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I don’t estimate probabilities, I provide them.

Elja Arjas

The only relevant thing is uncertainty - the extent of our knowledge and ignorance. The

actual fact of whether or not the events considered are in some sense determined, or

known by other people, and so on, is of no consequence.

Bruno de Finetti

There is no subject so old that something new cannot be said about it.

Fyodor Dostoevsky
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Abstract

This thesis studies the Mallows rank model in a Bayesian framework. This model, widely

used for analyzing ranking data, assumes that the probability distribution of a ranking

decays as the distance between the ranking and the modal ranking increases. However,

inferential complexity has restricted its use to few distance functions between rankings.

Our main contributions are the following: (a) to develop a framework to perform Bayesian

inference in the Mallows model with most of the distances used in the literature; (b) to

propose a strategy to approximate the intractable normalizing constant of the model,

and even to derive it exactly in some special cases; and (c) to generalize the developed

model in order to handle pairwise comparisons in the presence of non-transitive data. We

extensively document the accuracy of the model, both theoretically and with simulated

data, and report the analysis of many benchmark and toy datasets, to show the ability of

the method to adapt to di↵erent data types. Our model is then applied to a study in the

field of musicology, whose aim is to learn how people perceive electronically synthesized

sounds as having human origin.
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Introduction

This thesis revolves around the problem of rank aggregation and preference learning.

Generally speaking, rank aggregation is about summarizing or aggregating the preferences

of a population, while preference learning is about producing predictive preferences from

data regarding user preferences. It is already clear from these two definitions that rank

aggregation and preference learning are intimately related.

Di↵erent types of data have ranks as their natural scale, and can be classified into

two main classes: explicit data, when people express a direct opinion over some items,

or implicit, when people express an indirect preference by choosing some items and not

others. Moreover, the ranking data can be either observed directly, or transformed from

sets of assigned scores. For instance, given a set of scored items, one can order them

according to the score value, which naturally gives rise to a ranking. In this thesis we

deal only with explicit data, appearing in three main forms: full rankings, partial rankings,

and pairwise comparisons.

Notable examples of fields where ranking data arise are: companies who recruit pan-

els to rank novel products; market researches, which can be based on interviews where

competing services, or items, are compared or ranked; political polls where is usually

asked voters to rank electoral candidates; search engines, where retrieval results have to

be ranked according to a user’s preferences; recommender systems used by online stores

to recommend products to their customers.

Some typical goals when dealing with rankings or preference data are: (i) aggregate

the data coming from a group of homogeneous users, and summarize their preferences

into a shared consensus ranking; (ii) estimate the individual rankings of the items, in

case the users express only incomplete preferences, which amounts to predict the ranks

of unranked items at the individual level; (iii) cluster the users into classes, each sharing

a consensus ranking of the items, and classify new users.

In this thesis we handle all these tasks and their combinations in a unified Bayesian in-
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ferential framework, which enables us to quantify posterior uncertainty of the estimates.

Uncertainty evaluations of the estimated preferences and class memberships are a fun-

damental aspect of information in marketing and decision making. Actions based on

unreliable predictions might better be postponed until more data are available and safer

predictions can be made, in order not to unnecessarily annoy users or clients.

The proposed framework provides two main quantities of interest: the posterior dis-

tribution of the consensus ranking of a population, and the posterior distribution of the

individual rankings for each user, when not readily available from the data. The consensus

ranking can be seen as a model-based Bayesian aggregation of individual preferences of a

group of users. It is analogous to the quantity which is of interest in the rank aggregation

literature. The individual rankings are of great interest, for example, when performing

personalized recommendations, or in studying how individual preferences change with

user related covariates.

The Mallows rank model is one of the most widely used statistical models for analyzing

ranking data. It assumes that the probability distribution of a ranking decays as the

distance between the ranking and the modal - or consensus - ranking increases, and is

thus known in the literature as a distance-based model. Inference in the Mallows model

is di�cult due to its intractable normalizing constant, which has closed form only for few

distances, while is very time-consuming to numerically calculate in many instances.

The main contribution of this thesis is to develop a unifying framework to make

inference in the Mallows model with most of the distances used in the literature. This

is made possible thanks to a newly developed strategy able to handle the normalizing

constant even in many of the cases when it was judged intractable so far. This strategy

in itself is a separate methodological contribution of this thesis. The principal advantage

of the Bayesian paradigm in this context comes from its ability to coherently quantify

posterior uncertainties of estimates of any quantity of interest. Indeed, since our method

provides the full posterior distribution of the parameters of interest, it makes possible to

select any strategy to summarize it, driven by the application at hand. This is useful

in applications, where the interest is often in computing posterior probabilities of more

complex functions of the consensus ranking, for example the posterior probability that a

certain item has rank lower than a given level (“among the top-3”, say), or that the rank

of a certain item is higher than the rank of another one. These probabilities cannot be

readily obtained within the maximum likelihood approach, while the Bayesian setting very
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naturally allows to approximate any posterior summary of interest by means of a Markov

Chain Monte Carlo algorithm. Moreover, the Bayesian framework allows to naturally

combine di↵erent types of uncertainty in the reported data, coming from di↵erent sources,

and to convert such data into the form of meaningful probabilistic inferences.

A second core contribution of the thesis is to generalize the Mallows model to handle

pairwise comparison data in the presence of non-transitivity, that is, when one or more

pairwise preferences contradict what is implied by other pairwise preferences given by

the same individual. It is important to underline that in this thesis we consider non-

transitivity at an individual level, thus not arising when aggregating preferences across

users, as under majority rule. Non-transitivity of preferences can arise for many reasons,

for example users’ inattentiveness, uncertainty in their preferences, or actual confusion,

even when one specific criterion for ranking is used. These situations are so common

that most pairwise comparison data are in fact non-transitive, thus creating the need for

methods able to predict individual preferences from data that lack logical transitivity.

To our knowledge, most methods designed to estimate individual rankings from pairwise

comparison data do not handle individual-level non-transitivity. Usually, one either drops

such pairs, or only focuses on the estimation of the consensus ranking, without specifically

modeling the non-transitivity characterizing the data. Instead, we handle individual non-

transitive patterns with a latent layer of uncertainty which captures the generation of

preference misreporting. We believe that the novelty of our strategy for individual-level

non-transitivity is an important contribution to the literature on preference learning.

The motivation for the present work is not only methodological, but also driven by a

specific application in the field of musicology, which is described in the next section.

Application

The practical problem in this application is to learn how listeners perceive sounds as

having human origin. Specifically, we consider pairwise comparison data coming from

an experiment where people were asked to hear a series of two di↵erent abstract sounds,

and to tell which one was perceived as more human. Non-transitivity in the reported

data arises in this experiment, and is mainly due to the intrinsic complexity of the task,

and to the heterogeneity of the cohort of listeners, who had backgrounds varying from

musicologists to university students.
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The results of this test are of interest for musicologists, composers and sound designers,

whose aim is to understand how computer generated sounds can appear more life-like.

The experiment relates to acousmatic music, which is a type of electronic music com-

posed for presentation using loudspeakers, as opposed to live or video recorded perfor-

mance. In acousmatic music the composer manipulates digitally recorded sounds, so that

the cause of the sound, being a musical instrument or any other sound making system,

remains hidden. Indeed, when sounds are played over loudspeakers there are no visual

cues to help listeners understand how the sounds were made. On the other hand, when

we hear the sound of musical instruments or sounds from our everyday environment, we

are able to recognize their cause. This happens because in visual music we obtain the

information that indicates the sounding object, that is, its causation. To give an example:

if you listen to the crying of a baby, you guess that a baby produced this sound.

Since the advent of recording technology, abstract sounds - that is, sounds transformed

with computer tools - have been used not only in acousmatic music, but also in much of

the sound-world we experience over the Internet, TV and cinema.

The research question of this study is related to the capacity of listeners to identify

the presence of human causation through the spatial behavior of sounds. Spatial here

describes the fact that the causation of sound happens as an action in 3-D space.

The starting point for the experiment was a high-speed motion tracking recording of

the physical movement used to produce one selected sound: a cellist bowing a down-bow

chord. Features of this 3-D movement were successively subtracted, resulting in a series

of 12 motion data-sets of varying proximity to the original. The motion data were then

made audible by a process called parameter-mapping sonification (Grond and Berger

2011), where parameters in the data are mapped to parameters controlling computer

generated sound (see Figure 1). The mapping rules are chosen to draw on our everyday

perception of spatial motion, which involves not only absolute 3-D spatial location but, in

addition, changes in volume, intensity and pitch correlated with changes in proximity and

speed. In other words, listeners heard the physical spatial motion through sonification,

rather than hearing the sound that the motion created, which, in this instance, was the

sound of the cello.

Testing how listeners perceive a sound for which we lack a clear and commonly under-

stood descriptive vocabulary is problematic. Moreover, listeners’ varying familiarity with
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Figure 1: A scheme of the process generating sounds.

acousmatic music - or more generally with abstract sounds - a↵ects the test results. For

these reasons, a pair comparison test is the most appropriate design.

Pair comparison experiment and data

A group of 46 listeners were presented with a series of sounds, here sometimes called

spatial audio stimuli because they originate from a spatial 3-D performance. The number

of stimuli was 12. Test stimulus 1 (S1) was designed to more clearly sonify all features of

the data. Each of the other 11 test stimuli were sonified by modifying one or more features

of the data. This involved removing pitch and volume variation, flattening directional

changes in the motion, or slowing the overall motion speed, as summarized in Table 1.

Each listener was then exposed to 30 pairs of these sounds, which is ca. 45% of the

total number of possible combinations out of 12 stimuli. The pairs were chosen randomly

and independently for each user. Also the order in which the sounds were played was

randomized.

Listeners were then asked to indicate, for each pair, which of the two stimuli most

evoked a sensation of human physical movement of any kind. They were asked to follow

their feelings, rather than imagining to watch a performance. The listeners were not told

that the source motion stemmed from a cellist, nor were they asked to identify a specific

human spatial movement. Before the test, participants were informed that the sounds

were made by sonification and were warned that the sounds may be heard as strange.

