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Although coronavirus disease 2019 (COVID-19) is primarily associated with mild

respiratory symptoms, a subset of patients may develop more complicated

disease with systemic complications and multiple organ injury. The

gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily

affected by viremia and the release of inflammatory mediators that cause viral

entry from the respiratory epithelium. Impaired intestinal barrier function in

SARS-CoV-2 infection is a key factor leading to excessive microbial and

endotoxin translocation, which triggers a strong systemic immune response

and leads to the development of viral sepsis syndrome with severe sequelae.

Multiple components of the gut immune system are affected, resulting in a

diminished or dysfunctional gut immunological barrier. Antiviral peptides,

inflammatory mediators, immune cell chemotaxis, and secretory

immunoglobulins are important parameters that are negatively affected in

SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells,

neutrophils, dendritic cells, and macrophages are activated, and the number of

regulatory T cells decreases, promoting an overactivated immune response with

increased expression of type I and III interferons and other proinflammatory

cytokines. The changes in the immunologic barrier could be promoted in part by

a dysbiotic gut microbiota, through commensal-derived signals and metabolites.

On the other hand, the proinflammatory intestinal environment could further

compromise the integrity of the intestinal epithelium by promoting enterocyte

apoptosis and disruption of tight junctions. This review summarizes the changes

in the gut immunological barrier during SARS-CoV-2 infection and their

prognostic potential.
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Introduction

Although the primary target of severe acute respiratory

syndrome coronavirus-2 (SARS−CoV−2) is type II alveolar

epithelial cells, the virus can also infect gastrointestinal mucosal

cells by binding to angiotensin-converting enzyme 2 (ACE2) and its

cofactor, transmembrane serine protease 2 (TMPRSS2), both of

which are widely expressed on the surface of enterocytes. Notably,

ACE2 expression is higher in intestinal cells of the ileum and colon

than in lung cells (1). In experimental models, intranasal

inoculation of SARS-CoV-2 resulted in disruption of gut barrier

integrity as a consequence of systemic release of proinflammatory

mediators (2). Therefore, the virus can cause either direct damage to

ACE-2-expressing intestinal epithelial cells or indirect damage

through a systemic hyperinflammatory response (2, 3).

Recombination is a common mechanism in coronaviruses that

allows them to resist selective pressure and adapt to new habitats.

Recombination events with other gut-targeting coronaviruses could

potentially enhance SARS-CoV-2 virulence and tropism for the

gastrointestinal tract (4). Indeed, up to 24% of COVID-19 patients

develop gastrointestinal symptoms, including diarrhea, abdominal

discomfort, nausea, vomiting, and loss of appetite (3, 5). Notably,

COVID-19 patients may even develop severe duodenitis and

present with gastrointestinal bleeding requiring red blood cell

transfusion (6). Immunohistochemical staining of these biopsies

was positive for SARS-CoV-2 spike protein, suggesting that

duodenitis developed as a result of direct enterocyte invasion by

SARS-CoV-2; in situ hybridization also provided evidence of active

viral replication (6). SARS-CoV-2 infection is associated with

multifactorial impairment of the gut barrier, as it has deleterious

effects on all of its critical aspects of defense, which consist of a

balance between the gut microbiota (biological barrier), intestinal

epithelial cells and their junctions (mechanical barrier), and gut-

associated immune cells, immunoglobulins, and cytokine

production (immune barrier). Previous studies have shown that

the integrity of the intestinal barrier is significantly impaired in

COVID-19 patients, as evidenced by various surrogate markers.

Giron et al. (7) demonstrated that severe COVID-19 is associated

with higher plasma levels of zonulin, indicating profound

disruption of tight junction homeostasis, as well as increased

levels of lipopolysaccharide (LPS)-binding protein (LBP) and b-
glucan, which are reliable markers of bacterial and fungal

translocation, respectively. Importantly, serum markers of tight

junction permeability and microbial translocation were

significantly associated with circulating proinflammatory

mediators such as IL-6, suggesting that systemic inflammation is

triggered to some extent by gut barrier disruption. In addition,

intestinal fatty acid binding protein (I-FABP), a protein synthesized

by mature enterocytes responsible for fatty acid turnover and used

as a biomarker of intestinal injury, was measured in the urine of 283

patients hospitalized for COVID-19 (8, 9). Urinary I-FABP levels

were significantly elevated compared with controls and remained

high in patients’ samples two weeks after hospitalization; levels were

even higher in patients with critical illness than in milder cases (8).

