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Abstract

The effective potential for an on-shell BRST invariant gluon-ghost condensate of
mass dimension 2 in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by
combining the local composite operator technique with the algebraic renormaliza-
tion. We pay attention to the gauge parameter independence of the vacuum energy
obtained in the considered framework and discuss the Landau gauge as an interesting
special case.
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1 Introduction

Nowadays an increasing evidence has been reported on the relevance of the local composite
operator A2 in the Landau gauge, both from a phenomenological point of view [1, 2] as from
lattice studies [3, 4, 5]. It is no coincidence that the Landau gauge is used because then

A2 equals the non-local gauge invariant operator (V T )−1 minU

∫
d4x (A2)

U
with V T the

space time volume. The lattice also revealed that gluons attain a dynamical mass, see e.g.
[6, 7]. Some older work already discussed the pairing of gluons in connection with a mass
generation, as a result of the fact that the perturbative Yang-Mills (YM) vacuum (triv-
ially zero) is unstable [8, 9, 10]. More recently, the connection between a condensate 〈A2〉
and a gluon mass has been made within the OPE framework [11, 12]. A technique to ef-
fectively calculate 〈A2〉 and the gluon mass was presented in [13], also in the Landau gauge.

The answer to the question how a mass is generated could be posed in a more general
context than the Landau gauge. The Landau gauge is a limiting case of a class of renor-
malizable, generalized covariant gauges introduced in [14, 15]. We are therefore led to
search for a local operator which could replace A2. A proposal has been made in [11],
where it was shown that A2 is a special case of a more general mass dimension 2 operator,
namely O = 1

2
Aa

µA
µa + αcaca, also involving ghosts and which is BRST invariant on-shell,

however not gauge invariant (see also [16]). This should allow a BRST invariant treatment
of the mass generation in those gauges. The proposed condensate is not that surprising,
since it equals the operator coupled to the mass term of a massive, renormalizable SU(N)
model, introduced in [17, 18]. The specific form of the mass term is necessary to maintain
the BRST invariance and renormalizability [17, 18, 19]. Although the Curci-Ferrari model
(CF) is BRST invariant, the associated BRST operator is not nilpotent and the model is
not unitary [20, 19]. Since the gauge fixing terms of the CF model and the YM theories
with the gauges discussed in [11, 12, 14, 15] are the same, it seems natural to search in
that direction for a suitable operator that gets a non-vanishing vacuum expectation value
and invokes a dynamical mass.

The aim of this paper is to construct an effective potential for the mass dimension 2 conden-
sate in the CF gauge. It is organized as follows. In section 2 we discuss the formalism to ob-
tain a well-defined effective potential for the local composite operator O = 1

2
Aa

µAµa+αcaca,
a non-trivial task due to the compositeness of this operator [13, 21]. In section 3, we denote
the Ward identities of the action, ensuring the renormalizability. A further construction
of the effective action is discussed in section 4, where we also outline a subtlety on the
minimization of the effective potential. In section 5, we consider the gauge parameter
independence of the vacuum energy and spend some words on the BRST charge. Section
6 handles the explicit evaluation of the effective potential. We also discuss the interest-
ing role of the Landau gauge as a limiting case of the CF gauge. We pay attention to
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the similarities between CF and the Maximal Abelian gauge (MAG). A mass generating
mechanism for the off-diagonal gluons in the MAG very much resembles that of the CF
gauge, and could be seen as some evidence for Abelian dominance. As usual, conclusions
are formulated in the last section.

2 The LCO formalism

For a more detailed introduction to the local composite operator (LCO) formalism and to
the algebraic renormalization technique, the reader is referred to [13, 21], respectively [22].

Let us begin by giving the expression for the SU(N) Yang-Mills action in the CF gauge

S = SY M + SGF+FP = −1

4

∫
d4xF a

µνF
aµν +

∫
d4x

(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb

− α

2
gfabcbacbcc − α

8
g2fabcf cdecacbcdce

)
(2.1)

where
Dab

µ ≡ ∂µδab + gfacbAc
µ (2.2)

is the usual covariant derivative. In order to investigate if

O =
1

2
Aa

µAaµ + αcaca (2.3)

gets a non-vanishing vacuum expectation value, we introduce a suitable set of LCO sources
[13, 21]. In this case this task is nontrivial. It turns out that in order to introduce the
local operator O in the starting action in a BRST invariant way, three external sources J,
ηµ and τµ are needed, so that

SLCO =
∫

d4x

[
JO +

ξ

2
J2 − ηµAa

µca − τµs(Aa
µca)

]
(2.4)

where ξ is the LCO parameter and s denotes the BRST operator acting as

sAa
µ = −Dab

µ cb

sca =
g

2
fabccbcc

sca = ba

sba = −Jca

sJ = 0

sηµ = ∂µJ

sτµ = ηµ (2.5)
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The parameter ξ has to be introduced since the introduction of the source term JO gives
rise to novel vacuum energy divergences proportional to J2. These new divergences, re-
lated to those of the connected Green’s function 〈O(x)O(y)〉c for x → y, are cancelled by

a counterterm δξ J2

2
.

