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Cellular activation in trans by interferons, cytokines, and chemokines is a commonly 
recognized mechanism to amplify immune effector function and limit pathogen 
spread. However, an optimal host response also requires that collateral damage 
associated with inflammation is limited. This may be particularly so in the case of 
granulomatous inflammation, where an excessive number and/or excessively florid 
granulomas can have significant pathological consequences. Here, we have combined 
transcriptomics, agent-based modeling, and in vivo experimental approaches to study 
constraints on hepatic granuloma formation in a murine model of experimental leish-
maniasis. We demonstrate that chemokine production by non-infected Kupffer cells 
in the Leishmania donovani-infected liver promotes competition with infected KCs for 
available iNKT  cells, ultimately inhibiting the extent of granulomatous inflammation. 
We propose trans-activation for chemokine production as a novel broadly applicable 
mechanism that may operate early in infection to limit excessive focal inflammation.

Keywords: kupffer cells, granulomas, inflammation, Leishmania, natural killer T  cells, agent-based modeling, 
computational immunology, liver

inTrODUcTiOn

Immune responses are commonly initiated by localized infectious insult and multiple mechanisms 
have evolved to allow spread of host effector responses to meet the challenge of pathogen contain-
ment. In the late 1950s, seminal studies by Isaacs and Lindenmann defined how “interferons” ampli-
fied local cellular resistance following virus infection (1, 2). A decade later, Mackaness described 
cross protective cellular immunity mediated via T cell cytokine-dependent macrophage activation 
(3). More recently, cytokine- and chemokine-mediated amplification of host protective immunity 
has been described across a spectrum of responses driven by both innate lymphoid cells and via 
conventional T  cells (4–9). While serving to eliminate pathogens more effectively, a potentially 
undesirable consequence of amplifying immune effector responses is immunopathology, collateral 
damage induced by an overzealous drive toward inflammation. Hence, an equally impressive array of 
“regulatory” or “suppressive” mechanisms have been defined that serve to limit immunopathology, 
and that suggest an evolutionary balance between pathogen elimination and host survival (10–12).
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Granulomatous inflammation represents an extreme form of 
focal inflammation, often initiated around pathogens or foreign 
bodies that pose a formidable challenge for immune clearance. 
Granulomas are a hallmark of the immunopathology of many 
human infectious diseases including tuberculosis (13, 14), 
schistosomiasis (15), and leishmaniasis (16). While granuloma 
formation may provide means for containment and be host ben-
eficial, excessive granuloma formation, numerically or in terms of 
individual granuloma size can lead to severe pathological conse-
quences. Hence, mechanisms for limiting the exuberance of the 
granulomatous response through late acting regulatory pathways 
are also well described in the literature (17–20). However, the 
question of whether additional regulatory mechanisms operate 
at the earliest stages of granuloma initiation and prevent or limit 
over-exuberant granuloma formation has not been previously 
addressed.

Experimental visceral leishmaniasis, resulting from infection 
of mice with the Kupffer cell (KC) tropic parasite Leishmania 
donovani, has provided a highly tractable tool to study the initia-
tion of granulomatous pathology in the hepatic microenviron-
ment. Following infection of mice with L. donovani, infected KCs 
transiently release the chemokines CCL1, CCL2, and CXCL10 
in a T  cell-independent manner, whereas sustained expression 
of CXCL10 is dependent upon IFNγ production by invariant 
NKT (iNKT) cells (21). IFNγ production by iNKT cells is in turn 
costimulated by ligation of CD47 on natural killer T (NKT) cells 
by signal regulatory protein alpha (SIRPα) expressed on KCs, 
providing positive feedback for sustained iNKT cell recruitment 
and KC activation (22). A similar role for CXC chemokines in 
recruiting hepatic NKT cells has been observed in other models 
of liver infection/inflammation (23, 24). For example, CXCL9 
produced by KCs following infection with the bacterium Borrelia 
burgdorferi results in CXCR3-dependent clustering of NKT cells 
around infected KCs (25), whereas CXCR6 and its ligand CXCL16 
regulate NKT cell accumulation in the liver during fibrosis (26). 
Hence, early recruitment of “amplifier” cells such as NKT cells is 
a central and common theme of focal inflammation.

