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ABSTRACT

Estimating the functional effect of single amino acid
variants in proteins is fundamental for predicting the
change in the thermodynamic stability, measured
as the difference in the Gibbs free energy of un-
folding, between the wild-type and the variant pro-
tein (��G). Here, we present the web-server of the
DDGun method, which was previously developed
for the ��G prediction upon amino acid variants.
DDGun is an untrained method based on basic fea-
tures derived from evolutionary information. It is an-
tisymmetric, as it predicts opposite ��G values for
direct (A → B) and reverse (B → A) single and multi-
ple site variants. DDGun is available in two versions,
one based on only sequence information and the
other one based on sequence and structure informa-
tion. Despite being untrained, DDGun reaches pre-
diction performances comparable to those of trained
methods. Here we make DDGun available as a web
server. For the web server version, we updated the
protein sequence database used for the computation
of the evolutionary features, and we compiled two
new data sets of protein variants to do a blind test of
its performances. On these blind data sets of single
and multiple site variants, DDGun confirms its pre-
diction performance, reaching an average correla-
tion coefficient between experimental and predicted
��G of 0.45 and 0.49 for the sequence-based and
structure-based versions, respectively. Besides be-
ing used for the prediction of ��G, we suggest that
DDGun should be adopted as a benchmark method
to assess the predictive capabilities of newly devel-
oped methods. Releasing DDGun as a web-server,
stand-alone program and docker image will facilitate

the necessary process of method comparison to im-
prove ��G prediction.

GRAPHICAL ABSTRACT

INTRODUCTION

Predicting the change in protein stability upon single amino
acid variants constitutes a crucial step toward understand-
ing the relationship between protein structure and func-
tion. Elucidating this relationship will deepen our knowl-
edge about the biophysics of protein folding and will pro-
vide a tool to decipher genomic variation in the light of bi-
ological function and molecular mechanisms of health and
disease (1–3), directly guiding clinical applications toward
personalized treatments.

The impact on the protein stability of the substitution of
a single amino acid is measured through the ��G, which is
the difference in the free energy of unfolding (�G) between
the wild-type and the variant protein: ��G = �Gvariant
– �Gwild-type. Several methods, based on either sequence
(4,5) or sequence and structure information (5–8), have been
developed for the prediction of ��G upon single residue

*To whom correspondence should be addressed. Tel: +39 011 6705871; Fax: +39 011 6705610; Email: piero.fariselli@unito.it
†The authors wish it to be known that, in their opinion, these authors should be regarded as Joint First Authors.

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/W

1/W
222/6582160 by guest on 03 O

ctober 2022

https://orcid.org/0000-0002-2323-0963
https://orcid.org/0000-0003-0160-9312
https://orcid.org/0000-0002-5173-9636
https://orcid.org/0000-0003-1811-4762


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W223

variation (9–11) and two methods are also applicable to
multiple-residue variants (12,13). Prediction performances
reach correlation coefficients ranging from 0.4 to 0.6 for
single-site variants. ��G prediction is therefore not fully
resolved due to several limitations and challenges (14), and
further work is required to bring ��G prediction meth-
ods to accuracies suited for biophysical and clinical applica-
tions. The main limitations due to the characteristics of the
available data sets are: their intrinsic uncertainty and dis-
tributions which limits prediction accuracies (15) and the
bias of common experimental dataset toward destabilizing
variants (14). Major challenges concerning methods design
are: avoiding overfitting due to similarity between the se-
quences of the training and testing dataset, and develop-
ing a method which fulfil the anti-symmetrical property by
predicting opposite ��G values for direct (A → B) and
reverse (B → A) variants. Although the biophysics of the
folding process imposes the anti-symmetricity of the ��G
for reverse variants, most available methods lack this prop-
erty (16). Due to all these challenges, a robust comparison
among these predictors is a difficult task. Thus, it is essen-
tial to derive new curated data sets and to derive benchmark
methods.

Here we present the web server for the DDGun method
(17) which was developed as a non-trained method based
on simple anti-symmetrical features, hence addressing anti-
symmetry and avoiding overfitting as it is an untrained
method. Initially developed as a baseline-benchmarking
tool, DDGun reaches prediction performances comparable
to trained methods and constitutes a valid alternative tool
as recently shown (18).

