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ABSTRACT 

A simple nondestructive technique was used as an alternative method to monitor the hardening of 

cement-treated clay as a function of time. The principle of this monitoring technique is based on the 

use of bender elements to measure the small-strain shear modulus (G0) at various time intervals. The 

strength increase was monitored by conventional unconfined compression testing. Experimental work 

was carried out on Kaolin clay treated with Portland cement and blastfurnace slag cement at different 

dosages. The results showed that G0, as well as strength, of cement-treated samples increases 

logarithmically with time. However, blastfurnace slag cement produces a slower hardening rate early 

after mixing. It was found that for each binder type, the G0 increase and the strength increase, when 

normalized, follow a common trend. Such hardening function may be used as the basis of a strength 

prediction rule. The functions obtained are in good agreement with data on other cement-treated 

inorganic clays published in the literature. 

 

KEYWORDS: soft soil, cement, compressive strength, small-strain shear modulus, bender elements. 
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INTRODUCTION 

Soft soils have always been of great concern in civil engineering due to their low strength and high 

compressibility. Over the years, many construction techniques and ground improvement methods 

have been developed to tackle those problems, for example: staged construction, preloading, 

enhanced drainage to accelerate consolidation, etc. The Deep Mixing method for ground improvement 

is an alternative to such techniques. The method can be classified as a permanent soil improvement 

technique with addition of cementing agents mixed in place. Nowadays, binders such as cement, 

quicklime, fly ash and blastfurnace slag are commonly used to enhance the mechanical properties of 

natural soft soil (Porbaha et al., 2000; EuroSoilStab, 2002; CDIT, 2002).  

 

Although Deep Mixing has been in use worldwide for over three decades, only recently major research 

initiatives are being stimulated to study the behavior of soils treated with binders. The actual 

mechanism of improvement, interaction of binder-treated material with natural soils and its long-term 

behavior are topics still in need of research. This paper focuses on the mechanism of improvement of 

cement-treated clay.  

 

Traditionally, the improvement effect of a binder is studied by measuring the compressive strength of 

cement-treated specimens at various curing times by unconfined compression testing. However, the 

amount of data obtained is often limited to a few curing times and is usually subjected to scatter.  

 

In this paper, a nondestructive technique was used as an alternative method to monitor the hardening 

of cement-treated clay. The technique makes use of bender elements  (Dyvik and Madshus, 1985) to 

measure the small-strain shear modulus (G0) of a single sample at specific time intervals. This 

stiffness modulus is typically associated with small shear-strain levels of about 10
−3

% and below. In 

general, G0 is governed by a number of factors such as stress history, stress level, void ratio, soil 

fabric and the stiffness of the soil skeleton, which is determined by interparticle contacts (Santamarina 

et al., 2001). Then, an increase of G0 can be expected with increasing interparticle cementation. 

 

Experimental work was carried out on cement-treated Kaolin clay using two types of binders at 

different dosages, Portland cement and blastfurnace slag cement. The results of monitoring confirmed 
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an increase of G0 with time during hydration of the cements. A series of unconfined compression tests 

was carried out simultaneously, showing a similar pattern for unconfined compressive strength (UCS). 

Monitoring of the small-strain shear modulus of cement-treated soils was shown to provide valuable 

additional information to study the hardening of these materials.   

 

BRIEF REVIEW OF PREVIOUS STUDIES 

The magnitude of strength increase in time of materials mixed with cementing agents has been a topic 

of investigation in concrete research for about 6 decades already. Neville (1995) and Carino (2001) 

present an overview of relationships that have been used to represent strength development. The 

early work of Plowman (1956) showed that compressive and tensile strengths of concrete plotted 

against the logarithm of time under isothermal conditions give a straight line. Out of his work, the first 

type of strength increase relationship was proposed:  

 

ST / S0 = A + B log(T)         (1) 

 

where ST is the strength at an age T, S0 is a reference strength (for example at an age of 28 days) and 

A and B are constants. 