After introduction of the sources, we still have a BRST invariant action

s (SY M + SGF+FP + SLCO) = 0 (2.6)

but it should be observed that, due to the presence of the sources (J, ηµ, τµ), the BRST
operator is no more nilpotent, namely

s2Φ = 0, Φ = (A, c, J, ηµ)

s2ca = −Jca

s2b = −J
g

2
fabccbcc

s2τµ = ∂µJ (2.7)

As a consequence, setting
s2 = δJ (2.8)

we have
δJ (SY M + SGF+FP + SLCO) = 0 (2.9)

The operator δJ is related to the SL(2, R) symmetry [14, 15, 23] exhibited by the Curci-
Ferrari action. The generators of this SL(2, R) symmetry are, next to the Faddeev-Popov
ghost number δFP , given by

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0 (2.10)

and

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0 (2.11)

The action of the δ symmetry can be enlarged to the sources as δJ = 0, δηµ = 0 and
δτµ = 0. Then it is obvious from (2.7) that

δJ = s2
∣∣∣
J=0

− Jδ = −Jδ (2.12)

Also, expression (2.8) shows that, in the massive case, the δJ -invariance is a consequence
of the modified BRST transformations. The lack of nilpotency of the BRST operator to-
gether with (2.8) are well known features of the CF gauge in the presence of a mass term
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[24]. Next to the δJ invariance, the action SY M + SGF+FP + SLCO is still invariant under
the NO algebra1 [23], meaning that irrespective of the fact that 〈O〉 gains a non-trivial
value, the NO (and thus the SL(2, R)) symmetry is unaffected.

Notice that in the present case the operator s2 always contains the source J which will be
set to zero at the end of the computation.

3 Ward identities

Let us now translate the previous invariances into Ward identities. To this purpose, we
introduce external sources Ωa

µ and La coupled to the BRST variation of Aa
µ and ca

Sext =
∫

d4x
[
−ΩaµDab

µ cb + La g

2
fabccbcc

]
(3.1)

with

sΩa
µ = sLa = 0

The complete action
Σ = SY M + SGF+FP + SLCO + Sext (3.2)

turns out to obey the following identities:

• The Slavnov-Taylor identity
S(Σ) = 0 (3.3)

with

S(Σ) =
∫

d4x

(
δΣ

δAa
µ

δΣ

δΩaµ
+

δΣ

δLa

δΣ

δca
+ ba δΣ

δca
+ ∂µJ

δΣ

δηµ

+ ηµ δΣ

δτµ
− Jca δΣ

δba

)
(3.4)

The δJ Ward identity
W(Σ) = 0 (3.5)

with

W(Σ) =
∫

d4x

(
Jca δΣ

δca
+ J

δΣ

δLa

δΣ

δba
− ∂µJ

δΣ

δτµ

)
(3.6)

Proceeding as in [25], these identities imply the renormalizability of the model and, in
particular, the multiplicative renormalizability of the local operator O.

1This algebra is generated by the SL(2, R) and (anti-)BRST transformations s and s. It is a trivial
task to check that the action is also anti-BRST invariant, and relations similar to (2.8), (2.9) and (2.12)
arise for the anti-BRST transformation s.
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4 Renormalizability of O and the effective action

As established explicitly in [12, 26], the operator O is indeed multiplicative renormalizable
in the CF gauge. Denoting the bare operator by OB, one has

OB = ZOOR (4.1)

with2 [12, 26]

ZO = 1 +
[
35

6
− α

2

]
g2N

16π2

1

ε
+

[(
2765

72
− 11α

3

)
1

ε2
+

(
α2

16
+

11α

16
− 449

48

)
1

ε

](
g2N

16π2

)2

+ . . .