MATERIALS AND METHODS

Sequence-based DDGun

Evolutionary scores. DDGun predicts the ��G through
a linear combination of scores based on evolutionary infor-
mation. These scores are summarized in Figure 1 and are: (i)
the difference between the wild-type and variant residue in
the BLOSUM62 substitution matrix (19) (sBl), which takes
into account the difference in evolutionary conservation be-
tween the wild-type and variant residue; (ii) the difference
in the interaction energy––measured through the Skolnick
statistical potential (20)––between the wild-type and vari-
ant residue within a 2-residue-long sequence window (sSk),
which takes into account the difference between wild-type
and variant residues in the interaction energy with their
near neighbours in the sequence; (iii) the difference in the
hydrophobicity between wild-type and mutant residues ac-
cording to the Kyte-Doolittle scale (sHp).

For each of these scores, the differences between the wild-
type and variant amino acids in the three features (evolu-
tionary conservation, interaction energy and hydrophobic-
ity) are computed as summation over all the possible amino
acids, weighted through the sequence profile derived from
the multiple sequence alignments (equations in Figure 1).

Interestingly, the evolutionary scores defined as such, are
anti-symmetric by design. They take, by construction, op-
posite values for direct and corresponding reverse variants
(being the direct variant substituting residue A with residue
B, and the reverse being substituting back residue B with

residue A); therefore, the method is anti-symmetrical even
without training on direct and inverse variants.

Scores combination. These three sequence-based evolu-
tionary scores were then combined through a simple linear
combination to build the DDGun predictor of ��G. The
linear combination weights were chosen to be proportional
to the ��G values available in the high quality and man-
ually curated VariBench data set (21) and normalized to 1.
The weights are: 0.30, 0.43 and 0.27 for sBl, sSk and sHp, re-
spectively. The linear combination of DDGun is shown in
Figure 1. It has to be stressed that the weights of the linear
combinations were not chosen to fit the ��G prediction in
any data set, making DDGun a fully untrained method.

Structure-based DDGun

Structure-based scores. The structure-based version of
DDGun (DDGun3D) is based on the three previously de-
fined sequence-based scores and one additional structure-
based score that considers the variation of the structural
environment. In order to compute this score, a 3D protein
structure must be resolved. This additional score, sBV, takes
into account the differences in the interaction energy be-
tween the wild-type and variant residue with their structural
environments, defined as a sphere of radius 5 Å centered in
the variant site. The interaction energy between wild-type
and variant residues with their structural environments is
calculated through the Bastolla-Vendruscolo statistical po-
tential (22). As before, the difference in the interaction en-
ergy is weighted over the sequence profile (sBV equation in
Figure 1). It is worth noticing that the structural environ-
ment is computed on only the wild-type structure and there-
fore does not consider possible structural rearrangements
that may occur upon mutation, and this may be a source of
a partial antisymmetry loss.

Scores combination. Structure based DDGun predictions
are given by a linear combination of the four scores shown
in Figure 1 (three of which are sequence-based and the last
one is structure-based). Also, for the structure-based ver-
sion of the method, the scores were combined through a lin-
ear combination whose weights were chosen to be propor-
tional to the ��G values available in the VariBench data
set normalized to 1. The weights are: 0.20, 0.29, 0.18 and
0.33 for sBl, sSk, sHp and sBV, respectively. For the structural
method, an additional modulation factor has been intro-
duced to take into account that variants at solvent-exposed
sites tend to have lower effects on the ��G values. This fac-
tor is (1.1 - ac) where ac is the relative solvent accessibility of
the residue computed through the DSSP program (22,23).
As a first approximation, the modulation factor was con-
sidered linear, even though the effect of accessibility could
be more complex. When the solvent accessibility is small
or 0 (i.e. buried residues) the modulation factor is 1 (or al-
most 1) and hence the predicted ��G is maximum. When
solvent accessibility is high (exposed residues), the modu-
lator factor approaches 0 and hence the predicted ��G is
reduced. Therefore, DDGun tends to predict higher ��G
changes for buried residues and smaller ��G changes for
exposed residues. The equation for the linear combination
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Figure 1. Method overview: building DDGun and DDGun3D through the individual scores. In all the equations, m indicates the variant residue, w indicates
the wild-type residue and prof(aij) indicates the profile, that is frequency of i-th amino acid (ai) at the j-th position of the multiple sequence alignment.
B(ai,aj) is the substitution score given by the BLOSUM62 matrix between the i-th and j-th amino acids. PSk(ai,aj) is the Skolnick interaction potential
between residues i-th and j-th; K(a) is the hydrophobicity of amino acid a as measured by the Kyte-Doolittle scale; PBV(ai,aj) is the Bastolla-Vendruscolo
pairwise statistical potential between residues i-th and j-th. In the linear combination of DDGun3D, ac is the relative solvent accessibility of the residue.