 

Several improved versions and alternatives to the basic strength increase relationship have been 

introduced such as the hyperbolic equation (Eq. 2), the parabolic hyperbolic equation (Eq. 3) or the 

exponential equation (Eq. 4): 

 

        (2) 

 

        (3) 

  

        (4) 
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where Su is an asymptotic value of strength, k is the rate constant and t0 is the time at which strength 

development is assumed to begin (usually of the order of 0.15 days ). 

 

Each of these relationships has its own limitations and ranges of applicability. Nevertheless, Neville 

(1995) states that the newer versions (Eq. 2-4) are indeed improvements but at the expense of 

introducing complications in the development and use of the functions; He also affirms that the original 

logarithmic function remains a useful tool for use in practice.      

 

With the introduction of soil improvement methods with addition of binders, the study of strength 

development in time of cemented soils soon became relevant in geotechnical research as well. To the 

author’s knowledge the first strength gain relationship for cemented soil was that proposed by Mitchell 

(1974): 

 

UCST2 = UCST1 + K log (T2/T1)        (5) 

 

where UCST2 is the unconfined compressive strength at an age T2, UCST1 is the unconfined 

compressive strength at an age T1 and K is a constant. 

 

Nagaraj and Miura (1996) conducted unconfined compressive tests on four inland clays treated with 

Portland cement at high water content and proposed the following relationship: 

 

UCST / UCS14days = a + b ln(T)        (6) 

 

where UCST is the unconfined compressive strength at an age T, UCS14days is the 14-day unconfined 

compressive strength and a and b are constants. They reported values of a = -0.20 and b = 0.458 for 

those soils based on strength data with significant scatter.  

 

Horpibulsuk et al. (2003), based on the work of Nagaraj and Miura (1996) and a larger database, but 

still with significant scatter, proposed the following relationship: 
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 UCST / UCS28days = a + b ln(T)        (7) 

 

The unavoidable scatter of strength data observed in the literature of concrete and geotechnical 

research is probably triggered by difficulties producing samples of repeatable quality. Therefore, the 

use of nondestructive techniques for monitoring hardening of cemented material got more attention 

recently. For example, Reinhardt and Grosse (2004) introduced a technique for the continuous 

monitoring of setting of concrete with ultrasonic waves.  

 

Similarly, in geotechnical research, nondestructive testing of geomaterials by bender elements (Dyvik 

and Madshus, 1985) to determine the shear wave velocity and hence the small-strain shear modulus, 

G0, has become common in the last decades. G0 is a very valuable parameter as it is governed by 

factors such as stress history, stress level, void ratio, soil fabric and the stiffness of the soil skeleton. 

Then, it is not surprising that G0 has been correlated to other soil properties like strength of artificially 

cemented soils. A reasonably linear correlation between G0 and UCS has been reported in the 

literature (Tatsuoka et al., 1996; Hird and Chan, 2005; Van Impe et al., 2005; Lohani et al., 2006; 

Helinski et al., 2007). In most studies, G0 was measured on samples by bender elements just before 

compression testing.  

 

A bender element consists of a pair of piezoceramic plates bonded to a metal shim and to outer 

electrodes. Piezoceramics are materials that generate an electrical output when subjected to 

mechanical deformation or that bend when electrically excited. A pair of bender elements (located at 

opposite ends of a sample) is used for G0 determination. One of the elements acts as shear wave 

transmitter and the other acts as the receiver. By measuring the travel time (t) of the shear wave 

through the sample, the shear wave velocity (Vs) can be determined as: 

 

Vs = L / t     (8) 

 

where L is the tip-to-tip distance between benders. Furthermore, the small-strain shear modulus G0 is 

estimated through: 
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     G0 = ρ Vs
2
     (9) 

where ρ is the bulk density of the sample. 

 

This apparently simple method has been the subject of extensive research (e.g. Dyvik and Madshus, 

1985; Brignoli et al., 1996; Arulnathan et al., 1998; Leong et al, 2005). Some issues regarding the 

bender elements installations and test execution have been summarized by Lee and Santamarina 

(2005). Furthermore, the various interpretation methods for evaluating the shear wave velocity (time-

domain and frequency-domain based methods) and their limitations have been thoroughly discussed 

by Viana da Fonseca et al. (2009).   

