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Abstract

Reaction-diffusion mechanics (RDM) systems describe a wide range of practically important
phenomena where deformation substantially affects wave and vortex dynamics. Here, we develop the
first theory to describe the dynamics of rotating spiral waves in RDM systems, combining response
function theory with a mechanical Green’s function. This theory explains the mechanically-induced
drift of spiral waves as a resonance phenomenon, and it can predict the drift trajectories and the final
attractors from measurable characteristics of the system. Theoretical predictions are confirmed by
numerical simulations. The results can be applied to cardiac tissue, where the drift of spiral waves is an
important factor in determining different types of cardiac arrhythmias.

1. Introduction

Spiral waves have been observed in a wide variety of physical, biological, and chemical systems far from
equilibrium. Examples include chemical waves in Belousov-Zhabotinsky (BZ) reactions [1], waves of CO
oxidation on platinum surfaces [2], cyclic adenosine monophosphate (cAMP) waves during amoeba
morphogenesis [3], waves of spreading depression in the brain [4], and electrical waves in cardiac tissue [5, 6].
Furthermore, spiral waves have exhibited very rich and complicated dynamics due to the intrinsic properties of
the media or in response to external fields [7, 8]. The drift of spiral waves is among the most prominent examples
that has been observed in BZ chemical systems [9] or studied in biological systems such as the heart [10, 11]. In
the heart, the drift of spiral waves is believed to be responsible for certain life-threatening cardiac

arrhythmias [12].

The propagation of spiral waves is typically accompanied by other important processes such as the mechanical
deformation of the medium [3, 13, 14]. In the heart, propagating electrical waves initiate cardiac contraction,
which in turn affects their propagation, a process known as mechanoelectrical feedback (MEF) [15]. Although
deformation is known to be crucial in the mentioned systems, most previous theoretical and experimental studies
have not addressed the combined effects of the medium mechanics and spiral wave dynamics. In cardiac tissue, the
most immediate, and perhaps most important, effect of this MEF is the activation of stretch-activated depolarizing
currents [16], which may underlie the initiation of cardiac arrhythmias [15].

To model the basic MEF effects on wave propagation, the concept of coupled reaction-diffusion mechanics
(RDM) systems [17—19] was proposed; this concept combines a very general description of deformation with
classical reaction-diffusion kinetics. A series of papers has shown that this kind of MEF induces complex
dynamics of waves, such as drifting pacemakers [18, 20] and the break-up [19], drift [19, 20], initiation [20, 21],
and unpinning [22] of spiral waves. However, in those cases the results were obtained using numerical
simulations for particular reaction kinetics and mechanical models only. No theories have yet been developed to
describe the dynamics of spiral waves in RDM systems using analytical approaches. Such analytical theories are
believed to be important tools that can help us find out how general the numerical findings are; they can also
pave a way for applications to practically important problems.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In this work we present an analytical approach to study spiral wave dynamics in RDM systems. We combine
response function theory [23] with a Green’s function formalism to account for mechanical influence, and we
derive an equation for spiral wave drift. The MEF-induced drift is reduced to a resonant forcing problem in the
rotating frame of the spiral: during its rotation, the spiral wave perceives a time-varying perturbation since the
domain boundaries are not stationary in the spiral’s frame of reference. The resonant component of this
boundary-induced forcing yields the net spiral drift.

Our theoretical predictions are compared to numerical simulations. We find the relative angle and
magnitude of the spiral wave’s drift and identify the spatial attractors of the system. Some of them, such as the
center of the medium, have already been reported in numerical simulations [19]. Using this theory, we also find
new regimes and attractors that also are confirmed by simulations. For example, our theory predicts that the
center of the domain can also be repulsive, and that multiple stable dynamical attractors may coexist. Although
different from previous findings, these predictions are confirmed by numerical simulations.

The developed analytical approach allows us to generalize the numerical results, as our analytical findings are
based on an Archimedean description of spiral wave geometry, which is common for all types of excitable media.

2.Model

The reaction and MEF parts of our model for cardiac tissue are as in [ 18, 20, 24, 25], supplemented here with the
Navier-Cauchy equilibrium equations from linear elasticity to facilitate analytical calculations. In a two-
dimensional medium with Cartesian material coordinates (x, y), the transmembrane voltage 1 and recovery
variable v are evolved according to modified Aliev-Panfilov kinetics [26], as used in [18]:

3—1:=Vzu—ku(u—a)(u—l)—uv—ls, (1)

Y o)k — ). (2)
ot

Weset € (u) = 1.0 when u < a,and 0.1 otherwise. Unlike some previous works [18, 25], the discontinuity of
€ (1) occurs here at u = a, not at a fixed value of u = 0.05. In numerical simulations, we take k = 8, kt = 1.5,and
the model parameter a will be varied to change wavelength and excitability. Active mechanical tension T'is
developed in our model as [17, 19, 24, 25]
oT
— =¢e(u) kru — T). (3)
01‘ ( T )
We model the tissue as isotropic and elastic, and we furthermore assume that spatial displacements are small.
Then, the Lagrangian displacement, U (X, t) = X}, (X, t) — X, where X, denotes Eulerian (laboratory)
coordinates and ¥ are Lagrangian (material) coordinates. We assume that the displacement U instantaneously
obeys the Navier-Cauchy equations for mechanical equilibrium:

(A+ﬂ)§(§-ﬁ)+uw=—§T (4)

with Lamé parameters 4 and p. Elastostatic conditions have also been assumed in previous electromechanical
studies of MEF in the heart [17, 18, 24, 25, 27]. In previous work using large displacements [ 19], the stretch, S,
was equalto /C — 1, where Cis the determinant of the right Cauchy-Green deformation tensor. Presently, we
work in the regime of small deformations, where

s=v-U. (5)

In our model, the feedback of deformation on excitation is given by stretch-activated membrane currents, I, in
(1). Experimental studies have shown that stretch-activated channels immediately respond to mechanical stretch
and follow a linear current-voltage relationship [16, 28]. Linear models for I have been proposed [29, 30].
Therefore, we choose the linear current-voltage relation for the stretch-activated currentin (1), as used in [18, 24]:

I=g,(u—E)P(S), (6)

with the ramp function P (§) = £if £ > 0Oand P (¢) = 0if £ < 0. The parameters g, = 1.0 and E; = 1.0 are the
maximal conductance and reversal potential of the stretch-activated membrane channels.

