satisfactory.

(We note that a small adjustment of the method also yields accurate results in this case, but

this is outside the scope of the current paper.) Fig. 7 shows a logarithmic plot of the transient

mean system content ū
(j)
2 versus the discrete-time parameter j for some overload scenarios,

namely for ρ1 = 0.2 and ρT = 1, 2, 3, 4 and 5. We have again shown the exact values, found

via recursion. For high loads, the approximation is once again good for all j.

[Figure 6 about here.]

[Figure 7 about here.]

4 Conclusions

In this paper, we have developed a general technique to approximate transient sequences from

their generating function. The technique is based on singularity analysis: by studying the

behavior of the generating function in its dominant singularities, we obtain an asymptotically

exact approximation of the sequence. The main advantages of the approach are that the
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technique is generally applicable, easy to use and yields analytic results. We have also shown

that quite some characteristics of an unknown transient sequence can be found by studying the

dominant singularities of its generating function, most prominently, converging or diverging

behavior and possible oscillations.

We have applied the technique to analyze the transient behavior of the discrete-time MX/Geo/1

queue, of a queue fed by on-off sources and of a priority queue. It was demonstrated that the

technique yields good results in most cases. At the very least, the results show the asymptotic

behavior for the time-index going to infinity. In some cases however (especially for loads around

1), the approximation is too crude for the lower slot-indexes. Further research is necessary to

investigate whether the analysis can be adapted to yield better approximations in those cases

as well. This could be an ad-hoc method for a specific sequence or - preferably - a general appli-

cable extension of the approach of this paper. In [13] e.g., such singularity analysis extensions

are explained, but it remains to be seen if they work in the context of transient performance

analysis of queues. We must note though that more accurate results are only possible through

a more complex analysis.
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Appendix

In this appendix, we prove that Y (1) = 1 when ρ = 1. We do this by proving that equation

(10) has only one solution inside and on the unit circle when ρ = 1, namely x = 1. We in fact

prove it in a more general setting: we prove that

x − A(x) = 0 (25)

has no solution inside D̄\{1}, the closed complex unit disk minus the point 1. Here A(x) is

a pgf with ρ = A′(1) = 1. (Note that A(x) = x is excluded here since this special case was

already treated in the paper.) The wanted result then follows by substituting A(x) by

σE(x)

1 − (1 − σ)E(x)
.

We denote the stochastic variable corresponding with A(x) by a, i.e.,

A(x) =
∞

∑

n=0

Prob[a = n]xn.

We further introduce Ac(x) defined as

Ac(x) =
∞

∑

n=0

Prob[a > n]xn.

The following relation between Ac(x) and A(x) is then easily established:

Ac(x) =
A(x) − 1

x − 1
.
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Note that Ac(x) is a pgf in the special case that ρ = 1. We will use this property later on.

Introducing Ac(x), expression (25) can be transformed into

(x − 1)(1 − Ac(x)) = 0.

x − 1 has no zero in D̄\{1}, so the solutions of (25) in D̄\{1} equal the solutions of

1 − Ac(x) = 0. (26)

Since |Ac(x)| < 1 for |x| < 1 - Ac(x) is a pgf when ρ = 1 - Rouché’s theorem yields that (26)

has no solution inside an arbitrary contour in the unit disk. As a result (26) has no solution

inside the unit circle. It can further be proved that (26) has no solutions on the unit circle

either except for x = 1. Indeed, Ac(x) on the complex unit disk can be written as

Ac

(

e2πt
)

= Prob[a > 0] + Prob[a > 1]e2πt +
∞

∑

n=2

Prob[a > n]e2πnt. (27)

For this expression to equal 1 for a t ∈]0, 1[, Prob[a > 1] has to be zero. This leads to

Prob[a = 1] = 1 since ρ = 1, which results in the excluded special case A(x) = x. So for all

other cases x = 1 is the only solution inside and on the unit circle of (26) and as a consequence

Y (1) = 1.

25



List of Figures

1 Transient probabilities of having an empty system for underload scenarios . . . . 27
2 Transient probabilities of having an empty system for overload scenarios . . . . 28
3 Mean transient system content for underload scenarios . . . . . . . . . . . . . . 29
4 Mean transient system content for overload scenarios . . . . . . . . . . . . . . . 30
5 Transient probabilities of having an empty system in a queue with on-off sources 31
6 Mean transient low-priority system content for underload scenarios . . . . . . . 32
7 Mean transient low-priority system content for overload scenarios . . . . . . . . 33

26



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

j

Vj(0)

ρ = 0.2
0.4
0.6
0.8

1

Figure 1: Transient probabilities of having an empty system for underload scenarios
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Figure 2: Transient probabilities of having an empty system for overload scenarios
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Figure 3: Mean transient system content for underload scenarios
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Figure 4: Mean transient system content for overload scenarios
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Figure 5: Transient probabilities of having an empty system in a queue with on-off sources
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Figure 6: Mean transient low-priority system content for underload scenarios
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Figure 7: Mean transient low-priority system content for overload scenarios
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