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The present level of skepticism expressed by courts, legal practitioners, and the general public over
Artificial Intelligence (AI) based digital evidence extraction techniques has been observed, and under-
standably so. Concerns have been raised about closed-box AI models’ transparency and their suitability
for use in digital evidence mining. While AI models are firmly rooted in mathematical, statistical, and
computational theories, the argument has centered on their explainability and understandability,
particularly in terms of how they arrive at certain conclusions. This paper examines the issues with
closed-box models; the goals; and methods of explainability/interpretability. Most importantly, recom-
mendations for interpretable AI-based digital forensics (DF) investigation are proposed.

© 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the last two decades, machine-generated proofs have
mostly taken over the function of humans in fact-finding, albeit
with increased accuracy (Roth, 2015). There are considerable con-
cerns about the legality of digital evidence or machine-generated
conclusions, particularly given that these decisions can differ for
the same scientific evidence, just as they do with human experts.
Similarly, just as out-of-court testimony, such as hearsay (Goodison
et al., 2015), machine testimonies (sources) may create closed-box1

problems for the justice system, leading fact-finders to make
incorrect/incomplete inferences (Carr, 2014; Pasquale, 2015).
Although the design, input, model, and environment can all
contribute to the flaws or inaccurate interpretations of a machine-
driven DF analysis, themost likely causes are erroneous algorithms/
code, skewed or disproportionate datasets, and defective functional
components of the system (e.g., OS, distributed platforms, etc.).
Humans are responsible for designing and structuring all important
components of a machine (including its design, input, and opera-
tional modules), and so some scholars assert that machines’ cred-
ibility is strongly reliant on humans. As a result, the true declarant2
say as a label for the witness
asserted.

Ltd. This is an open access article u
of any output that a machine is capable of producing is a human
being (Wolfson, 2005). While the designer or operator of a machine
bears some moral responsibility for the statements it makes, she is
not the sole source of such statements (Roth, 2015). She is only
reiterating to the audience the output that a machine generated. A
machine-driven forensic investigation, like an expert opinion, is the
product of “distributed cognition” between humans and technol-
ogy (Dror and Mnookin, 2010). As noted previously, humans and
machines are inextricably linked in a variety of ways, which im-
pacts everything from the closed-box to determining responsibility.

AI and its inscrutability (opaqueness) remain active study areas;
yet given widespread misconceptions about whether AI systems
should be explainable or interpretable, the road to a unifying
consensus may be longer. AI/Machine Learning (ML) powered
systems have a wide variety of applications in our daily lives, with
differing implications in each sector. Where judgments have a
substantial impact on individuals, or where accountability, trans-
parency, or legal compliance are required (for example, in health
and law), there is a rising concern about the inexplicability of AI
systems (Coyle and Weller, 2020). This has prompted calls for
forensic investigation of AI systems (Baggili and Behzadan, 2020)
and auditing of their application in a variety of scenarios (Schneider
and Breitinger, 2020) in order to ascertain their behaviours. Intel-
ligent systems have proven particularly useful in refuting or sup-
porting claims in DF investigation, as they have identified or
detected interesting clues that could have been missed or over-
looked. There is an additional degree of complication that needs to
be addressed when trying to explain a forensic investigation's
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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findings, because the methods used to arrive at such conclusions
may be questionable scientifically or insufficiently transparent. As
technology has becomemore sophisticated, so has the crime that is
committed with it, necessitating a shift from traditional methods
(such as forensic tools familiar to lawyers, jurors, and others) to a
more robust, and equally intelligent systems such as AI to identify
potential evidence.

The primary goal of this work is to examine, first, the diverse
ideas on explainability and interpretability in AI, with a specific
focus on how they affect DF and evidence mined using AI algo-
rithms. This is necessary in order to provide a solid foundation for
such ambiguous ideas. To put things in the right perspective,
guidance through literature will, perhaps, help to draw the right
connections especially as it pertains to digital forensics AI (DFAI)3

(Solanke and Biasiotti, 2022). Second, the many approaches and
attempts to find a viable answer to the issue of closed-boxes are
discussed (even though that remains elusive). Domain-specific
recommendations to mitigate distrust in digital evidence mining4

are then offered after discussions about several work-around
proposed.

The key contribution of this paper are the recommendations
offered for mitigating mistrust in AI-powered digital forensics in-
vestigations. Additionally, a formal pre-concept for explainable
digital forensics AI is presented, as well as various relevantmethods
for providing understandable interpretations for AI models and
their applicability to AI-based DF analysis.

The next sections discuss the concepts of explainability and
interpretability; the goals and methods for interpreting AI models;
and recommendations for making the application of AI in digital
forensics more interpretable.

2. The concepts

The promise of AI was to enable better decision-making, as seen
in some forms of medical diagnostics (De Fauw et al., 2018) or
monitoring attempted financial frauds (Aziz and Dowling, 2019),
but doubts have been raised about its use in critical contexts like
justice and policing systems (Aziz and Dowling, 2019). There is a
pressing demand to explain to audience who might be curious
about how algorithmic decisions were reached. Explainable AI
(XAI) (Samek et al., 2017, 2019; Pedreschi et al., 2018; Guidotti et al.,
2019), is an area of research that is focused on making AI systems
and the data they utilize transparent by ”glass-boxing” the system's
functioning components (Gross-Brown et al., 2015). In light of AI's
broad use in many sectors, different explanations connote diverse
meanings, and the weight of significance is assigned based on the
technical requirements and the implications of the outcomes. For
instance, the decision-making process of a recommender system
requires little or no explanation, while questions about the
decision-making mechanism of a crime prediction or recidivism
algorithm will be raised. Since a wrong machine-generated deci-
sion could have serious consequences on law enforcement, and the
criminal justice system as a whole, XAI holds a lot of weight. XAI
idea stems from the continuous effort to minimize (or eliminate
entirely) the opaqueness of AI systems through the deconstruction
of complex variables while maintaining a good balance between
transparency, performance, and correctness. For this, there have
3 ’Digital Forensics AI0 herein refers to a broader concept of automated systems
that encompasses the scientific and legal tools, models, methods; including eval-
uation, standardization, optimization, interpretability, and understandability of AI
techniques (or AI-enabled tools) deployed in digital forensics domain.

