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Oscillatory processes at all spatial scales and on all frequencies underpin brain
function. Electrophysiological Source Imaging (ESI) is the data-driven brain
imaging modality that provides the inverse solutions to the source processes of
the EEG, MEG, or ECoG data. This study aimed to carry out an ESI of the source
cross-spectrum while controlling common distortions of the estimates. As with
all ESI-related problems under realistic settings, the main obstacle we faced is
a severely ill-conditioned and high-dimensional inverse problem. Therefore, we
opted for Bayesian inverse solutions that posited a priori probabilities on the
source process. Indeed, rigorously specifying both the likelihoods and a priori

probabilities of the problem leads to the proper Bayesian inverse problem of
cross-spectral matrices. These inverse solutions are our formal definition for
cross-spectral ESI (cESI), which requires a priori of the source cross-spectrum to
counter the severe ill-condition and high-dimensionality of matrices. However,
inverse solutions for this problem were NP-hard to tackle or approximated within
iterations with bad-conditioned matrices in the standard ESI setup. We introduce
cESI with a joint a priori probability upon the source cross-spectrum to avoid
these problems. cESI inverse solutions are low-dimensional ones for the set of
random vector instances and not random matrices. We achieved cESI inverse
solutions through the variational approximations viaour Spectral Structured Sparse
Bayesian Learning (ssSBL) algorithmhttps://github.com/CCC-members/Spectral-
Structured-Sparse-Bayesian-Learning. We compared low-density EEG (10–20
system) ssSBL inverse solutions with reference cESIs for two experiments: (a)
high-density MEG that were used to simulate EEG and (b) high-density macaque
ECoG that were recorded simultaneously with EEG. The ssSBL resulted in two
orders of magnitude with less distortion than the state-of-the-art ESI methods.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.978527
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.978527&domain=pdf&date_stamp=2023-03-15
mailto:pedro.valdes@neuroinformatics-collaboratory.org
mailto:pedro.valdes@neuroinformatics-collaboratory.org
https://doi.org/10.3389/fnins.2023.978527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.978527/full
https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning
https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Paz-Linares et al. 10.3389/fnins.2023.978527

Our cESI toolbox, including the ssSBL method, is available at https://github.com/
CCC-members/BC-VARETA_Toolbox.
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Introduction

Brain function is embodied in large-scale dynamic networks
underlying all behavior and cognition. The natural modes of these
networks are oscillations at functionally specific frequencies (Engel
et al., 2001; Varela et al., 2001). Direct (invasive) observations
of brain oscillations are increasingly more fine-grained and
informative (Buzsáki et al., 2013; Frauscher et al., 2018). However,
they cannot be feasibly examined in the whole brain in vivo human
studies. Hence, considerable effort is dedicated to developing
indirect (non-invasive) imaging methods to reveal the brain’s
oscillatory architecture with fine-grained time resolution. Notably,
such an imaging modality should reveal the two different but
interrelated aspects of networks: (a) the activity of each dynamical
unit (node) and (b) their connectivity.

Electrophysiological Source Imaging (ESI) is a prime candidate
for mapping brain network activity and connectivity. ESI is
predicated upon the fact that the Electro-encephalogram (EEG),
Magneto-encephalogram (MEG), or Electrocorticogram (ECoG) are
generated by the electrical currents of macroscopic neural masses
(nodes) resulting from the local mean field of post-synaptic
potential activity (Jirsa and Haken, 1996, 1997; Jirsa, 2004; Deco
et al., 2008; Friston, 2009; Daunizeau et al., 2010, 2011; Moran et al.,
2013).

In addition, ESI has been used in attempts to estimate
these currents, also known as source activity, from their
electrophysiological observables. For a neural mass, the current
is directly proportional to the mean field activity (Valdes-
Sosa et al., 2009; Rosa et al., 2010). In turn, each neural
mass is the collection of neurons to the extent of a few
millimeters such that a mean-field observable (Freeman, 1975;
Vinck and Perrenoud, 2019) is the “source” of the observations.
In this study, we attempted the most general formulation of
the problem as a reference for future work while providing
concrete examples.

In principle, source activity in a network is modeled as a strictly
dynamic random field ι (̺ , ς) over a continuous spatiotemporal
manifold with ̺ ∈ R3 (the parts of the brain that generate
observations) and continuous time ς ∈ R. In practice, the random
field ι (̺ , ς)must be discretized at spatial points ̺g; g = 1, · · · ,G,
and at discrete time points ς t = t △ ς; t = −T, · · · ,T. In
this scenario △ς is the sampling period. Thus, we focused on the
vector time series ι (t), defined as the vector function with entries
ι
(

g , t
)

= ι
(

̺g , ς t

)

. The (multi-channel) electro-physiological

data is the vector time series v (t) with entries v (e , t) for each
sensor, e = 1 · · ·E that arises from the discretization of v (̺ , ς),
where the electromagnetic field was produced by ι (̺ , ς ).

The data v (t) from its latent source activity ι (t) is presented in
the following forward model (Eq. 1).

v (t) = Lvιι (t)+ ξ (t) (1)

Where Lvι is the real-valued lead field matrix or forward
operator that projects sources ι (t) to forward the data v (t),
and ξ (t) is the time series of instrumental noise assumed to be
independent of the source activity ι (t). The forward operator
(lead field) Lvι is linear and stationary by definition, derived from
the discretization of a quasi-static electromagnetic forward model
(Hämäläinen et al., 1993; Riera and Fuentes, 1998; Hallez et al.,
2007; Lei et al., 2011; Piastra et al., 2020). For operators, we used
suffixes that indicate the operator’s codomain and domain.

ESI can be defined as the generally non-linear inverse solution
(Eq. 2) (Nunez, 1974; Hämäläinen and Ilmoniemi, 1994; Nunez
et al., 1994; Baillet et al., 2001; Nunez and Srinivasan, 2006; Burle
et al., 2015) via the optimal inverse operator that we denote with a
hat Ŵιv. An inverse operator Ŵιv projects the data v (t) to explain
approximately its source and produce its estimator ι̂ (t ).

ι̂ (t)← Ŵιv (v (t)) (2)

Optimizing Wιv from the data solves an inverse problem, Eq. (1),
that is not only ill-posed in the sense of Hadamard (Hadamard and
Morse, 1953) with degeneracy in a (G − S)-dimensional space but
also severely ill-conditioned and high dimensional (with G≫ E).
Overcoming these challenges to obtain acceptable inverse solutions
has been the subject of much research in specific optimization
methods for Wιv which was well-summarized in the study of
Knösche and Haueisen (2022).

Although we have defined ESI in terms of time domain signals,
it is well-known that brain activity is oscillatory at all scales, from
the local field potentials at the neuronal level (Freeman, 1975; Vinck
and Perrenoud, 2019) to the EEG, MEG, or ECoG (Niedermeyer
and da Silva, 2005; Le Van Quyen and Bragin, 2007; Frauscher et al.,
2018). In tailoring ESI for oscillatory activity, a natural framework
is that of the frequency domain ι

(

f
)

, a random vector representing
the (discrete) Fourier transform of vector time series ι (t), and
comprising complex-valued entries ι

(

g , f
)

for each source g =

1, · · · ,G and frequency f = −T, · · · ,T. Considering that we may
compute the physical frequency as νf = f △ ν for a spectral period
△ν = 1

((2 T + 1) △ ς)
where (2 T + 1)△ς is the Nyquist frequency,

the corresponding frequency domain data term is v
(

f
)

.
Then, the equivalent expressions to the previous Eqs. (1) and

(2) in the frequency domain are Eq. (3), the corresponding inverse
problem for the Fourier transform ι

(

f
)

, and its inverse solution
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leading to the estimator ι̂
(

f
)

. Considering that solving an inverse
problem in the frequency domain should be (ideally) optimizing
the inverse operator Ŵιv Eq. (3) from the data Fourier transform
v
(

f
)

(and not from the process v (t )).

v
(

f
)

= Lvιι
(

f
)

+ ξ
(

f
)

ι̂
(

f
)

← Ŵιv

(

v
(

f
)) (3)

Frequency domain descriptions of the electrophysiological
observations and their inverse solutions (Eqs. 1–3) have been used
fruitfully to probe behavior and cognition (Valdés et al., 1992; Engel
et al., 2001; Varela et al., 2001; Le Van Quyen and Bragin, 2007;
Marzetti et al., 2008; Valdes-Sosa et al., 2009; Brookes et al., 2011a,b;
Faes and Nollo, 2011; Faes et al., 2012, 2017; Friston et al., 2012;
Hipp et al., 2012; Colclough et al., 2015;Wens et al., 2015;Mahjoory
et al., 2017; Vidaurre et al., 2018a,b; Tewarie et al., 2019; Nolte et al.,
2020).

Our concern, then, is with frequency domain ESI in Eq. (3),
our primary target being the source cross-spectral density matrix or
source cross-spectrum 6ιι

(

f
)

=
〈

ι
(

f
)

ι†
(

f
)〉

, with the expected
value over the sample space of the discrete Fourier transform ι

(

f
)

(Valdés et al., 1992; Engel et al., 2001; Varela et al., 2001; Nunez
and Srinivasan, 2006; Hipp et al., 2012; Vidaurre et al., 2018b). The
corresponding data cross-spectrum is 6vv

(

f
)

=
〈

v
(

f
)

v
†

(

f
)〉

.
In practice, this later quantity must be substituted by its estimator
6vv

(

f
)

Eq. (4).

6vv

(

f
)

=
〈

vm

(

f
)

v
†
m

(

f
)

; M
〉

=
1

M

M
∑

m=1

vm

(

f
)

v
†
m

(

f
)

(4)

6vv

(

f
)

is denoted with a different hat type since the expectation
is for a finite number of instances M with an index m = 1 · · ·M.
Toward this estimation, we followed the standard practice of
segmenting the data time series v (t) into segments (vm (t) ; ∀m).
Thus, we worked with instances

(

vm

(

f
)

; ∀m
)

of the discrete
Fourier transform applied to realizations or observations for
these segments.

The frequency domain inverse problem and the inverse
solution for the source cross-spectrum 6ιι

(

f
)

may be stated as Eq.
(5) (He et al., 2019), valid under the condition of independence
between the source process ι (t) and the noise process ξ (t) in the
previous forward model (Eq. 1).

6vv

(

f
)

= Lvι6ιι

(

f
)

Lιv +6ξξ

(

f
)

6̂ιι

(

f
)

← Ŵιv

(

6vv

(

f
)) (5)

The pursuit of the cross-spectrum 6ιι

(

f
)

is rewarding since
it completely specifies the multivariate linear properties of any
stochastically driven system, be it linear or non-linear (Brillinger,
2001, 2012), though the latter requires additional higher-order
kernels for a complete description (Brillinger, 1965; Brillinger and
Rosenblatt, 1967). We used the asymptotic stochastic properties
of the discrete Fourier transform to introduce these developments
(Section Asymptotic probability theory of the Fourier transform
and cross-spectrum).

Cross-spectral diagonal elements 6ιι

(

g , g , f
)

have intuitive
interpretations: the variances σ 2

ιι

(

g , f
)

(σ 2
ιι

(

f
)

= diag
(

6ιι

(

f
))

)
are the spectra of source activity, the Cortical Spectral Topography

(CST). Off-diagonal elements 6ιι

(

g , g ′, f
)

are the cross-spectra
reflecting functional connectivity. Optimal inverse operators Ŵιv

for the cross-spectrum 6ιι

(

f
)

Eq. (5) is a novel form of
electrophysiological source imaging: cross-spectral ESI (cESI).