with the modulation factor is shown in Figure 1. Structure-
based score and accessibility were computed on the single
chain.

DDGun for multiple variants

This method is designed in a way that is easily extended
to predict ��G upon multiple site variants. Among the
methods which provide this option, DDGun is the only
sequence-based one. Given multiple site variants, DDGun
predicts the ��G changes for each variant separately and
then it combines the prediction using the following equa-
tion:

smult = max (ss) + min (ss) − mean (ss)

where smult is the ��G prediction for the multiple site vari-
ant, and ss is the vector ss = (s1, s2, . . . sM) with the ��G
predictions for each variant separately through DDGun.
This formula derives from the hypothesis that the minimum
and the maximum values are likely to be the most relevant
in affecting the ��G resulting from a multiple site variant.
Thus, the final score has been defined as the sum of the min-
imum and maximum values of the ��G predictions for the
single variants and this sum was then centered around the
mean of the ��G predictions for all the simultaneous vari-
ants (by subtracting the average of the ��G prediction).

DDGun update

While the equations and score weights are the same as
those of the original version of DDGun, the web-server
version has been updated in the protein sequence database
against which the multiple sequence alignments are com-
puted. Indeed, a critical factor for DDGun, shared with
all evolutionary-based methods, is the sequence profile,
which is derived from the multiple sequence alignment
and modulates every score computed by DDGun (see Fig-
ure 1). The sequence profile is highly dependent on the
quality of the multiple sequence alignment on which it

is based, being more accurate the bigger it is the num-
ber of aligned sequences. The multiple sequence align-
ments of the original DDGun method were obtained align-
ing each protein against the uniprot2016 database (Febru-
ary 2016) through the hhblits program (23). We have up-
dated the method for the web server version by replac-
ing Uniprot2016 with a newer release, Uniclust30 (August
2018) and by running hhblits with an e-value of 10–6. It
has to be noted that the weights of the linear combinations
were not recomputed with the new multiple sequence align-
ments, and are the same reported in the original DDGun
method.

RESULTS

Method performances

Testing data sets. To evaluate the performances of
DDGun, we report the Pearson correlation coefficients (r)
and the root mean square error (RMSE) on two new data
sets which were not available when DDGun was developed.
The first one, s96, is a data set of single site variants which
consists of 96 variants from 14 proteins derived from the
latest version of ProTherm released in 2021 (24). The vari-
ants were manually checked and corrected according to the
information derived from the papers reporting the experi-
mental values. Only variants on proteins having less than
25% sequence identities with proteins in S2648 (25) and
VariBench (21) were selected. This data set is hence comple-
mentary to S2648 and VariBench and represents a blind test
for all the methods trained on S2648 or VariBench, as well
as a valid test for generalization properties for all methods.
The second dataset m28 is a dataset of multiple site vari-
ants derived from the same latest version of ProTherm (re-
leased in 2021). Only variants for which ��G or ��GH2O
were reported after 2013, hence not included in the previ-
ous data sets, were retained. In both data sets, s96 and m28,
when multiple experimental ��G values were reported for
the same variant, the average has been taken. A description
of these new data sets is reported in Supplementary Table
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Table 1. Performances of DDGun on the two new datasets.

s96 m28

Method r RMSE r RMSE

DDGun 0.48 2.14 0.42 2.49
DDGun3D 0.52 2.10 0.44 2.54
FoldX 0.22 4.18 0.38 2.64
Maestro 0.36 2.29 0.28 2.90
INPS-MD 0.43 2.21 na na
mCSM 0.31 2.33 na na
INPS-Seq 0.44 2.20 na na
PopMusic 0.36 2.30 na na
SDM 0.51 2.12 na na

r: Pearson’s correlation coefficient between the predicted and experimen-
tal ��G values; RMSE: root mean square error (expressed in kcal/mol).
Measures of performance are defined in Supplementary Data.