(4.2)
For the anomalous dimension γO of O, one has [12, 26]

γO(g2, α) = −µ
∂ ln ZO

∂µ
=
(

35

6
− α

2

)
g2N

16π2
+

(
449

24
− α2

8
− 11α

8

)(
g2N

16π2

)2

+ . . . (4.3)

Notice that γO depends on the gauge parameter α. This is due to the explicit dependence
from α of the operator O. Moreover, in the limit α → 0, expression (4.3) reduces to
the anomalous dimension of the Landau gauge [13]. Let us also give, for further use, the
β-function of the gauge parameter α in the CF gauge [12, 26].

βα(g2, α) =
µ

α

∂α

∂µ
=
(

13

3
− α

2

)
g2N

16π2
− α2 + 17α − 118

16

(
g2N

16π2

)2

+ . . . (4.4)

In order to obtain the effective potential for the operator O, we set to zero the sources Ωa
µ,

La, ηµ and τµ, obtaining for the generating functional the following expression

exp−iW(J) =
∫

[Dφ] exp iS(J) (4.5)

with

S(J) = SY M + SGF+FP +
∫

d4x

[
JO +

ξ

2
J2

]
(4.6)

and φ denoting the relevant fields.

From the bare Lagrangian associated to (4.6), one obtains that the quantity ξ(µ) obeys
the following renormalization group equation (RGE)

µ
dξ

dµ
= 2γO(g2, α)ξ + δ(g2, α) (4.7)

where

δ(g2, α) =

(
ε + 2γO(g2, α) − β(g2)

∂

∂g2
− αβα(g2, α)

∂

∂α

)
δξ (4.8)

2We use dimensional regularization in d = 4−ε dimensions and employ the MS renormalization scheme.
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Now, following [13], it is possible to set the hitherto free parameter ξ such a function of g2

and α, so that if g2 runs according to β(g2) and α to βα (g2), ξ(g2, α) will run according
to its RGE (4.7). Specifying, ξ(g2, α) is the particular solution of

(
β(g2)

∂

∂g2
+ αβα(g2, α)

∂

∂α

)
ξ(g2, α) = 2γO(g2, α)ξ(g2, α) + δ(g2, α) (4.9)

Furthermore3, ξ(g2, α) is multiplicatively renormalizable (ξ + δξ = Zξξ). It is easy to see
that ξ(g2, α) will be of the form

ξ(g2, α) =
ξ0(α)

g2
+ ξ1(α) + ξ2(α)g2 + . . . (4.10)

Performing the calculation at 1-loop, we find that

δξ = −(N2 − 1)

16π2

(3 − α2)

ε
(4.11)

Consequently, solving (4.9) for ξ0 as a function of the gauge parameter α, one finds

ξ0(α) =
9

13

N2 − 1

N
s0(α) (4.12)

s0(α) = 1 +
311

117
α + 6α

(
1 − 3α

26

)
ln
∣∣∣∣−

26

α
+ 3

∣∣∣∣+ cα(−26 + 3α) (4.13)

with c an integration constant. Notice that s0(0) = 1, so that we recover the result of [13]
in the case of the Landau gauge. In the next section, we will show that the vacuum energy
is gauge parameter independent. Henceforth, we can forget about the integration constant
and set c = 0.

Taking now the functional derivative of W(J) with respect to J , we obtain

δW(J)

δJ

∣∣∣∣∣
J=0

= −〈O〉 (4.14)

The presence of the J2 term in W(J) seems to spoil an energy interpretation. However,
this can be dealt with by introducing a Hubbard-Stratonovich field σ so that

JO +
ξ

2
J2 ⇒ − σ2

2ξg2
+

σ

gξ
O +

σ

g
J − 1

2ξ
O2 (4.15)

Therefore

exp−iW(J) =
∫

[Dφ] exp i

(
Sσ +

∫
d4x

σ

g
J

)
(4.16)

3The integration constant showing up when (4.9) is solved, has been put to zero according to [13].
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where

Sσ = SY M + SGF+FP +
∫

d4x

(
− σ2

2ξg2
+

σ

gξ
O − 1

2ξ
O2

)
(4.17)

J now appears as a linear source. Hence, we have back an energy interpretation and the
1PI machinery applies.