Equations (1)—(6) form a closed feedback loop for mechanoelectrical coupling in the domain, £. As is
customary, we impose Neumann boundary conditions on the state variable u at the edge, d¢2, of the domain. For
the mechanical subsystem, we work with fixated boundaries—that is,
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U(z) =0, Xe€oQ. (7)

The same boundary condition was applied before in [18, 19]. We use this assumption to mimic the isovolumic
phases of the cardiac cycle and isometric boundary conditions in tissue experiments.

3. A theory for spiral wave drift

3.1. Material coordinates
We have taken a Lagrangian standpoint here: All spatial dependencies in (1)—(6) refer to two-dimensional
material coordinates, X, which we will also write as x* (a € [1, 2]) in index notation.

In material coordinates x*, we use x* = X“ () to denote the position of the spiral’s rotation center at each
instance of time.

Laboratory coordinates X},, will only be used in section 6.1 to quantify the physical displacement, X1, — X,
due to MEF.

3.2. Working assumptions

In our theory, we will linearize the equations around both small deformations and the rotating spiral wave
solution. Additionally, the sensitivity of spiral waves to external stimuli is assumed to be strongly localized, such
that response function theory [31-33] can be applied. Thus, we make the following three assumptions:

(i) Weassume weak MEF (i.e., Iy = O(#), with 77 being small). We pursue leading-order dynamics in .

(i) In the absence of mechanical feedback (I, = 0), (1) and (2) can be written as an evolution for the state
u = [u v]'. We assume there exists a rigidly rotating spiral wave solution, uy = [1(,]”, to the RD system,
(1) and (2), with rotation frequency wy. The solution u, is stable with respect to small perturbations (i.e., it
is an attractor in phase space). We will denote the unperturbed spiral solution with rotation center, (X, Y)
and rotation phase ¢ as ug(X; X, ¢). In terms of polar coordinates around the rotation center,
x=X+rcosf, y =Y+ r sin 0, the rigid rotation condition can be expressed as u,(¥; X (1), (1))
= Upol(r, 0 — @ (1)) with ¢ (t) = wot + ¢,

(iii) When a spiral wave is subjected to a small spatiotemporal perturbation, h (¥, t), linear superposition can be
applied due to (i), and by (ii) the system quickly relaxes towards u, for some position (X, Y) and rotation phase
¢. Thus, in an unbounded domain, the net spiral motion at a given time is a spatial convolution over all sources:

0,X% (1) = ffg We(%, 1)h(%, 1)ds, 8)
01 (1) = wo + ffg Wg(a‘c’, t)h(a?, t)ds.

Here, the functions W* = [W, W/ ]and a sum over state variables u, v isimplied in (8). The functions W?,
W are known as translational and rotational response functions [33] and have been used in many quantitative
descriptions of spiral and scroll wave dynamics [11, 31, 34—40]. Our third hypothesis is that W*and W
exponentially decay with the distance from the spiral core region, with spatial constant d e, which is indicated
in figure 1. This property was proven for a specific model [33] and has been verified numerically for reaction-
diffusion models with few state variables and smooth reaction kinetics [36, 41-43]. However, general conditions
for the localization of response functions currently remain unknown.

Note that the noncontinuously differentiable reaction term in (2) does not forbid the use of response
functions. However, this discontinuity will yield a delta-distribution term in the Jacobian in places where the
associated response functions will be discontinuous but nonsingular. Since our results will involve overlap
integrals using response functions, those integrals are well-posed and our theoretical results are therefore also
valid for noncontinuously differentiable reaction kinetics. However, the numerical evaluation of response
functions in this case is cumbersome due to the singular Jacobian. Therefore, we will not attempt to evaluate the
response function for the reaction-diffusion model (1) and (2), but we will compare theoretical predictions of
relative drift magnitude and direction with the outcome of numerical simulations.

Hypothesis (iii) is an assumption on the electrical subsystem (1) and (2). In the absence of mechanical
deformation, it predicts that spiral-boundary interaction causes drift of the spiral that attenuates exponentially
with the distance, d, to the boundary (i.e. 0,X* « exp(—d/d .. )). However, we will show later in this paper that
amechanical boundary with a no-displacement condition at a distance, d, induces a stretch-activated current
proportional to 1/d*. Therefore, if the spiral core lies further than d,, from the boundary, the electrical

3
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Figure 1. Snapshot of u (x, y) of a spiral wave with the kinetics of (1)—(2), a = 0.06, without MEF in a square domain of size 2L = 60.
Spiral rotation center (white) and tip trajectory (black) are displayed. Relevant length scales for the theory are indicated. We will
assume dgre < d and dyune < deore-

perturbations of the pattern cause an exponentially small drift velocity, while the MEF induces drift of order 1.
We will work in this regime, and accept that our theory will not be valid if the tip of the spiral comes closer than
dcore to the domain boundary.

If the spiral wave’s rotation center is located at a distance, d > d e, from the boundary, the spiral profile will
still closely resemble ug (X; X, ¢) inside the domain. However, near the boundary, the Neumann condition on u
imposes that the wave front should intersect the domain boundary orthogonally. Therefore, a truncation error is
induced in the wave profile in a layer of thickness, dy;unc, close to the boundary. From the velocity-curvature
relation for wavefronts [44, 45], it follows that d .y is of the order of the wave-front thickness, and also of the
same order as the critical radius for excitation. We will work in the regime where dyync <K dcore. In what follows,
we will ignore the domain truncation error.