Examination of the kinetics of granulomatous inflammation 
in this model of visceral leishmaniasis suggests, however, that 
there may be inherent limitations imposed on the ability of the 
host to form hepatic granulomas. Notably, granuloma formation 
proceeds asynchronously, and even many weeks after infection, 
fully formed granulomas sit side by side with infected KCs that 
appear to have failed to stimulate an inflammatory focus (16, 
27). Here, we have combined transcriptional profiling and com-
putational modeling to probe possible mechanisms that might 
underpin the asynchronous development of granulomas in this 
model. We demonstrate that KC chemokine production, contrary 
to expectations, is not restricted to infected cells alone, but spreads 
in trans to include uninfected KCs within the infected liver. Data 
generated using a novel agent-based model (ABM) in which KCs 
and iNKT cells interact within a spatially constrained sinusoidal 
network suggest that the spreading of chemokine production to 
uninfected KCs limits the competitiveness of infected KCs in 
terms of their ability to attract iNKT cells and initiate granuloma 
formation. In silico experiments predicted that this competi-
tion could be overcome by increasing the number of available 

NKT cells, a prediction borne out in vivo. Hence, our data identify 
a new pathway that operates early in infection to limit excessive 
inflammation by introducing competition for a finite resource 
(i.e., iNKT cells) that is needed for granuloma initiation.

MaTerials anD MeThODs

Mice and Parasites
C57BL/6 mice were obtained from Charles River (UK). mT/mG 
(28) and LysMcre (29) mice have been previously described. Mice 
were bred and housed under specific pathogen-free conditions 
and used at 6–12 weeks of age. The tandom Tomato fluorescent 
protein expressing Ethiopian strain of L. donovani (tdTom.
LV9) (30) was maintained by serial passage in Rag1−/− mice. 
Amastigotes were isolated from infected spleens, and mice were 
infected with 3 × 107 L. donovani amastigotes intravenously (i.v.) 
via the tail vein in 200 µl of RPMI 1640 (GIBCO, UK). All animal 
procedures were approved by the University of York Animal 
Welfare and Ethical Review Board and carried out under UK 
Home Office license (PPL 60/4377).

Microarray analysis
As previously described (31), KCs were flow sorted (on the 
basis of SSC/FSC and expression of CRIg, Gr-1 and F4/80) from 
naive mice and from infected mice and KCs from infected mice 
were further sorted (on the basis of TdTomato expression) into 
those containing amastigotes (“infected”) and those that did 
not (“inflamed”). A total of 64 mice were used in the microarry 
study, in four independent infection experiments. RNA was iso-
lated, amplified, and equal amounts were assayed using Agilent 
SurePrint G3 Gene Expression 8 × 60 Microarray chips. Scanned 
data were normalized (80th percentile) and gene expression data 
analyzed using Genespring v9. Differentially expressed (DE) genes 
were defined using a false discovery rate (FDR) of 5%. Source 
data are accessible from EBI Array Express (E-MEXP-3877) and 
methodology for subsequent data analysis is described in further 
detail elsewhere (31).

histological analysis
Mice were treated with 1 µg recombinant IL-15 (BioLegend) intra-
venously and infected 3 days later. Four days postinfection, mice 
livers were extracted, weighed, and then placed into 2% PFA in 
PBS for 2 h, then 30% sucrose in PBS overnight. Tissues were then 
embedded in optimal cutting temperature (Sakura) and stored 
at −70°C until use. 10 µm cryosections were fixed and labeled 
with Alexa647 or Alexa488 conjugated F4/80 (eBioscience) and 
DAPI (Invitrogen) to visualize KCs and cell nuclei, respectively. 
Images were captured as 0.81 µm optical slices using a LSM510 
confocal microscope (Zeiss). Blinded slides were imaged to score 
the percentage of infected foci having formed a distinct inflam-
matory focus (greater than 15 cells), with imaging fields selected 
via tdTomato expression.

Flow cytometry
Livers were homogenized and mononuclear cells prepared as pre-
viously described (30). Cells were incubated with anti-CD16/32 
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and then labeled with NK1.1, CD3, B220, and CD1d tetramer (a 
kind gift from V. Cerundulo) to identify T, NK, and NKT cells. 
Samples were analyzed using a CyAn flow cytometer with Summit 
software (DAKO). Autofluorescent events and dead cells were 
excluded from analysis by gating on unused fluorescent channels 
and LIVE/DEAD fixable dead cell stain (Invitrogen), respectively.