Each listener carried out the test sitting centrally to the loudspeaker array. Prior to the

experiment, listeners were presented with a short training session of three sounds not used

in the test sequence. When the experiment began, the test number was displayed on a

computer screen, answers were written on paper, and listeners were requested to always
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S1: Pitch, volume-2, grain duration and spatial variations set to their most
dynamic ranges.

S2: The same as S1, but with spatial motion placed in front of the listening
location.

S3: Pitch, volume-2 and grain duration set to their most dynamic ranges,
but all spatial motion removed and the sound rendered as mono. Played
over one loudspeaker located in front of the listener.

S4: 3-D spatial variation in the original data partially reduced, leaving global
direction changes. The same as S1, but reduced in pitch, volume-2 and
grain duration variations.

S5: 3-D spatial variation in the original data flattened further, consisting of
just three changes in direction between two points in space. The same
as for S1, but with little variation in pitch, volume-2 and grain duration.

S6: The same as S1, but with volume-2 variation removed.
S7: The same as S1, but with pitch variation removed.
S8: The same as S1, but with pitch and volume-2 variation removed.
S9: The same as S4, but with pitch and volume-2 variation iremoved.
S10: The same as S5, but with pitch and volume-2 variation removed.
S11: The same as S1 played 30% slower in tempo.
S12: The same as S1 played 50% slower in tempo (half speed).

Table 1: Summary of the test sounds.

make a choice even if they found it di�cult to decide. If needed, they could ask to hear a

test pair for a second time. At the end, they were asked to complete two questionnaires,

the aim of which was to assign a Musical Sophistication Index score (MSI) and a rating

of Spatial Audio awareness (SAA) to each listener. The MSI used was the Ollen musical

sophistication index (Ollen 2006), which is an online survey that tests the validity of 29

indicators of musical sophistication used in published music research literature. The SAA

index consisted of five questions as indicators of how aware listeners were of spatial audio

regardless of musical background. Such a test did not exist in the literature, and needed

to be custom designed for the experiment.

The choice to rely on a pairwise comparison experiment is crucially based on the lis-

teners’ lack of experience with abstract sounds. It is easier for the participants to compare

two sounds, rather than to be exposed to several, which could create confusion. The ex-

periment, indeed, was di�cult as expected: 37 listeners (80%) reported non-transitivities

in their pair comparisons, only 9 out of 46 listeners were able to stay consistent with

themselves. The full description of the background studies, hypotheses, experimental

setup and discussion of results is reported in Chapter 4.
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Outline of thesis

The Bayesian Mallows model for ranking data is the focus of this thesis. We begin with

a review of the main models for ranking data in Chapter 1, with a particular interest in

the probabilistic approaches more closely related to the Mallows model.

In Chapter 2, we present the Bayesian Mallows model for rankings, along with a detailed

explanation of the algorithm. We then study its properties, both theoretically and with

simulations, and report the results of the analysis of some benchmark datasets. In Chap-

ter 3, we present the Bayesian Mallows model for non-transitive pairwise comparisons.

We explain the algorithm and report both simulation results and some examples on real

data. In Chapter 4 we then show the results of the application to the sound data.

Chapter 5 is devoted to the specialization of the Bayesian Mallows model with Cayley

distance. In Chapter 6, which is still preliminary, we discuss the elicitation of the conju-

gate prior for the Mallows model parameter.

Lastly, we conclude with a discussion of the contributions of this thesis.

Chapters 2-4 contain the main contributions of this thesis, that originate the works

Vitelli et al. (2017), Crispino et al. (2017), and Barrett and Crispino (2017). Chapters 5

and 6 are ongoing work.

Chapter 2 is a development of Paper III of the PhD thesis of Øystein Sørensen from

the University of Oslo (thesis defense: March 2015).

In particular, Chapter 2 improves and innovates in the following aspects:

1. We thoroughly revised the computational strategy by (i) studying the mixing proper-

ties of the convergence of the MCMC to the approximate target posterior, as well as

the tuning of the proposal distributions and their e↵ect on acceptance probabilities

and convergence; (ii) theoretically studying how the approximated target distribu-

tion converges to the correct posterior as the number of IS samples grows; (iii) sys-

tematically exploring the e↵ect of various approximations of the partition function

on inference; (iv) presenting a simulation experiment with heterogeneous assessors

and incomplete pairwise data; (v) deriving the exact calculation of the partition

function for footrule up to 50 items; (vi) speeding-up the algorithm consistently

(more e�cient computation of distances between permutations, improved proposal
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distributions both for the IS procedure, and in the MH steps of the MCMC);

2. We revised the section about prior densities;

3. We compared our method with other existing competitors, both on simulated data,

and in the case studies;

4. We removed some of the case studies (the Potato, the Premier League and the Breast

cancer datasets) and substituted them with simulated data, and a more suitable case

study (the Beach dataset);

5. We entirely removed the study about time-dependent rankings;

6. We developed and used a new measure for selecting the number of clusters in order

to be more robust to data sparsity. This criterion has been tested on simulated

data.
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Chapter 1

Background

In this chapter we briefly review the statistical literature on preference data, with a par-

ticular focus on the Mallows model, and on the other probabilistic approaches most closely

related to our method. Attention will be given also to methods designed for pair comparison

data, which are relevant for Chapters 3 and 4 of the thesis.

We here follow the lecture notes by Diaconis (1988), the monograph by Marden (1995),

and the books by Critchlow et al. (1993) and Alvo and Yu (2014).

This chapter contains joint work with Valeria Vitelli, Øystein Sørensen, Natasha Bar-

rett, Arnoldo Frigessi and Elja Arjas from Crispino et al. (2017) and Vitelli et al. (2017).

Outline

There are many ways of reviewing the literature on preference data. We here try both to

follow the historical developments, and to separate the existing methods into sub-classes,

for the sake of clarification.

In Section 1.1, we introduce four probabilistic models on ranking data, each of which

corresponds to a specific generative process of the ranking: the Thurstonian order statistics

models (Section 1.1.1), the pair comparison models, like the Babington Smith and the

Mallows-Bradley Terry models (Section 1.1.2), the Mallows distance-based model (Section

1.1.3), and the multistage Plackett-Luce model (Section 1.1.4). In Section 1.2 we give an

overview of the probability models for real pair comparison data, focusing mainly on the

Bradley Terry model. We also outline the problem of non-transitivity present in pair

comparison data, and briefly review the literature pertaining to this topic (Section 1.2.1).

Finally, in Section 1.3, we present some ideas of the relevant machine learning literature,
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and mention the papers that are mostly connected to the present work.

This chapter is not intended to broadly cover all the topics mentioned, but rather to

equip the reader with the basic notions useful for contextualizing this thesis, and that will

be considered familiar in the next chapters.

1.1 Probabilistic models on ranking data

Let us first clarify the terminology, notation and conventions, that we will use throughout

the thesis.

A full ranking of n items is a mapping R : A! Pn from a finite set, A = {A1, ..., An},
which denotes the set of labeled items to be ranked, to the space of n-dimensional per-

mutations Pn, that results from the attribution of a rank Ri 2 {1, ..., n} to each item,

according to some criterion.

Pn is a non-abelian group under composition, that is, in general, the composition is not

commutative, and is also called the symmetric group of order n, denoted by Sn.

We here denote a generic full ranking by R = (R1, ..., Rn), where Ri is the rank assigned

to item Ai. By convention, Ri < Rk means that item Ai is preferred to item Ak, since the

rank assigned to Ai is lower to the one assigned to Ak (the most preferred item has rank

Ri = 1), but is read Ai is ranked higher than Ak.

The full ordering is an alternative way of representing ranking data, and is here denoted

by X. The ordering and ranking vectors are in one-to-one correspondence: the compo-

nents of X = (X1, ..., Xn) are items in A, ordered from the most preferred to the worst,

according to R. In other words, it holds the following relationship: Xi = Ak () Rk = i,

8i, k = 1, ..., n, which will be shortcut as, X = R

�1. Then, X 2 Xn, the set of permuta-

tions of the labels in A.

For example, given the following full ranking of the items labelled A = {A1, ..., A10}

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
⇣ ⌘

R = 1, 7, 8, 2, 10, 4, 6, 9, 3, 5 ,

the corresponding ordering vector is the following:

1 2 3 4 5 6 7 8 9 10
⇣ ⌘

X = A1, A4, A9, A6, A10, A7, A2, A3, A8, A5 .
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Some models that we will introduce in the next sections are naturally defined on the

rankings, others on the orderings, but they are equivalent, being induced one from the

other because of the one-to-one correspondence between R and X.

It is important to clarify here the intimate relation that exists between a ranking and

pairwise preferences. Given an unordered pair of items {Ai, Ak}, throughout the thesis

we denote a pairwise preference between the two items as (Ai � Ak), meaning that item

Ai is preferred to item Ak. Given a full ranking R 2 Pn, it is immediate to evince all the

possible n(n� 1)/2 pair orderings among the items, according to the following rule:

(At1 � At2) () Rjt1 < Rjt2 , t1, t2 = 1, ..., n, t1 6= t2, (1.1)

that is, when considering a pair of items, the item with lowest rank is the preferred one.

We will call pairwise preferences obtained as above derived pairwise preferences (DPP),

to distinguish them to real pairwise preferences (RPP), which arise when people are asked

to compare items in pairs, rather than to perform a full ranking. The main di↵erence

between these two types of pairwise data is that DPP are always complete and transitive,

while RPP can be incomplete (if a user does not perform all the possible pairs), and

non-transitive (if a user happens to contradict herself).

Therefore, when dealing with RPP data, we can face the following three cases:

1. the data are complete and transitive;

2. the data are partial and transitive;

3. the data are non-transitive (complete or partial).

In case 1, only one ranking is consistent with the data. In case 2 generally multiple

rankings can be consistent with the data, while in case 3 no ranking is consistent with

the data, because, by definition, a ranking is transitive (see also Section 1.2.1).