3.3. Spiral wave drift equations

Provided that the unperturbed spiral wave solution is a phase-space attractor by condition (ii), a dynamical
spiral wave state will, apart from its position X and rotation phase ¢, quickly lose its dependence on previous
states. Therefore, in the domain £, the spiral wave evolves as

2.X(1) = f*(X (1), ¢ (1)) + O(1?), (9a)
up (1) = wo + fO(X (0, p(1)) + O(n?). (9b)

For the mechanically coupled system, we use response function expressions (8) to find the resulting spiral
wave drift. From (1), we have h (¥, t) = [=I (¥, t), 0]", which yields for u € {1, 2, 6}:

FH() = —//Q wi (% X (0, o)) L(%, 1)ds. (10)

Note that the response functions, W', would be constant in a frame attached to the spiral rotation center that
rotates at the spiral frequency. Therefore, they depend on time only via X (t)and ¢ (¢). The same dependency
will be shown to hold for the stretch-activated current: Given an unperturbed spiral wave, ug(X; X, @), at
position X and rotation phase ¢, (3) generates an active mechanical tension field, Tj (X; X, ¢). Since the Navier-
Cauchy equation (4) are linear, the resulting stretch can be found using a mechanical Green’s function: If

T (X) = 5 (X — X)), the resulting displacement U satisfying (4) and the boundary conditions (7) is denoted as
G’U (X; X,). The solution for T = Ty (%; X, ¢) is then given by

0(% 1) = [ T(%s X0, (1) Go (% %) dso (1)
Taking the divergence of both sides and integrating by parts delivers

s(z.1) = //Q T (%0: X (1), (1)) Gs (% %) dSo (12)

with Gs (¥; Xp) = V. éU (¥; Xo). Regardless of the detailed functional dependence, I; = f (u, V.0, given in
(6), we have established that I; only depends on time through X (t)and ¢ (t). Returning to (10), we have
justified the dependency of time in the right-hand sides of (3.3).

4
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3.4. Average spiral drift

Under low MEF, the (3.3) can be averaged over one rotation period. When the spiral is far away from the
boundaries (d > d ), only the MEF induces spiral drift, which is therefore of order . Within a rotation
period of O(1), the spiral’s rotation center thus has Xt)=X0)+0 (n)- Then, (9b) becomes an ordinary
differential equation, which can be integrated to

¢ ()= (0) + wot + /(: fg[)'('(O), wot’ + ¢(0)]dt’ +0(n?)
=¢(0) + (a)0+w1)t+g(t)+0(n2). (13)

Here the integral of g(t) vanishes over one period, and o, = (27)! /o & 1o (X (0), ¢'1dg'.
The net spatial spiral drift over one period can be found by:

0:X* 1 o
opxe (1) = & =—f*(X0), p()) + O(n?). (14)
o
Since the f” are 2z -periodic functions of ¢, they can be expanded in a Fourier series
+o0
fi(X, ¢) = Y Ci(X)e. (15)

Within one rotation period, we can take X* (¢) = X?(0) + O(#), from which

36X g ce (X —ing
X”(¢)=C§(X(o)) Z ( (0)) B ( (0))e

P +0(n?). (16)

Thus, within one rotation period, the harmonics in e*"# describes an epicycle trajectory for the spiral wave’s
rotation center. However, only Cj contributes to the net spiral drift over one rotation period. If one averages
spiral position over one period, its mean velocity is

ve(X) =cg(X) (17)
with
ci(%) = [ (%, 0)as. (18)

Substituting the explicit expressions (12) and (10), we arrive at following expression for the period-averaged
drift of spiral waves under MEF:

ve(R)=-2 foz” dp [, dswe (% X, )| uo(% %, #) - E.]

x [, dSoTo (% X (1), qs(t))P[Gs(;e; 550)] +0(n?). (19)

3.5. Net spiral wave drift in the corotating frame
In the previous paragraph, we found that net spiral drift is given by the vector f (X, ¢)averaged over all rotation
phases. Looking at the right-hand side of (19), we may now treat the spiral position X asaformal parameter,
without explicit time dependency.

Until now, we have used material coordinates X in a nonrotating frame, which we denote asx”, a € {1, 2}.
With its rotation center at a given location of the medium, a spiral wave rotates at an average frequency,
@ = wy + w,. Now we introduce rotating coordinates, ¥’, denoted by x* (A € {1, 2}) in index notation. These
are related to the non-rotating material coordinates, x“, as

X% — X% = RY () x (20)
with d,¢p = w and rotation matrix
e\ _ [cosg —sing
<R A) h (sin¢ cos ¢ ) (21)

Since a spiral wave’s sensitivity to external stimuli is time-independent in the corotating frame, in the corotating
coordinates x*, the response functions are time-independent functions WA (%), such that
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£9 = —R9 () //w) Wi (#)L(%5 X, ¢)ds'. (22)

Due to the localization of response functions, the integration domain can be limited to the spiral core region, £2,.
The net spiral drift becomes

ve(R)= 2 fl, dswi(%) [asra@)n (7 %, 9)
2_5[/5 dS'W;‘(z')gs[uo(z’) - E] /dgbR”A((p)P[s(;'; X, ¢)] (23)

Equation (23) can be rewritten in complex notation: Defining complex velocity V = V* + iV7,anda
complex-valued response function, W,/ = Wlf, +iW/) (see, e.g., [42]), we find

v+(X) = —i ffg ds'w;(z’)gs[uo(zf) - E] /d¢ei¢P[s(£';X', ¢)] (24)

This expression shows that the net MEF-induced spiral drift results from the first Fourier component of the

induced stretch distribution. This Fourier component is multiplied with a weighting function,