4 'digital evidence mining’ as the process of automatically identifying, detecting,
extracting, and analyzing digital evidence with AI-driven techniques. Mining is
borrowed from the phrase ’Data Mining’.
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been arguments over whether the outcomes of a closed-box AI
system should be explainable (Arrieta et al., 2020) or interpretable
(Rudin, 2019); some argue instead for systems that are intelligible
or responsible (Benjamins et al., 2019). However, interpretable and
explainable AI, in particular, have been used interchangeably across
literatures. A simple search in the Scopus5 database highlights
these misconceptions over time and the gradual shift in reasoning
towards interpretability in literatures. According to the search,
”interpretable AI” was more prevalent over time until 2018, before
explainability started getting formalized. Interpretable AI (IAI) and
XAI are now widely used in a range of fields of study, including
health and decision sciences (to which, perhaps, DF belongs), in
addition to the primary fields in which the concept was majorly
prevalent (e.g. computer science, mathematics, engineering, social
science, etc.).

To better understand these concepts, definitions and distinc-
tions between terms may be required; thus the summary of the
most widely used nomenclatures are offered below.

Explainability: relates to the idea of connecting a machine's
decision-making process with human explanations that are both
accurate and understandable (Guidotti et al., 2019). It embodies the
notion that, AI models and their output can be rationally explained
in a way that humans can accept and understand. Despite their
lower performance, classical ML models are fairly easy to under-
stand. Deep Neural Networks/Deep Learning (DNN/DL) (LeCun
et al., 2015), on the other hand, performs better but is consider-
ably more difficult to explain. AI systems that are truly explainable
uses knowledge bases for data analysis and provide a technique for
deconstructing the results in a way that logically justifies the in-
terpretations of their input data (Hall et al., 2021). According to
Gunning (2019), “XAI will create a suite of machine learning tech-
niques that enable human users to understand, appropriately trust,
and effectively manage the emerging generations of artificially intel-
ligent partners.”

Interpretability: is the ability to communicate an explanation or
meaning in a way that is comprehensible (Arrieta et al., 2020). A
universal definition might be impossible since interpretability is
domain-specific (Ruping, 2006; Huysman et al., 2011). It is important
to note, however, that interpretability in the context of machine-
generated output should be regarded in terms of its conformance to
structural domain knowledge; causality; or physical constraints; and,
of course, sparsity (of data); which can be measured in terms of hu-
man cognitive capacity (Miller, 1956; Cowan, 2010). In addition to
being able to visualize a model, an interpretable system allows users
toexamineandcomprehendthemathematicalunderpinningsofhow
input is transferred to output (Doran et al., 2017). It conveys a sense of
transparency and clarity. Interpretable consideration can help
improve the implementation of an AImodel in three ways: 1) ensure
objectivity in decision-making; 2) ensure resilience to adversarial
perturbations that could impair prediction; and 3) ensure that only
correct variables are used to infer the output, i.e., assurance that true
causality underpins the model reasoning (Arrieta et al., 2020). For an
interpretable AI system to be effective, the predictions it makesmust
be understandable, its discriminating rules must be visualizable, and
any circumstances that could perturb the model must be disclosed
(Hall, 2018).

Understandability: or intelligibility, refers to the features of a
model that allow it to be self-explanatory in terms of its operational
functionality dwithout the need to describe its internal structure
or the underlying algorithms used to process data ((Montavon et al.,
5 https://www.scopus.com/home.uri. A larger body of works, however, may have
more references to explainability/interpretability than the titles, abstracts, or key-
words that are considered (in this study) from a single database.
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2018).
Comprehensibility: is often quantified in terms of the model's

complexity (Guidotti et al., 2019), which includes the model's
ability to describe its learning process in a comprehensible manner
(Crave, 1996; Gleicher, 2016). Comprehensibility is commonly
achieved in AI by including deductive symbols in the model's
output, which permits reverse engineering, and by establishing
links between output features and their corresponding inputs.

Transparency: Algorithmic transparency, simulatability (i.e., the
ease with which the system may be replicated), decomposability
(i.e., chunking, and easy analysis of the functional components),
and transparency are all characteristics that a transparent model
should posses (Lipton, 2018).

All above-defined concepts are interwoven in that they
emphasize the significance of AI models that are understandable,
precise, and objective in their decision-making. It is easy to
misinterpret the fundamental meaning of these concepts, and of
course, in this paper, they are used interchangeably. Most signifi-
cantly, this paper places considerable emphasis on two concepts:
explainability and interpretability, and while other notions are
presented, the goal is to determine which is more fundamental to
DFAI.
3. Right to explanation in law and AI: a brief

It is obvious that courts do not create evidence; they are not
witnesses and are not subject to the rules of evidence. Likewise,
Law and case law are not evidential. The court is, nevertheless,
there to uphold the law and interpret the evidence (Marcinowski,
2021). It is, therefore, the responsibility of law enforcement or
forensic practitioners to identify such evidence. The commissioner
must also prove (with a persuasive explanation) the validity of the
procedures and approaches used to establish the presented facts.
When these approaches involve implicitly complex application
(e.g., a closed-box system), the prosecution and defence also have a
fundamental right: the right to explanation (Doshi-Velez et al.,
2017).

The transparency necessary to prove the veracity of the outcome
of a case may be missing without explanation in a practical legal
context where “justice must not only be done but also seen to be
done” (Atkinson et al., 2020). The Law discipline may have been the
first to grasp the importance of explaining AI systems, and it has
been the driving force in that direction in recent decades. In his
insightful assessment of AI from a social science perspective, Miller
(2019) listed four crucial characteristics of explanations (in AI) that
he claimed themajority of AI researchers are unaware of. According
to the author, explanations should be:

1. Contrastive: reasoning is occasionally expressed as a counter-
factual hypothesis; for instance, if a predictive analysis classifies
certain image as containing child exploitation content (CSEM)
(Islam et al., 2019), a balanced explanation for this classification
will explain what influences such inference (and why not
something else). An effective approach is to investigate whether
hypothetical changes to cases might have affected their
conclusion as presented in HYPO (Rissland and Ashley, 1987;
Ashley, 1991)

2. Selective: typically influenced by cognitive biases dwhich
means that an exhaustive analysis of an event's causation is
rarely presented logically. Rather, on the assumption of shared
background knowledge among stakeholders dwhich might not
always be the case da few (selective; purportedly only
persuasive) causes are chosen to explain an infinite number of
causal events.
3

3. Rarely Probabilistic: while truth and probability (in ratio terms)
are critical in forensic science, using “most likely”, for example, as
a semantic explanation for a causal event may be inappropriate.
Thus, utilizing explanations based on probabilities or statistical
correlations as a general justification for an event's occurrence
may be ineffective unless accompanied with a causal explana-
tion for why that generalization is typical.