Another study found that serum levels of zonula occludins-1 (ZO-

1), a marker of structural and functional integrity of the paracellular
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barrier, were significantly elevated in patients with COVID-19

pneumonia but were not predictive of progression to severe

respiratory failure (10). In addition, numerous studies have

shown significant changes in the composition of the gut

microbiota in patients with COVID-19. A recent meta-analysis

detailed the changes in gut microbiota composition during SARS-

CoV-2 infection (11). In several studies, changes in the gut

microbiome were also closely associated with the clinical severity

of COVID-19, suggesting a prognostic role in such patients (12–24).

The present review focuses specifically on COVID-19 associated

changes in the gut immunological barr ier and their

prognostic potential.
SARS-CoV-2-mediated changes in the
intestinal immunological barrier

Intestinal inflammation and fecal
calprotectin

Fecal calprotectin has also been studied in detail in COVID-19

patients because it is produced predominantly by neutrophils that

migrate to and are activated in the intestine, making it a reliable

marker of bowel inflammation in other conditions such as

inflammatory bowel disease (25). Ojetti et al. (26) showed that

high fecal calprotectin levels in SARS-CoV-2 infected individuals

are an independent risk factor for the development of COVID-19

pneumonia, while data from other studies indicate that fecal

calprotectin levels are positively correlated with serum IL-6,

degree of hypoxemia, and days of hospitalization (27–29).

Although there is no correlation between gastrointestinal

symptoms and fecal calprotectin, an increase in this parameter

has a better predictive value for progression of severe disease

compared with C-reactive protein (30). This finding possibly

suggests that the increase in fecal calprotectin associated with

SARS-CoV-2 infection is due in part to chemotaxis of immune

cells into to the gastrointestinal tract and hypoxic intestinal damage

rather than intestinal inflammation and destruction of enterocytes

(29, 30). In addition, the role of serum calprotectin was also

investigated and was found to be an effective marker for

predicting the future status of SARS-CoV-2-infected individuals

(31). The strong correlation of serum calprotectin with poor clinical

outcomes highlights the potential value of this marker in identifying

COVID-19 patients at high risk for disease progression (31).
Changes in immune cells

Data are also available on changes in immune cells in the

gastrointestinal mucosa of patients infected with SARS-CoV-2.

Mass cytometric analysis of intestinal tissue from deceased

individuals with COVID-19 revealed leukocytic infiltration

consisting of monocytes, CD11b+ macrophages, CD11c+

dendritic cells (DCs), natural killer (NK) cells, and B cells (32).

Similar results were obtained from lung tissue, suggesting that these
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organs are the epicenter of the immune response during SARS-

CoV-2 infection (32). Moreover, analysis of duodenal biopsies after

the onset of COVID-19 symptoms in patients with macroscopically

normal mucosa who underwent endoscopy for other reasons (e.g.,

upper abdominal pain) revealed increased numbers of CD68+,

CD14+ macrophages, CD11c+ DCs, mucosal CD4+ T cells, and

intraepithelial CD8+ T cells (33). The aforementioned

intraepithelial lymphocytes were antigen-experienced and

exhibited a CD8+ effector cell phenotype (CD45RA+, CD27-)

(33). An increase in intraepithelial lymphocytes in intestinal

biopsies was still observed one month after SARS-CoV-2

infection (34). Exhaustion/depletion of CD4+ T cells, a hallmark

of HIV infection, is also observed in SARS-CoV-2 infection. The

resulting dysregulation of CD4+ T cells in the gut may contribute to

intestinal epithelial barrier dysfunction and leaky gut, which

promotes systemic inflammation (35). Accordingly, IL-17

producing Th17 cells are overactivated in SARS-CoV-2

infection (36).