S1 and the full data sets are available as supplementary ma-
terial and on the DDGun web server.

DDGun performances. We first re-computed the perfor-
mances of the web server version of DDGun, which rely
on an updated version of the Uniclust database, on the old
datasets. On the largest available data sets (VariBench and
S2648 with 1432 and 2648 variants, respectively), the perfor-
mances of DDGun reach a correlation of 0.48 and 0.49 and
those of DDGun3D reach 0.54 and 0.57 for each dataset, re-
spectively. The performances are similar (average difference
1–2%) to those obtained with the original DDGun version.
Similar tests were performed to evaluate the performance
of DDGun Ssym (26), an anti-symmetric data set of sin-
gle point mutations, and PTmul (17) which collects mul-
tiple site variations. Also, in this case the performance of
the newer version of DDGun is consistent with the previ-
ous one. The scoring indices of DDGun on these data sets
are reported in Supplementary Table S2 and S3. On the new
datasets, DDGun and DDGun3D performances are shown
in Table 1. On s96, DDGun reaches a correlation coefficient
of 0.48 and DDGun3D reaches a correlation coefficient of
0.52 between experimental and predicted ��G values. Root
mean square errors are 2.14 and 2.10 kcal/mol, respectively.
Hence, on a data set of single point variants which is com-
plementary to those used for the development of the meth-
ods, DDGun reaches roughly the same performance. On
multiple variants, on the new data set m28 DDGun and
DDGun3D reach a correlation of 0.42 and 0.44 with root
mean square errors of 2.49 and 2.54 kcal/mol, respectively
(Table 1). Merging both data sets (s96 and m28) DDGun
and DDGun3D reach a correlation of 0.44 and 0.48, respec-
tively, and with a root mean square error of 2.2 kcal/mol
(Figure 2).

In order to compare DDGun performances, we also re-
port in Table 1 the performances of other widely used meth-
ods on the s96 and, when applicable, on the m28 data set.
The fact that the performances of DDGun are stable across
different datasets, including new and blind ones, proves that
DDGun represents a robust assessment of the predictive
capabilities of the simple evolutionary and energetic fea-
tures and constitutes a robust benchmark for more complex
methods.

Web-server description

A graphical view of a web-server prediction is shown in Fig-
ure 3.

DDGun input. To make a ��G prediction with the
DDGun server, the user should first choose whether to
run the sequence-based, the structure-based or both ver-
sions of DDGun, by clicking on the corresponding ‘Se-
quence’, ‘Structure’ or ‘Both’ button. The web interface of
the sequence-based DDGun consists of two textarea boxes,
the first one for the protein sequence (simple text or fasta
format) and the second one for the list of variants (e.g.
K6L). Multiple variants are accepted and should be intro-
duced in the same line, comma-separated. When running
the structure-based method, it is possible to either upload a
PDB file or insert the PDB code. When selecting the ‘Both’
option, the server requires the same input as that of the
structure-based method, but it also returns the sequence-
based predictions. The server internally processes the PDB
file extracting the mutated protein chain keeping the origi-
nal amino acid numbering, including the amino acids with
identified insertion codes. If the option ‘Both’ is selected,
the protein sequence is determined from the lists of resolved
amino acids. On the server web page-specific links allow
loading examples of possible inputs.