Parameterizing and calibrating the 
simulation
A full summary of the biological data available that was used to 
calibrate the simulation is listed in Table S1 in Supplementary 
Material. The entire list of baseline simulation parameters is 
found in Table S3 in Supplementary Material. Full details of 
parameterization and calibration of the simulation are provided 
in the Supplemental Experimental Procedures.

statistical analysis
When quantifying granulomas, experimental data are expressed 
as mean  ±  SEM for each group of five mice from two inde-
pendent experiments, and statistical analyses performed using 
two-tailed paired Student’s t-tests. All tests used 95% confidence 
intervals. Simulation data non-normality was determined using 
the D’Agostino and Pearson test, and non-normal simula-
tion data were analyzed using either Wilcoxon signed-rank or 
Kolmogorov–Smirnov tests where appropriate. Aleatory analysis 
was used to determine the minimum number of simulation 
results required to mitigate stochastic uncertainty (see Figure S4 
in Supplementary Material). Latin-hypercube sensitivity analysis 
was facilitated by using the Spartan tool for understanding uncer-
tainty in simulations (32).

resUlTs

chemokine Production by Kcs in Mice 
infected With L. donovani
Both chemokines and iNKT cells are central to the initiation of 
granulomatous inflammation following L. donovani infection. In 
order to gain insight into the production of chemokines involved 
in KC-directed recruitment of NKT cells, we used transcriptional 
profiling of KCs isolated from mice infected with L. donovani 
as previously described (31). Following infection of mice with 
Td-tomato transgenic L. donovani, approx. 20% of the KC popula-
tion are infected with amastigotes. We isolated KCs from infected 
mice and sort purified these KCs on the basis of whether they 
contained intracellular amastigotes (“infected”) or not (herein 
referred to as “inflamed” to denote their exposure to inflammatory 
signals in vivo) (31). As shown in Figure 1A, KCs from infected 
mice expressed a variety of chemokines when compared to KCs 
isolated from naïve mice. At 2 h post infection (p.i.), enhanced 
accumulation of mRNAs for Cxcl1, Cxcl2, Cxcl3, and Cxcl5, as 
well as Ccl3 and Ccl4, was evident (determined as differentially 
expressed using a 5% FDR). This transcriptional response was 
transient, in keeping with previous studies at the level of whole 
liver tissue (21). Rapid secretion of chemokines in response to 
L. donovani infection can also be inferred from studies in which 
G-protein coupled receptor signaling was abrogated by pertussis 

toxin (22). A suite of inducible chemokines, including Cxcl9, 
Cxcl10, Ccl8, and Ccl12 showed enhanced mRNA accumulation 
at 12 h p.i. (at a 5% FDR), again in keeping with data in whole liver 
and with previously published data indicating the production of 
IFNγ by iNKT cells during early L. donovani infection [e.g., Figure 
2 in Ref. (22)]. For example, qRT-PCR demonstrated sustained 
and elevated Cxcl10 at 24  h p.i. (33). Similarly, transcriptional 
profiling of the livers of infected BALB/c mice (n = 4–5 per time 
point) indicates sustained elevation of Cxcl9 (Log2FC compared 
to controls of 5.25, 5.14, 5.34, and 4.74 for days 15, 21, 36, and 
42 p.i., respectively; FDR 0.05, p < 0.05) and Cxcl10 (Log2FC of 
4.84, 4.92, 5.36, and 4.55, respectively; Ashwin et al., manuscript in 
preparation). Strikingly, there was little difference to discriminate 
the chemokine response of infected vs. inflamed KCs, although 
we cannot rule out different degrees of posttranscriptional regula-
tion of chemokine secretion in infected vs. inflamed KCs (34). 
Collectively, our data suggest that although initiated by infection, 
production of chemokines rapidly spreads in trans throughout the 
liver KC network.