From expressions (Eqs. 1–5), the time and frequency domain
variants of the inverse problem, it is evident that cESI, the inverse
solution 6̂ιι

(

f
)

of the source cross-spectrum 6ιι

(

f
)

, may be
obtained from three different types of primary information: v (t),
or v

(

f
)

, or 6vv

(

f
)

. Initially, it might seem that an inverse solution
6̂ιι

(

f
)

from any of these data types would be equivalent. However,
as shown further into the study, each data type requires optimizing
its specific inverse operator Ŵιv, thus defining different estimation
“routes” to cross-spectrum 6ιι

(

f
)

.
We describe in detail the theory, benefits, and problems of

each route, in terms of the forward operator Lvι (Section Forward
projection by the lead field linear and stationary operator), and the
inverse operator Wιv (Section Bayesian (MAP) inverse operators.
Quasilinear (F-invariant) approximation).

In order to explore these routes in the following sections
(Sections Bayesian MAP1 inverse operators. MNE, eLORETA, and
LCMV as particular cases and Data used for the validation), we
need to select an inverse solution framework, of which there are
many potentially valuable approaches (Knösche and Haueisen,
2022). We adopted the Bayesian maximum a posteriori (MAP)
probability approach (MacKay, 2003). The MAPs (for each route)
are derived from finding the latent variables X that maximize the
posterior probability q (X |Y)(Eq. 6).

q (X |Y) ∝ p (Y|X ) p (X ) (6)

Where p (Y|X ) is the likelihood of the data Y conditional on
the latent variable X . In our context, Y can corresponding to be
v (t), or v

(

f
)

, or 6vv

(

f
)

, and X can be corresponding to ι (t), or
ι
(

f
)

, or 6ιι

(

f
)

(Grave de Peralta Menendez et al., 2004; Friston
et al., 2006; Mattout et al., 2006; Friston K. J. et al., 2008; Wipf
and Nagarajan, 2009). The term p (X ) is the respective a priori

probability upon the latent variable ι (t), or ι
(

f
)

, or 6ιι

(

f
)

.
As can be observed in the following section (Section Data

used for the validation), the third route inverse solution (Eq. 5)
has desirable properties for cESI. However, if not impossible in
a realistic cESI setup, such inverse solutions are N-P hard and
therefore require Approximated Bayesian Computation (ABC)
(Csilléry et al., 2010). This issue has been discussed in detail in the
Bayesian literature (Dempster et al., 1977; Liu and Rubin, 1994;
Daunizeau and Friston, 2007; Friston et al., 2007; Nummenmaa
et al., 2007; Friston K. J. et al., 2008; Paz-Linares et al., 2018).

In this study, we took a more practical path. Rather than
attempting to use complicated ABCs to obtain more general
solutions, the cESI rationale we focused on is to restrict Bayesian
inverse operators Wιv in Eqs. (1–5) within the “quasilinear” class
Wιv
∼= Tιv. Quasilinear inverse operators are also known in a more

general context as the linear proximal operators or as linear back
projectors that solve non-linear optimization or inverse problems
(Kaplan and Tichatschke, 1998; Piotrowski and Yamada, 2008;
Gramfort et al., 2012; Tirer and Giryes, 2020).

Here, quasilinear inverse operator Tvι, which holds the
same linearity attribute as the forward operator Lvι, produced
cESI that preserved the amplitude and phase information in
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the frequency domain (Mantini et al., 2007; Marzetti et al.,
2008; Brookes et al., 2011b; Hipp et al., 2012; Lopes da
Silva, 2013; He et al., 2019; Nolte et al., 2020). That is,
we ensured that Tvι possesses the attribute of what we
call “F-invariance” for essential properties (Brillinger, 2001,
2012).

An immediate consequence of taking Wιv
∼= Tιv, a

quasilinear approximation of the inverse operator in the
third cESI route (Eq. 5), is the following representation
of source cross-spectrum 6ιι

(

f
)

∼= 6ιι

(

f
)

(Eq. 7). Here,
we considered 6ιι

(

f
)

to be calculated from the set of
random instances

(

ιm
(

f
)

; ∀m
)

of the latent vector process
ι
(

f
)

.

6ιι

(

f
)

=
〈

ιm
(

f
)

ι†m
(

f
)

;M
〉

=
1

M

M
∑

m=1

ιm
(

f
)

ι†m
(

f
)

(7)

Once 6ιι

(

f
)

∼= 6ιι

(

f
)

was assumed, the ABCs were simplified
dramatically since a MAP for the matrix 6ιι

(

f
)

(Eq. 7) turns into
a joint-MAP (Section Validation rationale) for the random vectors
(

ιm
(

f
)

; ∀m
)

that are implicit in 6ιι

(

f
)

(Hsiao et al., 1998, 2002;
Yeredor, 2000; Davis et al., 2001; Auranen et al., 2005; Wipf and
Nagarajan, 2009; Chen et al., 2011).

We implemenedt the joint-MAP via Spectral Structured Sparse
Bayesian Learning (ssSBL), the type of ABC developed in Section
Measures of distortion. As shown under realistic inverse problem
settings (Section Results), the third cESI route (Eq. 5) implemented
via the ssSBL approach leads to less distorted estimates than
the traditional methods for the first and second cESI routes
(Eqs. 1–3). To judge distortions, we employed the well-known
ESI methods as a baseline: Exact Low-Resolution Electromagnetic

Tomographic Analysis (ELORETA) (Pascual-Marqui et al., 2006)
and Linearly Constrained Minimum Variance (LCMV) (Van Veen
et al., 1997).

The theoretical framework allowed one to consider the
fundamental problem of ESI distortions. Indeed, significant
distortions are expected with any state-of-the-art inverse
solutions in a realistic ESI setup. The distortions, which we
explore later, are localization error and leakage (blurring). These
distortions are pervasive comparing simulated topographic
vectors, say ι (t) or ι

(

f
)

, vs. their inverse solution ι̂ (t) or
ι̂
(

f
)

(Kobayashi et al., 2003; Grova et al., 2008; Schoffelen
and Gross, 2009; Haufe et al., 2013; Burle et al., 2015;
Colclough et al., 2015; Bradley et al., 2016; Mahjoory et al.,
2017; Stokes and Purdon, 2017; He et al., 2018, 2019;
Palva et al., 2018; Haufe and Ewald, 2019; Marinazzo et al.,
2019).

As we will show in Section Discussion, the topographic
distortions of the inverse solutions for a random vector ι (t) or
ι
(

f
)

can reach unacceptable levels for second-order statistics,
such as the sample estimator for the cross-spectrum 6 ι̂ι̂

(

f
)

calculated from an inverse solution ι̂ (t) or ι̂
(

f
)

. Minimizing
CST distortions (for the estimator of the spectrum σ 2

ιι

(

f
)

)
benefits the overall cross-spectral estimation (for 6ιι

(

f
)

).
Our results suggest that that ssSBL significantly reduces
these distortions.

Standard cESI theory

Asymptotic probability theory of the
Fourier transform and cross-spectrum

Thematerial in this section (withminor differences in notation)
is described in greater detail in Brillinger (2012). For an exhaustive
definition of terms, refer to Supplementary material (SD, Section
Introduction). Our primary interest will be in frequency domain
quantities. Let x (t) be an R-dimensional vector time series. We
worked with the following definitions:

• The vector stochastic process x
(

f
)

(Eq. 8) is defined in the
discrete frequency domain νf = f △ ν with f = −T, · · · ,T, as
the discrete Fourier transform of the vector time series x (t ).

x
(

f
)

=

T
∑

t=−T

x (t) e−i2π(f △ ν)(t △ ς) (8)

• The cross-spectral density matrix or cross-spectrum 6xx (ν)

(Eq. 9) was defined in the frequency domain ν as the Fourier
transform of the auto-covariance matrix 6xx (τ ).

6xx (ν) =

+∞
∑

τ=−∞

6xx (τ ) e−i2πν(τ △ ς) (9)

Here, the auto-covariance 6xx (τ ) =
〈

x (t) x
† (t + τ)

〉

depends on the time-lag τ and does not vary with time t, thus being
second-order stationary.Wewill furthermore assume (for technical
reasons) that x (t) is a strictly stationary vector time series where all
moments are also translation invariants. We also assumed that the
strong mixing condition holds. This condition was due to the rapid
decrease in the magnitude of the autocovariance 6xx (τ ), and all
higher-order moments as the time-lag τ increases.

A fundamental result on which we based our work is Theorem
4.1.1 of Brillinger (2001), which can be understood as the
equivalent for Fourier coefficients of the central limit theorem
under stationarity and strongmixing conditions (Rosenblatt, 1956).
In our notation, this theorem states:

“Assume that the number of time points in the discrete Fourier
transform (Eq. 8), goes to the infinity (T → +∞), and let the
sampling period go to zero (△ς → 0+) so that the spectral
resolution △ν = 1

((2 T + 1) △ ς)
= constant holds constant. Then,

it holds that x
(

f
)

is asymptotically independent for all f and
converges in probability to the circularly symmetric multivariate

complex-valued Gaussian probability density (Eq. 10). Where the
Hermitian covariance matrix 6xx

(

f
)

is the cross-spectrum (Eq. 9)
at the frequencies νf = f △ ν with f = − T, · · · ,T.”

NC
(

x
(

f
)∣

∣0,6xx

(

f
))

=
1

∣

∣π 6xx

(

f
)∣

∣

e−x
†(f )6−1xx (f )x(f ) (10)

We emphasize that this Gaussian distribution asymptotic
distribution not only holds for x

(

f
)

but also for time-varying
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estimators such as the time-windowed discrete Fourier transform
or the Hilbert transform x

(

t , f
)

(Bruns, 2004). The latter has been
widely used in the literature (Faes and Nollo, 2011; Friston et al.,
2012; Nolte et al., 2020).

It is important to note that Gaussianity might not be valid
for the original time series x (t) or even one of its band-filtered
versions, as many assume in the literature (Grave de Peralta
Menendez et al., 2004; Friston et al., 2006; Mattout et al., 2006;
Friston K. J. et al., 2008; Wipf and Nagarajan, 2009; Paz-Linares
et al., 2017). In fact, even in the case of non-Gaussian, non-linear
time series Brillinger’s theorem is valid as long as stationarity and
strong mixing hold. This validity does not imply that the spectral
density matrix 6xx

(

f
)

completely characterizes the non-linear or
non-Gaussian system. Cumulant information of orders higher than
two may be necessary for a complete system description (Brillinger,
1965; Brillinger and Rosenblatt, 1967).

Brillinger’s theorem leads to the probability density of any
sampled estimator of the cross-spectrum. In particular, it applies to

6xx

(

f
)

=
〈

xm

(

f
)

x
†
m

(

f
)

; M
〉

the sampled estimator for Fourier

transform instances
(

xm

(

f
)

; ∀m
)

with sample sizeM. Here, these
instances

(

xm

(

f
)

; ∀m
)

represent the discrete Fourier transform
applied to sample realizations (xm (t) ; ∀m) obtained from time
segments of the observations. Then, it follows that a Hermitian
Wishart WC (Eq. 11), with R-dimensional scale matrix 6xx

(

f
)

(cross-spectrum), and degree of freedom M (with M > R), is the
probability density of the estimator 6xx

(

f
)

.

WC
(

6xx

(

f
)∣

∣6xx

(

f
)

,M
)

∝

∣

∣6xx

(

f
)∣

∣

M−R

∣

∣6xx

(

f
)∣

∣

M
e−Mtr

(

6−1xx (f )6xx(f )
)

(11)

Since we based our further developments on the assumption
of Gaussianity (Eqs. 10, 11), we carried out the statistical test for
the distribution of the discrete Fourier transform x

(

f
)

(Eq. 10)
with two examples of resting state sensor data: MEG data from the
Human Connectome Project (HCP) (Van Essen et al., 2013) and
Macaque ECoG data from the Neurotycho project (Nagasaka et al.,
2011). The outcome of this test for data did not allow us to reject
the hypothesis of Gaussianity, which then was also plausible for
the sources.