—-W} (%) [0I/0S] (;’), evaluated at S = 0, and integrated over the tip region to produce the net spiral drift.
In terms of active tension development, combining (19) and (24) delivers

VH(R)= =5 [l aswi (%) [uo(¥) - ]
x [ dgeit [[, asuTo(7s X (1), ¢(0)) P Gs(%3 %) | (25)

Furthermore, we note that the mechanical Green’s function slowly varies on the scale of the domain size, 2L,
which is much larger than the decay width, &, of the translational response function, W,. Thus we may write in

thelowest order in &/L that Gs (X'; Xy) ~ Gs (X, Xo). Higher-order corrections will contain partial derivatives
of Gg, evaluated at the spiral tip. Hence, (25) can be written as the product

VH(X) = AwVvih(X) (26)
of relative drift velocity
V(%) = - fape ]| asoy (0 X o), 4(0))P[ Gs(Rap ()i T) ] (27)

and a complex prefactor, Ay,

Ay = Hel® = /f[R dsWr (¥)g [ wo(x') - B (28)

Expressions (26)—(28) show that the magnitude, V = |V *|, and direction, arg(V ™), can be computed from the
first Fourier component of the induced stretch at the spiral tip, up to a constant amplitude, H, and absolute drift
angle a. In section 6 we will compare (27) with the drift resulting from numerical simulations.

3.6. Time-course of active tension development

If the radius described by the spiral tip is not large compared to the domain size, 2L, and the spiral is far from the
domain boundary, the induced stretch does not vary much in the spiral’s core region for a given rotation phase.
In this case, we can approximate

Gs (i %o ) ~ Gs(X; % ). (29)
leading to
vh(X) z—i /dq,’)ei’/’//g dsoTO(zo;X'(t),¢(t))P[GS(X'; 9?0)] (30)

We now show that the resulting spiral wave drift is largely independent of the detailed time course of active
tension development in the tissue; only the delay between excitation and active tension development will play a
role. In the electrical subsystem (1)—(3) and in the limit of small MEF, the active tension develops regardless of
the local stretch and its derivatives. Instead, the active tension only depends on the time elapsed since the point
was electrically excited, or, equivalently, its excitation phase, @. At any given time, a counterclockwise rotating
spiral wave with wavefront shape § = @, (r) in polar coordinates (r, ) around the its rotation center has

®(r, 0) = @0<1/x’2 + y’z) + arctan(y//x). (31)
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In material coordinates x = X + r cos 8, y = Y + r sin 6, one finds

45(9?; X, gb) =q§0(£; X) + ¢, (32)

d50(5c'; }_f) = @o(\/(x -X)?+ (- Y)Z) + arctan(z:i). (33)

Expressing that the active tension developed in our model only depends on the excitation phase yields, for points
outside the spiral core region:

T(% X, ¢) ~ T (@0 (% %) + 9). (34)

Here, the function T, (@) is the temporal profile of the periodically developed active tension in each point of the
unperturbed spiral wave, uy, outside its core region. Furthermore, we show below in section 4 that if the spiral
core is not close to the domain boundary, maximal stretch occurs near the boundaries, which is thus outside the
spiral core. Then, after applying (34), we may change integration variable ¢ = @, + ¢ in (30) to find

V+(X)=—AWAT//QdSOe‘i‘I’O(’%;X)P[GS(X; fo)] (35)

Here, a new shape factor, A, appears, which equals the first Fourier coefficient of the time-course of active
tension development:

Ar = [4heiTa (). (36)

Expression (35) shows that, within the approximations made, the stationary positions for spiral waves in the
RDM system (1)—(6) do not depend on the details of the development of active tension over time in each active
element (cell) of the medium. Changing the function T, (@) only changes the complex prefactor Arin (35).
However, the time-course of active tension development may alter the stability of the equilibria, and its effect
can be computed by computing Ar. If, for example, active tension is delayed over a time #,, a complex pre-factor
el isadded to V*, which can change dynamical attractors to repulsive sites, and vice versa.

In conclusion, (35) reveals that of the electrical subsystem, only the shape of the spiral wave’s front
determines the position of the attractors. This property can be made explicit by considering a reduced system in
which tension is instantaneously developed at the wavefront (i.e., with T, = 270 (@)). By (36), the drift
velocity, V*, in this system is equal to V* (X) of the original system, divided by A1. However, putting in the
instantaneously developed tension already in (30) would reduce the surface integral over the domain to aline
integral. Equating both expressions for V" in the reduced system allows one to rewrite the drift velocity in the
original system in terms of a line integral over the wavefront surface:

v+ (X) = —AwAg /d¢ei¢ /W) ds P Gs(%; %5, ) | (37)

Here, X, (s, ¢) is a parameterization of the wavefront surface, C, given its rotation phase, ¢. Given that the spiral
waves that form in reaction-diffusion systems asymptotically tend to an Archimedean spiral shape, the spiral’s
wavelength, A, is the only characteristic of the electrical subsystem that determines the position of attractors in
the RDM system.

3.7. Position and stability of equilibria
We are interested in identifying the equilibria and their linear stability given the complex-valued velocity field,
VT (X, Y). Linear stability analysis of a two-dimensional system shows that the simple (i.e., linear) equilibria can
be classified into stable nodes, stars or spirals, unstable nodes, stars or spirals, saddle points, and center points
[46]. Example trajectories and the complex velocity field for six cases are shown in figure 2. In this work, we will
not discriminate between nodes, stars, and spirals. Stable nodes, stars, and spirals will be denoted as attractive
equilibria, while we refer to unstable nodes, stars, and spirals as repulsive equilibria.