In Chapter 2, Section 2.3.2, we deal with transitive data, both DPP and RPP, with a

particular focus on partial data. In Chapter 3 we will use RPP data, extending the model

of Section 2.3.2 to non-transitivity.

1.1.1 Thurstonian order statistics models

To model data arising from a ranking or paired comparisons experiment, Thurstone (1927)

introduced its Law of Comparative Judgment. The idea is that, in a ranking experiment,
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each item has a utility (or score) and users’ preferences depend on this utility, so that the

item with the largest utility at the moment of comparison is preferred. In such models

the utilities are latent variables, and each of these corresponds to a specific item. This

law was initially proposed for real paired comparison data (see Section 1.2), later used

on ranking data by Thurstone himself some years later, who converted ranking data into

pair comparisons (according to eq. (1.1)), which were then analyzed using the Law of

Comparative Judgment, and more recently Daniels (1950) extended it to data in the form

of full orderings of the n items.

Formally, in the order statistics model is assumed that, in a ranking task involving n

items, {A1, ..., An}, there exist n random utilities (or scores) Y1, ..., Yn, one for each item,

which are assumed independent and distributed according to Fi. The model then assigns

to a ranking R 2 Pn the probability

P (R) = P (Yi1 < Yi1 < · · · < Yi
n

) (1.2)

where ir = k if and only if Rk = r. In a nutshell, under the order statistics model, the

generative process of a ranking of n items is determined by the relative ordering of the n

random utilities.

The most common simplification of (1.2) is to assume a linear model for the random

utilities, that is, Yi = ui + ✏i, i = 1, ..., n, where the ui is the mean score associated

with item Ai and ✏i captures its variability. Such models are known as Thurstone order

statistics models. Depending on the probabilistic statement on Fi(y) = F (y�ui) di↵erent

models arise: the Thurstone model (Thurstone 1927) assumes that F is Gaussian, and

the Bradley-Terry-Luce (BTL) model (Bradley and Terry 1952, Luce 1959) assumes that

F is Gumbel (see also Section 1.1.4). Since under the BTL model the probability in (1.2)

has close form, many works dealing with order statistics models for rankings are based on

the the latter.

In addition to the order statistics models, there is a pletora of methods for constructing

ranking models based on independent latent variables. For instance, one may employ

paired comparison probabilities to construct a probability model on rankings. This idea

is the topic of the next section.
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1.1.2 Ranking models induced by pairwise comparisons

A popular approach to ranking data is the class of paired comparison models (David

1963, Alvo and Yu 2014). These models build on the connection between a ranking of n

items in a set A = {A1, ..., An}, and all
�

n
2

�

= n(n � 1)/2 pairwise comparisons between

the items themselves. The principal assumption of paired comparison models is that a

ranking arises by making all the comparisons between paired items independently, and

only accepting the result if it is consistent with a ranking (in the sense of equation (3.1)).

The saturated model in this class is the Babington Smith (BS) model (Smith 1950),

which assumes exactly that a ranking is evinced by the
�

n
2

�

paired comparison probabilities

if they are consistent with each other. Formally, define the parameter pik = P (Ai�Ak),

to be the probability that item Ai is preferred to item Ak. Assuming mutual independence

of the pik, the likelihood of a ranking R is proportional to the product of the probabilities

of all the pair comparisons that generated that ranking, and is then given by

P (R|p) = 1

c(p)

Y

(A
i

,A
k

):R
i

<R
k

pik, (1.3)

where the normalizing constant, c(p) =
P

r2P
n

Q

(A
i

,A
k

):r
i

<r
k

pik, represents the proba-

bility that the set of comparisons is consistent with a ranking r 2 Pn. The main drawback

of the BS model, that in fact limited its use, is the inferential complexity growing with the

number of items. It is indeed parametrized by the
�

n
2

�

parameters, p = {pik}ni=1,k>i, one

for each pair of items. For this reason, in the past years some subclasses of the BS model

arose, that added further constraints on the parameters: the two most important are the

Mallows-Bradley-Terry and the Mallows models, both developed by Mallows (1957).

The Mallows-Bradley-Terry (MBT) model (Mallows 1957), is perhaps the most famous

descendant of the BS model. It assumes that the probability that an item Ai is preferred

to an item Ak, has the Bradley-Terry form (Bradley and Terry 1952),

pik =
µi

µi + µk

, (1.4)

where µi > 0, i = 1, ..., n, and
Pn

i=1 µi = 1, that is, it only depends on item-specific

parameters representing the score rating - or skill - of the two items under comparison

(larger values of µi correspond to more preferred items).
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Substituting (1.4) into (1.3) leads to the MBT ranking model,

P (R|µ) = 1

c(µ)

n�1
Y

i=1

µn�i
ik . (1.5)

The complexity of the original BS is then greatly reduced in the MBT, as the number

of free parameters is set to n�1. The goal of the MBT model is then to make inference on

µ = (µ1, ..., µn), the vector of items’ scores, that best represents the consensus preferences

of all the users.

In the same paper, Mallows (1957) introduced a further simplification of the BS model,

defining the ��model and the ⇢�model, both parametrized by only two parameters. The

assumption of both is that pik depends only on the relative order of items Ai and Ak in

the ranking R. Then pik is the same for all pairs of items {Ai, Ak} such that Ri < Rk.

In the ��model pik depends on whether (Ri � Rk) > 0 or not, and in the ⇢�model pik

depends also on the absolute di↵erence of the ranks |Ri �Rk|.
The ��model and the ⇢�model belong to a more general distance-based family of

distributions for rankings, R 2 Pn, usually referred to as Mallows models, and formalized

in its general form by Diaconis (1988), which is the topic of next section.

1.1.3 Distance based ranking models: the Mallows model

The Mallows model (MM) specifies the probability density, M(⇢,↵), for a ranking R =

(R1, ..., Rn) 2 Pn, as follows

P (R |↵,⇢) := 1

Zn(↵,⇢)
exp

h

�↵
n
d(R,⇢)

i

, (1.6)

where ⇢2Pn is the location parameter (representing the shared consensus ranking), ↵>0

is the scale parameter (describing the concentration around the shared consensus), d(·, ·)
is a distance function between two n�dimensional permutations, and

Zn(↵,⇢) =
X

r2P
n

e�
↵

n

d(r,⇢)

is the normalizing constant (that we will often refer to as partition function). The MM is

based on the assumption that there exists a modal ranking ⇢ 2 Pn, and that the likelihood

of a ranking R decreases geometrically as some given distance between ⇢ and R increases.
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As a consequence, every permutation at the same distance to ⇢ has equal probability.

Depending on the choice of the distance, several models arise: the ��model, mentioned

earlier, is equivalent to the MM with Kendall distance,

dK(R,⇢) =
X

i<k

1 [(⇢i � ⇢k) (Ri �Rk) < 0] , 1  i < k  n,

and the ⇢�model is equivalent to the Mallows with Spearman’s distance (that is l2),

dS(R,⇢) =
n
X

i=1

(⇢i �Ri)
2 ,

both with ⇢ = (1, ..., n). The Kendall distance, that measures the number of adjacent

transpositions which convert R into ⇢ or, equivalently, the number of discordant pairs in

R and ⇢, is by far the distance most frequently considered in the literature of MM, for

reasons that will become clear soon. Other distance functions that appear frequently in

the literature are the footrule distance (that is l1),

dF (R,⇢) =
n
X

i=1

|⇢i �Ri| ,

the Hamming distance,

dH(R,⇢) = n�
n
X

i=1

1⇢
i

(Ri) ,

the Cayley distance, dC(R,⇢), which measures the minimum number of transpositions

which convertR into ⇢, and the Ulam distance, dU(R,⇢), which is the number of deletion-

insertion operations to convert R into ⇢ (we refer to Marden 1995, for detailed description

of these distances).

All the distance functions mentioned so far satisfy the usual axioms, namely

d(⇢,⇢) = 0 8⇢ 2 Pn (reflexivity) (1.7)

d(⇢,�) > 0 8⇢,� 2 Pn, s.t. ⇢ 6= � (positivity) (1.8)

d(⇢,�) = d(�,⇢) 8⇢,� 2 Pn (symmetry). (1.9)

Some of them, like Kendall and footrule, are also metrics on Pn, in that they satisfy also

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



16

the triangle inequality

d(⇢,�)  d(⇢, ⌧ ) + d(⌧ ,�) 8⇢,�, ⌧ 2 Pn. (1.10)

The role of the distance plays a fundamental role in the MM. In fact, each distance

induces a di↵erent partition of the space of permutations into level sets.

To clarify, given a permutation ⇢, for varying R 2 Pn, the distance d(⇢,R) takes only

a finite set of discrete values in D = {d1, d2, ..., da}, where a depends on n and on the

chosen distance d(·, ·). By defining the level sets Li = {R 2 Pn : d(⇢,R) = di} ⇢ Pn,

i = 1, ..., a, to be the set of permutations at the same given distance from ⇢, we can notice

that Pn = [ai=1Li. The MM assigns the same probability density to all the permutations

belonging to the same level set. In Figure 1.1, we provide a graphical representation of

the MM for the six distances introduced earlier, in the case n = 5. On the x-axis it

is represented the space of permutations, partitioned into the level sets defined by the

corresponding distance. The length of each interval corresponds to the cardinality of the

corresponding level set, Li. On the y-axis is represented the Mallows density of eq. (1.6),

for varying values of ↵, as stated in the legend on the right of the plots.

Figure 1.1: The Mallows density for the six right-invariant distances, for n = 5. On the x-axis
is represented the space of permutations, partitioned into level sets. On the y-axis is represented
the Mallows density of eq. (1.6), for varying values of ↵, as stated in the legend on the right of
the plots.

This representation will be exploited in Section 2.2.1, where we will provide an exact
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formula for the partition function of the MM.

Maximum Likelihood inference about the consensus ranking in the MM is generally

very di�cult, and in many cases NP-hard (Bartholdi et al. 1989a,b), which led to the

development of heuristic algorithms (e.g. Busse et al. 2007). An additional inferential

problem is that the MM, with ↵ and ⇢ unknown, is not regular, since the parameter

space is R+⇥Pn. For these reasons, a Bayesian approach, based on sampling, rather than

optimizing, could prove to be crucial.