Forward projection by the lead field linear
and stationary operator

We emphasize that linearity and stationarity are essential
“conservative” attributes of the operators for our target (cESI). We
note, this is the reason why one can state all the forward “routes” in
terms of the same operator Lvι (Eq. 12). Preserving the Gaussianity
of the Fourier transform ι

(

f
)

is only possible under the linear
forward operator Lvι and subsequent linear or quasilinear inverse
operatorTιv (Marzetti et al., 2008; He et al., 2019; Nolte et al., 2020).

(route 1) v (t) = Lvιι (t)+ ξ (t)

(route 2) v
(

f
)

= Lvιι
(

f
)

+ ξ
(

f
)

(route 3) 6vv

(

f
)

= Lvι6ιι

(

f
)

Lιv +6ξξ

(

f
)

(12)

Furthermore, both attributes are crucial to avoid non-linear
warping and delays of the amplitude and phase information in the

frequency domain for cESI (Reid et al., 2019). Therefore, we define
operators with these properties for the frequency domain as “F-
invariant.” Though we restricted our attention later to F-invariant
operators Tιv, non-linear operators Wιv have been useful in other
contexts (Picton and Hillyard, 1974; Picton et al., 1974; Lopes da
Silva et al., 1991; Clark et al., 1994;Makeig et al., 1999, 2004;Makeig,
2002; Eichele et al., 2005; Harrison et al., 2008; Vega-Hernández
et al., 2008; Maurer and Dierks, 2012).

Noteworthily, distinguishing forward “routes” leads to variants
of the inverse problems or inverse operators Wιv for estimating
the specific latent variable ι (t), or ι

(

f
)

, or 6ιι

(

f
)

, as discussed
in the next section (Section Bayesian (MAP) inverse operators.
Quasilinear (F-invariant) approximation). Estimation of the cross-
spectrum 6ιι

(

f
)

, involves the challenging inverse problem of
the matrix equation (route 3) detailed in section (Section
Bayesian MAP1 inverse operators. MNE, eLORETA, and LCMV as
particular cases).

We currently illustrate the effects of the forward operator with
the topographic maps: Cortical Spectral Topography (CST), a map
of the cortical spectrum σ 2

ιι

(

f
)

= diag
(

6ιι

(

f
))

, and Sensor

Spectral Topography (SST), a map of the sensor spectrum σ 2
vv

(

f
)

=

diag
(

6vv

(

f
))

(Figure 1). On the left is a hypothetical CST, and on
the right is the corresponding SST. The inverse problem consists in
estimating the latent CST from observed SST.

Bayesian (MAP) inverse operators,
quasilinear (F-invariant) approximation

From the theory of inverse problems (Tarantola, 2005), onemay
seek inverse solutions for each of the latent variables in the routes
corresponding to ι (t), or ι

(

f
)

, or 6ιι

(

f
)

(Eq. 13) and Figure 2.
In each route, the theoretical inverse operator Ŵιv represents
the symbolic projection to the source space and these inverse
solutions. In turn, inverse operators are determined (analytically
or numerically) by data-driven methods that depend on the routes
from the data variable: v (t), or v

(

f
)

, or 6vv

(

f
)

, and the forward
operator Lvι.

(route 1) Ŵιv (v (t))

(route 2) ι̂
(

f
)

← Ŵιv

(

v
(

f
))

(route 3) 6̂ιι

(

f
)

← Ŵιv

(

6vv

(

f
))

(13)

Let any of the data variables be represented generically by
Y , and likewise, X represent all types of latent variables in Eq.
(13). A maximum a posteriori (MAP) Bayesian inverse operator
ŴXY (Eq. 14) achieves the maximum of a posteriori probability
q (X |Y). We define the a posteriori q (X |Y) as the conditional
probability determined from the likelihood p (Y|X ) and a priori

p (X ). Depending on q (X |Y) an inverse operator ŴXY can be
non-linear or linear, computed numerically or analytically, also
intractable or tractable.

X ← ŴXY (Y)

ŴXY = argmaxWXY

(

q
(

WXY (Y)
∣

∣Y
))

q (X |Y) ∝ p (Y|X ) p (X )

(14)

The essential role of the a priori p (X ) is to overcome the ill
condition of the likelihood p (Y|X ), in other words, to provide a
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FIGURE 1

An illustration of 6ιι (f) the source cross-spectrum of human cortical alpha activity and its EEG cross-spectrum 6vv (f). For this illustrations we
calculate the sampled estimates 6ιι(f) and 6vv (f) of which we represent the topographic projections: (a) Cortical Spectral Topography (CST)
σ 2
u (f) = 6u (f) and (b) Sensor Spectral Topography (SST) σ 2

vv
(f) = 6vv (f).

FIGURE 2

Inverse operators from (a1) the MEG/EEG/ECoG sensor signal vt (t), defined as 3D tensor with every trial and time-point observation, to (b3) the
source cross-spectrum at every frequency 6ιι (f), via the di�erent cross-spectral Electrophysiological Source Imaging (cESI) routes. Route 1
(a1→ b1→ b2→ b3) via an inverse operator Wιv in the time-domain first determines (b1) the source processes ι3(t) and then compute (b2) their
Fourier transform ι3(f). Route 2 (a1→ a2→ b2→ b3) first computes (a2) the data Fourier transform vm (f) and then via an inverse operator Wιv in the
frequency domain determines (b2) their source Fourier transform ιm(f). Route 3 (a1→ a2→ a3→ b3) first computes (a2) the data Fourier transform
v3 (f) and then determines (a3) the data cross-spectrum 6vv (f). We revindicate Route 3, which is via an inverse operator Wιv in the spectral-domain
with a priori probabilities upon the source cross-spectrum.
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unique solution to the inverse problem for the source variable X .
Here we formulate this a priori p (X ) as a Gibbs probability density
(Eq. 15).

p (X ) ∝ exp (H (X )|α) , (15)

Where α is the Gibbs temperature parameter. The Gibbs energy
functionH (X ) is commonly defined using the norms of vectors or
matrices (Petersen and Pedersen, 2008; Golub and Van Loan, 2013),
usually used to reflect empirical criteria about the structure and
density of the source variable X defined over the spatial, time, or
frequency domains. Assimilating these source qualities requires, in
addition, the empirically determined (data-driven) scale parameter
α, by some method from the data variable Y .

We emphasize that this BayesianMAP formalism is particularly
helpful in developing the cESI routes and our optimal inverse
solution in the following sections (Sections Bayesian MAP1 inverse
operators. MNE, eLORETA, and LCMV as particular cases and
Data used for the validation). In another context, Eqs. (14, 15) may
be completely equivalent to the classical Tikhonov regularization
(Tikhonov and Arsenin, 1977), taking a posteriori p (X |Y) under
the− log transformation. However, the Bayesian formalism is more
general than the Tikhonov regularization since the Gibbs energy
H (X ) (Eq. 15) describes the statistical properties of any physical
system (Landau and Lifshitz, 1980).

As stated before, we constrained all routes (Eq. 13) to the class
of quasilinear inverse operators Tιv (Eq. 16) (Baillet et al., 2001;
Grech et al., 2008). Moreover, the quasilinear class leads to the type
of F-invariant inverse solutions for the properties in Eqs. (10, 11),
and particularly the tractable cESI route 3.

(route 1) ι̂ (t)← Ŵιv (v (t)) ∼= T̂ιv (v (t)) v (t)

(route 2) ι̂
(

f
)

← Ŵιv

(

v
(

f
))

∼= T̂ιv

(

v
(

f
))

v
(

f
)

(route 3) 6̂ιι

(

f
)

← Ŵιv

(

6vv

(

f
))

∼= T̂ιv

(

6vv

(

f
))

6vv

(

f
)

T̂vι

(

6vv

(

f
))

(16)

The term “quasilinear” Tιv is applies to inverse operators
defined as non-linear matrix functions of the vector argument
v (t) or v

(

f
)

, or the matrix argument 6vv

(

f
)

. A matrix function
comprises entries Tιv

(

g , s
)

in the G × E cartesian product of
sources g = 1 · · ·G and sensors e = 1 · · ·E. These entries are
non-linear functions of the vector arguments Tιv

(

g , s , v (t)
)

, or
Tιv

(

g , s , v
(

f
))

, or the matrix argument Tιv

(

g , s , 6vv

(

f
) )

.

Bayesian MAP1 inverse operators. MNE,
eLORETA, and LCMV as particular cases

Inverse solutions for routes 1 and 2 (Eq. 13) are the traditional
activation Electrophysiological Source Imaging (aESI). We obtained
these inverse solutions as a first-type MAP (MAP1) (Eq. 17), which
estimates the source variable ι (t) in the time domain (Hämäläinen
and Ilmoniemi, 1994), or the source variable ι

(

f
)

in the frequency

domain (Salmelin and Hämäläinen, 1995).

(route 1) ι̂ (t)← Ŵιv (v (t))

Ŵιv = argmax
Wιv

q (Wιv (v (t))|v (t))

q (ι (t)|v (t)) ∝ q (v (t)|ι (t)) p (ι (t))

(route 2) ι̂
(

f
)

← Ŵιv

(

v
(

f
))

Ŵιv = argmaxWιvq
(

Wιv

(

v
(

f
))∣

∣v
(

f
))

q
(

ι
(

f
)∣

∣v
(

f
))

∝ p
(

v
(

f
)∣

∣ι
(

f
))

p
(

ι
(

f
))

(17)

The a posteriori probabilities require definitions of the
likelihood, and the a priori is given below in Eq. (18). For the
data v (t) a real-valued Gaussian is commonly assumed with mean
Lvιι (t) and noise covariance6ξξ (t). This assumption might not be
valid for all types of time domain data. In contrast, and in virtue
of Brillinger’s theorem cited above, data v

(

f
)

obtained with the
discrete Fourier transform will almost certainly have a complex-
valued Gaussian likelihood with mean Lvιι

(

f
)

and noise cross-
spectrum 6ξξ

(

f
)

and thus the one we adopted. The a priori

probabilities in Eq. (18) are placed upon the activationGibbs energy
in the time domain H (ι (t)) or the frequency domain H

(

ι
(

f
))

(Eq. 18) as expressed by the vector p-norm (frequently p-normp)
upon real-valued ι (t) or complex-valued ι

(

f
)

(Riesz, 1910; Rudin,
1970; Dunford and Schwartz, 1988; Bourbaki, 2013).

(route 1) p (v (t)|ι (t)) = NR
(

v (t)
∣

∣Lvιι (t) ,6ξξ (t)
)

p (ι (t)) ∝ exp (H (ι (t))|α (t))

(route 2) p
(

v
(

f
)∣

∣ι
(

f
))

= NC
(

v
(

f
)∣

∣Lvιι
(

f
)

,6ξξ

(

f
))

p
(

ι
(

f
))

∝ exp
(

H
(

ι
(

f
))∣

∣α
(

f
))

(18)

Henceforth, we ruled out route 1 since it is based on the ad-

hoc Gaussian assumption for p (v (t)|ι (t)), which, as mentioned
before, is not always tenable. Furthermore, our interest was
in the frequency domain, which concentrates our attention on
route 2, and which bases the likelihood of the Fourier transform
p
(

v
(

f
)∣

∣ι
(

f
))

(Eq. 18) on the complex-valued Gaussian probability
(Eq. 10).