Differentiating the functional generator with respect to J , one gets the relationship

〈σ〉Sσ
= g 〈O〉 (4.18)

Recapitulating, we have constructed a multiplicatively renormalizable action Sσ incorpo-
rating the effects of a possible non-vanishing vacuum expectation value for O. The corre-
sponding effective action Γ obeys a linear, homogeneous RGE. Notice that to get actual
knowledge of the n-loop effective action, one needs the values of ξ0, . . . , ξn. This means,
recalling (4.9), that we need the (n+1)-loop values of the renormalization group functions.
In [27], a slightly different Hubbard-Stratonovich transformation was used, so that

JO +
ξ

2
J2 ⇒ − σ2

2g2
+

σ

g
√

ξ
O +

√
ξσ

g
J − 1

2ξ
O2 (4.19)

resulting in

exp−iW(J) =
∫

[Dφ] exp i

(
Sσ +

∫
d4x

√
ξσ

g
J

)
(4.20)

where

Sσ = SY M + SGF+FP +
∫

d4x

(
− σ2

2g2
+

σ

g
√

ξ
O − 1

2ξ
O2

)
(4.21)

With this action, it seems that it suffices to know ξ0, . . . , ξn−1 to construct the n-loop
effective potential. However, some attention should be paid here. It is indeed so that with
(4.21), we do not need ξn for Γn−loop, but since the source J is now coupled to the operator√

ξσ

g
, we formally have for the effective action Γ, being the Legendre transform of W(J)

Γ

(√
ξσ

g

)
= −W(J) −

∫
d4yJ(y)

√
ξσ(y)

g
(4.22)

Hence
δ

δ
(√

ξσ(y)

g

)Γ

(√
ξσ(x)

g

)
= −J(y) (4.23)

Since

Γ =
Γ0

g2
+ Γ1 + . . . (4.24)

√
ξ

g
=

√
ξ0

(
1

g2
+

ξ1

ξ0
+ . . .

)
(4.25)
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it becomes clear that, in order to have J = 0 up to the considered order in a g2 expansion
(i.e. to end up in the vacuum state), one must solve (for constant configurations)

d

d
(√

ξσ

g

)V = 0 (4.26)

which will not4 produce the same (correct) σmin as by solving

dV

dσ
= 0 (4.27)

as it was done in [27]. The most efficient way to solve (4.26) is by performing the trans-
formation

σ → σ√
ξ

(4.28)

and this exactly transforms the action (4.21) into the one of (4.17). Notice that the ac-
tion (4.21) is not incorrect, one should only be careful how the vacuum configuration is
constructed. The conclusion is that one cannot escape the job of doing (n + 1)-loop calcu-
lations for n-loop results.

We draw attention to the fact that the action Sσ is BRST invariant5, while this BRST
transformation is nilpotent for J = 0. This means that the action, evaluated in its mini-
mum, i.e. the vacuum energy, should be independent of the gauge parameter α order by
order. In the next section, we pay some more attention to this α independence.

5 Gauge parameter independence of the vacuum en-

ergy

We begin our argumentation from the generating functional (4.16). It will be useful to
consider also the ’original’ action S̃(J) (i.e. before the Hubbard-Stratonovich transforma-
tion) defined in (4.6). To avoid confusion with (4.16)-(4.17), we added a ∼ to the notation.
The relation between W(J) and S̃(J) is obtained via the insertion of a unity

1 =
1

N

∫
[Dσ] exp


i
∫

d4x


− 1

2ξ

(
σ

g
−O − ξJ

)2



 (5.1)

with N an appropriate normalization factor. Explicitly, we have

exp(−iW(J)) =
∫

[Dφ][Dσ] exp i



S̃(J) +
∫

d4x



− 1

2ξ

(
σ

g
−O − ξJ

)2






 (5.2)

4Because ξ itself is a series in g2.
5It is obvious that sσ = gsO.
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Since evidently

d

dα

1

N

∫
[Dσ] exp



i
∫

d4x



− 1

2ξ

(
σ

g
−O − ξJ

)2






 = 0 (5.3)

we find

− dW(J)

dα
=

〈
s

(
cb

2
− g2

4
fabccacbcc

)〉

J=0

+ terms proportional to J (5.4)

The effective action Γ is related to W(J) through a Legendre transformation

Γ

(
σ

g

)
= −W(J) −

∫
d4yJ(y)

σ(y)

g
(5.5)

The effective potential V (σ) is then defined as

− V (σ)
∫

d4x = Γ

(
σ

g

)
(5.6)

Let σmin be the solution of
dV (σ)

dσ

∣∣∣∣∣
σ=σmin

= 0 (5.7)

Hence, we have that6

σ = σmin ⇒ J = 0 (5.8)

Invoking (5.8), we derive from (5.5)-(5.6)

d

dα
V (σ)

∣∣∣∣∣
σ=σmin

∫
d4x =

d

dα
W(J)

∣∣∣∣∣
J=0

(5.9)

Finally, combining (5.4) and (5.9), we conclude that

d

dα
V (σ)

