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ABSTRACT Under vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed to meet
additional energy demand of critical load (CL) in a microgrid. In this article, an incentivized energy trading
approach is introduced to study the interaction between EVs and CL. EV mobility and battery degradation
are studied to ensure they do not deter EV participation. Bidder satisfaction is introduced which allows
EV owners to enforce their energy trading conditions. EV-CL association and discharging scheduling are
considered in a two-phase model. In the first phase, EV-CL association is modeled as a single auction to
determine the winning bids and corresponding payments. Successful bidders are determined by solving a
mixed integer non-linear programming (MINLP) problem, while Vickery-Clarke-Groves (VCG) payment
rule is applied to pay the auction winners. In the second phase, EV discharging scheduling determines the
operating cost and discharging power of associated EVs at each time slot. Simulation results show that
the proposed approach achieves comparable performance with reference schemes and guarantees bidder
satisfaction. Theoretical analysis on economic properties of truthfulness and individual rationality are
verified as well.

INDEX TERMS Auction, electric vehicle, electric vehicle as a service (EVaaS), energy trading, incen-
tivized, microgrid, Vickrey–Clarke–Groves (VCG).

I. INTRODUCTION

DUE to global concerns on climate change, electric ve-
hicles (EVs) could play a key role towards unlocking

future sustainable energy systems. Under the vehicle-to-grid
(V2G) concept, EVs do not only act as loads but also feed
stored energy back to the grid [1]. The application of EVs
as loads, energy storage systems and energy resources under
the active distribution grid is reviewed in [2]. EVs can be
deployed individually or as part of an aggregation in EV-
enabled microgrids [3]. In the later, EVs are grouped by an
aggregator to create a sizeable capacity for the microgrid [4].
Traditionally, EVs are managed under a centralized system
where the grid manager is assumed to have full informa-
tion and control over participating EVs. However, these
approaches are not scalable considering the large number of

physically distant EVs, and impractical due to the unwilling-
ness of EV owners to share their private information. Hence,
it is important to investigate distributed approaches which
enable scalability and consider the interests of EV owners.
Incentivizing energy trading in distributed EV-enabled mi-
crogrids is both desirable and challenging.

A. BACKGROUND

To address this challenge, economic incentive approaches
are often applied to depict the behaviour of trading entities
[5]. Here, trading entities are motivated to participate in the
market via monetary incentives [6]. Auction is a promising
mechanism used to capture the interactions between sellers
and buyers in decentralized markets [7]. Auctions can be
categorized according to the market design. Auctions in
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which at least one side of the the market consists of a single
buyer or seller are single auctions, while two-sided markets
in which multiple sellers and buyers may be making bids and
offers simultaneously are called double auctions.

Some recent works have applied auction mechanism to
EV-enabled energy scheduling management [8]–[10]. A
multi-round auction is designed in [8] for EV charging in de-
centralized environments and a dynamic charging scheduling
algorithm is presented. In [9], a double auction mechanism
is designed for energy scheduling management where dis-
charging EVs trade energy with either the grid or charging
EVs, and a new price adjustment strategy is proposed. A
two-sided market made up of EV drivers and charger owners
is cleared by a price-based double auction in [10]. Several
factors such as EV driver preferences and charger location
are considered in the allocation and scheduling process. It
is generally assumed that bidders voluntarily represent their
true valuation. However, bidders could misrepresent their
valuations in order to maximize their utility. Vickrey-Clarke-
Groves (VCG) mechanism is effective in ensuring the prop-
erties of incentive compatibility [11]. In VCG mechanism,
bidding truthfully is a weakly dominant strategy, so there is
no incentive for bidders to misrepresent their valuations.