Imbalance of cytokines and
inflammatory mediators
Dysregulation of interferon responses

Invasion of SARS-CoV-2 into intestinal cells leads to increased

expression of type I and III IFN and other proinflammatory

cytokines, such as IL-8 and IL-12 (37, 38). All types of IFN can

activate the JAK/STAT pathway. Type I IFN can be secreted by

many cell types, especially plasmacytoid DCs. SARS-CoV-2 has

developed several strategies to evade immune surveillance by

attenuating type I and III IFN responses (39). This effect is

mediated by a SARS-CoV-2 membrane protein that inhibits the

formation of a multiprotein complex responsible for the

phosphorylation and subsequent activation of IFN regulatory

factor (IRF) 3 (39). IRF3 activation is a prerequisite for IFN

transcription and synthesis. The SARS-CoV-2 accessory protein

ORF9b is another molecule that blocks the IRF3 activation pathway

(40). ORF9b also inhibits IFN gene expression by interacting with

the stimulator of IFN genes (STING); STING can recruit TANK

binding kinase 1 (TBK1), one of the IRF3 phosphorylators (40). In

addition, ORF9b targets the translocase of outer mitochondrial

membrane 70 (TOMM70), which is located on the mitochondrial

membrane and functions as a receptor for mitochondrial antiviral

signaling protein (MAVS). MAVS is also involved in the IRF3

phosphorylation pathway. Therefore, ORF9b downregulates type I

IFN production by interfering with the interaction between

TOMM70 and MAVS (41, 42). However, overexpression of

TOMM70 can overcome ORF9b-mediated inhibition and restore

IFN-b expression (41).

After pretreatment of human intestinal cell lines with IFN-b
and human colon organoids with IFN-b1 and type III IFN,

respectively, a protective effect against SARS-CoV-2 infection was

observed, resulting in a significantly milder infection (43, 44).

However, the antiviral activity of type III IFN against SARS-CoV-

2 in the gut is stronger and more durable (45). Of note, infection of

colon organoids with SARS-CoV-2 resulted in upregulation of type
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III IFN but not type I IFN, despite the ability of these organoids to

produce both types in response to viral infection (44, 46).

Conversely, depletion of the type III IFN receptor resulted in

increased SARS-CoV-2 infectivity, viral genome replication, and

virion production (44, 45).

Although neutralizing autoantibodies to type I IFN have been

previously demonstrated in humans and are a universal finding,

particularly in autoimmune polyendocrine syndrome type 1 (APS-

1), they have not been associated with increased prevalence or

severity in viral infections (47–50). SARS-CoV-2 infection appears

to be an exception; in an international cohort study, 19 of 22 APS-1

patients with COVID-19 were hospitalized, and 11 of 22 required

mechanical ventilation (51). Pre-existing neutralizing IFN type I

antibodies in the serum of previously healthy individuals

represented a major risk factor for severe COVID-19 (51).

Moreover, their prevalence increases with age; during SARS-CoV-

2 infection, 10.2% of patients with life-threatening disease, almost

exclusively men, had pre-existing neutralizing IFN-I autoantibodies

and low or undetectable serum IFN-a levels, whereas no such

antibodies were detected in patients with mild infection (52, 53). In

addition, COVID-19 patients with type I IFN antibodies had

significantly higher viral loads than patients without these

antibodies (54). Similar results were obtained in other studies

investigating the presence of neutralizing IFN-I antibodies in

patients with COVID-19 in the intensive care unit (55, 56). Such

autoantibodies were detected in 9.5% to 18% of these patients; 87%

to 92.3% of them were men (55, 57). In contrast, non-neutralizing

IFN-I antibodies are common in critically ill non-COVID-19

patients and do not affect clinical outcome (58). The

aforementioned data provide an additional explanation for the

increased likelihood of severe disease in elderly men; notably, this

group of individuals accounts for approximately 20% of COVID-19

deaths (53).

Furthermore, impairment of IFN-I-dependent immunity

caused by any mechanism can lead to severe COVID-19

symptoms. Loss-of-function variants of genes such as IRF3, IRF7,

IFN-a receptor, and Toll-like receptor 3 (TLR3) were detected in

3.5% of individuals with life-threatening COVID-19 and no history

of other severe infections, whereas no patient with mild or

asymptomatic disease carried these variants; all of these variants

resulted in disproportionately low IFN I production in response to

SARS-CoV-2 (59).