DDGun output. The output of DDGun is shown on a web
page in tabular form. The results for a variant are shown
in each line, along with the individual scores (three for the
sequence-based version and four scores plus the relative sol-
vent accessibility for the structure based one). In the last col-
umn, the prediction of the ��G of unfolding (��G[SEQ]
or ��G[3D]) is displayed, expressed in kcal/mol. The ef-
fect of the variant on protein stability is also represented by
an upwards (↑) or downwards (↓) arrow corresponding to a
stabilizing or destabilizing mutation, respectively. An equal
sign ( = ) indicates the predicted variants with neural effect
(��G = 0.0 kcal/mol). A green plus button at the begin-
ning of each row allows to visualise further details associ-
ated to each prediction, such as the frequency of the wild-
type and mutated residues in the variation site of the pro-
tein sequence profile, and the interactions of the wild-type
residue within a sphere of 5 Å. When the option ‘Both’ is
selected, DDGun returns both ��G[SEQ] and ��G[3D],
which are the predicted ��G based on only sequence infor-
mation and on sequence and structure information, respec-
tively. The component view makes the DDGun predictions
explainable allowing a clearer interpretation of the method.
The output is stored on the server for about one day, and it
is accessible using the JobID provided at the beginning of
the output page. If the user, upon query, provides the email,
the output will also be sent by email as an attachment in
text format.

CONCLUSIONS

DDGun web server is the released version of the previously
developed DDGun method, an untrained method for the
prediction of ��G upon single and multiple site variants,
which is based on simple anti-symmetrical conservation and
energetic scores. DDGun was among the top-performing
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Figure 2. Scatter plot of predicted and experimental ��G on s96 (blue) and m28 (orange) datasets for DDGun (A) and DDGun3D (B). RMSE and r are
defined in supplementary materials.

Figure 3. To make a ��G prediction on the server, the sequence or the structure-based inputs must be selected by clicking on the corresponding button.
A third option (‘Both’) allows to run both predictions providing in input the structural information. The web interface of the sequence-based DDGun
consists of two textarea boxes, the first one for the protein sequence (simple text or fasta format) and the second one for the list of variants (e.g. T7W).
Multiple variants are accepted as comma-separated in the same line. The output of DDGun shows the predictions along with the individual scores. In the
last columns, the prediction of the ��G of unfolding in kcal/mol is displayed, The impact of the variants on protein stability is represented with a blue
upwards arrow (↑) indicating an increase of stability, or a red downward arrow (↓) indicating a decrease of stability. The equal sign ( = ) indicates variants
with no effect on protein stability. A green plus button at the beginning of each row visualises further details associated with each prediction, such as the
frequency of the wild-type and mutated residues in the variation site of the protein sequence profile and the interactions of the wild-type residue within a
distance of 5 Å.
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methods when benchmarked with other 21 tools on a new
dataset (18).

In respect to the original DDGun method, the web server
version relies on an updated version of the protein sequence
database (Uniclust2018 instead of Uniprot2016). In this
work, we show the performance of the updated version of
DDGun on the main datasets of experimental ��G values
and we also test it on two new datasets never seen before.
We show that the performance is consistent across datasets
and across DDGun versions, reaching prediction correla-
tion comparable to the state of the art, despite DDGun be-
ing an untrained method. This qualifies DDGun as a robust
benchmark method for ��G prediction and method com-
parison.

DATA AVAILABILITY

DDGun is freely available as a web server at: https://folding.
biofold.org/ddgun for interactive queries. A stand-alone
version to run DDGun locally is available on GitHub:
https://github.com/biofold/ddgun. We also provide a docker
image hosted on DockerHub (https://hub.docker.com/
repository/docker/biofold/ddgun) which allows reproduc-
ing the analysis identically as presented in this study.
DDGun is freely accessible at http://folding.biofold.org/
ddgun.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Ministero dell’Università e della Ricerca [PRIN201744NR
8S]. Funding for open charge: Ministero dell’Università e
della Ricerca [PRIN201744NR8S].
Conflict of interest statement. None declared.

REFERENCES
1. Gerasimavicius,L., Liu,X. and Marsh,J.A. (2020) Identification of

pathogenic missense mutations using protein stability predictors. Sci.
Rep., 10, 15387.

2. Martelli,P.L., Fariselli,P., Savojardo,C., Babbi,G., Aggazio,F. and
Casadio,R. (2016) Large scale analysis of protein stability in OMIM
disease related human protein variants. BMC Genomics, 17, 397.

3. Birolo,G., Benevenuta,S., Fariselli,P., Capriotti,E., Giorgio,E. and
Sanavia,T. (2021) Protein stability perturbation contributes to the loss
of function in haploinsufficient genes. Front. Mol. Biosci., 8, 620793.