Several recent works have applied VCG mechanism to
a wide range of EV-enabled energy trading applications.
In [12], EVs are incentivized to trade charging/discharging
energy in active distribution systems and VCG-based pric-
ing rule is applied to determine the payments EVs should
make/receive. In [13], an incentive-based charging mech-
anism is designed for energy trading between EVs and
charging stations, and VCG-based pricing rule is applied
to determine the price EVs should pay. Double auction
models are considered in [14] where autonomous EVs are
incentivized to participate in dynamic energy trading with
energy aggregators and two incentive payment schemes are
proposed. Multiple buyers and multiple sellers are involved
in the auctioning process in these works; therefore, it is not
inapplicable in a one-sided market. In [15], two extensions of
second price auction mechanisms were applied and studied
for EV charging control in smart grids, where EVs are
required to declare limited valuation to the auctioneer. This
poses implementation difficulties in a market environment
that requires entire valuation declaration.

In [16], an online continuous progressive second price-
based auction scheme is proposed for EV charging in fast
charging reservation systems. In [17], an auction mecha-
nism for V2G systems is proposed and a feedback-based
price scheme is designed to incentivize EV participation.
An auction mechanism is designed in [18] to stimulate EV
discharging in V2G systems. In [19], an auction mechanism
is proposed to jointly incentivize discharging EVs and utilize
local generation to charge EVs during emergency demand
response periods. The incentives from these auction mech-
anisms may not cover battery degradation incurred during
energy trading; hence, EV owners may incur revenue loss if
they are not compensated. An auction-based scheme which

enables local energy trading among EVs and considers bat-
tery wear-out cost is proposed in [20]. A battery degrada-
tion model is also presented to depict a practical energy
trading environment. However, the scheme employs a naive
auction process which does not examine essential economic
properties such as truthfulness and individual rationality. The
auction models in the literature do not consider EV mobility.
Ideally, EVs are distributed within the microgrid and would
need to travel from one location to another to supply energy
[21].

B. OUR CONTRIBUTIONS
In this article, we introduce an incentivized energy trading
approach, where physically distant EVs are chosen to balance
demand-supply mismatch. In the proposed approach, EVs
enforce their conditions to participate in the bidding process
such as the minimum and maximum amount of energy they
are willing to sell. This ensures EVs are not subjected to
unfair trade conditions where winning bidders sell an unde-
sirable amount of energy as it is with centralized systems
and protects the battery from deep discharge. The major
contributions of this article are as follows.

• We formulate the EV-CL association problem as a single
auction and the discharging scheduling optimization
problem for EVs distributed with the microgrid. The
auction determines the winning bids and the corre-
sponding payments, while the discharging scheduling
determines the discharging power of associated EVs for
all time intervals.

• A number of practical constraints such as energy de-
mand, power balance and state of charge (SoC) limits
are captured in the problem formulation. The approach
incentivizes EV owners for losses incurred during EV-
CL interaction such as distance traveled, battery degra-
dation and V2G reserve capacity. We introduce bidder
satisfaction which allows EV bidders to enforce their
energy trading conditions.

• The proposed energy trading model is evaluated in com-
parative studies with centralized and exiting schemes.
Simulations results demonstrate that the model guaran-
tees bidder satisfaction, as well as the economic proper-
ties of truthfulness and individual rationality.

II. SYSTEM MODEL
A. SYSTEM DESCRIPTION
Electric vehicle as a service (EVaaS) describes a system
where suitable EVs in the microgrid are chosen to exchange
energy with CL [3]. The energy trading process between
EVs and CL is modeled using a one-sided auction with the
aggregator acting as an auctioneer, as shown in Fig. 1. The
aggregator coordinates the auction between EVs and CL
through dedicated communication networks. Charging sta-
tions are utilized as sources for EVs to exchange energy with
CL. The proposed approach assumes that the discharging rate
of EVs are fixed and energy transfer losses in the charging
stations are not considered.
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FIGURE 1. One-sided energy market with EVs and CL in a microgrid.

B. BATTERY DEGRADATION MODEL
EV battery degradation creates a common concern for EV
owners when considering EVaaS participation. Due to natural
limitations, the EV battery has a limited amount of charge cy-
cles, where a charge cycle is a complete charge and discharge
process. At the end of the estimated number of charge cycles
specified by the manufacturer, the battery will start losing
capacity and its performance will decrease significantly [22].
Increased charge cycles due to EVaaS participation would
accelerate the battery degradation, resulting in revenue loss
to the EV owner. The capacity loss and high cost of battery
sum up the major financial liabilities of the EV owners and
require a compensation [23]. Without assessing the battery
degradation cost, it would be challenging to design an incen-
tive mechanism to compensate EV owners [4]. When derived,
the battery degradation cost is then counted into the objective
function to determine the operating cost of participating EVs
[24].