We note that all types of linear equilibria correspond to phase singularities of the velocity field, V* (X, Y).
To locate phase singularities numerically on a Cartesian grid, we track the complex phase, y = arg(V*),
counterclockwise around every cell of the grid, and see whether it changes by +27. If so, a phase singularity is
present, and we locally fitalinear system, V* = A1 X + A, Y,V = Ay X + A, Y. Then, itis well known that
the trace and determinant of the coefficient matrix A determine the type of equilibrium [46]:
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saddle stable node stable spiral

[ s
0 2n

Figure 2. Complex phase of a velocity field, V* = V* + iV”, around the six types of linear equilibrium in a dynamical system,
oix = V¥(x, ), 0y = V7 (x, y). All six types of linear equilibria exhibit a singularity of the complex velocity phase. Arrows denote
local velocity in (x, y)-space.

det(A) <0 : saddle point
det(A) > 0, tr(A) < 0: attractive equilibrium
det(A) > 0, tr(A) = 0: center point
det(A) > 0, tr(A) > 0: repulsive equilibrium

To identify centers numerically, we normalized V* by dividing it by the median of V* taken over the entire
domain. Thereafter, we classified an equilibrium as a center when det(A) > 0 and |tr(A)| < 1.107>.

4. Mechanical Green’s function for half-plane and square domains

We will compare our general theory above with numerical simulations on a square domain of size 2L = 60. To
make predictions on spiral wave drift, we need to know the mechanical Green’s function, Gs (X; X ), for the
Navier-Cauchy equations in a given geometry, or an approximation of it.

The Green’s function for the half-plane y > 0 with a zero-displacement boundary condition at y = 0 can be
found analytically. Using the method of complex variables in elasticity, as outlined in [47], we find the following
fundamental solution to the Navier-Cauchy equations for stretch S = V - U induced by active tension,

T,(X) = 6(x — x0)6(y — )

(x = x0)? — (y + yo)z

[(x —x0)? + (y+ yo)2]2

G (x, y3 X0, ) = —p (38)

with material constant p = 2u/[z (4 4+ 2u) (4 + 3u) . Note that the stretch induced by a source at (xo, y;)
decays with the distance to the mirror source (xg, — y,). Within the half-plane domain, the largest stretch is
therefore found at the boundary point (x4, 0), as shown in figure 3(a). Furthermore, negative stretch values are
only found where |x| > |y + 1.
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Figure 3. Examples for the mechanical Green’s function, Gy, in simple geometries. (a) Exact mechanical Green’s function,

GHP (%; %), from (38) for the half-plane y > 0 with no-displacement boundaries, with x, = 0, y, = 20 and material constant p set
to 1. The white circle denotes the point (x, y,) where active tension is developed. (b) Approximate mechanical Green’s function,
GSSQ (X; %), from (39) for a square domain with no-displacement boundaries, with xo = =5, y, = 5andp=1.

For the square domain with no-displacement boundaries, we have not been able to find the exact analytical
Green’s function for induced stretch. Instead, we approximate the Green’s function by introducing one half-
plane mirror source for each side of the square and summing the four contributions. For the square
[-L, L] X [—L, L], we thus take

GSQU(x, y; x0, 3)y) N GSHP<x, y; x0, 2L — yo) + GSHP()/, x; ¥ 2L — xo)

+ GSHP(X, Vs X0, —2L — )’0) + GSHPO” X ¥ —2L = xo). (39)

An example of the resulting stretch distribution is displayed in figure 3(b).

5. Numerical methods

5.1. Electromechanical simulations

We performed numerical simulations using the discrete reaction-diffusion mechanics (dRDM) model
developed in [24]. The dRDM model constitutes a generic electromechanical model for cardiac tissue using (1)
and (2) to describe the excitation processes, and (3) to model the excitation-contraction coupling. The model is
based on representing tissue by mass points connected by active and passive springs.

The MEF of cardiac tissue is modeled in dRDM by stretch-activated currents, I, with an equation similar to
(6), which describes stretch not in terms of the deformation tensor, but of the surface area of a quadrilateral
formed by neighboring mass points [24]. Weused k = 8, kr = 1.5, g, = 1, and E; = 1as parameters for
solving the model’s equations. Furthermore, the model uses a mass-lattice system whose constitutive relations
can be approximated with the Seth material relation [24].

We study a model with a square domain of size 2L = 60, in which boundaries are fixated. No-flux boundary
conditions are applied for reaction-diffusion processes, and elastostatics is assumed. To solve (1), (2),and (3), an
explicit Euler scheme is used with space step HX = 0.3 and time step HT = 0.001. Following each Euler step,
equations for mechanics were solved using Verlet integration with time step dt,, = 0.01 and spacing of mass
points 2HX, until the sum of all forces for each mass point was smaller than 2. X 107 in dimensionless mass
units.

For different values of the model parameters, a, from (1) in the range 0.05 — 0.08, we performed a series of
simulations with spiral waves initiated at 20 different positions in the model without applying I. The initial
spiral positions were chosen in one quadrant of the square domain only; results for other positions were
obtained by rotation symmetry. After a transient phase of two spiral rotations, we enabled I and tracked the
drift of the spiral wave tip by computing the intersection of the isosurfaces u = 0.5 and v = 0.5 ateach time
frame.

Thereafter, we averaged tip positions over one spiral period. Hereto, we deduced rotation phase ¢ as the
angle between the tangent vector to the tip trajectory and the positive x-axis, and we added multiples of 27 to
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obtain a monotonous function. To find the average tip position at a time with phase ¢, we take the barycenter of
the segment of the trajectory that has phases between ¢, — 7 and ¢, + =.

For given model parameter a, we interpolated the Cartesian components, V*, V7, of the period-averaged
drift velocities onto a finer rectangular grid, and we extracted the complex velocity phase, y = arctan(V”/V*).
The results are displayed in the top row of figure 6.