Chemokine induction by infected cells is thought to provide 
a means for focal inflammation, the recruitment of additional 
leukocytes in an ordered manner being essential for granuloma 
formation and the ultimate activation of macrophage host defense 
mechanisms. However, given this argument, these data appear 
counterintuitive. In order to try to understand how transactiva-
tion for chemokine production might influence the generation of 
focal inflammation, and given the absence of tools to selectively 
and directly manipulate chemokine production by infected vs. 
uninfected KCs in  vivo, we adopted an in  silico experimental 
approach conducive to testing a variety of different hypotheses 
(Figures 1B,C).

an aBM of the hepatic sinusoidal 
Microenvironment
Agent-based models, where rule-driven “agents” can represent 
a cell or lower-scale entities of interest, are naturally suited to 
simulating inflammation in a spatially constrained environment 
(35–37). To construct this environment, we used published 
3D data describing the overall size of lobules, the average non-
branched sinusoid length, and the branching angles between 
sinusoids (38) as the basis for developing a novel algorithm to 
generate statistically realistic liver lobule sections similar to that 
reported recently (39). A range of quasi-2D sinusoidal network 
structures, where each structure can be considered as a slice 
through a 3D lobule, was created using a multi-stage generative 
algorithm augmented with these data (38) (Figure  2A; Movie 
S1, Figures S1A–D, Table S1, and Supplementary Experimental 
Procedures in Supplementary Material). The resulting networks 
(Figure 2B), represented as graphs of nodes connected by edges, 
serve as discrete spatial simulation environments that mimic the 
sinusoidal structure observed in live mice imaged by 2-photon 
intra-vital microscopy in (mT/mG  ×  lysMcre)F1, as previously 
described (30) (Figure 2A vs Figure 2C). Analysis (by Pearson 
correlation coefficients and Kolmogorov–Smirnov tests) using 
10 independently generated structures indicated that variance in 
structure per se had minimal impact on the results of subsequent 
simulations (see below).
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FigUre 1 | Leishmania donovani infection induces transactivation of Kupffer cells (KCs) for chemokine production. (a) Heat map showing chemokine mRNA 
abundance in flow sorted KCs from naïve mice (control) and from KCs isolated from infected mice and separated into those containing parasites (“infected”) and 
those that do not contain parasites (“inflamed”). KC isolation was performed at 2 and 12 h postinfection, with matched controls. Lanes numbered 1–4 indicates 
separate sorts. The gating strategy for separating “infected” from “inflamed” KCs is provided in Figure 3 of Ref. (31). (B,c) Two modeling scenarios were generated. 
In scenario 1 (B), only infected KCs produce sufficient chemokine to attract and retain natural killer T (NKT) cells. In scenario 2 (c), both infected and inflamed KCs 
produce chemokines to attract NKT cells, although only infected KCs have the ability to retain these through cognate interactions.
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We defined where and how cellular interactions were allowed 
to occur within our simulation environment based on three 
different types of network node: periportal nodes, located at the 
peripheries of the structure allow NKT cells to enter and exit the 
simulated lobule section; regular-nodes, capable of holding a sin-
gle KC and any number of NKT cells; and a single centrilobular-
node, representing the central vein where NKT cells could exit 
the structure. Only NKT cells were capable of movement within 
the structure. KCs remain immobile, as reported in early stages 
of infection with B. bugdorferi (25), BCG (40), and L. donovani 
(30). Our KC placement algorithm distributes KCs in periportal, 
midzonal, and centrilobular locations in a ratio of 4:3:3, based 
on Ref. (41, 42). As centrilobular KCs have reduced phagocytic 
capability compared to periportal KCs (41), the distribution of 
infected KCs in our simulation is 65% periportal, 25% midzonal, 
and 10% centrilobular for the purposes of experimentation.