We consider a linear battery model which assumes the
number of charge cycles multiplied by the depth of discharge
(DoD) corresponds to 1 cycle of 100% DoD, i.e., 5 cycles of
20% DoD as equivalent to 1 cycle of 100% DoD. The DoD
of a battery is the inverse of the state of charge (SoC) and
can be represented as the SoC subtracted from 100% charge
(1−SoC). We can calculate the cost per cycle of a battery
as a fraction of the battery capital cost and the number of
charge circles [25]. The cost per cycle bpc of a battery and
total degradation cost Cdeg can be expressed as

bpc =
Cbat

Lc
, (1)

Cdeg = bpc · SoC, (2)

where Cbat is the battery capital cost in British Pounds (£)
and Lc is the number of charges cycles. The linear estimation
for capacity degradation of battery energy storage could
render non-negligible (explicit and implicit) errors. Taking
these factors into consideration, it is impractical to use a
linear model to represent battery degradation cost. However,

we can take the linear estimation as a reference model to
benchmark the performance of the other models.

DoD is an important factor in charge cycle estimation
because the relationship between different DoD cycles and
equivalent 100% DoD cycles is not linear [26]. For every
DoD level, the value of the battery lifetime throughput LT ,
measured in kWh, can be expressed as

LT = Lc · vcap ·DoD, (3)

where vcap is the battery capacity and DoD is the DoD for
which Lc was determined [27]. Based on the relationship
between DoD and charge cycle, the battery degradation cost
per kWh bd can be expressed as

bd =
Cbat

LT
. (4)

For an EV to participate in EVaaS energy trade, sufficient
energy has to be stored in the battery. The energy stored in
the battery could be self-generated or purchased. Based on
this, the EV incurs a charge cost Cch. From the charge cost,
the valuation of energy unit can be expressed as

µ̄ =
Cch

vavail
, (5)

where vavail is the available energy in the EV battery. For EV
to avoid making financial losses, the discharge cost should
cover the charge cost and compensate battery degradation.
This can be expressed as

Cdis ≥ Cch + Cdeg. (6)

This ensures battery related liabilities do not become finan-
cial burden to EV owners.

C. DESIGN TARGETS
In this article, key properties of the VCG mechanism such
as truthfulness and individual rationality, as well as bidder
satisfaction, are main targets. Hence, the proposed auction
mechanism should be designed to achieve the following
properties.

Truthfulness: An auction is truthful or incentive-
compatible if participating EVs achieve maximum utility
by revealing the true value of the energy stored in their
batteries. In other words, the bid submitted by participating
EVs equal their private valuation, i.e., µ = µ̄, where µ is
the energy unit bid and µ̄ is the valuation of energy unit.
This property ensures that EVs cannot improve their utility
by either bidding lower or higher than their true valuations;
thus, preventing market manipulations.

Individual Rationality: An auction is individually ratio-
nal if the utility of participating EVs is nonnegative whether
they win or lose, i.e., U ≥ 0, where U is the utility of EV.
This property guarantees that no auction winner is paid less
than what it bids; thus, ensuring EVs will not be worse off
after EVaaS participation.
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Bidder Satisfaction: An auction is satisfactory if partici-
pating EVs can enforce their energy trading conditions. This
property guarantees that no bidder will be subjected to sell
an undesirable amount of energy; thus, ensuring that the
accepted bid volume from auction winners is within desirable
limits, i.e., vmin ≤ v ≤ vmax, where v is the desirable
amount of tradable energy, vmin and vmax are the lower and
upper bonds, respectively.