∣∣∣∣∣
σ=σmin

= 0 (5.10)

Some extra words concerning (5.8) and its consequences (5.9)-(5.10) are in order. Obvi-
ously, this is based on the relation

δ

δ
(

σ
g

)Γ = −J (5.11)

6To have (5.8) correct at any order in g2, the minima should be computed correctly, as explained in
the previous section.
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An explicit evaluation of the effective potential results in a series for V (σ), and consequently
in a gap equation via (5.7). Said otherwise, J = 0 means in practice that J equals zero up
to a certain order in g2 as a consequence of the solved gap equation, which is of the form

V0(σ) + V1(σ)g2 + . . . + Vn−1(σ)
(
g2
)n−1

= 0 (5.12)

Returning to (5.4), the terms proportional to J are themselves some series in g2. This
means that the product of such a term with J is again a series, which has to be cut off
at the considered order; thus some terms are dropped. When (5.11)-(5.12) are used, it
turns out that the product of such a term with J is also zero, but up to terms of higher
order. Henceforth, the gauge parameter independence is not exact, but holds up to terms
of higher order. The same holds true for the BRST charge QBRST , which will not be
exactly nilpotent, but again up to higher order terms. As it is well known, QBRST is
used to define physical states as those annihilated by QBRST and which are not exact (i.e.
6= QBRST |something〉). The nilpotency of QBRST is needed to move freely in the space of
gauge parameter choices. With all this in mind, the α derivative of the action is reduced to
an exact BRST variation. This is the usual argument used to show that physical operators,
including the vacuum energy, are independent of the choice for the gauge parameter α [22].
We underline again that here, all this is not exact, but only valid up to terms of higher order.

Concluding this section, we have shown that the effective potential, evaluated at its mini-
mum (i.e. the vacuum energy), is gauge parameter independent at any order in a loop (g2)
expansion, at least up to terms that are of higher order.

6 Evaluation of the 1-loop effective potential

In order to evaluate the 1-loop effective potential, it is sufficient to consider only the
quadratic terms of Sσ, namely

Squad
σ =

∫
d4x

(
− σ2

2ξg2
+ caΣabcb +

1

2
AaµΩab

µνA
bν

)
(6.1)

where

Σab = δab

(
∂2 +

σα

gξ

)
(6.2)

and

Ωab
µν = δab

[(
∂2 +

σ

gξ

)
gµν −

(
1 − 1

α

)
∂µ∂ν

]
(6.3)

To calculate V , we use the background formalism with the trivial background Aµ = 0.
This means that we restrict ourselves to the pure short-range contributions to 〈O〉. If we
would like to include long-range effects, we could for example use an instanton background
[3]. An asset of considering only short-range contributions is that one does not have to
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worry about Gribov ambiguities, since these short-range contributions are calculated with
a purely perturbative expansion, and perturbation theory is not affected by Gribov copies,
since the considered distances are ”too short” to make different gauge copies aware of each
other [28, 29, 30, 31].

For the 1-loop effective potential we get

V1(σ) =
σ2

2ξ0

(
1 − ξ1

ξ0

g2

)
+ i ln det Σab − i

2
ln det Ωab

µν (6.4)

In d dimensions, it holds that

ln det δab

[
gµν

(
∂2 + m2

)
−
(
1 − 1

α

)
∂µ∂ν

]

=
(
N2 − 1

) [
(d − 1)tr ln

(
∂2 + m2

)
+ tr ln

(
∂2

α
+ m2

)]
(6.5)

Working up to order ε0 and order g2, we find

i ln det Σab = i
(
N2 − 1

) ∫ ddk

(2π)d
ln

(
−k2 +

σα

gξ

)

= −(N2 − 1)

32π2

(
g2σ2α2

ξ2
0

)(
ln

gσα

ξ0µ2
− 3

2
− 2

ε

)
(6.6)

− i

2
ln det Ωab

µν = − i

2

(
N2 − 1

) ∫ ddk

(2π)d

[
(d − 1) ln

(
−k2 +

σ

gξ

)

+ ln

(
−k2

α
+

σ

gξ

)]

=
3 (N2 − 1)

64π2

(
g2σ2

ξ2
0

)(
ln

gσ

ξ0µ2
− 5

6
− 2

ε

)

+
(N2 − 1)

64π2

(
g2α2σ2

ξ2
0

)(
ln

gασ

ξ0µ2
− 3

2
− 2

ε

)
(6.7)