A detailed description of the model and key assumptions is 
provided in the Supplemental Experimental Procedures and 
Tables S2 and S3 in Supplementary Material. State diagrams 
written in the Unified Modeling Language that illustrate the 
behavior associated with KCs and NKT  cells are provided in 

Figure S2 in Supplementary Material. Briefly, mechanisms of 
cellular attraction and retention were modeled generically, since 
the precise function, functional overlap, and interaction between 
distinct chemokines has yet to be fully elucidated. For the pur-
poses of the current abstraction, we refer to the chemokines as 
attractive and retentive, being independent and quantitatively 
distinct and with discrete areas of influence. The simulation was 
constructed to allow both a minimum and a maximum diffusion 
distance to be parameterized for all chemo-attractants produced 
by KCs. NKT cells traverse the sinusoidal network at 10–20 µm/
min with a random walk behavior (25), with no enforce-
ment of directionality unless under the attractive influence of 
KC-derived chemokines. Strength of attraction is modeled as a 
function of distance from the source KC. Upon interaction with 
infected KCs, NKT cells produce IFNγ (as a representation of all 
macrophage-activating cytokines) following cognate receptor 
engagement (22), facilitating KC activation and NKT cell arrest 
(25, 43). Our previous data on SIRPα-CD47 have suggested that 
cognate receptor–ligand interactions also regulate NKT  cell 
retention on infected KCs, with the induced expression of SIRPα 
after infection being preferentially, but not exclusively observed 
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FigUre 2 | Overview of the liver agent-based model. (a) A simulated sinusoidal network was constructed in quasi-2D space using a sinusoidal structure generation 
algorithm (see Supplemental Experimental Procedures). A drain node representing the portal vein (black) is placed in the center of a 2D space with six surrounding 
entry nodes representing the portal triads (green), forming an irregular hexagon layout (i). Sinusoids (red) are grown from entry nodes to the drain node (ii). Additional 
entry nodes created around original entry nodes conceptual form a portal triad (iii), allow additional sinusoids to be grown (iv). Additional sinusoid branches are 
added between existing sinusoids (v). Execution of the algorithm is shown in Movie S1 in Supplementary Material. (B) Node structure of the model underlying KC 
placement and chemokine diffusion. Nodes are populated or not with a single KC and may attract natural killer T cells to that node. Chemokines exert their effect by 
“diffusing” across nodes. For further details, see text and Supplementary Experimental Procedures. (c) Snapshot of 2-photon image of liver from (mT/
mG × lysMcre)F1 mice, showing sinusoids (red) and KCs (green).
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on infected KCs (22). In our model, this interaction is used to 
represent a cognate retention signal, but this reflects an abstrac-
tion of what may be potentially much more complex interactions. 
The amplification of KC-derived attractive chemokines through 
this process can lead to the accumulation of multiple NKT cells at 
a given KC (referred to here as “inflammatory foci”). It is assumed 
that through the sum of all KC–NKT cell interactions within an 
inflammatory focus, a threshold for granuloma formation and the 
subsequent recruitment of additional leukocytes associated with 
maturing granulomas (including B cells, T cells, monocytes, and 
NK cells) is reached, but these cells and processes are not explic-
itly modeled. We have also not modeled the ultimate microbicidal 
activity of these granulomas.

Parasite-induced activation of infected 
Kcs With/Without Bystander chemokine 
Production by Uninfected Kcs
Two experimental scenarios were devised to investigate the influ-
ence of varying both infected and inflamed KC function. Scenario 
1 (Figure 1B) was constructed to restrict chemokine production 
to infected KCs only, and scenario 2 (Figure 1C) to investigate the 
impact of transactivation of KC for chemokine production. As 
KC activation of NKT cells is optimal in the presence of cognate 
interactions (22), our model assumes these are a requirement for 

retention; hence, only infected KCs can generate stable inflam-
matory foci, and these foci, for the purposes of the model, are 
composed only of NKT cells and KCs. In contrast, inflamed KCs 
in scenario 2 might act as potential competitors for available 
NKT cells, being able to attract but not retain them. Although 
this model can be used to probe a variety of different potential 
questions related to the initiation of granuloma formation (see 
Discussion), we focus here on a factorial analysis that involved 
simultaneously modifying the simulation parameters related to 
chemokine diffusion distance, time required to activate KCs, and 
time for KCs to reach maximal chemokine production.