4. Social: refers to the dissemination (or transmission) of knowl-
edge via discussion or interaction. Thus, the explanation is
presented in light of the explainer's beliefs about the beliefs of
the audience.

Explanation as a right can be communicated through examples
(Atkinson et al., 2020), i.e., it is a common law tradition to offer
contrastive precedent cases (i.e., with positive and negative ex-
amples) in order to persuade jurors or judges who may favour one
side over the other. The use of hypothetical features from a prior
case to explain how the outcome of a case may have been different
if the features had changed is an illustration of an explanation by
example (Rissland and Ashley, 1987).

4. Explanations and closed-box models: some key concerns
for DFAI

Within the scope of this paper, the term “closed-box” system is
used in reference with DL/DNN models (not classical ML models)
used in DF. While neural networks are the focus, other shallow ML
models with considerable complex algorithmic structures, such as
Support Vector Machine (SVM) (Cortes and Vapnik, 1995; Noble,
2006) or Random Forests (RF) ((Ho, 1995, 1998; Breiman, 2001),
are also included in the closed-box category. The issues highlighted
below are just few of the factors that may have exacerbated scep-
ticism about the use of AI in digital forensics; which is largely
driven by inexplicability of AI models.

“Closed-box” refers to an incomprehensible system (or algo-
rithmic function) to humans. We employ machines, apparently,
because they possess superhuman abilities to detect patterns,
discriminate, and draw conclusions. Our comprehension of these
processes, however, is conditional on themodel's output; which we
cannot follow (Yampolski, 2020). A closed-box system does not
always imply inefficiency; it, more often than not, performs as
intended. The concern is that if the system claims to possess
reasoning abilities and the capacity to draw conclusions compara-
ble to those of humans in a variety of contexts, it should be able to
explain how it arrived at a particular conclusion. Notably, a low-
fidelity explanation of a system's decision-making process lessens
both the system's and the explanation's credibility with audiences
in a high-stakes domain like law. The crucial point here is that
explanation is just as important as the model itself, and this is an
area that DFAI desperately needs to address. Adding another layer
of distrust through unconscious irrational explanations, is likely to
impede the full adoption of AI in DF.

A worrying trend in the explanation of closed-box systems may
be the provision of explanations primarily for correctly classified
labels, which could lead to misinterpretation. An excellent use case
is the description of the saliency map (Li, 2002; Underwoord et al.,
2006; Alqaraawi et al., 2020) in an object detection/recognition
task. A saliency map is a visual representation of the area of an
image that is most likely to be noticed. One of its primary goal is to
communicate the importance of a given pixel in an image to human
visual system, and it has been a vital component in forensic image
classification methods (Thakur and Jindal, 2018; Yang et al., 2021).
Often, explanations for each class on a saliency map will be iden-
tical, even if they are incorrect. A recent studies onmedical imaging
in (Arun et al., 2021; Saporta et al., 2021), discovered that the use of



A.A. Solanke Forensic Science International: Digital Investigation 42 (2022) 301403
saliency to interpret DNNs did not meet key critical utility and
robustness requirements. This presents a significant challenge for
the numerous attempts aimed at providing explanations based on
important features in input samples that may have influenced a
certain prediction/classification.

Research has shown that DNN models can learn counter-
intuitive solutions despite their expressiveness (Szegedy et al.,
2013). DL-based classifiers have shown erroneous predictions
with “high confidence” when a minor but deliberate undetectable
perturbation is introduced to the examples (Goodfellow et al.,
2014a). Using a specific example, Goodfellow et al. (2014a) show
how adversarial cases (such as noise) can disrupt a correctly clas-
sified example with a confidence level of 57%, causing the model to
falsely predict with a confidence level of 99%. Consider a counter-
factual claim (such as the impact of adversarial examples) made by
an opposing party showing that a forensic conclusion may be
incorrect, and that decisions deduced using the same technique are
unreliable. Such an example is easily persuadable to a reasonably
informed AI audience, let alone those that are less informed. In
spite of this, more resilient deep generative models like the
Generative Adversarial Network (GAN) (Goodfellow et al., 2014b,
2020) and VAE (Kingma and Welling, 2013) have emerged as a
result of this adversarial discovery. GAN's game-theoretic founda-
tion has, however, presented unique challenges to the generative
model.

Analytical inaccuracies could arise if machines augment their
operating parameters in unexpected ways (Roth, 2017). This could
be caused by training sets with fewer samples, which are either less
representative of real-world use cases or insufficient to make in-
ferences about future observations. Incorporating too many vari-
ables in the model runs the risk of training the model to learn
illogical representations. Consider, for example, a predictive crime
detection algorithm6 installed in surveillance cameras that tracks
criminal movements and alerts officers before or just when crime is
committed. According to reports, by analyzing crime-related sam-
ples from surveillance camera data, the algorithm learned to
recognize three handshakes in succession as likely narcotic trans-
actions. While this reasoning appears logical, it may overlook drug-
related occurrences in the real world if no such pattern exists (Roth,
2017). Exemplifying with such instances in a court case (as a reason
why AI-methods should not be trusted) will only serve to increase
public distrust of machine-generated evidence.

5. Explainable DFAI: the goal

The resulting value of a digital forensics investigation is the
evidence, which is mined (extracted, uncovered) by a forensic
expert and communicated to fact finders (e.g., legal practitioners,
law enforcement, organizations, etc.). The majority of evidence is
presented as facts deduced from a sequence of correlations of
causal relationships, which requires decoupling intricate in-
terrelationships between multiple heterogeneous artifacts. The
court or commissioning agency establishes the evidence's weight,
relevance, and substance. However, it is the role of the forensic
expert to provide an understandable review of the methodology
and hypothetical approaches employed to achieve the conclusion.
Explaining an AI-based DF analysis may require weighting,
comparing, or persuading the audience via logic-based formaliza-
tion of (counter) arguments (Besnard and Hunter, 2008), or
simplifying the outcome by lowering the complexities.