 

MATERIALS 

The materials used in this investigation were Kaolin clay, two types of cement, namely Portland 

cement and Blastfurnace slag cement, and water.  

 

KAOLIN CLAY 

A commercial processed Kaolin clay (Rotoclay HB®, Goonvean, St. Austen, UK) was used in this 

investigation. The clay was available as a dry powder. Some physical properties of this material are 

summarized in table 1.  

 

Scanning Electron Microscope (SEM) analysis was performed on this material. SEM is a type of 

electron microscope capable of producing high resolution images of a sample’s surface at 

magnification levels that can go up to molecular levels. These images have a 3D appearance and may 

be useful for judging the microstructure of a sample. The working principle of SEM is simple: a beam 

of electrons is shot to a sample and as a result of their interaction, electrons and photons (e.g. X rays) 

from the sample are released. These electrons and photons are captured by detectors, providing 

valuable information for each point on the sample’s surface. Just before microscopy, the samples were 

dried, subjected to vacuum for 12 hours and sputtered with gold coating. A SEM picture of the natural 

kaolin clay at a magnification of 2500x is shown in figure 1a. The picture shows that this material is 

homogeneous and that it is composed of agglomerates of clay particles. Kaolinite particles show 

pseudo-hexagonal sharp-edged plate shape. Figure 1b shows the results of a surface analysis of 
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energy dispersive X-ray spectroscopy on the same sample. This analysis gives information about the 

chemical composition of the sample. Three main components can be clearly identified Aluminium (Al), 

Silicium (Si) and Oxigen (O) in agreement with the composition of the predominant mineral kaolinite 

Al2Si2O5(OH)4. However, also a small amount of Potassium (K) can be identified, probably because of 

the presence of traces of mica. 

 

CEMENTS 

Two types of cement were used: Portland cement and blastfurnace slag cement. Portland cement 

(CEM I 52.5 N) consists predominantly of Portland clinker while blastfurnace slag cement (CEM III/B 

32.5 N LH HSR LA) consists of 65% to 80% of blastfurnace slag (a by-product of pig iron manufacture) 

and 20% to 35% of Portland clinker. 

 

CEM I chosen here has a nominal strength of 52.5 MPa. On the other hand, CEM III/B has a nominal 

strength of 32.5MPa and shows low hydration heat (LH), high resistance against sulphates (HSR) and 

limited alkali content (LA). 

 

WATER 

Purified water of uniform quality was used for admixture of soil and cement. Before use, water was 

treated by a purifying system consisting of a series of filters including a deionization filter, reverse 

osmosis and UV filter. As a result, an electrical conductivity of EC < 2 μS/cm and a pH of about 8 were 

obtained. 

 

METHODS AND PROCEDURES 

SAMPLE PREPARATION 

Although there is no unique standardized method of mixing cement and clay, it is possible to establish 

a common line based on current practice worldwide. The sample preparation method used here was 

based on various recommendations e.g. EuroSoilStab (2002), CDIT (2002) and Bhadriraju et al. 

(2008). 
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The sample preparation procedure was not meant to simulate actual conditions one may expect in 

actual ground improvement applications. Instead, the main goal of this procedure was to produce 

uniform and homogeneous samples. Samples were prepared for the two test types performed here, 

small-strain shear modulus testing (nondestructive) and unconfined compression testing. The small-

strain testing requires a single sample which is contained in the testing setup and remains there 

throughout the whole testing period. On the other hand, unconfined compression testing requires the 

preparation of multiple cylindrical specimens. The specimens tested here have a diameter of 38 mm 

and a height of 86 mm in accordance with ASTM D2166-00.       

 

The initial water content of the Kaolin clay was set to 2 times the liquid limit (w=115%) to represent a 

very soft soil. Furthermore, the cement dosage was fixed to 5%, 10% and 20% (in dry mass). 