5.2. Theoretical prediction of drift velocity

For comparison, we also used the theoretical drift expression (30) and the mechanical Green’s function (39) to
predict the relative magnitude and angle of spiral wave drift V! using (30). Hereto, we first characterized the
spiral wave by measuring its wavelength A, core radius, and periodically developed active tension, T, (®). Next,
we fitted the wave front, § = @, (r), with an Archimedean spiral. This way, we obtained the unperturbed active
tension, Ty (X; X, ¢), for 50 X 50 spiral wave positions (X, Y) in the quadrant [0, L] X [0, L],and 60
uniformly spaced rotation phases, ¢. The active tension field was convoluted with the Green’s function (39) to
yield stretch at the tip position, after which negative stretch values were set to zero to include the ramp function,
P, from (6). Finally, the first Fourier coefficient with respect to the rotation phase was computed to yield the
complex-valued relative drift velocity, V,%;. From (30), this quantity is expected to relate to the absolute drift
velocity, V*, by V* (X, Y) = He*V} (X, Y) for real-valued constants, H, a.

The constants H, « that determine the absolute magnitude and direction of drift can be evaluated using (28)
if the response functions are known. Existing tools to compute spiral wave response functions (e.g., [42]) require
continuously differentiable reaction kinetics. In the current study, however, noncontinuously differentiable
reaction kinetics were used to maintain compatibility with previous works. Therefore, we fitted the absolute drift
angle, a, in (5.2) from the observed drift angle at the start of each dRDM simulation. We did not fit the
magnitude factor, H, since it affects neither the stability of equilibria, nor the spiral wave’s drift trajectory.

With a fitted from initial drift velocity, we obtained from (5.2) a velocity field, \% (X, Y), which was

numerically integrated using Euler stepping to produce the theoretical drift trajectories shown in figures 5 and 6.

6. Numerical results

6.1. Physical displacement

An example of the resulting spiral wave, developed tension, mechanical stretch, and physical displacementin a
dRDM simulation is presented in figure 4 for a = 0.050 and a square domain of size 2L = 60. For the time
frame shown, the average physical displacement, |[X},, — X ||, was 0.60, and the maximal displacement

was 1.40.

6.2. Drift trajectories

The results of the dRDM simulations and their comparison with theoretical predictions are shown in figure 6.
Due to rotation symmetry over z/2, 4n + 1equilibria are found in each case with 7 integer. The results shown
are for a clockwise rotating spiral wave. For the opposite chirality, drift trajectories will be mirrored.

The results from theory and numerical simulations are qualitatively similar in terms of the number and
position of attractors and the shape of the spiral drift trajectories.

Forlarge a = 0.08 (i.e., long spiral wavelength and low excitability), a single attractor of the spiral type is
found. When a is decreased to a = 0.07, both theory and simulations show four new attractors close to the corners
of the domain. Closer investigation of this transition shows that close to a = 0.076, the central attracting spiral
becomes unstable through a Hopfbifurcation, yielding nearly circular limit cycles, as shown in figures 7(d)—(f).

When a is further reduced to a = 0.066, another Hopf bifurcation occurs; see figure 7(b). At this critical
value, the four corner attractors lose stability while the square’s midpoint stabilizes, as seen in figure 6 for
a = 0.06. No qualitative changes take place when a is further lowered to 0.05.

While the absolute drift direction (i.e., the angle @) is fitted between the theoretical and simulation panels of
figure 6, the position of equilibria results from the integral in (30) alone. From symmetry, the square’s center is
always stationary, which is also seen from the fact that I, has only contributions proportional to e*"¢ with
integer m, such that its first Fourier coefficient, and therefore its net drift, vanishes. When a is lowered, in both
theory and simulations, attractors form near the domain corners and move inward, since wave length A
decreases with lower a.

For the cases a = 0.06, a = 0.05, our theoretical prediction does not reproduce the corner attractors, but
instead produces a limit cycle close to the domain boundary. Note, however, that our theoretical approximation
is expected to break down near the corners of the domain, since we only used an approximation (39) to the exact
mechanical Green’s function.
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Figure 4. Spiral wave profile from a dRDM simulation after t= 300, for a = 0.05 and domain size 2L = 60. (a) Excitation variable, u.
(b) Developed active tension, T'. (c) Induced stretch, S. (d) Vector field of net physical displacement.

6.3. Grid pattern for equilibria in a square domain

From figures 6 and 7 we can see that in the square domain, the equilibrium positions the spiral wave’s rotation
center to occur close to a regular lattice, with spacing equal to half the spiral wavelength, A. This situation is
similar to the global feedback case described in [48].

From our theory, this regular pattern can be explained as follows. First, due to symmetry, the square’s center
is stationary. For a given rotation phase, say ¢ = 0, a spiral wave with its rotation center in the middle of the
square induces the largest stretch in the region where its tail meets the domain boundary. Suppose this happens
at the left side of the square. Now, suppose we move the spiral wave, A/2, to the right. Then, the former region of
maximal stretch becomes a region of minimal stretch. Since V* is of the form /0 7 cos ¢f (¢)dep, itis mostly

affected by rotation phases 0 and z, such that V*(mA/2, 0) & —V*(0, 0). Conversely, V7 is a sine integral and
is therefore most sensitive to rotation phases +7/2, such that V' (mA/2, 0) = V7 (0, 0). Generalizing to taking
m steps of A/2 in x and n stepsin y, we find

V*H(mA/2, nA/2) ~ e m+mry+(0, 0). (40)

Therefore, we expect saddle points on the Cartesian grid of spacing A/2 when (m + n)is odd. Points with

m + n mod 4 = 0 will have the same stability as the square’s center, and equilibriawith m + n mod 4 = 2

will have opposite stability. These predictions are confirmed by the dRDM simulation results in figures 6 and 7.
However, in the theoretical prediction in figure 6, the equilibria are not always close to (X, Y)=

(mA/2, nA/2). This may be due to approximating the response functions as a delta-distribution, which was

performed to produce these plots.