First, we quantified the influence of distance from effect on 
attraction. Factorial analysis, modifying the maximum diffusion 
distance of chemokine, showed that greater chemokine diffusion 
distance leads to increased percentages of infected KCs forming 
inflammatory foci in both scenarios (Figures 1B,C), whether those 
foci were qualified as containing 4, 6, or 8 NKT cells. However, 
our simulation predicted diminishing returns when increasing 
maximum diffusion past ~120 μm (Figure S1E in Supplementary 
Material). Thus, significant differences (P ≤ 0.001) were observed 
when comparing the frequency of inflammatory foci that resulted 
from each increase in diffusion distance against the previous dis-
tance (e.g., 20–30 μm: P = 0.001216, 30–40 μm: P = 0.000019). 
However, when increasing from 120 to 130 µm and beyond, the 
increase in inflammatory foci was not significant (P  =  0.312). 
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FigUre 3 | Response landscapes for parasite-induced KC activation with and without KC activation in trans. (a–D) Two-at-a-time (TAT) parameter analysis showing 
the effect on total KC stimulation time (a,c) and on % inflammatory foci (B,D) of modifying either cumulative time to activate KCs and parasite-induced activation 
time (a,B) or cumulative time to activate KCs and bystander activation time (c,D). For further details, see Supplementary Experimental Procedures.
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Interestingly, this tipping point is close to the ~100 μm reported 
as the distance of a functional chemokine gradient in vivo (44). 
These results suggest that if it were possible to selectively increase 
chemokine diffusion via increased production (or other means) 
by infected KCs compared to inflamed KCs, or conversely decrease 
chemokine diffusion by inflamed KCs, infected KCs would gain 
competitive advantage in terms of attracting NKT cells.

We next compared our two experimental scenarios in terms of 
total stimulation time (i.e., a measure of activation) received by 
the entire infected KC population, and the frequency of inflam-
matory foci formed associated with that population. Figure 3A 
illustrates a response curve for scenario 1 showing the total 
stimulation time received by all infected KCs, across a range of the 
two main parameters that determine KC activation dynamics—
the time required to activate KCs and the duration KCs remain 
activated. When comparing this response landscape of scenario 1 

with that generated in scenario 2 (Figure 3C), there was a marked 
reduction in stimulation time received overall by infected KCs in 
scenario 2 compared to scenario 1. This trend is also observable 
when comparing the percentage of inflammatory foci, whether 
qualified at 8 NKT cells (Figure 3B for scenario 1 and Figure 3D 
for scenario 2) or at 4 or 6 NKT cells (data not shown).

Together, these results demonstrate that in comparison to 
chemokine production restricted to infected KCs, additional 
chemokine production by inflamed KC generates a less focused 
inflammatory response, measured either by frequency of infected 
KC that form inflammatory foci, or by stimulation time received 
by infected KCs. This result most likely reflects the liver lobule 
becoming saturated with attractive chemokines derived from 
both inflamed and infected KCs in scenario 2, reducing the 
competitiveness of infected KCs to selectively recruit NKT cells. 
In other words, chemokine production by inflamed KC acts in a 
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FigUre 4 | Expansion of natural killer T (NKT) cells promotes granuloma formation. (a) Alternate hypotheses for impact of increasing NKT cell number. (B) 
Increasing NKT cells in silico leads to greater percentages of KCs that form an inflammatory focus, when qualified at 4, 6, and 8 cells. (c–e) Absolute numbers of 
NKT (c), NK (D), and T cells (e) in naïve and infected mice with or without administration of rIL-15. Results are pooled from two independent experiments and 
represent mean ± SEM (n = 10 mice per group). *P < 0.05, **P < 0.01, ***P < 0.001, by paired Student’s t-test. (F) Percentage of infected KCs with surrounding 
granuloma in control and rIL-15-treated infected mice. **P < 0.01 (n = 10 mice). (g,h) Heterogeneity of granulomas comparing infected (g) and rIL-15-treated (h) 
mice infected with TdTomato-Leishmania donovani (red). Sections were stained using F4/80 (green) and counterstained with DAPI (blue).
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negative immune regulatory manner, limiting the extent of the 
inflammatory response around infected KCs.

increasing nKT cell numbers Overcomes 
Bystander regulation
We then investigated how modifying the target of this competition 
affected the quantity and quality of inflammatory foci generated. 
We hypothesized that altering NKT cell frequency might result 
in either (i) similarly abundant foci, but with each being more 
substantive in terms of NKT cellularity or (ii) increased numbers 
of inflammatory foci, thus overcoming the competitive effect of 
bystander chemokine production by inflamed KCs (Figure 4A). 
Our simulation results showed that increasing NKT cell numbers 
above the calibrated value lead to significant increases in the 
frequency of inflammatory foci in scenario 1, a result that would 
be expected. Strikingly, an increase in frequency of inflammatory 
foci was also observed to be the case for scenario 2, regardless of 

how we qualified focus size (Figure 4B). For example, with an 
increase in NKT cell availability of twofold, the number of inflam-
matory foci increased 1.5-fold, whereas increasing NKT cells by 
threefold doubled the frequency of inflammatory foci.