 

The laboratory equipment used for soil/cement mixing and sample preparation consisted of an 

industrial dough mixer, a weighing scale, a spatula,  moisture tins, stainless-steel cylindrical moulds 

with a diameter of 38 mm and paraffin foil for sealing. 

 

After weighing the appropriate amount of dry soil and binder, they were initially mixed dry in the dough 

mixer for about 2 minutes until a homogeneous binder distribution was observed. Next, the appropriate 

amount of water was weighed and incorporated in the mixing bowl. Mixing was extended for another 7 

minutes approximately. The mixing was paused 1 or 2 times to remove soil attached to the walls of the 

mixing bowl. The mix at this point showed a liquid consistency and it was ready to be poured directly in 

the small-strain shear modulus testing setup or to be used in the manufacture of cylindrical specimens 

for unconfined compression testing.   

 

Such specimens were cast in stainless-steel cylindrical molds (with a diameter of 38 mm and a height 

of 86 mm) lightly coated with vaseline on the inside. To avoid formation of large pores within the 

specimens, the molds were lightly shaken during the pouring process. The bottom and top ends of the 

molds were sealed with paraffin film and kitchen foil to prevent moisture loss in the mix. Next, the 

molds were stored in an air-conditioned room at 18°C and they were allowed to cure for 7 days.  After 

that period, the specimens were carefully extruded out of the molds, they were wrapped in foil and 
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once again stored in the air-conditioned room to resume curing until the testing day. Unconfined 

compression test specimens were allowed to cure for a period ranging from 7 days to 56 days in order 

to investigate the development of strength with time.  

 

Out of the determination of parameters such as the water content and void ratio of cured specimens, it 

was found that the preparation procedure successfully produced samples of similar characteristics. 

Table 2 summarizes some statistics of measured water content and calculated void ratio of cemented 

specimens at a cement dosage of 20% after a curing period of 28 days. The data showed a normal 

distribution and limited scatter. The maximum standard deviation of void ratio was only 0.027 while the 

maximum standard deviation of water content was 1.08 (%). 

 

Finally, a cement-treated sample was analyzed with the scanning electron microscope. The analyzed 

sample was treated with CEM I at a dosage of 20% and had a curing age of 28 days. A SEM picture at 

a magnification factor of 2500x is given in figure 2a. When comparing this picture to the untreated 

material, one can clearly notice a bonded structure with homogeneous texture where clay particles 

interact with cement hydration products. As a result of such interparticle cementation an increase of 

the small-strain shear modulus can be expected. Figure 2b shows the results of a surface analysis of 

energy dispersive X-ray spectroscopy. This analysis gives information about the chemical composition 

of the sample. Apart from the three main components of the natural Kaolin such as Al, Si and O, an 

extra peak in the spectrum can be observed which corresponds to Calcium (Ca), the main component 

of cement hydration products. 

 

SMALL-STRAIN SHEAR MODULUS TESTING 

The small-strain shear modulus G0 was evaluated by bender element testing. The bender elements 

used here are of the type T220-A4-203x (Piezo Systems, Inc.) with a length of 12 mm, a width of 

about 6 mm and a thickness of 0.5 mm. Series elements were used as transmitter and receiver. They 

were wired and coated with several layers of polyurethane varnish for water-proof protection. They 

were assembled into threaded brass fittings to simplify installation (Fig. 3a). The elements were 

anchored in the fittings by filling the gap with epoxy. To provide for grounding, a layer of conductive 

paint was placed around the bender plate and put in contact with the fitting (Fig. 3b) which was ground. 
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On top of that, a finishing layer of polyurethane varnish was placed for protection. The effective bender 

element length protruding out of the fitting was about 6 mm. 

 

The design of the testing apparatus was based on the device developed by Reinhardt and Grosse 

(2004) for the evaluation of concrete setting, making use of ultrasonic waves. The apparatus proposed 

here for the monitoring of G0 is illustrated in figure 4. It consists of two plexiglass plates (500 mm x 130 

mm x 15 mm) that hold a U-shaped styrofoam mold with an open space for housing a cemented 

sample. The bender element transmitter and receiver are fixed to the plexiglass plates, one in front of 

the other and vertically aligned. All parts are held together by four sets of screws and nuts resting on 

rubber disks in an attempt to avoid wave propagation through the apparatus itself. 