III. VCG-BASED AUCTION FOR EV-CL ASSOCIATION
We consider an auction model for EV-CL association. Let
i = {1, 2, ..., N} denote a set of EVs within the microgrid
which are available to participate in EVaaS operation. The
auction starts with the CL announcing its energy demand,
total energy demand time period and location information to
the aggregator which acts as an auctioneer. The auctioneer
distributes a request for energy with the CL information to
EVs within the microgrid. The ith EV sends a four-tuple
bid bi = (di, µi, v

min
i , vmax

i ) to the auctioneer, where di
denotes the estimated transportation distance between the ith
EV and CL, in km; µi denotes energy unit cost of the ith
EV, measured in British Pounds (£) per kWh; vmin

i denotes
the minimum tradeable energy of the ith EV, in kWh; vmax

i

denotes the maximum tradeable energy of the ith EV, in
kWh. The auctioneer then determines the winning bids and
the corresponding payments. The auction process is carried
out in two stages: winner determination stage and price
determination stage. The auction winner is derived in the
winner determination stage and the payment to the auction
winner is actualised in the price determination stage.

A. WINNER DETERMINATION
Considering the winner determination problem is an opti-
mization problem with binary and continuous variables and
nonlinear functions in the objective function and constraints,
we formulate it as a mixed integer non-linear programming
(MINLP) problem. Let αi denote the binary variable, where
αi = 1 if the ith EV wins the auction and 0 otherwise. The
objective is to minimize the energy cost of EVs balancing
CL demand, provided the energy stored in the EV batteries is
sufficient. The energy cost includes the transportation cost
of EVs from its current location to the CL. For EVs to
exchange energy with CL, they would have to transport the
energy to the CL location. The auction is conducted few
hours before the actual delivery, like the day-ahead energy
market where auction takes place a day in advance. This
allows sufficient travel time for EVs. Energy is consumed
during transportation and this needs to be accounted for.
The energy consumption of driving EV is influenced by
several factors such as road topology, driving patterns, traffic,
weather conditions, etc [28]. These factors would determine
the consumed SoC, transportation cost and EV arrival time
and need to be studied towards practical implementation.
In this article, we assume an average energy consumption
rate of 0.2 kWh per kilometre distance driven. Hence, the
required energy for transportation of the ith EV vtransi can

Algorithm 1 Winner and Price Determination
Input: N , bi = (di, µi, v

min
i , vmax

i ), V , αi = 0
Output: αi = 1, vi, ρi

Winner Determination
1: Make a list of CL and EVs within the Area.
2: Calculate the required energy for transportation of EVs

vtrans
i = ecrdi.

3: Sort µi in non-descending order.
4: Initialise: CV = 0
5: while list of CL to EVs is not empty do
6: Find EV-CL association with the least energy cost in (7).
7: if vmin

i ≤ vi + vtrans
i ≤ vmax

i and CV + vi = V then
8: Update αi = 1 and CV = CV + vi
9: else

10: break
11: end if
12: end while

Price Determination
13: Calculate the energy cost without the ith EV Ck.
14: Calculate the energy cost with the ith EV C∗

k .
15: Compute payment ρi for the ith EV based on (8).
16: return αi, vi, ρi

be expressed as the average consumption rate multiplied by
the distance between the ith EV and CL, i.e., vtransi = ecrdi.
The winner determination problem can be formulated as
follows

min
αi,vi

N∑
i=1

µi(vi + vtransi )αi (7)

Subject to
N∑
i=1

viαi = V (7a)

vmin
i ≤ vi + vtransi ≤ vmax

i (7b)

Constraint (7a) ensures the energy from auction winners vi
equals the CL energy demand V . Constraint (7b) ensures that
the requested energy is within the limits of the ith EV.