Changes in other inflammatory mediators
Following intranasal infection with SARS-CoV-2, cytokines

such as IL-4, IL-1b, TNF-a, IL-17A, and other inflammatory

mediators are initially produced in gastrointestinal tissues (2). In

parallel, upregulation of the anti-inflammatory IL-10 and inhibition

of the pro-inflammatory IL-1b and IFN-g can be induced by

inoculation in the digestive tract (2). A gut-on-a-chip model of

SARS-CoV-2 infection provided further evidence for the release of

cytokines in the digestive tract (60). In particular, the IL-6 and TNF

genes and C-X-C motif chemokine ligand 10 (CXCL10), a

chemoattractant for NK cells and T cells and a monocyte inducer,
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were significantly upregulated (60). Gene set enrichment analysis in

pluripotent stem cells derived from small intestinal epithelial cells

or intestinal organoids from SARS-CoV-2 infection models also

revealed increased expression of IL-1b, IL-6, CXCL10, C-C motif

chemokine ligand 5 (CCL5, chemoattractant for monocytes), and

significant upregulation of IL-6 and the nuclear factor-kB (NF-kB)
pathway (61, 62). Quantification of cytokines in the stool of patients

hospitalized for COVID-19 revealed higher IL-8, IL-18, and lower

IL-10 levels (63, 64).

In contrast, treatment of human colon tissue samples with

short-chain fatty acids (SCFAs), metabolites capable of reducing

pro-inflammatory mediators such as IL-6, IL-12, and IFN-g,
showed no effect on cell permeability; however, treatment with

SCFAs showed a modest, albeit significant, effect in reducing the

expression of the type III IFN receptor, interferon lambda receptor

1 (IFNLR1), and the serine protease TMPRSS2 (56, 65). TMPRSS2

is a membrane-bound protein that has been shown to promote

SARS-CoV-2 infection in enteroids by supporting virus-enterocyte

fusion (66). Of note, depletion of the gut microbiota after antibiotic

administration did not affect mortality in a mouse model of SARS-

CoV-2 infection although colonic concentrations of IL-17 and

CXCL2 were significantly increased (67). In contrast,

administration of remdesivir to SARS-CoV-2-infected intestinal

epithelial cells resulted in reduced induction of the IL-1b, IL-6,
CXCL10, and CCL5 genes (62).

Another protein inversely correlated with serum IL-6 levels

during SARS-CoV-2 infection is soluble mucosal addressin cell

adhesion molecule (sMAdCAM), which is expressed by gut

endothelial venules to induce migration of immune cells into the

intestine (68, 69). At the same time, sMAdCAM levels were lower in

COVID-19 patients compared to healthy controls or convalescent

subjects, suggesting that normalization of sMAdCAM levels may

signify the restoration of mucosal homeostasis and highlighting its

role as an important systemic and gut homing parameter that needs

to be monitored for better therapeutic guidance and prophylactic

intervention in COVID-19 (68, 69).

Disruption of antimicrobial peptide production
Regarding the antiviral response of the gastrointestinal tract,

Paneth cells and neutrophils are also capable of producing the

immunomodulatory proteins, defensins. Defensins are important

members of the antimicrobial peptide (AMP) family with diverse

immunoregulatory functions and a broad spectrum of antimicrobial

and antiviral effects. These proteins act as chemoattractants and

activators for immature DCs, monocytes, and naive T cells (70, 71).

During SARS-CoV-2 infection, a-defensin 5, a lectin-like protein

that can recognize lipids and glycoproteins, shields the ACE2

receptor and prevents SARS-CoV-2 binding (72). Although

SARS-CoV-2 has a higher affinity for the ACE2 receptor than a-
defensin 5 (72), intestinal a-defensin 5 has a protective effect

because it is highly abundant in the digestive tract. Consequently,

a-defensin 5 levels are elevated before infection (72). Indeed,

administration of a-defensin 5 to a cell line model after infection

resulted in no antiviral response, whereas pretreatment with a-
defensin 5 showed a beneficial effect (73). Of note, b-defensin 1
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production is increased in later stages of SARS-CoV-2 infection due

to intestinal hypoxia mediated by hypoxia-inducible factor 1a (74).

Dysregulation of secretory IgA production
The immunologic barrier of the gut is also strengthened by

secretory immunoglobulin A (sIgA) produced by mucosal

lymphoid tissues, including gut-associated lymphoid tissue

(GALT). Dimeric sIgAs are the predominant mucosal antibodies

and form an essential component of the immunologic barrier (75).