Given the high-stakes audiences in an evidence-oriented
6 See https://www.govtech.com/public-safety/smart-cameras-aim-to-stop-
crimes-before-they-occur.html.
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context, for whom presentation is crucial, an explainable DFAI
(xDFAI) can be referred to “as an AI-based digital forensics method(s)
that provides explicit and intelligible (as well as assessable) rationale
for its functions and the specifics of its inferential reasoning.” This
definition may serve as a preliminary (tentative) formalization of
explainable DFAI (xDFAI), with a more refined conceptualization
envisaged as research in the domain progresses. In accordance with
Clancey (1983) concept of explanation (which is adaptable to
xDFAI), the goal (of xDFAI) should be to explain the following: Why
did a specific fact end up being used? When a certain fact was ignored,
why did that happen? Why did the investigator not come to a different
conclusion?

The evaluation of the performance and accuracy of the tech-
nique used in DFAI has received considerable attention, but less
attention has been given to the interpretability of the technique(s)
used. Considering the above, it may be possible to expound on the
goal of xDFAI by relating it to notions that have been widely con-
nected with XAI in research. The following general XAI objectives
are expressed here in terms of goals that an xDFAI can pursue
during the examination and presentation phases of derived results:

C Trustworthiness: A model's ability to act (always) as ex-
pected (or defined) in a given context is measured by its
trustworthiness, which is not a guarantee that it can be
explained. Model's trust builds over time as long as it be-
haves consistently in accordance with the stakeholder's
mental model and provides accurate and verifiable pre-
dictions (Bhatt et al., 2020). Stakeholders may overlook an
unexpected failure in a trusted system because it will not
have a significant impact on their confidence. It is feasible,
however, to “trust but verify” in the case of DFAIdwhere the
system is expected to perform optimally at all times due to
the grave repercussions of its failure.

C Discovering Causality: Causality is the process of establish-
ing (or inferring) causal relationships between observed data
(Pearl, 2020). Thus, in order to identify these relationships,
an investigator must have extensive prior knowledge (or
expertise) in the field and must be aware that the existence
of certain relationships between data does not imply
causality.

A robust xDFAI should be capable of providing intuitive evi-
dence and explanations for causal relationships within observable
artifacts, or assist in the validating the output of a causality-
inference method.

C Reproducibility: The training and testing (as well as valida-
tion) phases in a model can be validated and their applica-
bility verified. Thus, the purpose of explainability in this
context should be to elucidate the model's functionality in
order to ease comprehension of its constraints (or bound-
aries), and the seamless transfer of knowledge for repro-
duction (Arrieta et al., 2020). Lack of explanation could lead
to erroneous assumptions about the model (Kim et al., 2017).

Indeed, in ML research, the explanations presented in the
literature have influenced the improvements on state-of-the-art.
Consequently, confidence in DFAI models is likely to increase
when the functional parameters are explicitly elucidated and its
methods widely extensively reproduced.

C Informativeness: The output of a DFAI model is almost
exclusively numerical (probabilistic of some sort). It will
require time and effort to draw a connection between these
values and the investigative problem for which a evidence is

https://www.govtech.com/public-safety/smart-cameras-aim-to-stop-crimes-before-they-occur.html
https://www.govtech.com/public-safety/smart-cameras-aim-to-stop-crimes-before-they-occur.html
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sought. It is critical that xDFAI describes how these values are
represented and how they assist investigators in deducing
the facts. Both explanation and information are comple-
mentary; neither is possible without the other. To some
extent, once a model has proved its capacity to predict reli-
ably across a range of scenarios, its credibility will be deter-
mined by the amount of information it can convey about its
inferential processes and the accuracy of its output.

C Confidence: In a stable system, this is a quality that is prac-
tically synonymouswith trust and believe.When reliability is
demanded, confidence is relative; it is tangible (Arrieta et al.,
2020). Confidence is expressible; could be conveyed by the
person presenting the facts, or by the one receiving it. As
with trustworthiness, confidence in a DFAI model might not
easily lend itself to the notion of explainability because it is
earned via operational and result consistency dnot neces-
sarily through explicitness of its operational parameters.
Nonetheless, an xDFAI can be critical in providing informa-
tion on the level of confidence for each modular component
of the system. This way, each component of the decision-
making process can be evaluated and appropriate confi-
dence scales assigned.

C Algorithmic Fairness: In relation to the system's specified
objectives, fairness could be seen as one of the aims of
explainability. Fairness is considered in the legal domain in
terms of adherence to ethical principles, the right to be
informed, and the right to contest decisions (Goodman and
Flaxman, 2016; Wachter et al., 2017). To achieve algo-
rithmic fairness, it is necessary to draw a clear picture of the
relationship between hypothetical components that may
have influenced a certain decision. This includes taking into
account counterfactual components. It is possible that an
investigator disregard facts that contradicts her own
perception. As a result, erroneous inferences may be drawn.
If this (erroneous) conclusion is reached based on algo-
rithmic analysis, it risks undermining trust in machine-
generated outcomes; this should be avoided.

C Availability: This relates to accessibility and comprises
examining explainability as a strategy to engage end users in
the process of enhancing specific AI models (Miller et al.,
2017). This means that open-sourcing and peer-reviewing a
DFAI algorithm should ideally aid technical users in grasping
the technique, while xDFAI will almost likely assist non-
technical users in interacting with the algorithm. Thus, if a
forensic expert is required to report (or testify) in a legal
proceeding regarding an algorithm's decision, an easily
available open-sourced and/or peer-reviewed procedure is
likely to be understood and accepted.
6. Explainable DFAI: the methods

This section addresses several ways for explaining AI models.
The objective is to expound on XAI and, when appropriate, estab-
lish relevant connections with xDFAI.

It has been discussed whether to oversimplify AI models in or-
der to make them more intelligible at the expense of performance
and accuracy (Shalaginov, 2017). Given that interpretability and
model performance are (to a significant extent) the fundamental
aims of XAI, a post-hoc explanation technique has grown in
popularity. Conversely, the intrinsic approaches (not discussed in
detail in this paper) that are based on simpler, self-explainable
models (e.g. Decision Trees, rule-based, linear models, etc.) are
5

possible. Fig. 1 is an illustration of the xDFAI structural model.