B. PRICE DETERMINATION
In VCG mechanism, we determine the payment of each EV
based on the harm it causes to other participants. From the
winner determination stage, the energy cost of the ith EV
is represented by Ci, which is the cost of per kWh energy
multiplied by the requested energy (Ci = µi(vi + vtransi )).
The payment made to the ith EV can be calculated as

ρi = min
∑
k ̸=i

Ck︸ ︷︷ ︸
without ith EV

−
∑
k ̸=i

C∗
k︸ ︷︷ ︸

with ith EV

. (8)

In (8) k serves as an iterative factor which iterates through
all the values excluding the ith EV, ∗ is the set of winning
bidders chosen in (7). The left part of the equation represents
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the total energy cost for other participants when the ith
EV is not participating, while the right part represents the
total energy cost for the other participants when the ith EV
participates.

The utility of each EV is the difference between its valua-
tion and final payment (after price determination). The utility
of the ith EV is calculated as follows

Ui = ρi − Ci. (9)

While the winning bidders from the winner determination
stage are guaranteed to make profit, the utility of the losing
bidders is 0, i.e., Ui > 0 if αi = 1 and Ui = 0 if αi = 0.

Market manipulation can lead to a lack of trust in the
fairness of the market. VCG mechanism elicits truthful rev-
elation. EV Bidders cannot improve their utility by either
bidding lower or higher than their true valuation, as utility
is determined by the bids of others. By preventing market
manipulations, VCG mechanism ensures fairity, thereby mo-
tivating more EVs to participate in EVaaS.

C. AUCTION ALGORITHM
We develop an algorithm that finds the successful bidders and
corresponding payment to the auction winners. The proposed
strategy is effective in selecting EVs with minimum energy
cost. The algorithm starts with computing N EVs and their
four-tuple bids bi. The CL energy demand V is also obtained.
The transportation distance of the ith EV di is used to
compute the required energy for transportation of the ith EV
vtransi = ecrdi. The EVs are sorted in non-decreasing order
of their energy unit cost, i.e., µ1 ≤ µ2 ≤ ... ≤ µN . A counter
for energy demand of CL CV is initialized. Out of the list
of EV to CL links, find EV-CL association with the lowest
energy cost. The tradeable energy of the ith EV is verified
such that vmin

i ≤ vi + vtransi ≤ vmax
i . The energy balance

constraint (7a) is then verified such that CV + vi = V . If all
requirements are satisfied, the decision variable is modified
as α = 1 and the counter is updated accordingly. The process
repeats until the list ends or the resources ends that can be
tracked using the counter. VCG payment rule is applied to
determine the payment of the ith EV. The energy cost without
the ith EV Ck and with the ith EV C∗

k is derived. This is then
used to compute the payment to the auction winners ρi. The
procedure is summarized in Algorithm 1.

As mentioned earlier in section II, bidder satisfaction is a
key design feature of the proposed auction mechanism. By
applying constraint (7b) in the algorithm, winning bidders
(EV owners) do not experience any inconveniences beyond
their acceptable levels. In other words, this constraint protects
bidders from unfair trade conditions, which is common in
centralized models where the aggregator finds the optimal
solution at the expense of participating EVs.

IV. ENERGY EXCHANGE SCHEDULING FOR EV-CL
ASSOCIATION

A. EV MODELING
EV battery capacity indicates the maximum amount of en-
ergy that can be extracted from the battery in a single dis-
charge. We define the SoC of the EV battery as the ratio of
the available energy to the battery capacity. The SoC of the
ith EV can be mathematically represented as

SoCi =
vavaili

vcapi

, (10)

where vavaili is the available energy of the ith EV and vcapi is
the battery capacity of the ith EV. To prolong the life of the
EV battery and protect it from degradation, deep discharge
should be avoided. After discharging, the remaining energy
should cover the energy requirements for battery protection
and EV transportation. The maximum tradeable energy vmax

i

included in the bid ensures that the battery is protected from
discharging beyond its user-specified minimum SoC. Based
on the accepted amount of energy vi derived from Algorithm
1, the minimum SoC of the ith EV can be mathematically
represented as

SoCmin
i =

vavaili − (vi + vtransi )

vcapi

. (11)