Subsequently, we obtain for the one-loop effective potential in the MS scheme7

V1(σ) =
σ2

2ξ0

(
1 − ξ1

ξ0

g2

)
+

3 (N2 − 1)

64π2

(
g2σ2

ξ2
0

)(
ln

gσ

ξ0µ2
− 5

6

)

− (N2 − 1)

64π2

(
g2σ2α2

ξ2
0

)(
ln

gασ

ξ0µ2
− 3

2

)
(6.8)

with ξ0 given by (4.12). In principle, as soon one knows the value of ξ1, one can set
µ2 = σ√

ξ0
and use the renormalization group equation for V (σ) to sum leading logarithms

7It is easily checked that using the renormalized version of the Hubbard-Stratonovich transformation
(4.15), the counterterm proportional to δξ removes the infinities coming from (6.6) and (6.7).
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and solve the gap equation. This leads to a value for the vacuum energy E, gluon mass
mgluon, and through the trace anomaly, one also finds an estimation for

〈
αs

π
F 2
〉

= −32
11

E.
Since the aim of this paper is merely to describe the mass generation mechanism in the
CF gauge, we do not perform the 2-loop calculation leading to ξ1 and corresponding nu-
merical values. Moreover, since the vacuum energy is gauge parameter independent, we
may choose a specific α. Therefore, we restrict ourselves to the case α = 0, for which ξ1

has already been determined [13].

The Landau gauge is by far the most interesting choice. It is a fixed point of the renormal-
ization group for the gauge parameter at any order. Due to the transversality condition
∂µAµ = 0, it is a quite physical gauge. It has some interesting non-renormalization prop-
erties [22]. Even more interesting is the already mentioned fact that O reduces to A2, which

has a gauge-invariant meaning in the Landau gauge, since it equals (V T )−1 minU

∫
d4x (A2)

U
,

a gauge-invariant (however in general non-local) operator8. As a consequence, the gauge
invariance9 of the formalism is more obvious in the Landau gauge [13]. The relevance of the
Landau gauge has also been pointed out from a more topological point of view [2]. In case
of compact 3-dimensional QED, A2 was shown to be an order parameter for the monopole
condensation [1, 2]. If monopole condensation has something to do with confinement, there
might exist a relation between A2 and confinement in case of QCD too. All these things
are less clear in the case of the O operator in the CF gauge.

Having said all this, it might look like that our efforts are not that important for α 6= 0.
This is however not the case. We have given a consistent framework to calculate the dy-
namically generated gluon mass for the CF gauge. Notice that the obtained Lagrangian
in the condensed vacuum is however not the one of the Curci-Ferrari model [17, 18]. The
question, also posed in [13], is if the dynamically massive YM action (4.17) breaks uni-
tarity? From a pragmatic point of view, a possible lack of unitarity in the gluon sector
should not be considered very problematic. After all, since gluons are not observables due
to confinement, massive gluons are a fortiori unphysical. In fact, a deep connection might
exist between massive gluons and confinement, as it was explored in [33]. See [34] for an
attempt to construct a string theory incorporating a 〈A2〉 condensate.

We notice that the action (2.1) can be rewritten as

S = SY M + ss
∫

d4x
(

1

2
Aa

µAµa − α

2
caca

)
(6.9)

with10

sAa
µ = −Dab

µ cb

8Although this correspondence is somewhat troubled by Gribov copies [32], but this is of no relevance
in the presented approach.

9Which is in fact a stronger statement than gauge parameter independence.
10We disregard SLCO here.
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sca =
g

2
fabccbcc

sca = −ba + gfabccbcc

sba = −gfabcbbcc (6.10)

Another very interesting renormalizable gauge is the modified Maximal Abelian gauge
(MAG) [35], particularly useful in the context of the dual superconductivity mechanism
for confinement. This gauge partially fixes the local SU(N) freedom, i.e. up to the Abelian
degrees of freedom. The MAG shares a close similarity with the CF gauge, since its gauge
fixing is given by

S = SY M + ss
∫

d4x
(

1

2
Aa′

µ Aµa′ − α

2
ca′

ca′

)
(6.11)

where the accent means that the color index runs strictly over the non-Abelian degrees of
freedom. In particular, in [23] it has been shown that the remaining Abelian degrees of
freedom can be fixed so that the resulting theory displays a global SL(2, R) symmetry, in
complete analogy with the CF gauge. Furthermore, due to the similarity (6.9)-(6.11), it
is not difficult to show that a quite analogous treatment with a source J coupled to the
U(1)N−1 invariant operator