6.1. Post-hoc explainability approaches

To throw light on certain model, post-hoc explanations can
make clearer its salient features (Ribiero et al., 2016; Lundberg and
Lee, 2017; Davis et al., 2020), training points (Koh and Liang, 2017;
Yeh et al., 2018), counterfactual reasoning (Wachter et al., 2018)), or
decision boundaries (Ribiero et al., 2016; Lundberg and Lee, 2017)
(Bhatt et al., 2020). Post-hoc techniques aim to improve the inter-
pretability of closed-box models by a variety of means, including
explanations by: model simplification, visualization, localization,
feature importance, example, and text. This paper examines post-hoc
explainability in two unique contexts: model-agnostic and model-
specific.

The model-agnostic explainability, on the one hand, is built into
the model's internal mechanism in a manner independent of the
model's internal structure and it is implemented after the model
has been trained (Molnar, 2019). Using this method, it is possible to
learn more about how a model predicts outcomes (Arrieta et al.,
2020). On the other hand, model-specific explainability methods
are restricted, and only applicable to specific algorithm types. All
intrinsic approaches are, in fact, model-specific. In this paper,
model-specific methods are described from the perspective of their
use in DNNsdbecause of their opaqueness which this work focuses
on.

Brief description of post-hoc explainability methods are pre-
sented below. Additionally, within the scope of this work and in line
with the context of opaque models, the emphasis is primarily on
methods that are applicable to deep-layered neural networks,
however, methods for shallow models (e.g., SVM, RF, etc.) are
mentioned in few instances. It is important to emphasize that the
models discussed here are far from exhaustive; they represent only
a fraction, and the choice of selection is based on their potential
suitability for DFAI. Table 1 and Table 2 presents an overview of
both model-agnostic and model-specific post-hoc explainability
methods and their potential suitability for DFAI tasks.

6.1.1. Explanation by model simplification
The broadest of the model-agnostic post-hoc explanations ap-

pears to be model simplification. While they are predominantly
focused on rule extraction techniques, Bastani et al. (2018) pre-
sented a different extraction approach based on approximating a
transparent model to a complex one. Methods, such as G-REX
(Johansson et al., 2004a,b; Konig et al., 2008) and CNF (Conjunctive
Normal Form) or DNF (Disjunctive Normal Form) (Su et al., 2016)
based on this approach seeks to simplify interpretability by
extracting information in form of rules.

6.1.2. Explanation by feature importance
By quantifying and analyzing the influence, relevance, and sig-

nificance of each training variable on the model's prediction, this
approach elucidates the operationality of a closed-box model. The
SHAP (SHapley Additive exPlanation) SHAP (Lundberg and Lee,
2017) framework, and an interesting approach for explainable im-
age analysis based on saliency detection method proposed in
(Dabowski and Gal, 2017), offers a significant contribution to
feature importance. Additionally, the Automatic STRuctured IDen-
tification (ASTRID) (Henelius and Ukkonen, 2017; Henelius et al.,
2014) is a useful tool for determining feature importance in a
predictive model. However, several alternative approaches have
been proposed that go beyond the influence measure. The ap-
proaches highlighted here provides highly valuable techniques for



Fig. 1. Mind map representing an illustration of the explainable digital forensic AI (xDFAI) Model.

Fig. 2. A typical structure of an interpretable DFAI model.

Table 1
An overview of some model-agnostic explainability methods, proposed tools, and their potential applications to digital forensic.

Explainability
Techniques

Post-hoc
Explanation

Tools Potential Applicability to DF

Model-Agnostic Model
simplification

G-REX, CNF or DNF Pattern recognition, digital file forensic analysis, text
analysis etc.

feature
importance

SHAP, ASTRID, Influence function, Saliency detection (Koh and Liang,
2017; Dabowski and Gal, 2017)

Image forensics, object classification, predictive analysis,
etc.

Visualization SA & Global SA, ICE Pattern recognition, object identification/classification,
document classification, etc.

Local LIME, Fairness (Dwork et al., 2012), L2X (Chen et al., 2018), AIX360
(Dhurandhar et al., 2018)

Object classification, predictive analysis, multimedia
forensics, etc.

Text TextAttack (Gao et al., 2018), HotFlip (Ebrahimi et al., 2018) Spam message detection, e-mail forensics, attribution,
malware detection, etc.
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xDFAI, which can be explored further in future research.
6.1.3. Explanation by visualization
Visual explanation is also a strategy for achieving model-
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agnostic explanations, however it is highly effective, and mostly
common in model-specific approaches; especially with DNNs. In a
typical model-agnostic settings, developing visualizations based
just on the inputs and outputs of an opaque model may be a



Table 2
An overview of some model-specific explainability techniques based on DNNs, proposed/developed tools, and their potential application to digital forensics.

Explainability
Techniques

Post-hoc
Explanation

Tools Potential Applicability to DF

Model-Specific MLNN Model
simplification

DeepRED Forensic image classification, object identification/detection, pattern recognition, CSEM
analysis, etc.

feature
importance

Deep Taylor, DeepLift, Deconvnet

Visualization TreeView
CNN Visualization LRP, DGN, Grad-CAM,

CNN þ CRF þ bi-LSTM (Ma and
Hovy, 2016)

Forensic image/video reconstruction, forensic data visualization, object identification, source
identification, deep fakes, image recognition, etc.

Text CNN þ RNN (Xu et al., 2015)
RNN feature

importance
RETAIN Speech recognition, authorship attribution, determination of intent, forensics linguistics,

timeline/event reconstruction, malware detection, email forensics, e-Discovery, IoT forensics,
Network intrusion detection, etc.

Visualization Finite n-gram horizon þ RNN
Local RNN þ Hidden Markov Model

(HMM)
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difficult task (Arrieta et al., 2020). A frequently utilized technique in
this approach is to provide explanations through the use of feature
importance techniques. Notable methods for visualization of sha-
low ML models (e.g., SVM, RF, etc.) are proposed in (Cortez and
Emrechts, 2011, 2013) based on Sensitive Analysis (SA), and Indi-
vidual Conditional Expectation (ICE) (Goldstein et al., 2013) for
estimating any supervised learning techniques. While feature
importance is beneficial for xDFAI, visualization approaches pro-
vide an innovative way to physically observe the interaction of
influential variables during the process. Although the approach is
quite complex, it offers a promising research direction for xDFAI.