Toward cESI, selecting a priori p
(

ι
(

f
))

(Eq. 18) follows
the standard rationale that oscillatory brain networks and their
activity are characterized by a large-scale and dense (or non-sparse)
distribution in conditions of resting-state or task in a block design
(Mantini et al., 2007; Brookes et al., 2011b; Hipp et al., 2012; Lopes
da Silva, 2013). Such activity is the stochastic and stationary process
ι (t) that is composited by oscillations in the frequency domain, as
described by the Fourier transform ι

(

f
)

(Engel et al., 2001; Varela
et al., 2001; Vidaurre et al., 2018a,b; Tewarie et al., 2019).

A general smooth a priori model posits the following Gibbs
energy H2,A(f )

(

ι
(

f
))

(Eq. 19) which, in addition, specifies A
(

f
)

as some positive definite and symmetric, or Hermitian, matrix.
Specifying the matrix A

(

f
)

may follow some types of goodness
criteria of the inverse solution, and data-driven methods, which
lead to the most common cases of quasilinear (F-invariant) inverse
operators (Baillet et al., 2001; Hauk, 2004; Friston K. J. et al.,
2008; Grech et al., 2008; Marzetti et al., 2008; Henson et al., 2011;
Hindriks, 2020).

H2,A(f )

(

ι
(

f
))

= ι†
(

f
)

A
−1 (

f
)

ι
(

f
)

(19)

Representing the most common quasilinear cases the following
inverse operator T̂ιv

(

A
(

f
)

, B
(

f
))

, in brief notation T̂ιv

(

f
)

(Eq.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.978527
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Paz-Linares et al. 10.3389/fnins.2023.978527

20), the constrained generalized inverse of the forward operator Lιv

that incorporates the regularization matrices A
(

f
)

and B
(

f
)

.

ι̂
(

f
)

← T̂ιv

(

f
)

v
(

f
)

T̂ιv

(

f
)

= 5̂ιι

(

f
)

LιvB
−1

(

f
)

with 5̂ιι

(

f
)

=
(

Lιv B
−1

(

f
)

Lvι

+ α
(

f
)

A
−1

(

f
))−1

q
(

ι
(

f
)∣

∣v
(

f
))

∝ NC
(

ι
(

f
)

∣

∣

∣
T̂ιv

(

f
)

v
(

f
)

, 5̂ιι

(

f
)

)

(20)

Where T̂ιv

(

f
)

arises from the route 2 MAP1 (Eq. 17)
that incorporates the Gibbs energy H2,A(f )

(

ι
(

f
))

(Eq. 19),

and B
(

f
)

any approximation to the noise cross-spectrum
6ξξ

(

f
)

in probabilities (Eq. 18); and q
(

ι
(

f
)∣

∣v
(

f
))

is the
Gaussian a posteriori NC, with mean T̂ιv

(

f
)

v
(

f
)

and
covariance matrix 5̂ιι

(

f
)

, that follows from the conjugated
relation between the likelihood and a priori probabilities in the
route 2 MAP1.

The cESI estimator is then 6 ι̂ι̂

(

f
)

(Eq. 21) for any set of
inverse solution instances

(

ι̂m
(

f
)

; ∀m
)

, or more compactly from
an estimate of the data cross-spectrum 6vv

(

f
)

(Eq. 22).

6 ι̂ι̂

(

f
)

=
〈

ι̂m
(

f
)

ι̂
†
m

(

f
)

; M
〉 〈

ι̂m
(

f
)

ι̂
†
m

(

f
)

; M
〉

=

(

1

M

) M
∑

m=1

ι̂m
(

f
)

ι̂
†
m

(

f
)

(21)

6 ι̂ι̂

(

f
)

= T̂ιv

(

f
)

6vv

(

f
)

T̂vι

(

f
)

(22)

Important examples of cESI that follow route 1 areMNE, eLORETA
and LCMV:

• The Minimum Norm Estimate (MNE) (Hämäläinen and
Ilmoniemi, 1994). The basic smooth model of the source
variables, that could either disregard the weight matrix
A

(

f
)

= I or consider it ad-hoc A
(

f
)

= A
ac based on

anatomical information.
• The Linearly Constrained Minimum Variance (LCMV) (Van

Veen et al., 1997). The beamformer method that estimates
a diagonal weight matrix A

(

f
)

= diag (a). This estimation
produces an ideal filter (inverse operator) for each source
variable, suppressing the interference from the other source
variables and performing ideally under focalized distribution
around one or a few sources.

• The Exact Low-Resolution Electromagnetic Tomographic

Analysis (ELORETA) (Pascual-Marqui et al., 2006).
A regression method that estimates A

(

f
)

so that the
localization of the maximum for the estimated source
variables corresponds exactly to the true maximum. This
estimation performs ideally under a unimodal and smooth
distribution of source variables.

The variants of these techniques are the one optimized for
route 2, ESI in the frequency domain: the Spectral eLORETA
(seLORETA) (Nolte et al., 2020) and the Spectral LCMV (sLCMV)
(Larson-Prior et al., 2013). An additional solution used in this study
as a reference is the spectral MNE (sMNE).

Novel cESI theory leading to the sSSBL
approximation

Having described the theory of state-of-the-art cESI methods,
we now focus on more sophisticated MAP theory and the sSSBL
approximation that allows their practical implementation.

Bayesian MAP2 inverse operators

It is important to stress that posing ad-hoc priors and their
hyperparameters is always necessary due to the uncertainties
involved, by definition of the MAPs (Eqs. 14, 15) [54], [126]. In
route 2, the prior was placed upon the Fourier transform ι

(

f
)

(Eq.
19). An alternative is to leverage the asymptotic distribution of the
Fourier transform (Eq. 10) and place the a priori upon 6ιι

(

f
)

.
This approach brings us to our main contribution, the

theoretically promising cESI, which leads to an optimal inverse
operator Ŵιv based on the second-type MAP (MAP2) (Eq. 23).

(r o u t e 3) 6̂ιι

(

f
)

← Ŵιv

(

6vv

(

f
))

Ŵιv = argmaxWιvq
(

Wιv

(

6vv

(

f
))∣

∣6vv

(

f
))

q
(

6ιι

(

f
)∣

∣6vv

(

f
))

∝ p
(

6vv

(

f
)∣

∣6ιι

(

f
))

p
(

6ιι

(

f
))

(23)

This MAP2 above posits the a priori probability p
(

6ιι

(

f
))

upon the source cross-spectrum 6ιι

(

f
)

, considered a random
hyper-parameter matrix. Incorporating an a priori to match the
likelihood upon the sampled estimator 6vv

(

f
)

leads to a posteriori

q
(

6ιι

(

f
)∣

∣6vv

(

f
))

. Such a likelihood is the Complex Wishart

probability density WC (Eq. 11) now defined for 6vv

(

f
)

(Eq. 24)
with scale matrix 6vv

(

f
)

and M degrees of freedom. The specific
scale matrix 6vv

(

f
)

in this likelihood posits the relation to the
matrix equation of source cross-spectrum 6ιι

(

f
)

(Eq. 12). An a
priori probability is then upon some cross-spectral Gibbs energy
P

(

6ιι

(

f
))

defined by norms such as the vectorized (entry-wise) p-
norm (Ding et al., 2006) and Schatten p-norm (Fan, 1951; Schatten,
2013) upon the matrix 6ιι

(

f
)

.

p
(

6vv

(

f
)∣

∣6ιι

(

f
))

=WC
(

6vv

(

f
)∣

∣Lvι6ιι

(

f
)

Lιv + 6ξξ

(

f
)

,M
)

p
(

6ιι

(

f
))

∝ exp
(

H
(

6ιι

(

f
))∣

∣α
(

f
))

(24)

Depending on the likelihood and a priori probability (Eq.
24), the optimal inverse operator Ŵιv (Eq. 23) is often non-
linear and numerically intractable. In this case, which we followed
in this article, optimizing Ŵιv requires Approximated Bayesian
Computation (ABC) (Csilléry et al., 2010). The ABC we describe

here employed Ŵ
(k + 1)
ιv , a non-convex but numerically tractable

successive approximation to Ŵιv. In turn, the tractable Ŵ
(k + 1)
ιv

followed from q(k)
(

6ιι

(

f
)∣

∣6vv

(

f
))

, the non-convex relaxation of
the a posteriori q

(

6ιι

(

f
)∣

∣6vv

(

f
))

in Expectation-Maximization
(EM) iterations. Obtaining the a posteriori relaxation is via the
Variational Bayes (VB) treatment (Dempster et al., 1977; Liu and
Rubin, 1994; Daunizeau and Friston, 2007; Friston et al., 2007;
Nummenmaa et al., 2007; Friston K. J. et al., 2008). Such a VB
treatment could target the separable model for q

(

6ιι

(

f
)∣

∣6vv

(

f
))

,
or the separable Hierarchical Bayesian (HB) model for the a priori

p
(

6ιι

(

f
) )

.
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Bayesian (joint-MAP) inverse operators and
cross-spectral norms

Considering the MAP2 (Eq. 23) and the latent cross-spectrum
matrix 6ιι

(

f
)

constrained within the vector subspace generated
by random instances

(

ιm
(

f
)

; ∀m
)

, i.e., as if it was defined by its
usual estimator 6ιι

(

f
)

∼= 6ιι

(

f
)

(Eq. 7). Hence, the MAP2 is in
probability equivalent to the joint-MAP (Hsiao et al., 1998, 2002;
Yeredor, 2000; Davis et al., 2001; Auranen et al., 2005; Chen et al.,
2011).

We introduce this joint-MAP (Eq. 25) substituting in the
general MAP definition (Eqs. 14, 15) the dataY and source variable
X by the instances Y =

(

vm

(

f
)

; ∀m
)

and X =
(

ιm
(

f
)

; ∀m
)

.

(

̂ιm
(

f
)

; ∀m
)

← Ŵιv

(

vm

(

f
)

; ∀m
)

Ŵιv

(

vm

(

f
)

; ∀m
)

= argmaxWιv p
(

Wιv

(

vm

(

f
)

; ∀m
)∣

∣vm

(

f
)

; ∀m
)

p
(

ιm
(

f
)

; ∀m
∣

∣vm

(

f
)

; ∀m
)

∝ p
(

vm

(

f
)

; ∀m
∣

∣ιm
(

f
)

; ∀m
)

p
(

ιm
(

f
)

; ∀m
)

(25)

In our case, we considered the above
p
(

vm

(

f
)

; ∀m
∣

∣ιm
(

f
)

; ∀m
)

the factorizable joint likelihood

(Eq. 26) whose factors are present throughout the complex-valued
Gaussian probability density (likelihood for route 2) (Eq. 18). In
addition, one may assume 6ξξ = diag

(

β
(

f
))

a univariate (in
many cases homogenous) noise model as expressed in terms of the
noise spectrum β

(

f
)

.

p
(

vm

(

f
)

; ∀m
∣

∣ιm
(

f
)

; ∀m
)

=
∏M

m=1 p
(

vm

(

f
)∣

∣ιm
(

f
))

p
(

vm

(

f
)∣

∣ιm
(

f
))

= NC
(

vm

(

f
)∣

∣Lvιιm
(

f
)

, diag
(

β
(

f
))) (26)

We now introduce the joint a priori p
(

ιm
(

f
)

; ∀m
)

(Eq. 27)
upon the Gibbs energy H

(

ιm
(

f
)

; ∀m
)

redefining the previous
(Eq. 15) over instances

(

ιm
(

f
)

; ∀m
)

. Toward cESI, this function
may be read as cross-spectral Gibbs energy H

(

6ιι

(

f
) )

.

p
(

ιm
(

f
)

; ∀m
)

∝ exp
(

H
(

ιm
(

f
)

; ∀m
)∣

∣α
(

f
))

=

exp
(

H
(

6ιι

(

f
))∣

∣α
(

f
)) (27)

Our purpose now is to define the type of cross-spectral
Gibbs energy that must deal with a severely ill-conditioned and
high dimensional cESI setup (G ≫ S). We shall deal with these
problems employing the vector or matrix norms, such as the vector
structured p, q-norm (Kowalski and Torrésani, 2009a,b; Gramfort
et al., 2012, 2013) and the Schatten matrix p-norm (Fan, 1951;
Schatten, 2013).