In Chapter 2 we indeed propose a Bayesian approach for estimating the MM, that

handles all the distances defined above. In practice though, we focus on the Kendall,

the footrule and the Spearman distances in Chapters 2 and 3. In Chapter 5 we study

the MM with Cayley distance, and in Chapter 6 we focus only on Spearman distance.

Despite these specializations, the algorithms are available also for other distance functions

mentioned earlier, and easily extendable to any right-invariant distance.

Distance functions and Zn(↵,⇢)

The partition function Zn(↵,⇢) represents the main obstacle for performing inference

in the MM. In principle, it can be solved numerically by summing e�
↵

n

d(r,⇢) over the n!

rankings, r 2 Pn. However, the computational time of this calculation increases more

than exponentially with the number of items, and thus is not feasible for large n.

Yet, if the distance function, d(·, ·), is right-invariant (Diaconis 1988), Zn(↵,⇢) does

not depend on the location parameter ⇢.

Definition 1. (Right-invariant distance). A distance function is right-invariant, if d(⇢,�) =

d(⇢⌘,�⌘) for all ⌘,⇢,� 2 Pn. With ⇢⌘ we denote the composition function of two per-

mutations, ⇢,⌘ 2 Pn, which is defined as ⇢ � ⌘ = ⇢⌘ = ⇢⌘ = (⇢⌘1 , ..., ⇢⌘n).

A right-invariant distance is independent on any relabeling of the items, which is a

natural assumption when dealing with rankings. Consider for example 4 students (i.e. the

items), {A1, A2, A3, A4}, admitted in a PhD program with the ranking, ⇢1 = (1, 3, 4, 2),

and later in that same year ranked according to their performance in the PhD program,

⇢2 = (3, 4, 1, 2). The distance between ⇢1 and ⇢2 can be thought of as a measure of the

goodness of judgement of the PhD admission board. If the students are now relabelled

in a di↵erent ordering, for example {A4, A2, A1, A3}, the two rankings are now permuted

according to the di↵erent labeling as ⇢1⌘ = (2, 3, 1, 4) and ⇢2⌘ = (2, 4, 3, 1), where
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⌘ = (4, 2, 1, 3) determines the relabelling of the students. It is however natural to assume

that the distance between the initial ranking and the final one is the same under the two

labelings, that is, d(⇢1,⇢2) = d(⇢1⌘,⇢2⌘), because the situation depicted is the same

(see also Table 1.1).

A1 A2 A3 A4

�!
A4 A2 A1 A3

⇢1 1 3 4 2 ⇢1⌘ 2 3 1 4
⇢2 3 4 1 2 ⇢2⌘ 2 4 3 1

Table 1.1: An example of right invariance.

Given ⇢1,⇢2 2 Pn, for a right-invariant distance it holds d(⇢1,⇢2) = d(⇢1⇢
�1
2 ,1n),

where 1n = (1, 2, ..., n), from which it follows that Zn(↵,⇢) is independent on the latent

consensus ranking ⇢, as

Zn(↵,⇢) =
X

r2P
n

e�
↵

n

d(r,⇢) =
X

r2P
n

e�
↵

n

d(r⇢�1,1
n

) =
X

r02P
n

e�
↵

n

d(r0,1
n

) . (1.11)

When d(·, ·) is right-invariant, we can thus write Zn(↵,⇢) = Zn(↵,1n) = Zn(↵). All

distances introduced in this section, and considered in this thesis, are right-invariant.

For some choices of right-invariant distances, the partition function has the additional

advantage of being available in closed form. For this reason, most work has been limited

to the MM with Kendall distance (Lu and Boutilier 2014, Meilǎ and Chen 2010), with

Hamming distance (Irurozki et al. 2014), and with Cayley distance (Irurozki et al. 2016b),

for which the closed form of Zn(↵) was given in Fligner and Verducci (1986).

Still, there are important and natural right-invariant distances for which the computa-

tion of the partition function is not feasible, in particular the footrule and the Spearman’s

distances. One of the contributions of this thesis, is to give a strategy to compute Zn(↵)

exactly, in case of footrule and Spearman distances for moderate values of n (see Section

2.2.1). When the partition function is needed for larger values of n, we propose an impor-

tance sampling scheme which approximates Zn(↵) to an arbitrary precision (see Section

2.2.2). The approximation is performed o↵-line over a grid for ↵, given n, since Zn(↵) is

free of ⇢.

An asymptotic approximation of Zn(↵), when n!1, has been studied in Mukherjee

(2016), where the author proposed an Iterative Proportional Fitting Procedure (IPFP) to

numerically compute it. In Section 2.2.2, we report a comparison between our Importance

Sampling procedure and the Mukherjee’s proposal to approximate the partition function
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Zn(↵) for the Mallows footrule model, and show that both methods work very well.

Some recent developments of the Mallows model

Since Mallows (1957) and Diaconis (1988), many generalizations of the Mallows models

emerged, extending the main model of eq. (1.6) to handle di↵erent kind of data, like

partial rankings (Critchlow 2012, Lebanon and Mao 2008, Jacques and Biernacki 2014),

pair comparisons (Lu and Boutilier 2014), and heterogeneous data (Murphy and Martin

2003, Busse et al. 2007). The majority of these approaches focuses on the Kendall distance

only, and the few ones that handle also other distances, generally apply the methodology

to datasets with very small number of items n. For example Murphy and Martin (2003)

studied mixtures of Mallows with Kendall, footrule and Cayley distances, applying their

method to the benchmark American psychological association election data set (Diaconis

1988), where only n = 5 candidates (items) are ranked. The di�culties in the computation

of the partition function for the footrule distance, which arise for larger values of n, were

therefore not discussed in the paper.

In the frequentist framework, the MM with other distances than Kendall was studied

in Irurozki et al. (2014) and in Irurozki et al. (2016b), who also developed the PerMallows

R package (Irurozki et al. 2016a). In all these works however neither the footrule, nor the

Spearman distances were considered, which are the two distances for which the computa-

tion of the partition function is not straightforward.

Lu and Boutilier (2014) propose the Generalized Repeated Insertion Model (GRIM),

based on the Mallows with Kendall distance only, that extends the Repeated Insertion

Method (RIM) of Doignon et al. (2004), a technique for unconditional sampling of the

MM. The authors perform maximum likelihood estimation of the consensus ranking from

pairwise comparisons. They also allow for multi-modality in the data, and perform pref-

erence learning and prediction. Their approach is related to our extension to pairwise

preference data (Section 2.3.2), but di↵ers notably in the model and algorithm. In par-

ticular, Lu and Boutilier (2014) do not provide any strategy to deal with uncertainty

quantification for their estimates; our target instead is the full posterior distribution of

the unknown consensus ranking. Yet, the fact that for the uniform prior the maximum

a posteriori (MAP) estimates and the ML estimates coincide, establishes a natural link

between these inferential targets. Further, two of our illustrations, reported in Sections

2.4.3 and 2.4.4, use the same datasets as in Lu and Boutilier (2014).
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One of the most significant extensions of the Mallow model is perhaps the General-

ized Mallows Model (GMM) of Fligner and Verducci (1986), that allows for item-specific

dispersion parameters. Instead of a single dispersion parameter ↵, it considers a vector

↵ = (↵1, ...,↵n�1) of n � 1 dispersion parameters, each acting on a particular position

of the permutation. This work has become increasingly popular, because of its flexibility

and computational tractability, especially for Kendall distance. In Fligner and Verducci

(1986), the GMM was set for Kendall and Cayley distances, and Meilǎ and Chen (2010),

Meilǎ and Bao (2010) studied the GMM with Kendall distance in the Bayesian framework.

1.1.4 Multistage ranking models: the Plackett-Luce model

The Plackett-Luce (PL) (Luce 1959, Plackett 1975) model for rankings di↵ers from the

three classes of models in the previous sections in being a multistage model. The main

idea of a such a model is that the ranking process can be decomposed into a sequence

of independent stages, that serve to sequentially arrange the items from the top to the

bottom.

The PL model assumes that, given a score µi, i = 1, 2, ..., n, corresponding to each

item Ai, an ordering X arises through the following process: the top ranked item, X1, is

chosen with probability
µ1

Pn
i=1 µi

;

then the second to the top item, X2, is chosen, among the remaining items, with proba-

bility
µ2

Pn
i=2 µi

;

the process continues until a full ordering is formed, so that the probability density of an

ordering X = (X1, ..., Xn) is

P (X|µ) =
n�1
Y

i=1

µi
Pn

j=i µj

.

Notice that, in view of the one-to-one correspondence between ordering and ranking

vectors (see Section 1.1), the previous density holds also for a ranking, R, after simple

manipulations.

Inferring the parameters of the PL model is typically done by maximum likelihood

estimation, using a Majorize-Minimization algorithm (Hunter 2004), and mixtures of PL
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models in a maximum likelihood framework for clustering were used in Gormley and

Murphy (2006). A Bayesian approach was considered by Guiver and Snelson (2009) and

Caron and Doucet (2012). Caron and Teh (2012) developed a nonparametric extension of

the PL model that is able to handle an infinite number of items, and generalizes to time-

dependent preference probabilities. Their framework is formalized in Caron et al. (2014),

where a Dirichlet process mixture is used to cluster assessors based on their preferences.

Recently, Mollica and Tardella (2016a) propose a Bayesian finite mixture of PL models

to account for unobserved sample heterogeneity of partially ranked data, and develop the

e�cient PLMIX R package (Mollica and Tardella 2016b), that focuses on Bayesian inference

of the PL model and its extension within the finite mixture approach.

Some of the models mentioned in the previous sections can be seen as belonging to this

class: for instance the �-model and the GMM (see Marden 1995, for details). The Bradley

Terry model (Bradley and Terry 1952), which will be the topic of the next section, is also

a special case of the PL, where the generative process implies that the above probabilities

only depend on pairs of scores. As such, it can be classified as a multistage model induced

by paired comparisons.