6.1.4. Local explanation
Considering that DL models have a high degree of dimension-

ality and curvature, the concept of local explanation stems from the
fact that insight-generating interpretable methods can be applied
to a tiny region with detectable changes in individual or grouped
features. Using the network's feature space to represent each case
(data point) or its neighbors, local explanation provides a semantic
explanation for specific cases (Leslie, 2019). However, a global
explanation entails capturing the internal logic and function of each
prediction or classification made by an opaque model as a whole
(rather than a tiny region) (Leslie, 2019). The technique, known as
LIME (Local Interpretable Model-Agnostic Explanations) (Ribiero
et al., 2016) is an example of a model-agnostic approach designed
to simplify explanations, which explains model predictions by
learning interpretable models locally and modeling them as a sub-
modular optimization problem.

6.1.5. Text explanation
Adding explanations in plain natural language to closed-box

models is an approach that has not been well discussed in the
literature. Each decision-making component of a model can be
described using text. In some cases, text explanations are incor-
porated in a rule-based (or if … then) style, in which all decision-
making components are described semantically explained. This
approach, when combined with other approaches (e.g., feature
importance and visualization), can be quite beneficial for xDFAI.

6.2. Explainability methods to explain deep learning models

This section briefly discuss the explainability of DNNs. Three
distinct neural network architectures are considered: multi-layered
networks (MLNNs), convolutional neural networks (CNNs) (O�shea
and Nash, 2015; Albawi et al., 2017), and recurrent neural net-
works (RNNs) (Mikolov et al., 2010). The selection is based on their
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utility/applicability to DFAI. However, in terms of depth and
breadth, the descriptions offered here are largely limited, readers
are urged to check (Linardatos et al., 2021; Arrieta et al., 2020) for a
full overview of explainable approaches.

MLNNs are a sort of closed-box, yet robust AI model that excels
at inferring intricate relationships between data variables, and in
most cases, are unable to justify their underlying assumptions.
Three fundamental explainable methodologies are utilized to
explain multi-layer neural networks: model simplification through
rule extraction from hidden layer of a neural network (DeepRED)
(Zilke et al., 2016; Sato and Tsukimoto, 2001); feature importance of
contributing elements with models such as Deep Taylor (Montavon
et al., 2017) and DeepLift (Shrikumar et al., 2017); and visualization
for which TreeView (Thiagarajan et al., 2016) was proposed.
Because DeepLift and deep Taylor are exemplified with image
classification, they could be an excellent xDFAI options for forensic
image analysis as well as pattern recognition-based investigations.

CNNs (O�shea and Nash, 2015; Albawi et al., 2017) structure re-
flects DNN's extremely complex internal cores. They lay the
groundwork for computer vision's unique underpinnings dfrom
object identification and image classification to instance segmen-
tation (Arrieta et al., 2020). Because CNN's representations are vi-
sual, they connect well with the human thought pattern, making
them slightly explainable. An approach for explaining CNN func-
tionality is to either map the output back to the input in order to
ascertain which input data were discriminative of the output, or to
make interpretations based on how the layers see the external
world. A common feature importance and local explanation
method is Deconvnet (Zeiler et al., 2010, 2011; Zeiler and Fergus,
2013) that repeatedly occludes sensitive region of an image dur-
ing training to determine which portion produces desired impact.
Another approach based on feature importance and localization is
the Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al., 2017). Layer-wise Relevance Propagation (LRP)
(Bach et al., 2015) proposes a method that visualizes relevant ele-
ments that contributes to prediction. Other methods (Dong et al.,
2017; Xu et al., 2015) combines CNN models and RNN for the pur-
pose of describing visual material via textual explanations. Perhaps
an excellent and easily interpretable approach is the deep gener-
ator network (DGN) (Nguyen et al., 2016), which not only generates
an incredibly realistic synthetic image, but also reveals the features
learned by each neuron. Given that certain DF analysis will require
object identification, the DGN approach appears to possess both
quality and suitable characteristics for the development of xDFAI.

RNNs are one of the most important techniques for DFAI because
they are capable of solving prediction problems using sequential
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data dwhich is critical for forensic event reconstruction (Solanke
et al., 2021). RNNs take pride in their capacity to retain informa-
tion about data's time-dependent relationships. There have been
two approaches to explaining RNN models: 1) through feature
importance techniques that seek to understand what the model has
learned over time; and 2) by providing insights into (or explanations
of) the model's decision-making process through modification of its
architecture (local explanations) (Arrieta et al., 2020). Numerous
proposals are offered in this respect, which may spark the interest of
DFAI professionals. With RNN, some explanation approaches
(Donadello et al., 2017; Donadello, 2018; Garcez et al., 2019) have
demonstrated the possibility of merging probabilistic and logical
reasoning (Manhaeve et al., 2021) (based on background knowledge)
in a symbolic/sub-symbolic (Haugeland, 1989; Ilkou and Koutraki,
2020) fashion. Some other approaches include visualization
approach based on finite horizon n-gram models (Karpathy et al.,
2016) to study predictions, combination of RNN with a simple and
transparent hidden Markov Model (HMM) (Krakovna and Doshi-
Velez, 2016) to interpret speech recognition representations, and
the RETAIN (Reverse Time Attention) model introduced in (Choi
et al., 2016) for detecting influential past visit patterns and signifi-
cant variables within the patterns. This technique could be useful, for
example, in performing forensic analysis on users' log history (e.g.,
internet browsing history) during a CSEM investigation.

In contrast to the preceding methods, which are either model-
agnostic or model-specific, a novel technique dubbed Contextual
Importance and Utility (CIU) is proposed (Framling, 2020, 2022;
Anjomshoae et al., 2019). It is based on Contextual Importance/
Influence (CI) and Contextual Utility (CU) theory. CIU appears
promising as it is applicable to both linear and non-linear models
and may be represented visually or in natural language. Addition-
ally, feature representations can be read and validated directly from
inputeoutput graphs. Although the CIU approach is just devel-
oping, its features indicate that it has the potential to considerably
aid in xDFAI.