To test whether this predictive in  silico data was also borne 
out in vivo, we treated mice for 3 days with recombinant IL-15 
to induce increased NKT cell proliferation and survival (45) and 
then infected these mice with L. donovani and scored early granu-
loma formation. In uninfected mice, IL-15 treatment resulted 
in increased numbers of NKT cells (including CD1d restricted 
NKT cells), NK cells, and T cells (Figures 4C–E; Figures S3A–D 
in Supplementary Material). In infected mice, all cell types were 
already increased in number compared to naïve mice, and the 
effect of IL-15 pretreatment was limited to an increase in the 
number of NKT cells (Figure 4C). Similarly, IL-15 pretreatment 
had no effect on the relative frequency of NK cells and T cells 
(Figures S3B,C in Supplementary Material) but resulted in an 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


8

Moyo et al. AGM of Liver Inflammation

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 637

increase in the relative frequency of NKT cells (from 15.0 ± 0.1 
to 17.36 ± 0.8%; n = 10; P = 0.0043; Figure S3E in Supplementary 
Material).

To ensure that we were scoring a biologically relevant histo-
pathological response, while minimizing potential longer terms 
effects of rIL-15 treatment, we chose to score the granulomas early 
in their development (day 4 p.i.) and define these as accumulations 
of 15 or more cells formed around an infected KC (not discrimi-
nating between NKT cells or other mononuclear cells). Although 
there was significant heterogeneity in size of these granulomas 
(Figures 4G,H), we found that the frequency of infected KCs that 
formed distinct granulomas was increased ~1.5-fold in mice pre-
treated with IL-15 and which had a higher number of NKT cells 
in the liver at the time of infection (P = 0.0038; Figure 4F). Thus, 
treatment of mice with rIL-15, even under conditions where 
the increase in NKT  cell number is relatively modest, leads to 
a significant enhancement in the frequency of infected KCs that 
can provide a nidus for granuloma formation.

DiscUssiOn

Granulomas represent a specialized form of inflammation that 
allows for the focal delivery of host effector responses and/or 
containment of pathogen products. While generally considered 
host beneficial, excessive granuloma formation may have sig-
nificant pathological consequences. Here, we provide evidence 
that chemokine-dependent competition between infected and 
uninfected KCs for iNKT cells in the hepatic microenvironment 
acts as a natural attenuator of granuloma formation.

In models of experimental visceral leishmaniasis, granuloma 
formation is asynchronous, limiting the extent of hepatic inflam-
mation, but also delaying parasite clearance (16, 27). A variety 
of different models could explain why isolated infected KCs can 
be found at times when other infected KCs are engaged in a fully 
mature granulomatous response. In a model of Mycobacterium 
marinarum-induced granulomas in zebrafish, macrophage 
migration out of the granuloma has been observed (14, 46), and 
it is possible that infected KCs leave granulomas in mice infected 
with L. donovani. However, in both L. donovani-induced granu-
lomas (30) and BCG-induced granulomas (40, 47) in immuno-
competent mice, KCs appear to retain their characteristic lack of 
motility. Alternatively, there may be heterogeneity in KCs, a subset 
being more efficient in promoting granulomatous inflammation. 
Although we had previously modeled this possibility using an 
early version of our ABM (48), our recent studies evaluating 
differences between yolk-sac derived and bone marrow-derived 
KC indicate that both are competent to form granulomas and 
participate effectively in this response (49). A further possibility is 
that granuloma formation is rate limited by the availability of key 
amplifier cells. Experimental data to date indicate that iNKT cells 
play this role in experimental visceral leishmaniasis (22, 33, 50, 
51), though we do not discount a role for other more recently 
identified innate lymphoid cells (52, 53).