The parameters in the PL model are continuous, which gives it a lot of flexibility

relative to the Mallows model, which instead has a location parameter that takes value

in the discrete parameter space consisting of all n! permutations of the integers 1, ..., n.

However, compared to the PL model, the Mallows model has the advantage of being

flexible in the choice of the distance function between permutations.

1.2 Probabilistic models on pair comparison data

Paired comparison data originate from the comparison of items in pairs. This type of

data arises for instance when the perception of a user is involved: it is easier for people to

compare items in pairs rather than ranking all of them. Another situation that gives rise

to pair comparisons is tournament data, with a game between two players or teams inter-

preted as a pair comparison, and win as preference. These models are then designed for

real pair preferences (RPP), but can be obviously used also with derived pair preferences

(DPP), as explained in Section 1.1.

The two traditional probabilistic models for paired comparison data are the Thurstone

(1927) and the Bradley and Terry (1952) models. Based on these, many extensions arose
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in the past decades, mostly in the econometric end psychometric literatures.

Denote, as in Section 1.1.2, the probability that item Ai is preferred to item Ak as

pik = P (Ai�Ak), and suppose that it can be expressed in the parametric form P (Ai�
Ak|u), where u = (u1, ..., un) is a latent vector of item specific score parameters. Two

classical models for pairwise comparisons arise if this probability has the form F (ui�uk),

where F is a CDF. When F is normal, we recover the Thurstone (1927) model, while if F

is logistic CDF, then the Bradley and Terry (1952) arises. Notice the connection between

these models and both the order statistic models introduced in Section 1.1.1, and the

paired comparison models of Section 1.1.2, which use these pair comparison probabilities

as building blocks for defining probabilistic models for ranking data. Specifically, notice

that the Bradley-Terry (BT) pair probability can be equivalently expressed in the form,

Pr(Ai � Ak|µ) = µi

µi + µk

, (1.12)

where µi = eui , i = 1, ...n, which was already introduced in Section 1.1.2.

The key assumption of the models for pair comparison data is that all pairwise prob-

abilities are conditionally independent given u (or µ), and that they depend only on the

relative sizes of the corresponding score parameters.

The BT model has been deeply studied and extended since its first appearance, and

many scholars have generalized it in several directions (see e.g. Davidson 1970, Agresti

1996, Wu et al. 2015). Maximum likelihood estimation is typically performed through

iterative algorithms (Zermelo 1929) and MM algorithm (Hunter 2004). In the Bayesian

framework the more convincing approach was developed by Caron and Doucet (2012),

who proposed an e�cient Gibbs sampling based on a clever data augmentation scheme.

The BT model has a main drawback: it su↵ers when the data are very sparse, and

in particular when the strong connection condition (Ford 1957) fails. This condition

guarantees the existence and uniqueness of the MLE of the BT parameters (similarly for

Thurstone). This condition is equivalent to the property that for any partition of the

items into two sets, some items in the second set has been preferred to some items in

the first set at least once by some user, see Yan (2016). As a consequence, the posterior

inference based on the BT, will, in such case, be driven by the prior density, as shown

by Yan (2016) with some examples. This e↵ect, which we also see in our simulations

(see Appendix 3.C), is one of the reasons why we chose to rely on the Mallows model to
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analyze sparse preference data (see Chapter 3 and 4).

The BT model was also represented and fitted as a log-linear model Dittrich et al.

(1998, 2002). In these works, the authors introduced user specific covariates into their

framework, and extended it to the case of dependent pair comparisons. Building on

Dittrich et al. (1998), Francis et al. (2010) further introduced random e↵ects for each

user in order to account for residual heterogeneity, that is not included in user-specific

covariates. The authors proposed to treat the ranked data as a set of paired comparisons,

and extend the model to allow for heterogeneity. As such, their data are in the form of

derived pair comparison data (DPP), which, as already mentioned, are notably di↵erent

from real paired comparison data (RPP). In particular, their data are in the form of full

pairwise comparisons (i.e. they have all the possible n(n � 1)/2 pairs among n items)

without non-transitivities. Therefore, their method cannot be used on our sparse data,

that is, where each assessor provides a limited number of pairwise preferences, typically

smaller than the maximum n(n� 1)/2, and is allowed to contradict herself, thus leading

to non-transitive patterns in the data. The prefmod R package (Hatzinger et al. 2012)

collects these results, and deals with maximum likelihood estimation of pair comparison

data, also allowing for data with missing values, and the possibility to include user and

item-specific covariates into the analysis.

An interesting literature that builds on the Thurstone’s model is the psychometric one

(Bockenholt 1988, Böckenholt 2001, Böckenholt and Tsai 2001, Böckenholt 2006). In these

works, the authors develop di↵erent generalizations of the Thurstone model, accounting

for instance for multi-dimensional data, in case the items are evaluated with respect to

multiple aspects, or introducing dependency among the observed pairs, by the inclusion

of random e↵ects in the model.

1.2.1 Non-transitivity

When dealing with real pairwise preference (RPP) data a major challenge arises: pairwise

preferences are not always transitive (Tversky 1969). By transitivity, we mean that, for

every triplet of items, {x, y, z}, x � y and y � z imply x � z. The data considered,

indeed, may contain preferences of the form x � y , y � z but z � x. Throughout the the-

sis, we refer to these pathological patterns as non-transitive, intransitive or inconsistent,

interchangeably. Notice that the kind of non-transitivity that we consider in this thesis

(Chapter 3) is only individual-level non-transitivity. A di↵erent type of non-transitivity
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arises when aggregating preferences across assessors, as under Condorcet (Marquis of

Condorcet 1785) or Borda (de Borda 1781) voting rules. Moreover, with individual-level

non-transitivity, we don’t mean situations where the same user repeatedly compares the

same pair of items, sometimes giving di↵erent answers. We instead focus on sparse data,

where each user compares at most once each pair of items, and where non transitivity

arises because of later contradiction, exactly like in the circular triad x � y , y � z but

z � x.

It should be clear that given a set of pairwise preferences containing a non-transitive

pattern, it is not straightforward to infer an ordering of the items, as one cannot read-

ily order the items involved in the non-transitive pattern. This challenge is ignored in

the statistical methods of Section 1.1, which, being models for ranking data, exclude

inconsistencies because of the transitivity property of a ranking. As a matter of fact,

the literature accounting for non-transitive pair comparisons is limited to models dealing

with pair comparison data, and in general not always interested in the individual-level

preferences.

Here we discuss briefly some of the approaches that deal with this issues, and explain

why our proposal of Chapter 3 is innovative and di↵erent from the present works.

A first examples of works that deal with non-transitive pairs are two generalizations of

the BT model: Causeur and Husson (2005), who proposed a two-dimensional BT model

(that is, a BT model parametrized by a two-dimensional worth parameter vector), and

Usami (2010), who proposed a multidimensional generalization of the same model. These

methods are based on the assumption that non-transitive patterns arise because assessors

compare the items based on di↵erent scales of judgement, and as such do not lead to a

final linear ordering of all items, but rather to multiple linear orderings).

In the psychometric literature, an interesting paper is Tsai and Böckenholt (2008),

where the authors introduce a general class of Thurstonian-like models that can account

simultaneously for transitive choice behavior and systematic deviations from it. However

inference is performed when the data include repeated comparisons for each user, and

all items are compared by each user. Our method of Chapter 3 is instead specifically

developed for sparse data (see also Chapter 4), where the users perform at most once

each comparison.

Another interesting approach to non-transitivity was presented by Volkovs and Zemel

(2014), who developed a score-based model for pairwise preferences that generalizes the
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PL model (see Section 1.1.4), known as the Multinomial Preference Model (MPM). The

MPM deals with pairwise preferences, even non-transitive ones, and extends to supervised

problems. Their method is connected to our logistic model for mistakes (see Section 3.1.2).

The main di↵erence between their model and ours is the data generating mechanism,

which in Volkovs and Zemel (2014) is assumed to be a multinomial score based process,

while our proposal assumes that the data are generated following a distance-based model

between rankings. Moreover, one di�culty of the MPM is the use of gradient optimization

in a non-convex problem (which could lead to local optima), and the somewhat arbitrary

way of imputing missing ranks. In addition, their goal is to learn a single consensus

ranking of the items, or multiple consensus rankings in case of clustering. Our method

instead has the ability to further learn the individual latent rankings for each user.

A recent development to handle non-transitive pair data is Ding et al. (2015), who

propose a novel mixed membership of Mallows models (M4) for dealing with noisy pair

preference data, which generalizes the mixture model by Lu and Boutilier (2014). Their

proposal is connected to our method of Chapter 3, in that they also postulate the existence

of a latent variable, but di↵ers most notably in three points: (a) they model the presence of

non-transitive patterns in the data as arising because each user has multiple latent linear

orderings; (b) they focus on the Kendall distance only, and (c) they assume a separability

property, which means that each of the Mallows components must have at least one

characterizing item pair, say (Ai, Ak), such that, with very high probability, (Ai�Ak) in

that component of the mixture, whereas (Ak�Ai) holds in the other Mallows components.

Our idea instead is to rely on a mistake model for explaining the non-transitive patterns

in the data, which can handle every right-invariant distance, and does not postulate any

separability condition, which can be violated in practice. Our model for dealing with data

showing non-transitive patterns, which is completely integrated in the Bayesian Mallows

model of Chapter 2, is outlined in Chapter 3. We believe that our method is the first

to exploit the Mallows model, in its general formulation - that is, based on a generic

right-invariant distance - for non-transitive pair comparison data, and stands out as the

only approach to non-transitive pair data, when the individual hidden rankings are of

interest, the pairs are not repeatedly assessed by each user and are few, and a Bayesian

model based approach is of interest.