 

Testing was started immediately after a soil/cement mix was prepared. The mix was poured into the 

styrofoam mold and allowed to cure under a constant temperature of about T=18°C. During that period, 

measurements of G0 were performed on a regular basis. In order to avoid drying, the sample was kept 

all the time under a thin layer of purified water. 

 

The input S-wave was generated by 1 cycle of a sinusoidal electrical pulse. The sinusoidal pulse was 

generated with a Matlab script, originally as a sound signal. The sound signal was captured out of the 

sound card of the computer that produced a small voltage (up to 5V). This electrical pulse was 

amplified with a linear amplifier to reach a peak-to-peak amplitude of at least 40 V. Both the input and 

output signal were recorded in a HP 3562A Dynamic Signal Analyzer. Averaging of multiple 

measurements helped to eliminate unwanted noise.  

 

Measurements were performed twice a day during the first couple of days, daily up to the first month 

and 2 to 3 times per week afterwards. The travel time of the shear wave was evaluated by identifying 

the first direct arrival from the output signal (Dyvik and Madshuis, 1985; Hird and Chan, 2008; Lee et 

al., 2008). Many trial measurements were performed at each time step looking for the most 

appropriate input signal frequency that produced the best possible output signal quality with negligible 

near field effect. In principle, high frequencies decrease near field effects and produce clearer first 

arrivals. At the very beginning of the monitoring, such optimal frequency was of the order of 7 kHz but 
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as the sample gained stiffness the frequency was increased as well up to 14 kHz by the end of the 

monitoring activities. Figure 5 illustrates shear wave recordings during the first 28 days of monitoring 

for the clay sample mixed with CEM I at a dosage of 10%. As can be seen, the signals show little 

interference, which facilitated the evaluation of the first arrival.  

 

UNCONFINED COMPRESSION TESTING 

The unconfined compression test is traditionally used in Deep Mixing practice to evaluate the 

improvement effect of binders in the laboratory. This test allows the determination of the unconfined 

compressive strength (UCS), which is the maximum vertical stress that a sample can sustain, using 

strain-controlled application of an axial load. The cemented samples were compressed at a 

deformation rate of 0.5 mm/min. Such rate was sufficient to bring the samples to failure within less 

than 15 minutes as specified by ASTM D2166-00. 

 

RESULTS 

SMALL-STRAIN SHEAR MODULUS 

Monitoring of small-strain shear modulus (G0) increase was performed for 6 types of soil/cement mixes. 

Samples were mixed with Portland cement (CEM I) and blastfurnace slag cement (CEM III/B). For 

each cement type, three dosage levels were used 5%, 10% and 20% (in dry weight). 

 

Measurements of G0 during cement hydration are illustrated in figures 6a and 6b for samples treated 

with Portland cement and blastfurnace slag cement, respectively. Overall, G0 increases with time. As 

expected for Portland cement, the greatest increase occurred within the first month and afterward a 

less marked increase was recorded. Similarly, G0 of samples treated with blastfurnace slag cement 

increases with time but following a different trend. 

 

It is clear that the trends for each binder type at the three dosage levels share some similarities among 

them. Then, by introducing a normalizing parameter a common trend for each binder type could 

probably be expected. Figure 7 presents the results of all tests normalized by G0(28d), which is the 

evaluated small-strain shear modulus at a curing time of 28 days chosen here as a reference age. The 

figure shows that all normalized measurements (G0/G0(28d)) plot in a quite narrow range defining a very 
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clear hardening trend for each type of binder. These results on cement-treated Kaolin clay suggest 

that for a given binder, regardless of the dosage, the small-strain stiffness development with time is 

essentially the same. 