B. CL MODELING
A load profile is a representation of the energy usage of a
consumer, showing the demand variation over a period of
time. The load profile of the CL is essential to determining
the discharging power of EVs at each time slot. The load
behaviour is influenced by several factors such as time, day,
weather condition, season, economic factors and random
effect. The CL power demand can be forecasted using tech-
niques such as regression method, time-series method, fuzzy
logic, neutral networks and similar day approach [29], [30].
In this article, we adopt the similar day approach to estimate
the CL power demand at each time slot by averaging the
power demand of the same time slot from historical data with
similar characteristics (e.g., day of week, weather, etc.). The
estimated CL power demand can be expressed as

Dt =
1

M

M∑
m=1

D̂m,t +∆D, (12)

∆D = D̂t − D̃t, (13)

where M is the number of data points selected, Dm,t is the
measurement obtained in the mth similar day at time slot t,
∆D is the bias caused by the forecasting errors, D̂t is the
actual observed CL power demand at time slot t and D̃t is
the forecasted CL power demand at time slot t.

We can calculate the CL energy demand as the sum of
the CL power demand over a time period, where the total
time period T is divided into time slots such that the interval
length is given by ∆t = 1 h. The CL energy demand can be
mathematically represented as
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V =

T∑
t=1

Dt. (14)

C. EV DISCHARGING SCHEDULING
We consider the discharging schedule of the auction winners
αi derived in (7). Since the auction takes place few hours
in advance, we assume the farthest EV will arrive at the
CL location, plug in and be available ahead of the discharg-
ing schedule. The scheduling for discharging of EVs is an
operating cost minimization problem to determine the best
schedule for discharging EVs to supply power to CL at each
time slot. Let T indicate the total scheduling intervals, while
t defines the value of each parameter or variable at any time
instant. We can calculate the operating cost as the sum of the
energy, transportation and battery degradation costs. The EV
discharging scheduling problem can be formulated as follows

min
Pi

N∑
i=1

T∑
t=1

ρiPi,t +

N∑
i=1

ρiv
trans
i +

N∑
i=1

T∑
t=1

bdiPi,t (15)

Subject to
N∑
i=1

Pi,t = Dt (15a)

Pmin
i ≤ Pi,t ≤ Pmax

i (15b)

SoCi,t = SoCi,t−1 −
Pi,t/η

dis ×∆t

vcapi

(15c)

SoCmin
i ≤ SoCi,t ≤ SoCmax

i (15d)

The first term of (15) represents the energy cost, the second
term represents the transportation cost, and the third term
represents the battery degradation cost. Constraint (15a) is
the power balance equation which ensures that power from
discharging EVs at time slot t equals the CL power demand
Dt at time slot t. We assume that the associated EVs have
much more discharging power than the CL power demand.
Constraint (15b) ensures that the discharging power at time
slot t is within the limits of the ith EV, where Pmin

i and Pmax
i

are the minimum and maximum discharging power of the ith
EV, respectively. Constraint (15c) indicates the SoC of the ith
EV at time slot t, where ηdis is the discharging efficiency and
∆t is the length of a single time interval. Constraint (15d)
ensures that the SoC at time slot t is within the limits of
the ith EV for the protection of battery, where SoCmin

i and
SoCmax

i are the minimum and maximum SoC of the ith EV
battery, respectively. Considering the objective function and
constraints in problem (15) are linear, the problem is solved
using off-the-shelf solvers like CPLEX.

The operating cost in (15) is formulated for markets that
pay for energy, transportation and compensation for battery
loss, and the revenue is the sum these payments. For V2G
reserves, revenue is derived from an additional source called
capacity payment. This payment is for the maximum capacity

contracted for the time duration, whether EVs discharge
power or not [27]. The capacity payment is simply the
opportunity cost and time cost for EV owners to abandon
the use of EVs and participate in the V2G reserve [31]. The
capacity payment can be express as

ρc =

T∑
t=1

pcap · P avail
t , (16)

where pcap denotes the capacity price in British Pounds (£)
per kW-h, P avail

t denotes the contracted capacity available in
kW at time slot t and T indicates the time the EV is plugged-
in and available, in hours. It is to be noted that the capacity
price unit, £/kW-h, means £ per kW capacity available during
1 h (whether used or not), and should not be confused with
energy price unit, £/kWh.