In the machine learning community, the problem of finding a ranking based on possi-

bly non-transitive pairwise comparisons is known as the minimum feedback arc set prob-
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lem in a digraph (MFAS). Consider a digraph, or directed graph, D = (V,E), where

V = {v1, ..., vn} is the set of its vertices, and E = {e1, ..., eM} is the set of directed edges,

that is, em = (vi, vk), vi, vk 2 V , m = 1, ...,M , indicates that there is an edge from vi to vk.

A feedback arc set of D is a (possibly empty) subset of arcs E⇤ ⇢ E whose removal makes

the graph acyclic, that is, D⇤ = (V,E \E⇤) is a directed acyclic graph (DAG). The mini-

mum feedback arc set problem consists in finding the smallest (in the sense of minimum

cardinality) feedback arc set, and is a well-known NP-hard problem. The analogy between

the MFAS problem and the problem of finding a ranking based on non-transitive pairwise

comparisons is clear if one represents the pairwise preferences between items as directed

arcs in a digraph whose vertices coincide with the items to be ranked. For example the set

of preferences B = {A2 � A1, A5 � A4, A5 � A3, A5 � A2, A5 � A1, A3 � A2, A1 � A3} is

represented as a directed graph in Figure 1.2, left.

Figure 1.2: Left: Directed graph representing the set of preferences B. Right: DAG resulting
from the removal of the arc (A2, A3)

The non-transitive pattern A1 � A2 � A3 � A1, is then represented as a cycle in

the directed graph. In this simple illustration, one possible solution of the MFAS is

E⇤ = {(A2, A3)}. As a matter of fact, removing this edge results in the DAG of Figure

1.2, right. Equivalently, the reduced set of preferences B \ {A3 � A2} is transitive.

In this literature relevant papers are Kenyon-Mathieu and Schudy (2007), Ailon (2012),

who both aim at finding the linear ordering of items with the smallest number of disagree-

ments with the preferences of the data, by using methods from combinatorial optimization.

As a consequence, these models are not probabilistic, and cannot be used for expressing

uncertainty in the derived estimates.

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



27

1.3 A short detour into the machine learning ap-

proaches for ranking data

We can distinguish two main classes of models among the machine learning approaches

that deal with ranking data. First, those pertaining to the area of learning to rank

(LETOR) or rank aggregation, whose aim is to learn the best objective ranking (the analog

of the consensus ranking of the Mallows model) from data regarding user preferences.

The second class is the one of personalization and preference elicitation in recommender

systems, where the interest is usually in learning individual preferences of users who have

distinct preferences.

The first works dealing with the rank aggregation problem, which came out way be-

fore they were popularized by the machine learning community, regarded the political

theory of elections. Indeed, in the late 18th century, Condorcet (Marquis of Condorcet

1785) and Borda (de Borda 1781) studied a way to aggregate political preferences in elec-

tions with more than two candidates, basically designing the first methods to aggregate

rankings from noisy data. In the last decades, rank aggregation has been studied from

a mathematical perspective, starting with the work of Kemeny and Snell (1962), who

proposed a precise criterion for determining the best aggregate ranking, that is the one

that minimizes the number of pairwise disagreements with the (aggregated) data. Recent

applications of rank aggregation include sport tournaments (Glickman 1999), social choice

theory (Bartholdi et al. 1989a), peer grading in Massive Open Online Courses (MOOC)

(Raman and Joachims 2015) and, importantly, web ranking applications (like the Yahoo!

Learning to Rank Challenge). The problem has then been studied from a computational

perspective: Bartholdi et al. (1989b) showed that finding the Kemeny optimal ranking is

NP-hard, which motivated the recent works aimed at finding approximations to the rank

aggregation criteria (Ali and Meilă 2012, Dwork et al. 2001, Kenyon-Mathieu and Schudy

2007), also from pairwise comparisons (Hüllermeier et al. 2008, Liu et al. 2009, Negahban

et al. 2012, Rajkumar et al. 2015, Shah et al. 2015).

A relevant research field linked to rank aggregation is the so-called label ranking

(Fürnkranz and Hüllermeier 2010), which investigates the problem of learning a mapping

from items to rankings over a finite number of predefined items’ labels. The interest is

then in assigning a complete preference order - that is, a ranking - of labels over the set

of items, in order to perform prediction and classification. The label ranking literature is

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



28

huge and, as can be evinced by its definition, intimately linked to the Mallows model. As

a matter of fact, one way of dealing with label ranking is to assume a probability model

on rankings, such as the Mallows model, for performing learning and inference (Cheng

and Hüllermeier 2008).

The second class of works dealing with ranking data, the area of personalized recom-

mendation, aims at assessing individual or group rankings, by modeling the heterogeneity

of user preferences. With the rise of e-commerce, many commercial websites are now using

recommender systems to suggest their users products they may like. The most successful

approach so far is the well-known collaborative filtering (CF), whose principal idea is to

identify users with similar tastes and use them to generate the recommendations. CF

is grounded on matrix factorization in reduced dimensional spaces and is thus related

to singular value decomposition and principal component analysis. In this area lies the

Netflix competition, which has started a massive research on predicting a user’s movie

ratings given the ratings for other movies, including both their own and those of other

users. Recommendations in this area are based on the idea that a set of users which liked

the same items in the past, will probably share the same preferences in the future.

The collaborative ranking subclass of CF seeks to predict the ranking of the items,

and to perform recommendations based on this. In these works, it is usually postulated a

global preference structure (a consensus ranking) then used to link the users’ preferences

(Rendle et al. 2009, Lu and Negahban 2015, Park et al. 2015). The main problem that

this literature faces is to estimate a binary variable (a yes/no answer, for example whether

a user will like an item or not), in order to make personalized recommendations. As such,

their aim is often not to obtain a final full ranking over the items, neither global nor

individual, which is the main task we consider.
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Chapter 2

The Bayesian Mallows model for

ranking data

In this chapter we develop a Bayesian framework for inference in the Mallows model. The

method is potentially able to handle any right-invariant distance. This has the theoretical

interest to exploit the main advantage of the Mallows model, namely its flexibility in

the choice of the distance. Inference is based on a Metropolis-Hastings algorithm, which

converges to the posterior distribution of the parameters of the Mallows model, if the exact

partition function is available. In case the exact partition function is not available, we

propose to approximate it using an o↵-line importance sampling scheme, and we document

the quality and e�ciency of this approximation. Using data augmentation techniques,

our method extends to data in the form of incomplete rankings, like top-k rankings, and

pairwise comparisons, and can be easily adapted to the case of ranks missing at random.

In case of heterogeneous assessors, we develop a mixture model which embeds the Bayesian

Mallows model. Our approach unifies clustering, classification and preference prediction

in a single inferential procedure, thus leading to coherent posterior credibility levels of the

learned parameters. The Bayesian setting indeed allows to naturally compute complex

probabilities of interest, like the probability that an item has consensus rank higher than

a given level, or the probability that the consensus rank of an item is higher than that

of another item of interest. For incomplete rankings this can be performed also at the

individual assessor level, allowing for individual recommendations.

This chapter contains joint work with Valeria Vitelli, Øystein Sørensen, Arnoldo

Frigessi and Elja Arjas and is based on Vitelli et al. (2017).
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Outline

In Section 2.1, we introduce the Bayesian Mallows model for complete rankings. In Section

2.1.1 we discuss the choice of the prior distributions, Sections 2.1.2 and 2.1.3, are devoted

to show how e�cient Bayesian computation can be performed for this model, and tuning

of the hyperparameters is discussed in Section 2.1.4. In Section 2.2 we develop and test

an importance sampling scheme for computing the partition function, based on a pseudo-

likelihood approximation of the Mallows model. After a short section regarding the exact

computation of the partition function (Section 2.2.1), we carefully test and study the

importance sampling approximation of the partition function, and its e↵ect on inference,

both theoretically and by simulations (Section 2.2.2). In Section 2.2.3, we then present an

extensive comparison with heuristic and ML approaches, performed on simulated complete

data. Section 2.3 is dedicated to the model extensions. In Section 2.3.1 we extend the

Bayesian Mallows approach to partial rankings, and we prove some results on the e↵ects

of unranked items on the consensus ranking. Section 2.3.2 considers data in the form

of pairwise comparisons. In Sections 2.3.3 and 2.3.4 we describe mixture models dealing

with heterogeneous assessors expressing full rankings or pairwise comparisons, able to

find cluster-specific consensus rankings. Section 2.3.5 presents an example of preference

prediction in our framework, based on data simulated from a realistic setup, which calls

both for cluster assignment and individual preference learning. We show that our approach

works well in a simulation context. In Section 2.4, we then show some illustrations of the

performance of our method on real data: the selected case studies exemplify the di↵erent

incomplete data situations considered. The Meta-Analysis (Section 2.4.1) is a case of very

sparse top-k rankings, the Beaches data (Section 2.4.2) consist of pairwise comparisons

of an homogeneous data sample, the Sushi (Section 2.4.3) is an example of complete

rankings with clusters, and the Movielens benchmark data (Section 2.4.4) is an illustration

of pairwise comparisons with clusters. Section 2.5 provides a discussion and directions

for future research.
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2.1 The Bayesian Mallows model for full rankings

We here follow the notation introduced earlier in Section 1.1.

Let A = {A1, A2, . . . , An}, be a set of n items, and assume that N assessors rank all

items individually with respect to a considered feature. The ordering provided by assessor

j is here denoted by Xj, and the observations X1:N = X1, . . . ,XN are N permutations

of the labels in A. The observations usually come directly in the form of rankings, and

denoted by R1:N = R1, . . . ,RN . Then Rj = (R1j, R2j, . . . , Rnj) 2 Pn, j = 1, . . . , N ,

denotes the full ranking of assessor j, and Rij, i = 1, ..., n, denotes the rank given to

item Ai by assessor j. We assume that the N observed rankings R1, . . . ,RN 2 Pn

are conditionally independent given the parameters ↵ and ⇢, and that each of them is

distributed according to the Mallows model, of equation (1.6), with these parameters.

The likelihood of the data takes then the form

P (R1, . . . ,RN |↵,⇢) = 1

Zn(↵)N
exp

"

�↵
n

N
X

j=1

d(Rj,⇢)

#

. (2.1)

where d(·, ·) is assumed right-invariant (see Section 1.1.3).