To recap, our approach toward cESI is then with the joint-
MAP inverse operator Ŵιv (Eqs. 25–27) [instead of the MAP2
inverse operator (Eqs. 23, 24)]. Toward our target (cESI), we must
leverage the class of joint a priori probabilities expressed by the
cross-spectral Gibbs energy H

(

6ιι

(

f
))

, not the more general case
of Gibbs energy defined upon the instances H

(

ιm
(

f
)

; ∀m
)

.
We leverage H1 (Eq. 28) the structured p = 1, q = 2-norm

(square) that performs sparse regularization of the cross-spectrum

topographic projection or spectrum tr
1
2
(

6ιι

(

f
))

. H1 is the well-
known Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996) for vectors ι

(

f
)

extended or structured over the
second dimension index m for the set of instances

(

ιm
(

f
)

; ∀m
)

.
Such a structured norm is a matrix quasinorm that does not fulfill
the triangle equality over the cross-spectrum 6ιι

(

f
)

.

H1
(

6ιι
(

f
))

=
∑G

g=1

(

∑M

m=1

∣

∣ιm
(

g , f
)∣

∣

2
)

1
2
= tr

1
2

(

6ιι
(

f
))

(28)

In addition, we introduceH2 (Eq. 29) the structured p= 2, q=

2-norm (square), Shatten p= 1-norm or nuclear norm tr
(

6ιι

(

f
))

,
to compensate sparse bias ofH1 (Eq. 28) and regularize eigenvalues
for the cross-spectrum6ιι

(

f
)

.H2 is the well-knownRidge operator
(Hoerl and Kennard, 1970) for a vector ι

(

f
)

structured over the
second dimension indexm for the set of instances

(

ιm
(

f
)

; ∀m
)

.

H2
(

6ιι

(

f
))

=
∑M

m=1

∑G

g=1

∣

∣ιm
(

g , f
)∣

∣

2
= tr

(

6ιι

(

f
))

(29)

ESI practice, which is based on either the sparse or the smooth
models, may be insufficient, though, in many scenarios where
brain activity is patch-wise or not wholly sparse, Elastic Net,
the linear combination of sparse/smooth models, may be ideal
(Zou and Hastie, 2005; Vega-Hernández et al., 2008). Such a
regularization style is a spatially structured sparsity due to the linear
combination of the sparse LASSO and smoothRidge operators upon
the vector ι

(

f
)

. Hence, for the vector instances
(

ιm
(

f
)

; ∀m
)

, the
linear combination of the quasinorm H1 (Eq. 28) and the nuclear
norm H2 (Eq. 29) leads to the following joint a priori probability
p
(

ιm
(

f
)

; ∀m
)

(Eq. 30).

p
(

ιm
(

f
)

; ∀m
)

∝ exp
(

H1
(

6ιι

(

f
))∣

∣α1
(

f
))

exp
(

H2
(

6ιι

(

f
))∣

∣α2
(

f
)) (30)

Motivated by ESI practice, our definition of the Elastic Net (Eq. 30)
(nuclear quasinorm) diverges from that of previous studies. From
these works, the Elastic Net nuclear norm combines the nuclear
norm tr

(

6ιι

(

f
))

with the square Schatten p= 2-norm (Frobenius

norm) tr
(

6
2
ιι

(

f
)

)

(Sun and Zhang, 2012; Chen et al., 2013; Kim

et al., 2015; Zhang et al., 2017). This Elastic Net nuclear norm
resolves convexity problems of the nuclear norm in the context of
matrix completion (Candes and Recht, 2012; Hu et al., 2012) due to
a non-convex problem with the sole nuclear norm. Although it was
not our purpose to investigate convexity here, this property holds
for our Elastic Net nuclear quasinorm, assuming cross-spectrum
6ιι

(

f
)

upon vector basis (Zou and Hastie, 2005). In addition,
we did not consider the vectorized (entry-wise) p-norm (Ding
et al., 2006). The latter, which might be necessary to regularize off-
diagonal entries in some cases (Paz-Linares et al., 2018), failed to
ameliorate ill-condition or distortions.

The type of ABC introduced here is known as “gamma-MAP,”
the standard VB treatment applied to a priori probabilities in
the joint-MAP. In turn, the gamma-MAP leads to the quasilinear

successive approximations T̂
(k)
ιv . Solving the gamma-MAP under

cross-spectral Gibbs energy H
(

6ιι

(

f
))

defined by the Elastic
Net nuclear quasinorm is the Structured Sparse Bayesian learning
algorithm (ssSBL) described in the next section.

Gamma-MAP and implementation of SSBL

Similarly to theMAP2 (Eq. 23), the joint-MAP inverse operator
Ŵιv (Eq. 25) could be non-linear by nature, depending on the
joint a priori probability p

(

ιm
(

f
)

; ∀m
)

. We now introduce the
gamma-MAP that achieves the quasilinear joint-MAP version
leveraging the idea of mean-field approximation (Kadanoff, 2009).
Such a mean-field approximation is the main idea behind the
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VB treatment applied to the latent variables of neuroimaging
data (MacKay, 1998; Roweis and Ghahramani, 1999; Ghahramani
and Beal, 2000, 2001; Eyink et al., 2004; Friston et al., 2007;
Nummenmaa et al., 2007; Friston K. J. et al., 2008; Babacan et al.,
2009).

By assuming the definition for this joint a priori

p
(

ιm
(

f
)

; ∀m
)

upon Gibbs energy H
(

ιm
(

f
)

; ∀m
)

(Eq.
27), the mean-field approximation is then to search for the self-
consistent energy form H̃

(

ιm
(

f
)

; ∀m
)

(Eq. 31) as represented
by separable (in most cases also indistinguishable) energy terms
Hg

(

ιm
(

g , f
)

; ∀m
)

for each source. A self-consistent energy
form Hg

(

ιm
(

g , f
)

; ∀m
)

also summarizes the interaction
field g ↔ ∀g

′
, as a property of the original Gibbs energy

H
(

ιm
(

f
)

; ∀m
)

.

H
(

ιm
(

f
)

; ∀m
)

∼= H̃
(

ιm
(

f
)

; ∀m
)

=
∑

g Hg

(

ιm
(

g , f
)

; ∀m
) (31)

Obtaining the self-consistent form Eq. (31) was
always plausible under the Gibbs energy H

(

ιm
(

f
)

; ∀m
)

that fulfills pair-wise separability in identical functions

H
(

ιm
(

g , f
)

, ιm

(

g
′
, f

)

; ∀m
)

(Eq. 32). Note that this

property is known for ensuring the convergence of solutions for
the self-consistency field equations in the literature of magnetism
(Weiss, 1907, 2001; Le Boudec et al., 2007; Kadanoff, 2009; Zheng
et al., 2015). The cross-spectral Gibbs energy H

(

6ιι

(

f
))

, as
defined by the norms considered here (Elastic nuclear quasinorm
(Eq. 30) or others), fulfills such a property.

H
(

6ιι

(

f
))

=
∑G

g=1

∑G
g
′
=1

H
(〈

ιm
(

g , f
)

ι
†
m

(

g
′
, f

)

; M
〉) (32)

Then, if the joint a priori probability p
(

ιm
(

f
)

; ∀m
)

(Eq. 27)
is written in terms of the separable Gibbs energy H

(

6ιι

(

f
))

(Eq.
32) it turns out the Markov random field property (Eq. 33) that

is summarized by p
(

ιm
(

g , f
)

; ∀m
∣

∣

∣ιm

(

g
′
, f

)

; ∀m
)

the pair-wise

and identical probability factors (Kindermann et al., 1980; Lafferty
et al., 2001). Note that such probability factors may approximate
but do not strictly represent conditional probabilities.

p
(

ιm
(

f
)

; ∀m
)

=
∏G

g=1

∏G
g
′
=1

p
(

ιm
(

g , f
)

; ∀m
∣

∣

∣
ιm

(

g
′
, f

)

; ∀m
)

p
(

ιm
(

g , f
)

; ∀m
∣

∣

∣ιm

(

g
′
, f

)

; ∀m
)

∝

exp
(

P
(〈

ιm
(

g , f
)

ι
†
m

(

g
′
, f

)

; M
〉)∣

∣

∣α
(

f
)

)

(33)

Hence, we target VB—the factorizable (separable)
approximation hq

(

ιm
(

f
)

; ∀m
)

(Eq. 34) of the joint a priori

p
(

ιm
(

f
)

; ∀m
)

(Eq. 33). Essential to obtain h
q
g

(

ιm
(

g , f
)

; ∀m
)

is the Hierarchical Bayes (HB) or probability mixture bellow,
identical a priori h and a posteriori q probabilities that are upon
some type of “variational” hyper-parameters γ

(

g , f
)

. Such an a
posteriori q is also known as the proxy for belief propagation or
message passing, denominated iterated conditional mode in the
general literature of Markov random fields (Pearl, 1988, 2022;
Weiss, 2001; Yedidia et al., 2003; Zheng et al., 2015).

p
(

ιm
(

f
)

; ∀m
)

∼= hq
(

ιm
(

f
)

; ∀m
)

∝
∏G

g=1 h
q
g
(

ιm
(

g , f
)

; ∀m
)

h
q
g
(

ιm
(

g , f
)

; ∀m
)

=
∫

h
(

ιm
(

g , f
)

; ∀m
∣

∣γ
(

g , f
))

q
(

γ
(

g , f
)∣

∣ιm
(

f
)

; ∀m
)

dγ
(

g , f
)

(34)

Where the hyper-parameters γ
(

g , f
)

condense field

interactions H
(〈

ι
(

g , f
)

ι†
(

g
′
, f

)

; M
〉)

(Eq. 33) by the

definition of an a posteriori probability q upon
(

ιm
(

f
)

; ∀m
)

.
After specifying an a priori h, the VB treatment is applied

to search for estimators of the a posteriori q̂ (Eq. 35). That is
to minimize the Kullback-Leibler divergence DKL

(

p , hq
)

of the
approximation hqregarding to the joint a priori p (Eq. 34).

q̂ = argminqDKL

(

p || hq
)

DKL

(

p || hq
)

=
∫

p
(

ιm
(

f
)

; ∀m
)

log
(

p
(

ιm
(

f
)

; ∀m
)

/hq
(

ιm
(

f
)

; ∀m
))

d
(

ιm
(

f
)

; ∀m
)

(35)

Minimizing the DKL

(

p , hq
)

, although theoretically achievable,
turned out to be a difficult variational calculus problem for non-
parametric HB (mixture) models (Blei and Jordan, 2006; Bryant
and Sudderth, 2012; Gershman and Blei, 2012; Gershman et al.,
2012; Nguyen and Bonilla, 2013; Duvenaud et al., 2016). Thus, the
DKL approach is common with parametric solutions constraining
models (a priori h and a posteriori q) to the exponential family of
probabilities (Andersen, 1970; Casella and Berger, 2021).