O′ =
1

2
Aa′

µ Aµa′

+ αca′

ca′

(6.12)

will provide us with a dynamical mass for the off-diagonal gluons and ghosts [11, 23, 36, 37],
a hint for some kind of Abelian dominance [38]. This strategy for the MAG was already
put forward in [11]. Just as the operator O is multiplicatively renormalizable in the CF
gauge, the operator O′ will be multiplicatively renormalizable in the MAG [37]. So far for
the similarities between CF and MAG. Although it would be nice to stretch the similarity
further and simply put α = 0 from the beginning, in which case the MAG reads in differ-
ential form Da′b′

µ Aµb′ = 0 with Da′b′

µ the U(1)N−1 Abelian covariant derivative. As such,
we have some kind of U(1)N−1 invariant version of the Landau gauge. Unfortunately, the
limit α → 0 is now far from being trivial [39]. Moreover, α = 0 is not a fixed point of the
renormalization group [39, 40]. Also, although for α = 0 the tree level action (6.11) does
not contain a 4-ghost interaction, radiative corrections will reintroduce this interaction
[35], unlike the Landau gauge. Making a long story short, we are forced to let the gauge
parameter α free and perform a similar analysis as done in the previous sections. At the
end of such a more general analysis, one could investigate if the limit α → 0 can be taken.

Before we formulate our conclusion, we quote the results obtained for the Landau gauge
in [13]

ξ1 =
161

52

N2 − 1

16π2

g2N

16π2

∣∣∣∣∣
1-loop

=
36

187

mgluon ≈ 485MeV for N = 3

14



E ≈ −0.001GeV4 for N = 3〈
αs

π
F 2
〉

≈ 0.003GeV4 for N = 3 (6.13)

As the relevant expansion parameter, i.e. g2N/16π2, is relatively small and results do not
change much if the second loop correction to V (σ) is included [13], qualitatively acceptable
results are achieved. The value for the 1-loop dynamical gluon mass mgluon is also in
qualitative agreement with lattice values [6, 7], reporting something like mgluon ∼ 600
MeV.

7 Conclusion

In this paper, we have constructed a renormalizable effective potential for the on-shell
BRST invariant local composite operator of mass dimension 2 in the Curci-Ferrari gauge,
namely O =1

2
Aa

µA
µa + αcaca. This gauge reduces to the Landau gauge in the limit α = 0.

It is worth underlining that, in the Landau gauge, the operator O equals the gauge in-
variant operator A2. Much attention has been paid recently to the condensate 〈A2〉. The
generalization to α 6= 0 has also its importance due to the close analogy with the Maxi-
mal Abelian gauge, where the α → 0 limit is not as obvious as in case of the CF gauge.
In particular, we have shown that the vacuum energy obtained in the presented formal-
ism for the CF gauge is independent from the gauge parameter α. As already underlined
the α-independence has to be understood in a g2 expansion and up to terms of higher order.

We restricted ourselves in this paper to the on-shell BRST invariant condensate resulting
in a mass for the particles. A gluon mass modifies the behaviour of the gluon propagator
in the infrared (see e.g. [6]) and might be relevant for the confinement problem. A more
intensive study would also include the pure ghost condensates, also of mass dimension 2,
discussed in [23, 27, 36, 38, 39, 41, 42]. These are not directly related to the mass gener-
ation for the gluons [23, 36], but are relevant for the SL(2, R) symmetry and can modify
the ghost propagator.
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dell’Istruzione dell’Universitá e della Ricerca - Italy are acknowledged for the financial
support.

References

[1] F. V. Gubarev, L. Stodolsky and V. I. Zakharov, Phys. Rev. Lett. 86 (2001) 2220

15



[2] F. V. Gubarev and V. I. Zakharov, Phys. Lett. B 501 (2001) 28

[3] P. Boucaud et al., Phys. Rev. D 66 (2002) 034504

[4] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-
Quintero, Phys. Rev. D 63 (2001) 114003

[5] G. Burgio, F. Di Renzo, G. Marchesini and E. Onofri, Phys. Lett. B 422 (1998) 219

[6] K. Langfeld, H. Reinhardt and J. Gattnar, Nucl. Phys. B 621 (2002) 131

[7] C. Alexandrou, P. de Forcrand and E. Follana, Phys. Rev. D 65 (2002) 114508

[8] R. Fukuda and T. Kugo, Prog. Theor. Phys. 60 (1978) 565

[9] R. Fukuda, Phys. Lett. B 73 (1978) 33 Erratum-ibid. B 74 (1978) 433

[10] V. P. Gusynin and V. A. Miransky, Phys. Lett. B 76 (1978) 585

[11] K. I. Kondo, Phys. Lett. B 514 (2001) 335

[12] K. I. Kondo, T. Murakami, T. Shinohara and T. Imai, Phys. Rev. D 65 (2002) 085034