Commensal microorganisms play a central role in controlling IgA

class switching and effective antibody production. Indeed, the

number of functional IgA-secreting B cells is drastically reduced

in germ-free animal models (76, 77). The predominance of sIgA in

the intestine is likely another explanation for the attenuated gut

inflammation compared with lung tissue; IgA dimers are able to

inactivate toxins or pathogens without inducing inflammation

because they cannot bind and activate complement (78). An in

vitro study examining the neutralizing ability of IgG and IgA from B

cells of COVID-19 convalescent subjects found that dimeric IgA

was much more effective than IgA monomers or IgG in neutralizing

SARS-CoV-2 (79).
SARS-CoV-2-mediated gut
microbiome and immunological
changes

The constant interaction of immune cells with the gut

microbiome maintains the balance between tolerance to beneficial

bacteria and eradication of pathogenic species (80). A complex,

dynamic, and bilateral interaction between the gut microbiome and

COVID-19 has been described (81). The gut microbiome of patients

with SARS-CoV-2 infection exhibits significant alterations, possibly

due to a severe systemic inflammatory response. The mechanisms

underlying COVID-19-related dysbiosis are still unclear. However,

interactions between the ACE2 receptor and SARS-CoV-2 have

been associated with alterations in the composition of the gut

microbiota by impairing the secretion AMPs. The function of the

amino acid transporter B0AT1, which mediates intestinal uptake of

tryptophan, is dependent on the ACE2 pathway (82). Tryptophan

modulates the production of AMPs via the mammalian target of

rapamycin (mTOR) pathway (83). Therefore, the deficiency of

tryptophan caused by ACE-2 blockade may decrease the

production of AMPs and disrupt the intraluminal microbial

species. Commensal bacteria also play a critical role in mucosal

homeostasis by modulating the expression of ACE2 in the gut (84).

Secretion of proinflammatory cytokines, particularly TNF-a,
during respiratory tract infections has a dynamic anorexigenic

effect via hypothalamic activity. The decrease in fiber and caloric

intake disrupts the composition of the gut microbiota and the

synthesis of its metabolites, which in turn strongly influence the

transcriptional “training” of innate immune cells (85).

A recent meta-analysis detailed the changes in the gut

microbiota during SARS-CoV-2 infection (11). At the phylum
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level, dysbiosis is characterized by a reduction in the ratio of

Firmicutes to Bacteroidetes. In particular, COVID-19 is associated

with fewer butyrate-producing bacterial species, including

Faecalibacterium and Roseburia (11, 15, 86). The genus Roseburia

is closely associated with colon motility and mucosal tissue integrity

and has a crucial anti-inflammatory effect by regulating IL-10

synthesis (87). Several other beneficial genera, including

Eubacterium, Alistipes, and Bifidobacterium, are also reduced in

COVID-19 patients (11). Bifidobacterium strains mediate robust

antimicrobial and antiviral activity, which is balanced by promotion

of Treg-mediated responses and induction of tolerogenic DC

phenotypes (88).

Alterations in the gut microbiome have also been closely

associated with clinical severity of COVID-19 in several studies,

suggesting a prognostic role in such patients (12–24). Bacterial

genera with significant prognostic value included Eubacterium,

Ruminococcus, Faecalibacterium, Bacteroides, Lactobacillus,

Clostridium, Roseburia, and Bifidobacterium (12–24). An increase
Frontiers in Immunology 05
in the dominant genus Enterococcus and a decrease in the families

Ruminococcaceae and Lachnospiraceae have been reported in severe

COVID-19 cases admitted to the intensive care unit (21).

The changes in the gut microbiota in patients with COVID-19

should be considered as a dynamic process (81). Emerging evidence

suggests that the regulatory functions of the gut microbiota

effectively support recovery from SARS-CoV-2 infection. The

main features of intestinal immune barrier disruption during

SARS-CoV-2 infection are shown in Figure 1.
The prognostic potential of gut
immunologic barrier alterations in
SARS-CoV-2 infection