7. Interpretability in DFAI: the need

For a system to be trusted, it must go beyond a simple accuracy
evaluation. Sometimes, accuracy does not always reflect the real
world use case. Therefore, a critical component for determining
whether the correctness of a system's outcome is the interpret-
ability of its decisions and comprehensibility of its features. A
model's domain-specific constraints may make it difficult to
incorporate interpretable components into a closed-box models.
Because constrained problems are inherently more difficult to
solve, when AI models are applied in DF investigations, interpret-
ability practically translates to a set of application-specific con-
straints. Hence, domain expertise will be needed to implement
interpretable features in the model. In contrast to explainability,
which is mostly concerned with providing post-hoc reasoning for
predictions, interpretability provides an answer not only to the
question of what was predicted (which is only a partial solution to
the problem), but also to the question of why such predictions were
made (or what caused them). By incorporating interpretable fea-
tures into DFAI, it is possible to harmonize and update gaps in
domain knowledge, as by attempting to answer why a particular
decisionwas made, new dimensions to the problem or solution can
be uncovered, and methods for debugging or auditing can be
established. A model that can be interpreted can also help deter-
mine the fundamental cause of an error and recommend possible
solutions. Interpretable models ensure simulatability (the
reasoning in the model is verifiable and reproducible), decompos-
ability (the sub-component interpretation is possible), and algo-
rithmic transparency when opposing parties in an inquisitorial
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tradition request access to the tool used to infer facts. Fig. 2 rep-
resents a structural model of an interpretable model. While
building interpretablemodels can be time and resource intensive, it
is less expensive than the expense of creating a flawed model
(Rudin, 2019) that could lead to the eventual exculpation or
incrimination of the wrong entity for high-stakes decisions such as
those involving digital evidence. There is evidence to suggest that it
would be desirable to dedicate additional efforts and cost on
developing a high-quality interpretable model, even as timeliness
is still a challenge in DF.

8. Interpretable DFAI model: recommendations for
mitigating distrust

The following paragraphs contain a series of recommendations
that may be essential for achieving robust interpretability in DFAI.
They are adapted in part from the guidelines provided in (Leslie,
2019).

It is critical to contextualize the scenario (e.g. civil or criminal
case), potential impact, and accessible AI tools for analysis prior to
integrating AI models in DF, while also considering the in-
vestigation's interpretability requirements. There appears to be a
significant distinction (in terms of techniques and interpretation
requirements) between analyzing e-mails for suspicious deletions
intended to conceal incriminating activities, and determining re-
sponsibility in e-contract agreements between two or more parties
concluded via e-mails. This contextual awareness helps to paint a
more complete picture of the stakes involve and the scope of the
interpretability needs. Another consideration to make before
deployment is whether to use pre-existing AI algorithms or to create
new ones. In any case, utilizing existing algorithms may require a
detailed examination or evaluation of their functionality, expres-
siveness, complexity, performance, and interpretability. Alterna-
tively, a custom algorithm could be considered that addresses both
the aforementioned components and the investigative task.

It is clear that the DF domain and its components are quite
sensitive, as they are task-critical and requires transparency. So
when DFAI is necessary, less complex, non-opaque evidencemining
techniques dgenerally, intrinsic approach (such as decision tree,
linear/logistic regression, case-based reasoning, rule-based list,
etc.) can be considered. Simple interpretable models are usually
preferred when forensic data is well-structured, sufficient domain
knowledge with meaningful representations is present, or if
computational resources are constrained. This is also highlighted in
(Rudin, 2019). It is reasonable to avoid the circumstance in which
“everything becomes a nail when there is a hammer.” The choice of
DNN should be influenced by the nature of task, and unless in-
efficiency with native ML is observed, use of deep learners to
improve performance and accuracy may not be less preferable.

Typical linear models may be unable to handle the majority of
DF investigations. Cases such as image classification, speech
recognition/audio analysis, or object identification in video footage,
or anomaly detection in unstructured data typifies the tasks in DF
investigation. Given that only non-linear DL models can be viable
for these purposes, interpretable models such as those described in
section 6 may be considered. Otherwise, a custom model that: fits
the specifics of the case; evaluates the impact of decision; and
addresses audience needs can be built and deployed. Nonetheless,
stakeholders should be satisfied with the semantic explanations
provided by supplemental interpretability tools, as well as with
how they are implemented in terms of both interpretability and
algorithmic approach.

Interpretable methods should be evaluated on their ability to
articulate the logical explanation for their decisions and behaviours
in a given scenario, as well as their users' ability to account for the
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generated output in a decent, coherent, and reasonable manner.
Prior to selecting a method, a few critical questions should be
asked: 1) what is the affected audience's mental capacity for un-
derstanding the outcome?; 2) will the method assist decision-
makers (e.g., judges, organizations, etc.) in making informed/
justifiable evidence-based judgments?; and 3) Will the method
generate counterfactual, misleading, or confusing explanations?

The modularization of design is a vital topic to emphasize.
Without a doubt, digital investigation comprises the examination
of digital artifacts that may be heterogeneous and unstructured.
Before data can be imbued into a DL model, it must be pre-
processed. Ordinarily, the pre-processing stage does not require
AI techniques, and when it does, like with NLP (Manning and
Schutze, 1999) or probabilistic language models (Bengio et al.,
2003), the procedures are fairly interpretable. Additionally, in a
communication-related investigation, it may be necessary to
construct a graph of subjects' relationships; this is not AI, and the
construction can be easily comprehended. Modularization enables
the development of structured applications where AI is responsible
for only a portion of the investigative tasks and not the full process
(Asatiani et al., 2020). As a result, it can ensure proper control over
functions, reduce the investigator's interpretability burden, and
enhance the audience's understanding and trust.To leverage on the
benefits of cloud computing, Digital Forensics as a Service (DFaaS)
(Van Baar et al., 2014; van Beek et al., 2015; Du et al., 2017; van
Beek, 2020) is projected to impact the future of forensics. In such
situation, DFAI as a Service may involve online learning (OL), which
is when a model learns to adapt with changes in the environment
and keeps updating its best predictor. OL can be useful for recon-
structing events, but it can be hard to keep track of and explain
variable interactions in the feature space over time. OL issues may
involve the inability to control the working parameters of the
model, which could be a problem in high-stakes domains (Asatiani
et al., 2020). The same could be said for transfer learning (Zhan
et al., 2017) (especially when offered as a service), which entails
applying previously learned knowledge to a different but related
problem. They could help DF in terms of sample efficiency
(Karimapanal and Bouffanais, 2018), less time spent investigating,
and less false positives and negatives. However, they provide less
information about how the models were trained or how trust-
worthy the platforms that host them are (Aditya et al., 2017). The
number of transfer learning methods that can be explained is still
very limited, and their use in DFAI should be done with caution.