A simplifying assumption that could bypass the Kullback-
Leibler divergence DKL

(

p , hq
)

(Eq. 35) is to regard the a priori h

and a posteriori q (34) within a family of conjugateHBmodels of the
likelihood. Furthermore, we considered a priori h factorizable over
the set of instances since the pair-wise interactions are additive by

definition of
〈

ι
(

g , f
)

ι†
(

g
′
, f

)

; M
〉

the cross-spectrum entries

in Eq. (7).
Henceforth, a complex-valued Gaussian probabilityNC defines

the a priori h
(

ιm
(

f
)∣

∣γ
(

f
))

, and a probability in the Gamma
family Ŵ defines the a posteriori q

(

γ
(

f
)∣

∣ιm
(

f
)

; ∀m
)

which we
incorporate into the following HB model (Eq. 36).

hq
(

ιm
(

f
)

; ∀m
)

∝
∫

(

∏M
m=1 h

(

ιm
(

f
)∣

∣γ
(

f
))

)

q
(

γ
(

f
)∣

∣ιm
(

f
)

; ∀m
)

dγ
(

f
)

h
(

ιm
(

f
)∣

∣γ
(

f
))

= NC
(

ιm
(

f
)∣

∣0, diag
(

γ
(

f
)) )

q
(

γ
(

f
)∣

∣ιm
(

f
)

; ∀m
)

=
∏G

g=1 Ŵ
(

γ
(

g , f
)∣

∣δ
(

g , ιm
(

f
)

; ∀m
))

(36)

The previous HB model is the Generalized Gaussian Scale

Mixture Model (GGSMM) prescribed by the Andrews and Mallows

lemma (Andrews, 1974), where the particular and “Gamma”
probability Ŵ depends on joint a priori to be approximated via

DKL

(

p , hq
)

(Eq. 35) and falls within the class of scale mixture
Gamma models (McLachlan and Basford, 1988; Lindsay, 1995;
Böhning and Seidel, 2003; Hancock and Samuelsen, 2007).

In such a mixture model, the hyper-parameter vector γ
(

f
)

may then be interpreted as the “variational spectrum,” which
specifies a Complex Gaussian a priori probability NC (Eq. 36).
The a posteriori for the variational spectrum entries γ

(

g , f
)

is a form of probability that belongs to the Gamma Ŵ family,
with a parameterization δ

(

g , ιm
(

f
)

; ∀m
)

that condenses field

interactions H
(〈

ι
(

g , f
)

ι†
(

g
′
, f

)

; M
〉)

(Eq. 32).

The joint-MAP (Eq. 25) can be approximated sequentially

within iterations for the set
(

ι
(k)
m

(

f
)

; ∀m
)

, or directly the

cross-spectrum 6̂
(k)
ιι

(

f
)

, due to the quasilinear inverse operator

T
(k)
ιv (37). Quasilinear T

(k)
ιv was then equivalent to iterated
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MAP1s for the Fourier transform (Eq. 20), positing complex-
valued Gaussian likelihood p

(

vm

(

f
)∣

∣ιm
(

f
))

(Eq. 26) and a priori

h
(

ιm
(

f
)∣

∣γ
(

f
))

(36).

̂(

ι
(k)
m

(

f
)

; ∀m
)

← T
(k)
ιv

(

f
) (

vm

(

f
)

; ∀m
)

6̂
(k)
ιι

(

f
)

= T
(k)
ιv

(

f
)

6vv

(

f
)

T
(k)
vι

(

f
)

(37)

These iterated MAP1s are for an equivalent a posteriori

q(k)
(

ιm
(

f
)∣

∣vm

(

f
))

(Eq. 38), specified by the mean T
(k)
ιv

(

f
)

v
(

f
)

and the covariance 5
(k)
ιι

(

f
)

, which are functions of the

variational spectrum diag
(

γ (k)
(

f
)

)

and the noise spectrum

diag
(

β(k)
(

f
)

)

. These spectrums specified the type of univariate

approximations for the source cross-spectrum 6ιι , and the noise
cross-spectrum 6ξξ in the quasilinear MAP1 of the Fourier
transform (Eq. 20). Henceforth, we place the emphasis in the
variational spectrum iterations γ (k)

(

f
)

and defer this noise

spectrum β(k)
(

f
)

which is not essential for our main exposition.

q(k)
(

ιm
(

f
)∣

∣vm
(

f
))

= NC
(

ιm
(

f
)

∣

∣

∣T
(k)
ιv

(

f
)

vm
(

f
)

,5
(k)
ιι

(

f
)

)

T
(k)
ιv

(

f
)

= 5̂
(k)
ιι

(

f
)

Lιvdiag
−1

(

β(k)
(

f
)

)

5
(k)
ιι

(

f
)

=
(

Lιv d i a g
−1

(

β(k)
(

f
)

)

Lvι + d i a g−1
(

γ (k)
(

f
)

))−1

(38)

Targeting the variational vector γ
(

f
)

was under the marginal
or hyper-parametrized likelihood for data p

(

vm

(

f
)∣

∣γ
(

f
))

(Eq.
39). This likelihood was due to integration (expectation) of
p
(

vm

(

f
)∣

∣ιm
(

f
))

under the a priori probability for parameters
h

(

ιm
(

f
)∣

∣γ
(

f
))

, which is upon the variational hyper-parameters
(spectrum) γ

(

f
)

(Eq. 30) (MacKay, 1999).

p
(

vm

(

f
)∣

∣γ
(

f
))

=
∫

p
(

vm

(

f
)∣

∣ιm
(

f
))

h
(

ιm
(

f
)∣

∣γ
(

f
))

dιm
(

f
)

p
(

vm

(

f
)∣

∣ιm
(

f
))

= NC
(

vm

(

f
)∣

∣Lvιιm
(

f
)

, diag
(

β
(

f
)))

h
(

ιm
(

f
)∣

∣γ
(

f
))

= NC
(

ιm
(

f
)∣

∣0, diag
(

γ
(

f
)) )

(39)

However, the actual marginal likelihood p
(

vm

(

f
)∣

∣γ
(

f
))

(Eq.
39) was intractable, with approximations via the expectation
of the log joint probability p

(

vm

(

f
)

, ιm
(

f
)∣

∣γ
(

f
))

(Dempster
et al., 1977; Liu and Rubin, 1994) under the iterated a posteriori

q(k)
(

ιm
(

f
)∣

∣vm

(

f
))

(Eq. 40). Then an approximated marginal

likelihood L
(

vm

(

f
)

∣

∣

∣γ (k)
(

f
)

, γ
(

f
)

)

depended on the variational

hyper-parameters (spectrum) γ (k)
(

f
)

in the current iteration.

log
(

p
(

vm

(

f
)∣

∣γ
(

f
)))

∼= log
(

L
(

vm

(

f
)

∣

∣

∣γ (k)
(

f
)

, γ
(

f
)

))

=
∫

q(k)
(

ιm
(

f
)∣

∣vm

(

f
))

log
(

p
(

vm

(

f
)∣

∣Lvιιm
(

f
))

h
(

ιm
(

f
)∣

∣γ
(

f
)))

dιm
(

f
)

(40)

An inverse operator Wιv of the variational spectrum γ
(

f
)

is
theoretically equivalent to the previous joint-MAP (Eq. 25), which
is inverse operator of the samples

(

ιm
(

f
)

; ∀m
)

. This is known
from the literature as “gamma-MAP” (Hsiao et al., 1998, 2002;
Wipf and Nagarajan, 2009). Within the loop (Eq. 41) such an

inverse operatorW
(k)
ιv was the tractable successive approximations,

with the iterated a posteriori q
(

γ
(

f
)

∣

∣

∣
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(41)

Here we implemented the Bayesian learning algorithm that
effectuates the gamma-MAP γ (k + 1)

(

f
)

(41) and computes the

quasilinear T̂
(k)
ιv (Eq. 38), for a joint a priori based on the Elastic Net

nuclear quasinorm (Eq. 30). For this joint a priori, the solution to
the HB (mixture) model (Eq. 36) is exact, following an extension of
the Andrews and Mallows lemma to the structured sparsity norms
which are here upon the spectrum σ 2

ιι

(

f
)

.
Henceforth, we refer to this algorithm as Spectral Structured

Sparse Bayesian Learning (ssSBL). The full derivation of
the gamma-MAP and the ssSBL algorithm are developed in
Supplementary material (Section Standard cESI theory).

Comparison of the distortions
produced by seLORETA, sLCMV, and
sSSBL

Data used for the validation

We used two different sets of EEG data to calculate estimated
CST, each with their corresponding gold standard CST:

(1) Realistically simulated low-density EEG obtained
considering as sources a CST obtained from a MEG recording
with a very high sensor density (simulated-EEGvsMEG). The
gold standard here is the sMNE CST of the MEG recording
due to the well-known advantages of MEG over EEG and the
very high sensor density.

(2) Real low-density macaque EEG (EEGvsECoG). The gold
standard here is the sMNE CST of the simultaneously
recorded EcoG.

Simulated-EEG vs. MEG
Figure 3 was based on a high-quality resting state MEG

recording for subject 175,237 from the HCP database. The MEG
signal selected for this purpose (Figure 3a2) was the 246-channel
preprocessed data file. The electrical and magnetic lead fields
were calculated with the subject’s cortical and head geometry.
With the magnetic lead field, Spectral MNE (sMNE) was used
to calculate the MEG sources, which were taken as sources
for the EEG. These sources were passed through the electrical
Lead Field (Figure 3a3) to simulate a low-density 19-channel
EEG recording (Figure 3a1). The simulation design is standard,
essentially the same as those based on more straightforward
configurations, where dipoles or patches are taken as the
“ground truth” (Haufe and Ewald, 2019). Here, we used a much
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FIGURE 3

Simulated-EEG vs. MEG experiment that illustrates our validation strategy. We show distortion measures of the estimated Cortical Spectral
Topographies (CST) resting-state MEG alpha activity. The same strategy is followed for all spectral bands. It is also applied to the study of distortion
based on the EEG vs. ECoG experiment. We start from the cross-spectrum data shown in hot colormaps of 2D space topographies (a1)

∑EEG
vv for

EEG sensors (green dots) and (a2)
∑MEG

vv (
∑ECoG

vv ) for MEG (ECoG) sensors (blue dots). Using the corresponding cross-spectrum data and Lead Fields
(a3) LEEG

vι and LMEG
vι (LECoG

vι ), for EEG sensors (green dots) and MEG (ECoG) sensors (blue dots), upon human (macaque) cortex, head layers geometries,

we obtain the inverse operators for EEG
∧

T
EEG
M , based on the tested method “M,” and MEG (ECoG)

∧

T
MEG
sMNE(

∧

T
ECoG
sMNE ), based on the reference method

sMNE. Employing these inverse operators, we obtain estimators for (b1) σ EEG
M the EEG tested CST given by method “M” and (b2) σ 0 the MEG (ECoG)

sMNE reference CST. Incongruence between (b1) the EEG tested CST and (b2) the MEG (ECoG) reference CST is measured through (b3) eM the Earth
Movers’ Distance (EMD) and cM the correlation distance (1-CORR). Using (a1) the EEG cross-spectrum data and (b3) Lead Field for EEG, we obtain
the resolution operator RM. Leakage in (b1) the EEG tested CST, which is based in (c2) the 1st quartile point of (b2) the MEG (ECoG) reference CST, is
measured through (c1) rM, the Generalized Point Spread Function (GPSF) and bM the Blurring for the GPSF.

more realistic set of sources, determined from the MEG. Code
availability: https://github.com/CCC-members/MEGvsSimulated-
EEG.