 

Moreover, figure 8 illustrates the same values of normalized small-strain shear modulus G0/G0(28d) but 

this time plotted against the curing time in logarithmic scale. Based on data up to a curing time of 100 

days, the small-strain stiffness development with time of Portland cement-treated Kaolin clay can be 

characterized with a well-defined logarithmic trend (Fig. 8a). A best-fitting operation gives the following 

relationship with a coefficient of determination R
2
 of 0.98: 

 

G0/G0(28d) = 0.2381 ln(t)+0.2145    (10) 

 

On the other hand, the normalized small-strain stiffness development with time for the sample treated 

with blastfurnace cement is not fully linear in the semi-logarithmic chart (Fig. 8b). Initially hardening 

takes place at a much slower rate, up to the fourth curing day approximately. From then on, the 

stiffness development shows a linear trend as well, which is slightly steeper (more pronounced) than 

that for Portland cement. These features of hardening are in full agreement with results of concrete 

research. Barnett et al. (2006) states that strength development of blastfurnace cement concrete is 

considerably slower under standard curing conditions than that of Portland cement concrete, although 

the long-term strength is higher for the same water–cement ratio. Based on data up to a curing period 

of about 80 days, two best-fitting relationships were evaluated for cemented Kaolin clay. The first one 

is an exponential function (R
2
=0.96) valid up to the fourth day of curing. The second one is a 

logarithmic function (R
2
=0.98) valid for curing times beyond the fourth day. The best-fitting 

relationships for small-strain stiffness development under blastfurnace slag cement treatment are: 

 

G0/G0(28d) = 0.0472 t
1.2866

     (for 0 < t < 4 days)     (11) 

 

          G0/G0(28d) = 0.3586 ln(t)−0.2159   (for t > 4 days)    (12) 
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The spreading of measurement points around the proposed best-fitting functions is quite limited. This 

suggests that the observed trends of normalized small-strain stiffness increase during cement 

hydration are indeed representative for each type of binder.   

 

UNCONFINED COMPRESSIVE STRENGTH 

To investigate the strength increase of cement-treated Kaolin clay, unconfined compression tests were 

performed at 7, 14, 28, 42 and 56 days after mixing. At each curing time, two specimens were tested. 

Three types of soil/cement mixes were studied here: Kaolin clay mixed with Portland cement (CEM I) 

at a dosage of 10% and 20% and Kaolin clay mixed with blastfurnace slag cement (CEM III/B) at a 

dosage of 20%. 

 

The results are summarized in figures 9a and 9b for samples treated with Portland cement and 

blastfurnace slag cement respectively. Overall, the unconfined compressive strength (UCS) increases 

with time. Similar to G0 measurements, the strength of samples treated with Portland cement showed 

the greatest increase within the first month. The 28-day compressive strength of samples treated at 

20% and 10% dosage was in the order of UCS ≈ 300 kPa and UCS ≈ 100 kPa respectively. This 

strength was observed to increase very little beyond 28 days of curing. 

 

Samples treated with blastfurnace slag cement were mixed at a single dosage level of 20% (Fig. 9b). 

The results of strength measurement in this case show a more gradual increase. The compressive 

strength recorded higher values than Portland-cement treated samples at the same dosage. In fact, 

the 28-day compressive strength reached UCS ≈ 650 kPa and furthermore, the strength increase 

beyond 28 days of curing seems more pronounced. 

 

SMALL-STRAIN SHEAR MODULUS VERSUS COMPRESSIVE STRENGTH 

Similar to G0 data, the unconfined compressive strength was normalized with respect to the 28-day 

strength UCS(28d). Figure 10 compares normalized G0 with normalized UCS of samples treated with 

both binders. Although there is some unavoidable scatter, especially for samples treated with Portland 

cement, the figure shows good agreement between G0/G0(28d) and UCS/UCS(28d). These results 

suggest that the small-strain stiffness increase and the strength increase are closely related and follow 
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similar trends, at least within the age range considered here. This would mean that the relationships 

relating G0/G0(28d) with time (Eq. 10-12) could also be used (with enough accuracy) to describe the 

progress of UCS of cemented Kaolin with time, e.g. to predict the compressive strength (at any curing 

time) out of a single measurement of UCS at a specific curing time. 