6.4. Bifurcation diagram
To study how the position of equilibria changes when model parameter a is varied, we performed additional
simulations between a = 0.05 and a = 0.08 in steps of 0.01. The resulting dRDM trajectories are shown in
appendix figure B1. In figure 8, we show the bifurcation plot for both dRDM simulations (figure 8(a)) and
theory (figure 8(b)). On the vertical axis, the distance between the equilibrium and the center of the square
domain is displayed.

Both theory and results produce the Hopf bifurcations near a = 0.066 and a = 0.076. Note that the
attractors in the corner (‘c’) for a < 0.065 are not found in theory, and few equilibria are found near the middle
of the domain edge (‘m’) in the range a = 0.06 to a = 0.065 (see figure B1.) In the theoretical bifurcation plot
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Figure 5. Comparison of spiral wave drift trajectories (black) in a square of size 2L = 60 from dRDM simulations (left) with theory
from (30) (right), for different values of model parameter a. Color indicates interpolated drift direction, which is equal to the complex
velocity phase. For example, phase 0 or 27 (red) denotes spiral wave drift along the positive x-axis. Phase singularities indicate
equilibrium points, which may be attractive (@), repulsive (°), or saddles (¢). Grid line spacingis A/2.

8(b), additional equilibria arise close to the domain boundaries due to saddle-node (SN) bifurcations. Since the
SN bifurcation at a = 0.063 interrupts a limit cycle, it can be identified as an infinite-period (IP) bifurcation.

6.5. Scaling in large domains

To estimate whether MEF-induced drift is relevant in a practical situation, it is useful to investigate the scaling of
the induced spiral wave drift velocity with the domain size, L. Since in the middle of a square domain the velocity
vanishes by symmetry, we will try to estimate the drift speed at its local maximum closest to the square’s
midpoint. From section 6.3, we expect that this point will be found at a position (+A/4, +A/4) relative to the
square’s midpoint. The effect of a larger domain size is that the mechanical Green’s function needs to be
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0.25 0.5

Figure 6. Interpolated spiral wave drift speed in a square of size 2L = 60 from (left) dRDM simulations and (right) theory from (30),
for different values of the model parameter a. Theoretical plots display | V! | and have not been scaled by the factor H. Grid lines
spaced by half of the spiral wavelength, A.

evaluated at a larger distance. Assuming that the dominant contribution of the half-plane mechanical Green’s
function (38) occurs at x = x( and the distance to the spiral core is L, the half-plane Green’s function reduces to
p/4L?, such that the contribution of the four edges is p/L?. Therefore, the maximal drift speed near the square’s
center should scale as
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Figure 7. Spiral tip trajectories from dRDM simulations for varying parameter a close to the Hopf bifurcation points (a)—(c)
a = 0.066 and (d)—(f) a = 0.076. Color denotes drift direction, which is also equal to complex velocity phase. Equilibria are indicated
as attractive (@), repulsive (), saddles (¢), or centers ([]). Figures for clockwise spiral rotation.

Vinax & p/L* (L > A). (41)

We have verified this expression in numerical simulations with various sizes of the square domain

(2L € {36, 48, 60, 72}), without changing spatial resolution. Thereafter, drift velocity was interpolated on a
grid of size HX = 0.3, and the local maximum closest to the square’s center was sought. The outcome is presented
in figure 9, which shows that ¥,,, indeed almost linearly depends on 1/L?, as anticipated by expression (41).
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Figure 9. Dependency of maximal spiral wave drift speed close to the middle of a square domain of size 2L, on domain size L.

-3

7. Discussion

We have derived a theory of spiral wave drift based on a mechanical Green’s function, and we found

an expression for the average MEF-induced drift at each point of a two-dimensional domain. Note that
in our theory, equation (25) also holds for other geometries.The square domains with fixated boundaries
is only one example, since for a different geometry, only the mechanical Green’s function needs to be

adapted.

Our present approach can be extended to anisotropic excitation of cardiac tissue by local rescaling of the
spiral wave; anisotropic mechanical properties and different boundary conditions can be incorporated in the

mechanical Green’s function.
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Due to the presence of a mechanical Green’s function, the magnitude of spiral drift is not proportional to the
first Fourier amplitude of the excited surface area. In A, however, we show that for tissue of small size (2L < A),
the spiral drift pattern can be found from the first Fourier component of the excited area. Note, that in many
practically important situations, this assumption can be valid. For example, a study by Nanthakumar et al [49]
shows that the typical velocity of wave during ventricular fibrillation in the human heart is 0.67 ms~', with an
average frequency of 6.8 Hz. This yields a wavelength of 9.9 mm (i.e., about the size of the ventricles of the
human heart). In addition, the excited area can be estimated from the experimental recordings using optical
mapping experiments [50, 51]. Therefore, we hope that our approach, which is based on the first Fourier
component, can be applied to experimental data. However, for its application in an anatomically accurate setup,
it needs to be extended to three dimensions. Still, we expect from preliminary results that a two-dimensional
effective theory taking into account tissue thickness may also be feasible.

Our theory identifies the shape of the wavefront as the main determinant for MEF-induced spiral wave drift.
As the shape of the wavefront of a spiral wave is simply given by an Archimedean spiral in an isotropic medium
and a rescaled spiral in the presence of anisotropy [52], our theory suggests that these results on spiral wave drift
are general. This is also confirmed in our numerical dRDM simulations. It would be interesting, however, to
verify the theory using other numerical approaches and models.

Previous analytical work [53] on MEF in cardiac tissue was limited to one-dimensional tissue strands. Here,
we developed a theory for two-dimensional media and studied the drift of spiral waves. In two dimensions, the
resulting drift field for spiral waves is qualitatively similar to the uniform global feedback chemical system
studied in [48]. For example, in a square domain, equilibria of both systems are found on a lattice of spacing
A/2.Furthermore, works by Zykov et al [54-56] revealed that the velocity fields for the spiral wave drift in
reaction-diffusion systems in many cases have atypical phase portraits. For example, in [56], unusual
equilibrium manifolds of attracting lines have been observed for a system with two-point feedback control. It
would be interesting to investigate whether the dynamics reported in these papers can also be found by further
variation of the parameters in our system.