Through transcriptional profiling, we demonstrated that 
both inflamed and infected KCs produce a variety of inducible 
chemokines able to attract NKT cells, suggesting the possibility 
that uninfected as well as infected KCs could compete for this 

resource. However, as neither the mechanisms that regulate this 
transactivation nor experimental means to selectively regulate 
chemokine production by KCs are currently available, we adopted 
a computational approach to further explore this hypothesis. 
ABMs are well-suited toward studying tissue and cellular level 
inflammation (35–37). In constructing our ABM, we developed 
a novel algorithm for creating virtual sinusoidal networks that 
are visually representative of liver lobule sections, being defined 
by published statistics that captured the length between central 
vein and portal triad, average lengths of non-branched sinusoids 
and sinusoid branch angles (38). This represents an improve-
ment on similar work (39). Our algorithm was not intended to 
produce a fully realistic whole lobule structure, but rather we 
were interested only in developing suitable quasi-2D vascular 
networks within liver lobules to provide an environment for 
the cellular and chemokine “agents” contained in the model. 
Similarly, while our ABM contained only three cellular agents 
(infected and inflamed KCs and NKT), this abstraction was 
nevertheless sufficient to probe previously inaccessible aspects 
of the underlying biology.

Our in silico results predicted that chemokine diffusion plays 
an important role in regulating the formation of inflammatory 
foci around infected KCs, though there are diminishing returns 
as a result of increased competition when lobules become flooded 
with chemokines. Subsequently, our model predicted an intui-
tive, but nonetheless previously unreported mechanism by which 
the production of NKT cell-attractive chemokines by inflamed 
KCs dampens the overall inflammatory response in the liver 
microenvironment, reducing the activation received by infected 
KCs. Our in silico data also predicted that this competition could 
be overcome by increasing the availability of NKT cells, and we 
were able to confirm that granuloma frequency can indeed be 
increased in vivo by increasing NKT cell numbers using rIL-15. 
The relationship between availability of NKT cells and an increase 
in the frequency of infected KCs generating granulomas has not 
previously been demonstrated.

Natural killer T cells represent a potent therapeutic target in a 
variety of clinical settings, due to their immune adjuvant function 
and production of various effector cytokines (54–57). Protective 
immunity associated with NKT cell activation has been reported 
in several disease settings. For example, Vα14 NKT cells activated 
by α-galactosylceramide (α-GalCer) have been shown to inhibit 
the development of malaria parasites in mice (58). Similarly, 
in a murine model of Mycobacterium tuberculosis infection, 
α-GalCer-induced activation of NKT  cells was associated with 
reduced bacterial loads, tissue injury, and improved mouse 
survival (59). Conversely, NKT cells have been implicated as key 
drivers of liver inflammation such as chronic liver injury (26). 
Although our results suggest that, in leishmaniasis, the initiation 
of granulomatous inflammation can be enhanced by increasing 
the availability of NKT  cells, further long-term studies would 
be required to determine whether the host protective advan-
tages of this intervention outweigh any possible pathological 
consequences.

It is important to recognize that our model has been developed 
to address early events in granuloma formation and does not take 
into account the potential for diversity in granuloma form and 
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function, including variations in microbicidal activity. These may 
be regulated via other aspects of the immune response that develop 
over time, and more complex models have been developed to 
address some of these issues (60). Redundancy of immune regula-
tory pathways is a common finding, and it is possible that other 
mechanisms come into play at later stages of granuloma evolution 
that affects the ability of KCs to recruit inflammatory cells and ini-
tiate granuloma formation. The kinetics of chemokine production 
is also likely to be highly dynamic, though in respect of CXCL9 
and CXCL10, long-term transcriptomic profiling indicates that 
expression of these IFNγ-inducible chemokines is sustained for at 
least 45 days postinfection (Ashwin et. al., unpublished).

In summary, our data argue that chemokine production by 
uninfected transactivated KCs provides an example of a novel 
negative regulatory mechanism to limit the impact of overzeal-
ous inflammatory responses that might otherwise lead to excess 
tissue pathology. Further studies to evaluate this hypothesis in a 
broader context of inflammation are clearly warranted.
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