EEG vs. ECoG
Figure 4 was based on high-density macaque ECoG recordings

acquired in 128 sensors, concurrently with a low-density EEG
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FIGURE 4

Confirmation of Cortical Spectral Topographies (CST) based in EEG recorded simultaneously with (a1) ECoG implanted in the macaque. An X-ray
image shows (a2) the high-density ECoG array placed onto the macaque cortical surface. ECoG recordings and (a3) their Lead Fields provide a more
fine-grained reference for confirming CST estimators and measures of distortions for the EEG. The validation here includes elements analogous to
the MEGvsSimulated-EEG experiment of Figure 3 (a3, b1–b3, c1, c2). Incongruence between (b1) σM the EEG tested CST and (b2) σo the ECoG
reference CST is measured through (b3) eECoG→EEG

M the Earth Movers’ Distance (EMD) and CECoG→EEG
M the correlation distance (1-CORR). Leakage in

(b1) σM the EEG tested CST, which is based in (c2) on the first quartile point of (b2) σo the ECoG reference CST is measured through (c1) rM, the
Generalized Point Spread Function (GPSF) and bM the Blurring for the GPSF. Elements (a1, a2) of this figure, are freely available in http://www.www.
neurotycho.org/.

acquired at 19 sensors simultaneously with the ECoG in the resting
state (Nagasaka et al., 2011). This macaque preparation allowed the
realistic measurement of distortions in resting-state connectivity

estimated from low-density EEG using different aESI solutions
(Wang et al., 2019). A sensor array placed surgically on the left
macaque’s cortical surface (Figure 4a1) allowed dense recordings of
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ECoG (Figure 4a2). The lead fields for EEG and ECoG (Figure 4a3)
were obtained using the macaque’s cortical and head geometry.
The ECoG lead field was used to generate a reference or ground
truth CST using sMNE. It was unnecessary to simulate data since
the concurrent low-density EEG was available. Code availability:
https://github.com/CCC-members/ECoGvsEEG.

Validation rationale
We evaluated the low-density EEG recordings using ssSBL,

sELORETA, and sLCMV to produce the CSTs σ sSSBL, σ sELOR, and
σ sLCMV , respectively. We denote these CST generically as σM , with
Mspecifying the method. These calculations were carried out for
the previously mentioned experiments: simulated EEG vs. MEG
and EEG vs. ECOG. These CSTs were compared with reference
CSTs (σ 0) considered the “gold standards.” This reference was
varied according to the type of measurement and will be detailed in
the context below. Finally, each method’s distortion of its reference
was assessed using the measures described next.

Measures of distortion

Measures of distortion to compare σM with σ 0 fall into two
groups, leakage and incongruence indices that we illustrate in
the Simulated-EEG vs. MEG experiment (Figure 3). The measures
of the macaque EEG vs. ECoG experiment in figure elements
(Figures 4b1–b3, c1, c2) are analogous to those of the Simulated-
EEG vs. MEG experiment.

Leakage (Palva et al., 2018; Van de Steen et al., 2019), or spread,
is quantified using the Generalized Point Spread Function and a
blurring measure. These are based on the concept of the resolution
operator RM = Tιv,MLvι. Here Tιv,M is the inverse operator for
the method M, and Lvι the lead field. Consider a point source
uo indexed by g0, any column RM

(

:, g0
)

is then the voltages v0
produced by this source.

• The Generalized Point Spread Function (Grova et al., 2006b;
Haufe et al., 2008) (GPSF) rM in Figure 3c1, depicted with
a hot colormap, represents the leakage (spread) of the low-
density EEG CST estimators for a given set of cortical points.
These cortical points, shown as blue dots (Figure 3c2), are
selected as the most active 25% of the reference σ 0 and are
the setG0. The GPSF, for any point g ∈ G in the set of cortical
points, is then:

rM

(

g
)

=

√

1

|G0|

∑

g0∈G0

∣

∣RM

(

g , g0
)∣

∣

2
(42)

Where |G0| denotes the number of elements in that set.

• The blurring measure for images (BLUR) bM is defined as
the Spatial Dispersion (SD) of the GPSF (Grova et al., 2006a;
Haufe et al., 2008). It is worth clarifying that for a perfect cESI
solution, with zero bM = 0 in Figure 3c1, there would be an
exact coincidence between the GPSF rM non-zero values in

the colormap and the blue dots in Figure 3c2. Formally, bM
is defined as:

bM =

√

1

|G0|

∑

g0∈G0
ϑ2
M

(

g0
)

, (43)

Where ϑ2
M

(

g0
)

is the spatial dispersion around the reference
point g0 and

ϑ2
M

(

g0
)

=
1

|G|

∑

g∈G

∣

∣RM

(

g , g0
)∣

∣ d2gg0 , (44)

Where d2gg0 is the square of the geodesic distance between
those points.

Incongruence (Wang et al., 2019) quantifies the global level of
distortion (leakage and localization error):

(1) The Earth Movers’ Distance (EMD) eM in Figure 3b3,
which measures the effort to deform the CST spatial
density determined from EEG (Figure 3b1) into the reference
(Figure 3b2) (Grova et al., 2006b; Haufe et al., 2008; Paz-
Linares et al., 2017).

(2) The correlation distance (1-CORR) cM which measures
deformations from the expected collinearity between pairs of
spatially distributed CSTs.

These incongruence measures (EMD) eM correlation distance (1-
CORR) cM combine sensitivity to leakage and localization error.

Results

Simulated-EEG vs. MEG inverse solutions

Both sELORETA and sLCMV CST estimators were seriously
affected by leakage (Figure 5), judging by the mismatch between
their estimated GPSF rsELOR and rsLCMV compared to the reference
points (blue dots). They were centered at incorrect sites (opposite
the blue dots) and with a much larger spread. For ssSBL, the set
of local maxima for rssSBL was correctly centered around reference
points and did not extend significantly beyond these. In other
words, as can be appreciated qualitatively, rssSBL minimized leakage
compared to sELORETA and LCMV.

Initially, these results differed from those reported by other
authors for rsELOR and rsLCMV (Haufe and Ewald, 2019).
The explanation may be due to their using idealized EEG
simulations (point generators or discrete patches) that generate
fewer distortions, thus reducing the apparent differences in the
performance of different aESI methods. We verified this in recent
aESI studies (Paz-Linares et al., 2017), concluding that simple
SSBL (not the cESI ssSBL implemented in this paper) outperforms
eLORETA and other methods only by a narrow margin.

An aESI solution computed with LCMV was usually sparser
than an ELORETA solution, which was expected due to the
thresholding strategy implemented in the original LCMV (not
sLCMV) (Van Veen et al., 1997). However, this did not lead to
any improvement in terms of the leakage observed in the GPSFs
rsELOR and rsLCMV . The “zero localization error” of eLORETA has
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FIGURE 5

In hot colormaps, measurements of “Leakage” in the EEG-based Cortical Spectral Topographies (CST) were obtained with all tested methods “M”
(ssSBL, seLORETA, and sLCMV). Leakage is measured by employing rM, the Generalized Point Spread Function (GPSF) regarding to the MEG sMNE
reference CST, shown in the cortical views Left (L), Dorsal (D), Posterior (P), and Ventral (V) and for five characteristic spectral bands (delta, theta,
alpha, beta, and gamma). Leakage distortions are proportional to mismatch and spread in the GPSF values (hot colormaps) regarding reference
points (blue dots). Calculations of the GPSF follow the procedure described in Figure 3 for the MEGvsSimulated-EEG experiment.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.978527
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Paz-Linares et al. 10.3389/fnins.2023.978527

been claimed to be the unique advantage in its favor (Pascual-
Marqui et al., 2006). However, this property has been theoretically
demonstrated only for the peak (maximum) activity and not for
the numerous local maxima of secondary activations common
in real-life scenarios. Therefore, unsurprisingly, eLORETA can
produce much better results in idealized simulations that use
activity modeled as a focalized concentrated unimodal distribution
(e.g., Gaussian) or only a few simple point sources (Kobayashi et al.,
2003; Grova et al., 2008; Schoffelen and Gross, 2009; Haufe et al.,
2013; Burle et al., 2015; Colclough et al., 2015; Bradley et al., 2016;
Mahjoory et al., 2017; Stokes and Purdon, 2017; Palva et al., 2018;
Haufe and Ewald, 2019; Marinazzo et al., 2019).

A striking observation was that despite σ 0 being highly
frequency dependent, the GPSF pattern was rseLORETA and rsLCMV

was relatively invariant for all frequencies across the spectrum. This
invariance suggests that the pattern was mainly due to Lead Field
properties rather than physiologically (Lopes da Silva et al., 1974;
Niedermeyer and da Silva, 2005; Lopes da Silva, 2013). In contrast,
the GPSF rssSBL pattern was closely tied to the physiological
fluctuations across frequencies: from activity in the slow delta band
to the faster alpha band. These fluctuations were inherited from the
reference MEG data.

The quantitative analysis of the leakage measure bM (BLUR)
(Figure 6, left-column) confirms our qualitative impressions based
on the GPSF rM . The radar graphs showed a decrease in leakage
of ssSBL compared to sELORETA and sLCMV (bsELOR > bssSBL,
bsLCMV > bssSBL). This improvement was valid for all spectral bands
(delta, theta, alpha, gamma 1, and gamma 2).

EMD values eM are intuitively the amount of work to deform
the EEG-based CST estimator to the reference CST estimator
(σM → σ 0). They were one to two orders larger for sELORETA
and sLCMV than SSBL (esELOR >> essSBL, and esLCMV >> essSBL).

A linear model adjusted to every source of the EEG and MEG
CSTs estimated data pairs shows a clear linear tendency (Figure 7),
with correlation distances larger for sELORETA and sLCMV. Some
correlations are even negative correlations. By contrast, csELOR was
in the range of around 0.7, for all frequency bands. This behavior
was congruent with that observed in the colormaps for GPSF
(rsELOR and rsLCMV ) (Figure 5), where the maximum values appear
in opposite areas to the blue dots (reference estimation).

These results suggest that commonly used ESI validation
procedures, limited to idealized simulations of local neural
currents, may not accurately assess the actual distortions (Haufe
et al., 2013; Haufe and Ewald, 2019). Our simulation of EEG that
incorporates realistic local neural currents, estimated from high-
density MEG, shows that the leakage and localization error in ESI
applied to actual data might be much more severe than expected
(Palva et al., 2018; He et al., 2019; Van de Steen et al., 2019).
Therefore, future efforts should consider validation benchmarks
based on realistic simulations like those described here. When
using this benchmark, the ssSBL approach appears to considerably
control the effect of distortions with respect to other techniques.

EEG vs. ECoG inverse solutions

The GPSF colormaps (Figure 8) for each method showed
a consistent behavior as those of the Simulated-EEG vs. MEG

experiment (Figure 5). As evident in the GPSF maps rssSBL and
measured in bssSBL (Figure 6, right-column), the performance of
ssSBL in reducing leakage was superior compared to sELORETA
(bsELOR > bssSBL) and sLCMV (bsLCMV > bssSBL).

The measurements of incongruence by the EMD eM (Figure 6,
right-column) were consistent with those of the previous
experiment (left-column), confirming the improvement of ssSBL
regarding sELORETA (esELOR > essSBL by a considerably narrow
margin) and LCMV (esLCMV >> essSBL by a wider margin of three
orders of magnitude) for all spectral bands.

The correlation distance cM for all methods showed that linear
regression described the relation of EEG CST to ECoG CST well.
The correlation was positive for ssSBL but negative for sELORETA
and sLCMV as seen in Figure 6 (right-column). As a consequence
(csLCMV > cLORETA>cssSBL) for all spectral bands. This linear
tendency in Figure 9, similarly to Figure 7 confirms the feasibility
of cESI, even with low-density EEG, given its close relationship
to a more direct observation modality like ECoG. The results
of sELORETA and sLCMV did not reveal a clear linear positive
tendency. These results confirm and extend the results of previous
studies (Marinazzo et al., 2019; Papadopoulou et al., 2019; Wang
et al., 2019), suggesting that some types of ESI should be interpreted
with extreme care.