2.1.1 Prior distributions

To complete the specification of the Bayesian model for the rankings R1, . . . ,RN , a prior

for its parameters is needed. Commonly, the parameter of direct inferential interest is

the consensus ranking ⇢. The scale parameter ↵ has a more indirect role, in controlling

variation between the individual rankings R1:N . We here assume a priori that ↵ and ⇢

are independent.

An obvious choice for the prior for ⇢ in the context of the Mallows likelihood is to use

the Mallows model family also in setting up a prior for ⇢, that is, let ⇡(⇢) = ⇡(⇢|↵0,⇢0) /
exp

��↵0

n
d(⇢,⇢0)

 

. Here ↵0 and ⇢0 are fixed hyperparameters, with ⇢0 specifying the

ranking that is a priori thought most likely, and ↵0 controlling the tightness of the prior

around ⇢0. Since ↵0 is fixed, Zn(↵0) is a constant. Note that combining the likelihood

with the prior ⇡(⇢|↵0,⇢0) above has the same e↵ect on inference as involving an additional

hypothetical assessor j = 0, say, who then provides the ranking R0 = ⇢0 as data, with

↵0 fixed. If we were to elicit a value for ↵0, we could reason as follows. Consider, for ⇢0

fixed, the prior expectation gn(↵0) := E⇡(⇢)[d(⇢,⇢0)|↵0,⇢0]. Because of the assumed right
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invariance of the distance d(·, ·), this expectation is independent of ⇢0, which is why gn(·)
depends only on ↵0. Moreover, gn(↵0) is obviously decreasing in ↵0. For the footrule and

Spearman distances, which are defined as sums of item specific deviations |⇢0i � ⇢i| or
|⇢0i�⇢i|2, gn(↵0) can be interpreted as the expected (average, per item) error in the prior

ranking ⇡(⇢|↵0,⇢0) of the consensus. A value for ↵0 can then be elicited by first choosing

a target level ⌧0, say, which would realistically correspond to such an a priori expected

error size, and then finding the value ↵0 such that gn(↵0) = ⌧0. This procedure requires

numerical evaluation of the function gn(↵0) over a range of suitable ↵0 values.

In this chapter and in Chapter 3, we employ only the uniform prior on Pn, ⇢ ⇠ U(Pn),

that is ⇡(⇢) = (n!)�11P
n

(⇢), corresponding to ↵0 = 0, while in Chapter 5, we will go

deeper in the previous proposal, and provide some alternatives for the elicitation of the

prior on ⇢, in the particular case of the Mallows model with Cayley distance. In addition,

in Chapter 6 we discuss the elicitation of a conjugate prior when the distance is set to

Spearman.

For the scale parameter ↵, we use a truncated exponential prior, with density ⇡(↵|�) =
�e��↵1[0,↵max)(↵)/(1 � e��↵max), where the cut-o↵ point ↵max < 1 is large compared to

the values supported by the data. In practice, in the computations involving sampling

of values for ↵, truncation was never applied. We show in Section 2.2.2, using simulated

data, that inference on ⇢ is almost completely insensitive on the choice of �. A theoretical

argument for this fact is provided in that same section, although it is tailored more

specifically to the numerical approximations of Zn(↵). For these reasons, in all our data

analyses, we assign � a fixed value. We chose small values for �, typically of the order

of 10�2, thus implying a prior density for ↵ which is quite flat in the region supported in

practice by the likelihood. If a more elaborate elicitation of the prior for ↵ was preferred,

this could be achieved by computing, by numerical integration, values of the function

E⇡(↵)[gn(↵)|�], selecting a realistic target ⌧ , and solving E⇡(↵)[gn(↵)|�] = ⌧ for �. In a

similar fashion as earlier, also E⇡(↵)[gn(↵)|�] can be interpreted as an expected (average,

per item) error in the ranking, but now errors are meant as those made by the assessors,

relative to the consensus, and expectation is with respect to the exponential prior ⇡(↵|�).
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2.1.2 Inference

Having assumed prior independence between ⇢ and ↵, and given the prior densities ⇡(⇢)

and ⇡(↵) as in Section 2.1.1, the posterior distribution for ⇢ and ↵ is given by

P (⇢,↵|R1, . . . ,RN) / ⇡ (⇢) ⇡ (↵)

Zn (↵)
N

exp

"

�↵
n

N
X

j=1

d (Rj,⇢)

#

. (2.2)

In applications, often the interest is in computing posterior summaries of (2.2). One such

summary is the marginal posterior mode of ⇢, (that is, the maximum a posteriori, MAP)

of (2.2), which does not depend on ↵ and, in case of uniform prior on ⇢, coincides with

the maximum likelihood estimator. The marginal posterior distribution of ⇢ is in fact

given by

P (⇢|R1, . . . ,RN) / ⇡ (⇢)

Z

⇡ (↵)

Zn (↵)
N
exp

"

�↵
n

N
X

j=1

d (Rj,⇢)

#

d↵. (2.3)

Given the dataR1:N , for varying consensus ranking ⇢, the sum of distances, T (⇢, R1:N) =
PN

j=1 d (Rj,⇢), takes only a finite set of discrete values {t1, t2, ...tm}, where m depends

on the distance chosen, d(·, ·), on the sample size N , and on n. Therefore, the set of all

permutations Pn can be partitioned into the sets Hi = {r 2 Pn : T (r, R1:N) = ti} for

each distance ti. These sets are level sets of the posterior marginal distribution in (2.3),

as all r 2 Hi have the same posterior marginal probability. The level sets do not depend

on ↵ but the posterior distribution shared by the permutations in each set does.

Sometimes the interest is in computing posterior probabilities of more complex func-

tions of ⇢, for example the posterior probability that a certain item i has consensus rank

lower than a given level k, P (⇢i < k | data), or that a certain item i1 is ranked higher

than another one, i2, in the consensus, P (⇢i1 < ⇢i2 | data). These probabilities cannot

be readily obtained within the maximum likelihood approach, while the Bayesian setting

very naturally allows to approximate any posterior summary of interest, by means of a

Markov Chain Monte Carlo algorithm, which at convergence samples from (2.2).

2.1.3 Metropolis-Hastings algorithm for full rankings

In order to obtain samples from the posterior density of equation (2.2), we iterate between

two steps. First we update the consensus ranking, ⇢, by proposing ⇢0 according to a
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distribution which is centered around the current rank ⇢.

Definition 2. (Leap-and-Shift Proposal, L-S). Fix an integer L 2 {1, . . . , b(n � 1)/2c}
and draw a random number u ⇠ U{1, . . . , n}. Define, for a given ⇢, the set of integers

S = {max(1, ⇢u�L),min(n, ⇢u +L)} \ {⇢u}, S ✓ {1, . . . , n}, and draw a random number

r uniformly in S. Let ⇢⇤ 2 {1, 2, ...n}n have elements ⇢⇤u = r and ⇢⇤i = ⇢i for i 2
{1, . . . , n} \ {u}, constituting the leap step.

Now, defining � = ⇢⇤u � ⇢u, the elements of the proposed ⇢0 2 Pn are defined, for all

i = 1, . . . , n, as

⇢0i =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

⇢⇤u if ⇢i = ⇢u

⇢i � 1 if ⇢u < ⇢i  ⇢⇤u and � > 0

⇢i + 1 if ⇢u > ⇢i � ⇢⇤u and � < 0

⇢i otherwise .

This constitutes the shift step.

Proposition 1. The L-S proposal ⇢0 2 Pn is a local perturbation of ⇢, separated from ⇢

by a Ulam distance 1 .

Proof. From the definition and by construction, ⇢⇤ /2 Pn, since there exist two indices

i 6= j such that ⇢⇤i = ⇢⇤j . The shift of the ranks by � brings ⇢⇤ to ⇢0 back into Pn. The

Ulam distance d(⇢,⇢0) counts the number of edit operations needed to convert ⇢ into ⇢0,

where each edit operation involves deleting a character and inserting it in a new place

(see also Section 1.1.3). This is equal to 1, following Gopalan et al. (2006).

The L-S proposal is not symmetric, and the probability mass function associated to

the transition is given by

PL(⇢
0|⇢)=

n
X

u=1

PL(⇢
0|U=u,⇢)P (U=u)=

=
1

n

n
X

u=1

1{⇢�u

}(⇢
⇤
�u)1{0<|⇢

u

�⇢⇤
u

|L}(⇢
⇤
u)

"

1{L+1,...,n�L}(⇢u)

2L
+

L
X

l=1

1{l}(⇢u)+1{n�l+1}(⇢u)

L+l�1

#

+
1

n

n
X

u=1

1{⇢�u

}(⇢
⇤
�u)1{|⇢

u

�⇢⇤
u

|=1}(⇢
⇤
u)

"

1{L+1,...,n�L}(⇢⇤u)

2L
+

L
X

l=1

1{l}(⇢⇤u)+1{n�l+1}(⇢⇤u)

L+l�1

#

,

where ⇢�u={⇢i; i6=u}. The acceptance probability of ⇢0 in the M-H algorithm is then
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min{1, ⌘⇢}, where

⌘⇢ =
PL(⇢|⇢0)⇡ (⇢0)
PL(⇢0|⇢)⇡ (⇢) exp

(

�↵
n

N
X

j=1

[d (Rj,⇢
0)� d (Rj,⇢)]

)

. (2.4)

The term
PN

j=1 [d (Rj,⇢
0)� d (Rj,⇢)] in (2.4) can be computed e�ciently, since most

elements of ⇢ and ⇢0 are equal. Let ⇢i = ⇢0i for i 2 E ⇢ {1, . . . , n}, and ⇢i 6= ⇢0i for i 2 Ec.