[13] H. Verschelde, K. Knecht, K. Van Acoleyen, M. Vanderkelen, Phys. Lett. B 516 (2001)
307, erratum-ibid., to appear

[14] R. Delbourgo and P. D. Jarvis, J. Phys. A 15 (1982) 611

[15] L. Baulieu and J. Thierry-Mieg, Nucl. Phys. B 197 (1982) 477

[16] B. M. Gripaios, The ’BRST-invariant’ condensate of dimension two in QCD,
hep-th/0302015

[17] G. Curci and R. Ferrari, Nuovo Cim. A 32 (1976) 151

[18] G. Curci and R. Ferrari, Phys. Lett. B 63 (1976) 91

[19] J. de Boer, K. Skenderis, P. van Nieuwenhuizen and A. Waldron, Phys. Lett. B 367

(1996) 175

[20] I. Ojima, Z. Phys. C 13 (1982) 173

[21] K. Knecht and H. Verschelde, Phys. Rev. D 64 (2001) 085006

[22] O. Piguet and S.P. Sorella, Algebraic Renormalization, Monograph series m28,
Springer Verlag, 1995

[23] D. Dudal, H. Verschelde, V. E. Lemes, M. S. Sarandy, S. P. Sorella and M. Picariello,
JHEP 0212 (2002) 008

16



[24] F. Delduc and S.P. Sorella, Phys. Lett. B 231 (1989) 408

[25] D. Dudal, S. P. Sorella and H. Verschelde, Phys. Lett. B 555 (2003) 126

[26] J. A. Gracey, Phys. Lett. B 552 (2003) 101

[27] V. E. Lemes, M. S. Sarandy and S. P. Sorella, hep-th/0210077

[28] A. G. Williams, Lattice QCD, gauge fixing, and the transition to the perturbative
regime, hep-lat/0212038

[29] A. G. Williams, Nucl. Phys. Proc. Suppl. 109 (2002) 141

[30] Y. Frishman and R. Roth, Nucl. Phys. B 146 (1978) 20

[31] Y. Frishman and R. Roth, Nucl. Phys. B 165 (1980) 185

[32] L. Stodolsky, P. van Baal and V. I. Zakharov, Phys. Lett. B 552 (2003) 214

[33] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66 (1979) 1

[34] K. I. Kondo and T. Imai, A confining string theory derivable from Yang-Mills theory
due to a novel vacuum condensate, hep-th/0206173

[35] K. I. Kondo, Phys. Rev. D 57 (1998) 7467

[36] D. Dudal and H. Verschelde, On ghost condensation, mass generation and Abelian
dominance in the maximal Abelian gauge, hep-th/0209025

[37] U. Ellwanger and N. Wschebor, Massive Yang-Mills theory in Abelian gauges,
hep-th/0205057

[38] K. I. Kondo and T. Shinohara, Phys. Lett. B 491 (2000) 263

[39] M. Schaden, Mass generation in continuum SU(2) gauge theory in covariant Abelian
gauges, hep-th/9909011

[40] T. Shinohara, T. Imai and K. I. Kondo, The most general and renormalizable maximal
Abelian gauge, hep-th/0105268

[41] V. E. Lemes, M. S. Sarandy and S. P. Sorella, Ghost number dynamical symmetry
breaking in Yang-Mills theories in the maximal Abelian gauge, hep-th/0206251

[42] V. E. Lemes, M. S. Sarandy, S. P. Sorella, M. Picariello and A. R. Fazio, Ghost
condensates in Yang-Mills theories in nonlinear gauges, hep-th/0210036

17

http://arXiv.org/abs/hep-th/0210077
http://arXiv.org/abs/hep-lat/0212038
http://arXiv.org/abs/hep-th/0206173
http://arXiv.org/abs/hep-th/0209025
http://arXiv.org/abs/hep-th/0205057
http://arXiv.org/abs/hep-th/9909011
http://arXiv.org/abs/hep-th/0105268
http://arXiv.org/abs/hep-th/0206251
http://arXiv.org/abs/hep-th/0210036

	Introduction
	The LCO formalism
	Ward identities
	Renormalizability of O and the effective action
	Gauge parameter independence of the vacuum energy
	Evaluation of the 1-loop effective potential
	Conclusion