 

The stiffness/strength increase relationships proposed for cemented Kaolin clay were compared to 

strength increase data of other cement-treated soils reported in the literature (Porbaha et al., 2000; 

Horpibulsuk et al., 2003; Liu et al., 2008). In figure 11a, the strength increase with age of Black clays, 

Yangtze river clays and Bangkok clay treated with Portland cement (CEM I) is compared to the 

stiffness/strength increase function given by equation 10. Overall, a good agreement was found for all 

soil types, especially during the first month. After that, some scatter is observed. 

 

Figure 11b illustrates strength increase data of Tokyo Bay clay and Kyushu Island clay treated with 

blastfurnace slag cement (CEM III/B). Porbaha et al. (2000) reported the compressive strength 

measurements on those samples as a function of time. At first sight, the strength increase on both soil 

types seems different. In fact, based on visual comparison, Porbaha et al. (2000) concluded that the 

improvement effect of blastfurnace slag cement is different for various soil types and that there is not a 

general trend in the improvement effect. However, if the results are normalized with respect to 

UCS(28d), we see that all points closely follow a common trend. Moreover, such trend shows excellent 

agreement with the hardening functions (Eq. 11 and 12) determined from Kaolin clay testing.         

 

The stiffness/strength increase relationships were also compared with long-term strength gain data of 

stabilized soils (Topolnicki, 2004). Data of a deep marine clay stabilized with Portland cement shows a 

compressive strength ratio UCS20years / UCS90days of 2.2. Using equation 10, a ratio UCS20years/UCS90days 

= 2.1 can be evaluated. Data on volcanic soil stabilized with blastfurnace cement shows a 

compressive strength ratio UCS17years/UCS28days ≥ 3. Using equation 12, a ratio UCS20years / UCS90days = 

2.92 can be evaluated. Again, here an satisfactory agreement was found.    

 

These observations suggest that the hardening functions determined for Portland cement and 

blastfurnace slag cement treatment on Kaolin clay (Eq. 10, 11 and 12) are able to successfully 
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describe the improvement effect of these binders on other natural soils as well, as long as large 

amounts of agents known to disrupt cement hydration (e.g. humic acids or sulphates) are not present 

in the soil or pore water.   

 

CONCLUSIONS 

A simple testing setup was developed to monitor the hardening of cement-treated Kaolin clay in time.  

The principle of this nondestructive monitoring technique is based on the use on bender elements to 

measure the small-strain shear modulus G0 of a single cement-treated sample at specific time 

intervals. This procedure is proposed as an alternative to traditional unconfined compression strength 

(UCS) measurement. 

 

Out of results on Kaolin clay mixed with Portland cement and blastfurnace slag cement at different 

dosages, it was found that G0 increase and UCS increase of cement-treated soil are closely related. 

Introducing normalizing parameters such as G0(28d) and UCS(28d), which are the evaluated G0 and UCS 

at a curing time of 28 days respectively, it was observed that G0/G0(28d) and UCS/UCS(28d) follow 

essentially the same trend. That implies that a relationship relating G0/G0(28d) with time could also be 

used to describe the progress of UCS/UCS(28d) of cemented Kaolin, e.g. to predict the compressive 

strength (at any curing time) out of a single measurement of UCS at a specific curing time. 

 

The improvement effect of Portland cement on Kaolin clay could be fully described by a single 

logarithmic function of time. On the other hand, the improvement effect of blastfurnace slag cement 

shows slower hardening early after mixing (during the first four days approximately) followed by a 

slightly faster rate of hardening. Then, two functions were proposed, an exponential function for early 

hardening and a steeper logarithmic function of time for late hardening. These functions, evaluated on 

the basis of G0 measurements on cemented Kaolin clay, show good agreement with UCS 

measurements.  

 

Furthermore, the proposed hardening functions were compared to strength increase measurements of 

other cement-treated soils reported in the literature. Again, a good agreement was found. These 

results suggest that the hardening functions determined for Portland cement and blastfurnace slag 
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cement treatment on Kaolin clay are able to successfully describe the improvement effect of these 

binders on other natural soils as well, as long as large amounts of agents known to disrupt cement 

hydration (e.g. humic acids or sulphates) are not present in the soil or pore water.   