4. Fariselli,P., Martelli,P.L., Savojardo,C. and Casadio,R. (2015) INPS:
predicting the impact of non-synonymous variations on protein
stability from sequence. Bioinformatics, 31, 2816–2821.

5. Cheng,J., Randall,A. and Baldi,P. (2006) Prediction of protein
stability changes for single-site mutations using support vector
machines. Proteins, 62, 1125–1132.

6. Savojardo,C., Fariselli,P., Martelli,P.L. and Casadio,R. (2016)
INPS-MD: a web server to predict stability of protein variants from
sequence and structure. Bioinformatics, 32, 2542–2544.

7. Guerois,R., Nielsen,J.E. and Serrano,L. (2002) Predicting changes in
the stability of proteins and protein complexes: a study of more than
1000 mutations. J. Mol. Biol., 320, 369–387.

8. Pires,D.E.V., Rodrigues,C.H.M. and Ascher,D.B. (2020)
mCSM-membrane: predicting the effects of mutations on
transmembrane proteins. Nucleic Acids Res., 48, W147–W153.

9. Rodrigues,C.H., Pires,D.E. and Ascher,D.B. (2018) DynaMut:
predicting the impact of mutations on protein conformation,
flexibility and stability. Nucleic Acids Res., 46, W350–W355.

10. Capriotti,E., Fariselli,P., Rossi,I. and Casadio,R. (2008) A three-state
prediction of single point mutations on protein stability changes.
BMC Bioinf., 9, S6.

11. Fang,J. (2019) A critical review of five machine learning-based
algorithms for predicting protein stability changes upon mutation.
Brief Bioinform, 21, 1285–1292.

12. Schymkowitz,J., Borg,J., Stricher,F., Nys,R., Rousseau,F. and
Serrano,L. (2005) The FoldX web server: an online force field. Nucleic
Acids Res., 33, W382–W388.

13. Laimer,J., Hiebl-Flach,J., Lengauer,D. and Lackner,P. (2016)
MAESTROweb: a web server for structure-based protein stability
prediction. Bioinformatics, 32, 1414–1416.

14. Sanavia,T., Birolo,G., Montanucci,L., Turina,P., Capriotti,E. and
Fariselli,P. (2020) Limitations and challenges in protein stability
prediction upon genome variations: towards future applications in
precision medicine. Comput. Struct. Biotechnol. J., 18, 1968–1979.

15. Montanucci,L., Martelli,P.L., Ben-Tal,N. and Fariselli,P. (2019) A
natural upper bound to the accuracy of predicting protein stability
changes upon mutations. Bioinformatics, 35, 1513–1517.

16. Montanucci,L., Savojardo,C., Martelli,P.L., Casadio,R. and
Fariselli,P. (2019) On the biases in predictions of protein stability
changes upon variations: the INPS test case. Bioinformatics, 35,
2525–2527.

17. Montanucci,L., Capriotti,E., Frank,Y., Ben-Tal,N. and Fariselli,P.
(2019) DDGun: an untrained method for the prediction of protein
stability changes upon single and multiple point variations. BMC
Bioinf., 20, 335.

18. Pancotti,C., Benevenuta,S., Birolo,G., Alberini,V., Repetto,V.,
Sanavia,T., Capriotti,E. and Fariselli,P. (2022) Predicting protein
stability changes upon single-point mutation: a thorough comparison
of the available tools on a new dataset. Brief. Bioinform., 23, bbab555.

19. Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl. Acad. Sci. USA, 89,
10915–10919.

20. Skolnick,J., Jaroszewski,L., Kolinski,A. and Godzik,A. (1997)
Derivation and testing of pair potentials for protein folding. When is
the quasichemical approximation correct? Protein Sci., 6, 676–688.

21. Yang,Y., Urolagin,S., Niroula,A., Ding,X., Shen,B. and Vihinen,M.
(2018) PON-tstab: protein variant stability predictor. Importance of
training data quality. Int. J. Mol. Sci., 19, E1009.

22. Bastolla,U., Farwer,J., Knapp,E.W. and Vendruscolo,M. (2001) How
to guarantee optimal stability for most representative structures in the
protein data bank. Proteins, 44, 79–96.

23. Steinegger,M., Meier,M., Mirdita,M., Vöhringer,H.,
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