We can calculate the operating cost of V2G reserves as
the sum of the capacity price, energy cost, transportation cost
and battery degradation costs. The discharging scheduling for
V2G reserves can be formulated as follows

min
Pi

N∑
i=1

T∑
t=1

pcapi P avail
i,t +

N∑
i=1

T∑
t=1

ρiPi,t+

N∑
i=1

ρiv
trans
i

+

N∑
i=1

T∑
t=1

bdiPi,t (17)

subject to: (15a) - (15d).
The capacity payment for V2G reserves is paid only if

associated EVs are plugged into the charge points of the CL
during the scheduled period.

V. NUMERICAL RESULTS AND DISCUSSIONS
We consider a microgrid where the CL is seeking to buy
energy from EVs with surplus energy. The number of partic-
ipating EVs is Poisson distributed with an average density λ
[32]. Based on the retail price of the Nissan Leaf replacement
battery pack [33], battery cost of £5,000 is assigned to EVs.
We consider an EV battery with 2,000 charge cycles at 100%
DOD. Energy demand of the CL is uniformly chosen from
[40 220] kWh. Energy unit cost of EVs is randomly dis-
tributed over [0.07 0.35] £/kWh. Minimum available energy
in the range of [8 12] kWh and maximum available energy in
the range of [18 25] kWh are randomly generated for EVs.
The data of the EVs and CL and necessary parameters are
passed to the algorithms to find the successful bidders and
their corresponding payment, and then schedule discharg-
ing EVs accordingly. All simulations were performed using
MATLAB.

Fig. 2 shows the data set description for the similar day
profile of the CL used in the study. The CL model introduced
earlier in section IV is used to estimate the CL demand and
analyse the proposed energy trading approach. The estimated
CL power demand at each time slot is based on similar day
approach. The forecasted CL power demand is the average
power demand of the same time slot from historical data with
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FIGURE 3. Discharging schedule of EVs to fulfil CL demand.

similar characteristics. We considered the following char-
acteristics: day of the week, weather, maximum/minimum
temperature. We selected the three most similar days and
used the average to forecast the CL power demand of 24
scheduling intervals.

Fig. 3 shows the discharging schedule for EV-CL associ-
ation. This illustrates a real-world scenario where the base
load demand is met by regular supply from the grid or on-site
generation and supply from V2G reserve is required to meet
peak demand. Based on the forecasted CL power demand,
the discharging power of associated EVs are scheduled to
satisfy the hourly demand of the CL. Fig. 4 shows the effect
of the proposed battery degradation compensation paid to EV
owners. It is observed that in every scenario without compen-
sation EV owners make a significant loss. Without the battery
degradation compensation, EV owners will always incur
financial losses during EV-CL interaction, regardless of the
incentives received from the pricing scheme. This may not
motivate the EV owners to participate in EVaaS. By adding
the monetary equivalent of battery losses to the charge cost,
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FIGURE 4. Compensation for battery degradation during EV-CL interaction.

battery related liabilities are compensated. This demonstrates
that in the absence of battery degradation compensation,
EVaaS participation is not profitable for EV owners.

We evaluate the performances of the proposed allocation
scheme (7) with the centralized scheme in [34] and single
bidding mechanism in [17]. In order to minimize the en-
ergy cost for the CL, [34] and [17] subject EVs to sell an
undesirable amount of energy. The single bidding approach
formulated in [17] is similar to our proposed allocation
scheme. However, our allocation scheme is formulated as a
MINLP problem where the tradeable energy is a continuous
variable bounded by minimum and maximum discharging
energy limits for each EV, while [17] considers only a binary
variable for their integer linear programming (ILP) problem.
We consider [17] as our reference scheme and use it to
study the performance of our proposed allocation scheme.
Different scenarios were considered in Fig. 5 with respect
to CL demand, and for each scenario, the total bids of the
auction winners are computed under the different allocation
schemes. Our proposed allocation scheme outperforms the
reference scheme in every scenario. As expected, the central-
ized scheme would typically give a better performance than a
distributed scheme; however, our proposed allocation scheme
follows the centralized scheme closely in each scenario and
ensures auction winners sell a reasonable amount of energy.