SARS-CoV-2 affects multiple systems, including the

gastrointestinal tract and gut barrier integrity. COVID-19 is
FIGURE 1

Key features of intestinal immune barrier disruption during SARS-CoV-2 infection. SARS-CoV-2 infection is associated with profound alterations in
the intestinal microflora, manifested by decreased species diversity, depletion of symbiotic microorganisms, and prevalence of pathogenic species.
Signals and metabolites derived from the intestinal flora, such as short-chain fatty acids (SCFAs), play an important role in controlling mucosal
immunity by promoting T regulatory cell (Treg) responses and the activity of tolerogenic dendritic cells (DCs). This immunoregulatory environment,
rich in anti-inflammatory mediators (IL-10, TGF-b), is significantly impaired by SARS-CoV-2. As a result, B cell metabolism and maturation are
severely impaired, leading to exhaustion of effective plasma cells that produce secretory dimeric immunoglobulin A (sIgA), which is essential for viral
containment. The proliferation of SARS-CoV-2 is also facilitated by its ability to evade recognition by the immune system by interfering with type I
and type III IFN signaling. SARS-CoV-2 exerts either direct cytopathic effects on intestinal epithelial cells (IECs) expressing ACE2 and TMPRSS2
receptors or indirect immune-mediated injury. During COVID-19, the expression of several antimicrobial peptides, including defensins, is
dysregulated, which increases the infectivity of SARS-CoV-2. In addition, recruitment of intraepithelial lymphocytes (IELs) accelerates IEC apoptosis.
The release of damage-associated molecular patterns (DAMPs) due to cell injury and the influx of pathogen-associated molecular patterns (PAMPs)
as a result of increased gut permeability lead to immune activation. Macrophages/monocytes, neutrophils, and other cells of the innate immune
system secrete large amounts of proinflammatory mediators (IL-1b, IL-6, TNF-a, ROS) and chemokines (CCL5, CXCL10) that cause recruitment of
additional immune cells and prime effector T cells. In parallel, disruption of the intestinal barrier facilitates bacterial translocation, endotoxemia, and
dissemination of other gut-derived stimuli that contribute to systemic hyperinflammatory responses and cytokine release syndrome, leading to
severe COVID-19.
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associated with multifaceted disruption of the various components of

the mucosal immune barrier, and the extent of these changes reflects

the severity of the underlying disease. In particular, SARS-CoV-2 is

able to evade the innate immune response by disrupting interferon

signaling. The expression pattern of several cytokines in the mucosal

compartment is severely affected, essentially leading to the recruitment

and activation of additional immune cells that support this

proinflammatory milieu. In addition, the production and release of

antimicrobial peptides and secretory IgA, which are important

regulators of intestinal immune integrity, are impaired. As a result,

profound alterations of the gut microbiome and metabolome occur,

characterized by depletion of symbiotic species and dominance of

pathogenic microorganisms. The main features of SARS-CoV-2-

induced dysregulation of the intestinal immune barrier are shown

in Figure 1.
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The prognostic value of various parameters related to the gut

immunological barrier was evaluated. A strong association was

described between certain prognostic factors and disease severity,

poor prognosis, hospitalization, or mortality due to SARS-CoV-2.

Table 1 summarizes important parameters related to the gut

immunologic barrier that have been studied as prognostic

markers for severity and progression of SARS-CoV-2 infection. It

is unlikely that a single index of gut immunologic barrier function

can independently predict progression of COVID-19. Alternatively,

the development and validation of a prognostic scoring system that

incorporates the most robust immunologic parameters and

combines them with additional epidemiologic, clinical, and

laboratory data may provide the best results. Further prospective

studies with larger numbers of participants are warranted to

identify markers of gut barrier dysfunction that could help
TABLE 1 Key gut immunologic barrier parameters that serve as prognostic markers for severity of SARS-CoV-2 infection and poor prognosis.

Parameter
studied Endpoints of the study Results of the study Refs.

Serum
calprotectin

Identification of the association between serum calprotectin, neutrophil
secretory proteins, and other inflammatory mediators with COVID-19
severity and outcome.

Correlation between serum calprotectin levels and disease severity.
Significant increase in serum calprotectin along with worsening of
clinical symptoms of the disease.

(31)

Fecal
calprotectin

Identification of an association between fecal calprotectin and the
severity of pulmonary manifestations caused by COVID-19.

Significant association between COVID-19 pneumonia and high
levels of fecal calprotectin.
Higher calprotectin levels in women compared with men,
suggesting that men with high calprotectin have a worse
prognosis.

(26)

sMAdCAM
Cross-sectional and longitudinal study of sMAdCAM at different
stages of disease progression after SARS-CoV-2 infection.

sMAdCAM is considered a possible integrated marker of
inflammation and homeostatic immune migration.
Association of sMAdCAM with COVID-19 disease progression
and generation of potentially neutralizing antibody responses
against SARS-CoV-2.