Discussion

We now summarize and evaluate our results from a theoretical
point of view. We introduce a general Bayesian framework
for cESI, the estimation of source cross-spectral matrices. This
approach allowed us to address the high level of topographic
distortions, which arise from the severely ill-conditioned nature
of the underlying inverse problem (Kobayashi et al., 2003; Grova
et al., 2008; Schoffelen and Gross, 2009; Haufe et al., 2013; Burle
et al., 2015; Colclough et al., 2015; Bradley et al., 2016; Mahjoory
et al., 2017; Stokes and Purdon, 2017; He et al., 2018, 2019; Palva
et al., 2018; Haufe and Ewald, 2019; Marinazzo et al., 2019). We
indicated that the problems originating from the ill-posedness were
compounded by the habitual implementation of linear and non-
sparse (smooth) types of inverse solutions (Mantini et al., 2007;
Marzetti et al., 2008; Brookes et al., 2011b, 2012; Hipp et al., 2012;
Lopes da Silva, 2013; Colclough et al., 2015; Marinazzo et al., 2019;
Nolte et al., 2020).

Non-linear and sparse inverse solutions might ameliorate

distortions (Tibshirani, 1996; Zou and Hastie, 2005; Yuan and Lin,
2006; Haufe et al., 2008; Vega-Hernández et al., 2008; Kowalski and
Torrésani, 2009a,b; Li and Tian, 2011; Gramfort et al., 2012, 2013).
Unfortunately, they may also introduce warping and other biases of

the cross-spectral (cESI) estimator. ESI practice with these inverse

solutions was most beneficial when addressing the deterministic
time/frequency waveforms of event-related brain processes within
the framework of spatially short-scale distributed event-related
brain networks (Picton andHillyard, 1974; Picton et al., 1974; Lopes
da Silva et al., 1991; Clark et al., 1994; Makeig et al., 1999, 2004;
Makeig, 2002; Eichele et al., 2005; Harrison et al., 2008; Vega-
Hernández et al., 2008; Maurer and Dierks, 2012). This approach
to ESI empiricism suggests that the best results were obtained
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FIGURE 6

In radar graphs, measurements of “Leakage” and “Incongruence” in the Cortical Spectral Topographies (CST) were obtained with all tested methods
“M” (ssSBL, seLORETA, and sLCMV) from the EEG. Leakage, regarding “Y,” the MEG or ECoG sMNE reference CST, is measured employing BM, the
Blurring (BLUR), and Incongruence, employing eM the Earth Movers’ Distance (EMD), and CM the Correlation Distance (1-CORR), shown for five
characteristic spectral bands (delta, theta, alpha, beta, and gamma). Distortions based in the BLUR, EMD, and 1-CORR are proportional to their values
in the radar graph. Calculations of the BLUR, EMD, and 1-CORR follow the procedure described in Figures 3, 4, for the MEGvsSimulated-EEG and
ECoGvsEEG experiments.
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FIGURE 7

Linear model and correlations for the Cortical Spectral Topographies (CST) obtained from the MEGvsSimulated-EEG experiment in the human. These
were adjusted from the CST data pairs (σM, σ 0) for all tested methods “M” (ssSBL, seLORETA, and sLCMV), and in five characteristic spectral bands
(delta, theta, alpha, beta, and gamma).

with flexible smooth/sparse a priori models (Zou and Hastie, 2005;
Vega-Hernández et al., 2008; Li and Lin, 2010). Quasilinear inverse
solutions of these smooth/sparse models can provide good data-
driven approximations.

We formalized the three possible routes toward cESI (our
target) viaMAP1 inverse solutions, for the vector processes or their

Fourier transform and via MAP2 or joint-MAP inverse solutions
for their cross-spectrum. The cross-spectral MAP2 or joint-MAP
are plausible inverse solutions, which target the quantity of interest
and theretofore posit the a priori upon the cross-spectrum 6ιι

(

f
)

.
In contrast, most cESI have been previously limited to

route 1 for the processes or route 2 for the Fourier transform
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FIGURE 8

In hot colormaps, measurements of “Leakage” in the EEG-based Cortical Spectral Topographies (CST) were obtained with all tested methods “M”
(ssSBL, seLORETA, and sLCMV). Leakage is measured by employing rM, the Generalized Point Spread Function (GPSF) regarding to the ECoG sMNE
reference CST, shown in the cortical views Left (L), Dorsal (D), Posterior (P), and Ventral (V) and for five characteristic spectral bands (delta, theta,
alpha, beta, and gamma). Leakage distortions are proportional to mismatch and spread in the GPSF values (hot colormaps) regarding reference
points (blue dots). Calculations of the GPSF follow the procedure described in Figure 4 for the ECoGvsEEG experiments.
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FIGURE 9

Linear model and correlations for the Cortical Spectral Topographies (CST) obtained from the ECoGvsEEG experiment in the macaque. These were
adjusted from the CST data pairs (σM, σM) for all tested methods “M” (ssSBL, seLORETA, and sLCMV), and in five characteristic spectral bands (delta,
theta, alpha, beta, and gamma).

(aESI) wherein the a priori is placed upon ι (t) or ι
(

f
)

.
Therefore, essential statistics like cross-spectrum were incorrectly
addressed as the subsequent step to aESI. As we demonstrated
in simulations and real data, the aESI procedure is not suitable,
with cESI amplifying the distortions previously produced during
aESI. Indeed, a way to achieve statistical guarantees in cESI is

through route 3 associated with the source cross-spectrum for
the data.

We have deferred for now to the complete implementation of
the MAP2 inverse solution for the cross-spectrum. This MAP2,
which targets a source matrix, was not straightforward, given a cESI
setup that is severely ill-conditioned and of high dimensionality.
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Hence, we adopted the joint-MAP, as an approximation to the
MAP2, which targets6ιι

(

f
)

of the sampled source cross-spectrum.
An essential concept introducing anyMAP inverse solution was

the Gibbs energy, a concept first formulated as the Gibbs free energy
of any physical system (Landau and Lifshitz, 1980). From the
point of view of the inverse problem theory, the Gibbs free energy
describes the forward energy exchange of a system (the source
variable) to the media (the data) (Ghahramani and Beal, 2001;
Grave de Peralta Menendez et al., 2004; Friston et al., 2006; Mattout
et al., 2006; Friston K. J. et al., 2008; Friston K. L. et al., 2008; Wipf
and Nagarajan, 2009). Thus, this is an important generalization of
the Tikhonov regularization and ESI for source cross-spectrum.

We employed this cross-spectral Gibbs energy to model the
joint a priori probabilities and second-order multivariate properties
of the Fourier transform. The Gibbs energy in cESI must be a
function of the cross-spectrum entries. This assumption follows
from the Gaussianity of Fourier transform (Brillinger, 1965;
Brillinger and Rosenblatt, 1967), or statistical sufficiency of the
cross-spectrum. This assumption is valid for ESI under a variety
of experimental conditions, as it can be demonstrated with high-
qualityMEG and ECoG data (Nagasaka et al., 2011; Van Essen et al.,
2013).

Quasilinear inverse solutions preserved the F-invariance for
Gaussianity, avoiding warping of cross-spectral amplitude and
phase information (Marzetti et al., 2008; He et al., 2019; Nolte et al.,
2020). F-invariance is also valid for a MAP1 assuming Gaussianity
of the Fourier transform, and streamlining the dimensionality
reduction for MAP2, leading to our joint-MAP interpretation
(Hsiao et al., 1998, 2002; Yeredor, 2000; Davis et al., 2001; Auranen
et al., 2005; Chen et al., 2011).

We indicate the importance of the nuclear norm (trace)
and nuclear quasinorm (square root trace) for matrices, from
the context of matrix completion inverse problems (Fan, 1951;
Ding et al., 2006; Sun and Zhang, 2012; Chen et al., 2013;
Schatten, 2013; Kim et al., 2015; Zhang et al., 2017) which
translated into a sparse/smooth spectrum model. Per the definition
of cross-spectrum upon vector basis, this model indeed could
be unified with the structured vector norms (Kowalski and
Torrésani, 2009a,b; Gramfort et al., 2012, 2013). Furthermore,
this has been very common in aESI with sparse (LASSO)
(Tibshirani, 1996) and smooth (MNE) (Hoerl and Kennard, 1970)
model. Our sparse-smooth model was, therefore, an Elastic Net
nuclear quasinorm.

Our approach has an important connection to Bayesian
learning (Tipping, 2001; Wipf et al., 2006; Park and Casella, 2008;
Wipf and Nagarajan, 2009; Casella et al., 2010; Li and Lin, 2010;
Li et al., 2011; Paz-Linares et al., 2017) and provided the link
between the joint-MAP and quasilinear inverse solutions. We
introduced a type of variational approximation to the joint a priori
probability upon cross-spectral Gibbs energy. This variational
approximation is similar to the previous Bayesian Learning
methods with extended applicability to high dimensional inverse
problems that are solved in iterated conditional mode (Pearl,
1988, 2022; Weiss, 2001; Yedidia et al., 2003; Zheng et al.,
2015).

Here, we restricted ourselves to the Gaussian Mixture Model
approach (Blei and Jordan, 2006; Bryant and Sudderth, 2012;

Gershman and Blei, 2012; Gershman et al., 2012; Nguyen and
Bonilla, 2013; Duvenaud et al., 2016) applied to the specific a priori
per the definition of the Elastic Net nuclear quasinorm (Candes and
Recht, 2012; Hu et al., 2012). Our Bayesian learningmethod (ssSBL)
was a generalization of the SBL and sSBL approaches.

Studying the distortions in cESI required a validation based
on a reference estimation (ground truth) closer to actual source
distributions in the brain rather than simulations of brain electrical
activity based on ideal source configurations (Kobayashi et al.,
2003; Grova et al., 2008; Schoffelen and Gross, 2009; Haufe et al.,
2013; Burle et al., 2015; Colclough et al., 2015; Bradley et al., 2016;
Mahjoory et al., 2017; Stokes and Purdon, 2017; Palva et al., 2018;
Haufe and Ewald, 2019; Marinazzo et al., 2019).

We demonstrated with several quality measures (Grova et al.,
2006b; Haufe et al., 2008; Paz-Linares et al., 2017; Van de
Steen et al., 2019; Wang et al., 2019) that cESI estimator
distortions in actual data are more larger than expected for some
state-of-the-art methods, such as sELORETA and LCMV. Our
Simulated-EEG vs. MEG and EEG vs. ECoG validation method
benchmarked the cESI distortions in the 10–20 EEG system
(19 channels), which is considered the lower bound for all ESI.
Therefore, we can infer that the behavior of our methods in
EEG or other techniques that provide denser recordings can
only improve.

The human Simulated-EEG vs. MEG validation method
produces measurements of the cESI estimator distortions very
similar to those of the EEG vs. ECoG simultaneously recorded
in the macaque (Nagasaka et al., 2011; Wang et al., 2019). This
similarity strongly supports the possibility of effectively measuring
the distortions expected in many real-life scenarios with our
Simulated-EEG vs. MEG design, which is easily replicable for other
MEG acquisitions or different experimental conditions (not only
resting state).

Our results indicate that ssSBL produces less cESI distortions
than sELORETA and sLCMV, according to all leakage measures
computed for the Simulated-EEG vs. MEG. These results were
supported by cESI obtained from low-density EEG recordings
in macaque compared to more fine-grained cESI obtained from
simultaneously recorded high-density ECoG.

Conclusion

In this manuscript, we leveraged Bayesian theory to investigate
the benefits and shortcomings of facing cESI with a large family
of methods. We show that cESI must be taken care of in severely
ill-conditioned and high-dimensional settings such as the ones
dealt with here. In such settings, achieving cESI via exact Bayesian
MAP2 methods is unfeasible and requires approximations. We
have introduced quasilinearity, a reasonable cESI assumption,
leading to the joint MAP that is feasible via the variational
approximation to MAP. Our implementation, ssSBL specifies a
priori to diminish CST distortions and exhibits good properties,
outperforming state-of-the-art methods. The Bayesian theory and
methods presented here could potentially be applied to signal
processing and imaging other biological phenomena described by
the cross-spectrum.
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