Fig. 6 shows the bids and final payment made to EVs for
different densities of EV distribution. For a CL demand of
60 kWh, λ is uniformly chosen from [0.1 0.9]. Payments
obtained for λ in [0.1 0.3], [0.4 0.6] and [0.7 0.9] are
averaged to form the low, medium and high EV distribution
densities, respectively. The low density represents areas with
a low number of EVs (e.g., rural areas), the high density
represents areas with a high number of EVs (e.g., urban
areas) and the medium density represents areas in-between
the rural and urban areas. It is observed that the total payment
to the auction winners decreases with an increase in EV
distribution density. This can be attributed to the number of
EVs participating in the auction. When there are less EVs, the
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cost gap between progressive lower bids is higher compared
to a scenario that has more EVs. When more EVs join the
auction, the cost for the CL decreases due to the increased
competition between participating EVs. This demonstrates
that EVaaS will benefit the EVs more in rural areas, while
the CL will save cost in urban areas.

To evaluate the performance on bidder satisfaction, we
introduce the bidder satisfaction ratio metric. The bidder
satisfaction ratio is defined as the ratio of the amount of
energy that the bidder sells in the auction to their maximum
tradeable energy. We assume that all bidders want to sell their
maximum tradeable energy; thus, we average the satisfaction
ratio of successful bidders that are not able to sell their
maximum tradeable energy. Fig. 7 shows the bidder satisfac-
tion ratio across the different EV distribution densities with
respect to CL demand, where 0.5 is the satisfactory level.
It can be observed that the bidder satisfaction ratio in our
proposed scheme is above satisfactory level and outperforms
the reference scheme in every scenario. While the auction in
the reference scheme [17] aims at the minimization of energy
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cost of the CL. This means that the auction in the reference
scheme is carried out at the expense of the bidders, which
is responsible for the bidder satisfaction ratio falling below
satisfactory level.

We evaluate the performance of the proposed VCG-based
auction for EV-CL association on truthfulness and individual
rationality. Fig. 8 shows the performance on guaranteeing
the truthfulness of bidders. We study the changes in utility
under conditions of a random EV submitting untruthful bids
and its private valuation. When the EV increases its bid to
£0.29/kWh, its loses the auction and its utility is 0. This
shows that the EV cannot improve its utility by misrepresent-
ing its valuation, thus protecting the fairness and efficiency
of the trade.

Fig. 9 shows the performance on guaranteeing individual
rationality of bidders. For a CL of 200 kWh, the submitted
bids of the auction winners, as well as their corresponding
payments, are presented. It can be observed that the final
payments to auction winners is no less than their bids,
which means every auction winner has a nonnegative utility.
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Overall, the proposed mechanism verifies the theoretical
analysis on truthfulness and individual rationality and better
incentivizes participating EVs.

VI. CONCLUSION
This paper has presented an incentivized energy trading
approach to analyse the interaction between EVs and CL
in a microgrid. In addition to the VCG payment to auction
winners, the approach compensates EV owners for losses
incurred during EV-CL interaction such as distance traveled,
battery degradation and V2G reserve capacity. By allowing
bidders enforce their energy trading requirements, EVs are
protected from unfair trade conditions, which is common in
centralized models where the aggregator finds the optimal
solution at the expense of participating EVs. The energy trad-
ing model was applied in a scenario where supply from EVs
is required to meet peak demand. Simulation results reveal
that our proposed approach achieves a performance which is
comparable to those given by reference schemes, guarantees
bidder satisfaction and validates theoretical analysis on eco-
nomic properties of truthfulness and individual rationality. In
future work, we will consider a double auction environment
where multiple EVs and multiple CLs compete to sell and
buy energy, respectively. This two-sided market allows CLs
to submit their bids (buy orders) and EVs to submit their asks
(sell orders) to the auctioneer. The auctioneer then matches
the orders to find the most efficient allocation and decides
who trades and at what prices.
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