Legal experts are commonly familiar with symbolic algorithms
(e.g., expert systems, case-based reasoning, etc.) because they are
used in legal rulemining and in themodellingof philosophical norms.
It will also be easy for laypeople to understand the logical foundation
on which they are built. DFAI methods that make use of symbolic
algorithms should be able to easily explain their outcomes in this
scenario. However, symbolic algorithms suffer from a number of
shortcomings (Faye, 2010; Sally and Terence, 1999) that render them
inefficient for the majority of forensic investigations. Researchers
have proposed away to hybridize sub-symbolic (likeNNmodels) and
symbolic methods (Zeleznikow and Stranieri, 2017; Mao et al., 2018)
that takes advantage of the former's robust unsupervised capacity to
learn from complex data and the latter's ease of explanation to pro-
duce an explainable model. Neurosymbolic AI (Garcez and Lamb,
2020) is one of such methods. While these systems are still in their
infancy, hybrid techniques are likely to give the necessary level of
interpretation for predictive DF analysis. Furthermore, an equally
helpful method is to incorporate a “human-in-the-loop” or a “man-
machine” approach (Nguyen and Choo, 2021) with the hybrid tech-
nique. That way, automated decisions can be verified by the gate-
keeper (Desai and Kroll, 2017) at different levels and appropriate
validations performed prior to reaching a final conclusion.
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Generative models (e.g., GAN, VAE, etc.) may be able to help
solve interpretability problems in some way. In extension, they can
be extremely useful for DFAI when it comes to certain tasks given
their robustness in terms of performance and accuracy. With the
right visualization tool, the latent features (embedding), which are
direct low-dimensional representations of the input data, can be
examined and tracked during training to identify which features
play a role in a prediction. In this case, providing interpretations for
such glass-box operations should be straightforward. Therefore, the
use of generative models for complex DF analysis (such as pattern/
speech recognition, object classification, event reconstruction, etc)
is highly recommended.

9. Conclusion

In this paper, the humanemachine relationships involved in
interpreting machine-generated output were analysed, as well as
the interchangeable usage of terms such as explainability, inter-
pretability, and understandability. Brief examination of the rela-
tionship between AI and law was presented, with an emphasis on
the 'right to explanation'. By redefining explainability in the context
of AI-based digital forensics (DFAI) analysis, this paper explores the
goal of explainability and the methods used to achieve it. Addi-
tionally, an overview of the most frequently utilized explanation
methods was presented, along with their potential applications in
DF. A tentative definition of explainable DFAI was presented, while
also presenting an argument for interpretable DFAI as against
explainable DFAI. The author expressed an utterly (trivial) personal
opinion aiming to de-escalate the controversy over AI applications
in DF and their inscrutability. Finally, certain recommendations
(mainly based on the construction of interpretable models) were
offered that may be critical for mitigating distrust in AI-based
digital evidence mining techniques. Additionally, an appendix
discusses a brief personal opinion.

Future research in this area will seek to expand the xDFAI use
case by evaluating the applicability of various explanation ap-
proaches on a real-world DF problem.

10. Discussion

According to the reviewed literatures on XAI and interpretable AI,
it is apparent that several efforts have been undertaken to decon-
struct, demystify, and improve the transparency of closed-box AI
models. Thus, it is likely self-evident that AI researchers now have a
substantial grasp of the fundamental underpinnings of AI algorithms,
which explains why there have been spikes in research output
bringing novel approaches or improvement on existing state-of-the-
arts. However, the bulk of non-technical users of AI systems or those
who are impacted by AI decisions appear to struggle to comprehend
the subtleties of AI systems. In a slightly trivial opinion, while algo-
rithmic biases have been reported and confirmed in some AI-
generated decisions dwhich are more related to training data than
to dataprocessing technicalities (and, of course, deserve the attention
they are receiving) done can assume that the distrust is “partly
(arguably)” influenced and amplified by the discovery of a new
research gold mine. While advocacy for transparent and explain-
ability (led primarily by the Social Science discipline) has aided XAI's
penetration and understanding across disciplines, it is hoped that,
from the socio-economic sides of AI, we will continue to push for a
more standardized and responsible approach to designing AI-
powered systems, alongside calls for regulations or understandabil-
ity. One of these standards could be to make proprietary AI-based
technologies that affect the public (of which DFAI is one) more pro-
grammatically transparent (which, of course, has been vigorously
pushed in the EU), or to mandate that no closed-box should be used
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for certain high-stakes decisions when an interpretable model with
the same level of performance exists (Rudin, 2019). This, however,
may be difficult, given current legislation safeguarding trade secrets
and the recent advancements enabled by AI that were previously
deemed virtually unthinkable. Nonetheless, science advances at a
frenetic pace, reacting to (internal or external) stimuli along theway.
What is potentially alarming is anattempt to over-simplify science for
the sakeof comprehension. This iswhyexplanationsbysimplification
shouldbeutilizedwith caution. “Some things in life are too complicated
to explain…Not just to explain to others but to explain to yourself. Force
yourself to try to explain it and you create lies.7” While there is a sub-
stantial difference between grasping and nearly comprehending
something, providing an accurate explanation may result in
decreased comprehensibility. Conversely, providing a more compre-
hensible explanation may result in decreased accuracy (Yampolski,
2020). As a result, it may appear unreasonable or counter-intuitive
to assume that technical explanations offered post-hoc or modeled
using the internals of AI models will be comprehended by the
intended audience even after simplification. Perhaps at that point, a
comprehensibility evaluation will be required. Consequently, an
explanation for an AI-enabled conclusion should justify not just the
mathematical foundations, technical underpinnings, and societal
context, but also the human impact.

Lastly, it is worth emphasizing, however, that the discussion
here is a trivially expressed opinion of the author; based entirely on
personal social observations. They are merely offered to lessen the
escalation of debate about whether AI (with its perceived
opaqueness) should be applied to DF investigation. According to a
famous Albert Einstein quotation, which reads as follows:

“It would be possible to describe everything scientifically, but it
wouldmake no sense. It would be a descriptionwithout meaninge

as if you described a Beethoven symphony as a variation of wave
pressure.”
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