 

Monitoring of G0 during hardening of cement-treated soil could be useful to aid the design of ground 

improvement. Moreover, the proposed technique could help to reduce the number of unconfined 

compression tests (traditionally carried out to study the impact of a binder) or to provide a clearer 

overview of stiffness/strength increase of cemented soil as it is less prone to scatter. 
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TABLE 1. Physical properties of Kaolin clay (Mazzieri et al., 2002) 

 

Property Value 

Specific gravity 2.65 

Liquid limit, % 57.7 

Plasticity Index 28.6 

Activity 0.7 

Silt size content, % 59.6 

Clay size content, % 40.4 

pH (4+1 extract) 4.5 

EC (4+1 extract), μS/cm 318 
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TABLE 2. Statistics of physical indexes of cemented specimens after a curing period of 28 days 

  

Index Binder type 

 CEM I (20%) CEM III/B (20%) 

No. specimens 18 18 

   

Void ratio   

Mean 2.50 2.55 

Std. deviation 0.027 0.012 

   

Water content (%)   

Mean 88.6 90.6 

Std. deviation 1.08 0.33 
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FIGURE CAPTIONS 

 

Figure 1. SEM analysis of natural Kaolin clay: (a) picture at a magnification of 2500x (b) chemical 

composition out of EDS (energy dispersive spectrum) 

 

Figure 2. SEM analysis of CEM I treated clay after 28 days curing: (a) picture at a magnification of 

2500x (b) chemical composition out of EDS (energy dispersive spectrum) 

 

Figure 3. Bender elements: (a) assembly in a brass fitting (b) detail of assembly 

 

Figure 4. Small-strain shear modulus (G0) monitoring setup: (a) side view (b) plan view 

 

Figure 5. Shear wave signals collected during hardening of Kaolin clay mixed with CEM I at 10% over 

a period of 28 days. 

 

Figure 6. G0 measurements during cement hydration: (a) sample treated with Portland cement (b) 

sample treated with blastfurnace slag cement 

 

Figure 7. Normalized shear modulus G0/G0(28 days) during cement hydration: (a) sample treated with 

Portland cement (b) sample treated with blastfurnace slag cement 

 

Figure 8. G0/G0(28 days) vs. curing time in log. scale: (a) sample treated with Portland cement (b) sample 

treated with blastfurnace slag cement 

 

Figure 9. Unconfined compressive strength: (a) sample treated with Portland cement (b) sample 

treated with blastfurnace slag cement 

 

Figure 10. Correlation between normalized G0 versus normalized UCS: (a) sample treated with 

Portland cement (b) sample treated with blastfurnace slag cement 
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Figure 11. Comparison of the proposed hardening correlations for Kaolin clay to other soils from the 

literature: (a) sample treated with Portland cement (b) sample treated with blastfurnace slag cement  
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FIGURE 1 
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FIGURE 2 

 

 

   (a) 

  

   (b) 

 

 

 



 29 

FIGURE 3 
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FIGURE 4 

 

 

 

 

 

 



 31 

FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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FIGURE 10 
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FIGURE 11 

 

0

0.5

1

1.5

2

2.5

3

1 10 100 1000

N
o

rm
al

iz
ed

 U
C

S 

Time (days)

Normalized Go for CEM I treated Kaolin

Black clays (Liu et al, 2008)

Yangtze River clay (Liu et al, 2008)

Bangkok clay (Horpibulsuk et al, 2003)

 

         (a) 

0

0.5

1

1.5

2

2.5

3

1 10 100 1000

N
o

rm
al

iz
ed

 U
C

S 

Time (days)

Normalized Go for CEM III/B treated Kaolin

Tokyo Bay clay (Porbaha et al, 2000)

Kyushu Island clay (Porbaha et al, 2000)

 

         (b) 

 

 

 

 

 

 

 