(68)

Autoantibodies
to type I IFNs

Evaluation of immunological and clinical characteristics of APS-1
patients during the course of SARS-CoV-2 infection.

Pre-existing neutralizing autoantibodies to type I IFNs pose an
increased risk of life-threatening COVID-19 pneumonia at any
age.

(51)

High-throughput autoantibody screening for autoantibodies against
2,770 extracellular and secreted proteins in SARS-CoV-2- infected
individuals.

Pathologic role of exoproteome-targeted autoantibodies in SARS-
CoV-2 infection and differential impact on immune function and
clinical course.

(54)

Evaluation of the prevalence of IFN I autoantibodies and their
association with clinical disease progression.

In the presence of IFN-I autoantibodies, there is an increased risk
of developing severe COVID-19.

(57)

Type I IFN
variants

Assessment of the role of monogenic inborn errors in the development
of life-threatening COVID-19.

Inborn errors of IRF7- and TLR3-dependent type I IFN immunity
cause life-threatening COVID-19 pneumonia in patients without
prior severe infection.

(59)

Cytokines in
stool samples

Evaluation of cytokines, inflammatory markers, viral RNA,
microbiome composition, and antibody responses in stool samples
from hospitalized COVID-19 patients.

Increased fecal levels of IL-8 and lower fecal levels of IL-10 in
COVID-19 hospitalized patients.
Fecal IL-23 is higher in more severe COVID-19.
Intestinal virus-specific IgA responses are associated with more
severe disease.

(63)

Secretory IgA
antibodies

Characterization of IgA response to SARS-CoV-2 after COVID-19
diagnosis.

Responses against dimeric IgA may be a valuable tool for
protection against SARS-CoV-2 and for vaccine efficacy.

(79)

Gut microbiota
Association of intestinal microflora alterations with COVID-19 and its
severity.

Poor prognosis is associated with:
↑Bacteroides, ↑Parabacteroides, ↑Clostridium, ↑Bifidobacterium,
↑Ruminococcus, ↑Campylobacter, ↑Rothia, ↑Enterococcus, and
↑Aspergillus spp.
↓Roseburia, ↓Eubacterium, ↓Lachnospira, ↓Faecalibacterium, and
↓Firmicutes/Bacteroidetes ratio.

(11)
frontie
I-FABP, intestinal fatty-acid binding protein; sMAdCAM, soluble mucosal addressin cell adhesion molecule; IFN, interferon; APS-1, autoimmune polyendocrine syndrome type 1; IRF7, IFN
regulatory factor 7, toll-like receptor 3, TLR3; IgA, immunoglobulin A. Upward arrows are used to indicate an increase, and downward arrows indicate a decrease.
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identify high-risk COVID-19 patients who require early or

enhanced support.
Concluding remarks

SARS-CoV-2 infection is associated with significant disruption

of intestinal immunological homeostasis and impairs mucosal

immune cell function and production of signaling molecules.

SARS-CoV-2-induced gut dysbiosis could drive many of these

immunological changes through commensal-derived signals and

metabolites that maintain a continuous dialog between the mucosal

immune system and the gut microflora. Conversely, dysregulation

of intestinal immune cells and overproduction of proinflammatory

cytokines could compromise the integrity of intestinal epithelial

cells (apoptosis induction) and their connections (disruption of

tight junctions), further promoting gut barrier dysfunction. These

alterations contribute to the breakdown of intestinal barrier

integrity, which may subsequently lead to translocation of

microbes and endotoxins from the intestinal lumen into the

systemic circulation, promoting a hyperinflammatory response

associated with distant organ dysfunction and the development of

a “viral sepsis syndrome” (89). The importance of gut immunologic

barrier alterations in COVID-19 is underscored by several studies

demonstrating their prognostic potential. Features of intestinal

immune barrier failure occur early in the course of infection and

correlate well with the severity of COVID-19, suggesting that

immune barrier dysfunction is not only a bystander but an active

participant in fueling exuberant immune responses and systemic

inflammation. Further clinical studies are needed to explore the role

of appropriate biomarker-based immunologic therapies in

improving gut barrier function, which could lead to an expansion

of therapeutic options against COVID-19.
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