Even though our theory is based on linear elasticity, it suitably explains the results of dRDM simulations,
which use finite deformations. An extension of our current work could be to find a similar description for
nonlinear elasticity, where a crucial step would be to analytically evaluate the deformation field in that case. In
addition, an extension of our approach to more realistic settings is straightforward. For that, one can use the
approach proposed in [20], which combines an ionic model for human ventricular cells (ten Tusscher—Noble—
Noble-Panfilov) and the Niederer-Hunter-Smith model for active tension development.

The results of our study can be tested in an experimental setup. This can be done in micro patterned cardiac
cell cultures on elastic membranes [57]. However, such a system may require additional modeling, in which one
must consider specific properties of the experimental system, such as the existence of an elastic layer beneath the
layer of cardiac myocytes.

An important result of our work is that mechanical feedback and spiral wavelength alone determine the
attractors where spirals tend to go. Finding the attractors of spiral waves has become very important as recent
cardiac research [58] has shown that ablation of regions where the spiral’s tip is located treats atrial fibrillation.
Therefore, itis an important task to gain mechanistic insights underlying spiral wave dynamics. We believe our
theoretical approach is an important step in the understanding of mechanically caused spiral wave dynamics,
and it may lead to new clinical applications.
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Appendix A. Comparison with uniform global coupling

Interestingly, when the ratio of wavelength over domain size is large, we observe that the relative spiral drift
pattern is well represented based on the first Fourier component of the instantaneous excited area (i.e., without a
mechanical Green’s function). This situation is shown in figure A1 ; the similarity to the experimental drift
trajectory in figure 6 is particularly striking for the case where a = 0.08. Since the excited area fraction is easily
accessed experimentally (e.g., using optical or electrode mapping), it is worth investigating whether it can be
used to predict the MEF-induced drift of spiral waves.
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Figure A1. Spiral wave drift trajectories (black) from a simplified theory where the mechanical Green’s function was substituted by a
constant. Color indicates interpolated drift direction, which is equal to complex velocity phase. Phase singularities indicate
equilibrium points, which may be attractive (@), repulsive (o), or saddles (¢). Grid line spacingis A/2.

However, treating the Green’s function as a constant is not generally valid, as one can easily see from the
counterexample of a half-infinite medium with a zero-displacement boundary. In such a case, the fraction of
instantaneous exited area tends to a constant, and omitting the mechanical Green’s function would therefore
wrongfully forecast the absence of MEF-induced spiral drift. Nevertheless, we can show that this simple
approach holds in a square slab of tissue of a size comparable to the spiral wavelength and with fixated
boundaries. Although restricted, these conditions apply to mapping experiments in which a thin patch of cardiac
tissue is subtended in a rigid frame.

To find such a simplified description, we evaluate (25) for a spiral wave with rotation center (X, Y)ina
square domain, [—L, L] X [—L, L]. Under no-displacement boundaries, the Navier-Cauchy equation (4) are
self-adjoint, leading to the property of mechanical reciprocity that is reflected in the symmetry of the Green’s
function: Gs (X, Y; xo, 3,) = Gs (0 33 X, Y). By the method of mirror images, the induced stretch field is
centered at the points of the boundary closest to (X, Y) (i.e., the spiral center’s orthogonal projections on the
boundary). Those four regions lie at distances d iG€{l,2,3,4}),equaltoL + Yor L + X from its core; this
happens at rotation phases ¢; = ¢, + jz/2.In these regions, the overlap integral (35) will be a bell-shaped
curve, q,(d;) g (¢ — ¢ i ), with amplitude function ¢, decaying monotonically with the distance, d i Therefore,
the relative spiral drift velocity field can be approximated from (35) as

4 o _
VX, Y)~ —Aw;‘—;g/oz d¢el¢ql(dj)g1(¢ - ¢j)

4
= _AWATAI qu<dj)ei¢f, (Al)
j=1

where a new shape factor, A; = % /o i d¢’ei?’g, (¢'), arises and captures the spatial profile of the mechanical
Green’s function.

Let us compare this expression with the first Fourier component, Vg (X, Y), of the excited surface area. The
excited surface area can be found by identifying regions where u is larger than a given threshold value. Using a
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shape factor, Ar, the thickness of the excited zone may be reduced, such that only the length, £ (¢), of the
activation front matters: V5 (X, Y) = ';—i /0 i degpel? L (¢p). When the square is small enough to accommodate

only a single turn of the spiral wave, £ attains its local minima at the same rotation phases, ¢ j»s above, whence it
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30, 30
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Figure B1. Spiral tip trajectories from dRDM simulations for varying parameter a. Figures for clockwise spiral rotation. Equilibrium
points marked as attractive (@), repulsive (o), saddles (¢), or centers ([]). Grid line spacingis A/2.
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can be approximatedas £ = L,, — E?zlqz (dj)g, (¢ — ¢;), where L, isa constant larger than the square’s

diagonal, 22 L, L,, — q,(d j)is the arclength of a spiral between its core and the point with radial distance d,
and g, (¢) isabell-shaped curve. Thus, using the excited surface area to estimate the MEF spiral drift, one obtains

4
VEX,Y) ~ —AWA+A22q2(dj)ei¢j. (A.2)
=1

The expressions (A.1) and (A.2) for nonuniform versus uniform feedback are strikingly similar: the Fourier
convolution theorem has factorized all underlying detail except the monotonically decaying functions,
q,(d), g,(d).If these functions exhibit a similar dependency, the MEF system can be approximated by a
uniform-feedback system. Figure A1 illustrates that this is possible in a small square with fixated boundaries.

Appendix B. Supplementary figures
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