When d(·, ·) is the footrule or the Spearman distance, we have, for p 2 {1, 2} repectively,

N
X

j=1

[d (Rj,⇢
0)� d (Rj,⇢)] =

N
X

j=1

(

X

i2Ec

|Rij � ⇢0i|p �
X

i2Ec

|Rij � ⇢i|p
)

. (2.5)

For the Kendall distance, instead, we get

N
X

j=1

[d (Rj,⇢
0)� d (Rj,⇢)] =

=
N
X

j=1

X

1k<ln

{1 [(Rkj �Rlj) (⇢
0
k � ⇢0l) > 0]� 1 [(Rkj �Rlj) (⇢k � ⇢l) > 0]} =

=
N
X

j=1

X

k2Ec\{n}

X

l2{Ec\{l>k}}

1 {[(Rkj �Rlj) (⇢
0
k � ⇢0l) > 0]� 1 [(Rkj �Rlj) (⇢k � ⇢l) > 0]} .

Hence, by storing the set Ec at each MCMC iteration, the computation of (2.4) involves

a sum over fewer terms, speeding up the algorithm consistently. The parameter L is used

for tuning the acceptance probability (2.4).

In the second step we sample a proposal ↵0 from a lognormal distribution lnN (ln↵, �2
↵),

centered at the current value of ↵, and accept it with probability min {1, ⌘↵}, where

⌘↵ =
Zn (↵)

N ⇡ (↵0)↵0

Zn (↵0)
N ⇡ (↵)↵

exp

"

�(↵0 � ↵)
n

N
X

j=1

d (Rj,⇢)

#

. (2.6)

The variance �2
↵ can be tuned to obtain a desired acceptance probability.

A further parameter, named ↵jump, can be used to update ↵ only every ↵jump updates of

⇢: the possibility to tune it ensures a better mixing of the MCMC in the di↵erent sparse

data applications. The above described MCMC algorithm is summarized as Algorithm 1

of Appendix 2.A.

Proposition 2. (Convergence of the MCMC algorithm). The MCMC Algorithm 1 using
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the exact partition function Zn (↵) samples from the Mallows posterior in equation (2.2),

as the number of MCMC iterations tends to infinity.

Proof. Because of reversibility of the proposals, detailed balance holds for the Markow

chain. Ergodicity follows by aperiodicity and positive recurrence.

2.1.4 Tuning the proposal distributions parameters

We here study the e↵ect of the L-S proposal on ⌘⇢, and the tuning of its parameter L in

relation to MCMC convergence, on simulated data. Also the role of parameter �↵ in the

log-normal proposal for ↵, is briefly explored.

Data were generated from the Mallows model with footrule distance, ↵true = 2 and

⇢true = (1, . . . , n). Two scenarios were used, with n = 20 and n = 50, because the choice

of L would likely depend on the number of items. For generating the data, we run our

MCMC sampler (see Appendix 2.B) for 105 burn-in iterations, and collected one sample

every 100 iterations after that. We collected samples from N = 500 assessors. The data

analyses were carried out by using the same distance as in the data generation (footrule),

and the MCMC was run for 106 iterations after 105 iterations of burn-in, with a 1 to 100

thinning for ↵. 10 di↵erent chains were started from random points of the parameter

space, and posterior inference was based on merging the results from these chains, as the

MCMC converged to the same limit. The same analyses were also performed for Kendall

distance, on data generated by using the PerMallows R package (Irurozki et al. 2016a).

Equivalent results (not shown) as for the footrule were obtained.

In the MCMC, we controlled for (i) mixing, aiming at an acceptance rate of approxi-

mately 1/3 for each parameter (Gelman et al. 1996, Roberts et al. 1997), and (ii) autocor-

relation, monitoring the Integrated Autocorrelation Time (IAT) ⌧ (Green and Han 1992).

Since ⇢ is multivariate, we monitored the IAT for each component of ⇢. As expected, the

acceptance rate ⌘⇢ decreases with increasing L, and depends also on the value of n (Figure

2.1, top panels). Based on the results shown in Figure 2.1 (bottom panels), we propose

as a rule of thumb that L should be set equal to n/5. This choice seems reasonable also

from the perspective of ⌘⇢ (Figure 2.1, upper panels). Not surprisingly, the acceptance

rate ⌘↵ decreases with increasing �↵ (Table 2.1). Aiming at a value of ⌘↵ close to 1/3 sets

us also close to the minimal value of ⌧↵. In the case of n = 20 values close to 0.2 appear

to be good choices for �↵, while for n = 50 values near 0.1 might be slightly preferred.
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Figure 2.1: Results of the simulations described in Section 2.1.4. Top panels: acceptance
probability ⌘⇢ along MCMC iterations; bottom panels: marginal IAT ⌧⇢ of ⇢. Left and right
panels show the results when n = 20 and 50, respectively.

n = 20 n = 50
�↵ ⌘↵ ⌧↵ ⌘↵ ⌧↵
0.01 0.93 4.32 0.88 3.83
0.02 0.86 3.6 0.76 3.4
0.05 0.67 2.67 0.51 2.64
0.1 0.47 2.65 0.3 2.41
0.2 0.27 2.24 0.16 2.2
0.5 0.11 2.53 0.07 2.74

Table 2.1: Results of the simulations described in Section 2.1.4. Acceptance probability ⌘↵
and IAT ⌧↵ of ↵ along MCMC iterations, for two simulations with n = 20 and 50. In each row,
the value of �↵ (standard deviation of the log-normal proposal for ↵) used in the MCMC.

2.2 Approximating the partition function Zn(↵)

For Kendall’s, Hamming and Cayley distances, the partition function Zn (↵) is available in

close form (Fligner and Verducci 1986), but this is not the case for footrule and Spearman
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distances. In Section 2.2.1, we propose a strategy to compute Zn(↵) exactly, in case of

footrule and Spearman distances for moderate values of n. For larger values of n, we

propose an approximation of the partition function Zn(↵) based on importance sampling

(Section 2.2.2). The main idea, motivated by the fact that Zn(↵) does not depend on ⇢,

is that we can approximate it o↵-line over a grid of ↵ values, and then interpolate them,

in order to yield an estimate over a continuous range. With this approximation, we can

then read o↵ the needed values to compute the acceptance probability ⌘↵ very rapidly.

We study the convergence of the importance sampler theoretically and numerically, with

a series of experiments aimed at demonstrating the quality of the approximation, and

the impact of it in inference In Section 2.2.3, we also provide a comparison among the

inferential results obtained with our method and with existing competitors, based on

simulated data.

We here describe two alternative methods for dealing with intractable normalizing

constants in MCMC algorithms: the exchange algorithm, and the pseudo-marginal ap-

proaches. Contrarily to our approach, both methods would target the exact posterior

distribution. We here explain why these methods can’t be applied in our case in practice.

The exchange algorithm (Møller et al. 2006, Murray et al. 2012) is based on the idea to in-

clude into the MCMC an auxiliary variable, which, if chosen appropriately, eliminates the

intractable term from the M-H ratio. The assumption of this method is that we can draw

independent, and exact samples from the proposal distribution. This is not the case in

our model, as there are no algorithms available to exactly sample from the Mallows model

with many of the distances considered (e.g. footrule and Spearman). The pseudo-marginal

class of methods (Beaumont 2003, Andrieu and Roberts 2009), sometimes referred to as

Exact-approximate methods, are based on the property that the invariant distribution

of the Markov chain produced is the exact target distribution despite the use of an ap-

proximation in the Metropolis-Hastings acceptance probability. The idea is to replace the

posterior density P (⇢,↵|R1, ...,RN), of eq. (2.2) with a non-negative unbiased estimator

P ⇤, such that for some C > 0 it holds that E[P ⇤] = CP . The approximate acceptance

ratio then uses P ⇤, but this results in an algorithm still targeting the exact posterior.

An unbiased estimate of the posterior P can be obtained via importance sampling if it is

possible to simulate directly from the likelihood. Again, this is not the case in our model,

neither is use of exact simulation possible for our model. Therefore our conclusion is to

resort to the pseudo-likelihood based Importance Sampling (IS) approach (Section 2.2.2),
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and to the asymptotic results (Mukherjee 2016). Both methods work very well.

2.2.1 Exact formula for footrule and Spearman distances

We here follow the reasoning in Irurozki et al. (2016a), by noting that the partition

function of equation (1.11), Zn(↵) =
P

r2P
n

e�
↵

n

d(r,1
n

), can be written in a more con-

venient way. We notice that d(r,1n) takes only the finite number of discrete values

D = {d1, ..., da}, where a depends on n and on the chosen distance d(·, ·). We define

Li = {r 2 Pn : d(r,1n) = di} ⇢ Pn, i = 1, ..., a, to be the set of permutations at the same

given distance from 1n, and denote by |Li| its cardinality. Then

Zn(↵) =
X

d
i

2D

|Li|e�↵nd
i . (2.7)

In order to compute Zn(↵) one thus needs |Li|, for all values di 2 D. In the case of

the footrule distance, the set D is made of all even numbers, from 0 to bn2/2c, and |Li|,
corresponds to the sequence A062869 available for n  50 on the On-Line Encyclopedia of

Integer Sequences (OEIS) (Sloane 2017). In the case of Spearman’s distance, the set D is

made of all even numbers, from 0 to 2
�

n+1
3

�

, and |Li| corresponds to the sequence A175929
available only until n  14 in the OEIS. Having discovered these tabulated sequences, we

can exploit them to compute Zn(↵) exactly for many di↵erent values of n. This will be

crucial, both for speeding-up the algorithm, and for evaluating the performance of the IS

approximation (discussed in Section 2.2.2), when compared to alternative methods.

2.2.2 O↵-line importance sampling, IS, for Zn (↵)

For K rank vectors R1, . . . ,RK sampled from an IS auxiliary distribution q(R), the

unbiased IS estimate of Zn(↵) is given by

Ẑn(↵) = K�1
K
X

k=1

exp
⇥�(↵/n)d(Rk,1n)

⇤

q(Rk)�1. (2.8)

The more q(R) resembles the Mallows likelihood (2.1), the smaller is the variance of

Ẑn(↵). On the other hand, it must be computationally feasible to sample from q(R). We

use the following pseudo-likelihood approximation of the target (2.1). Let {i1, . . . , in} be
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a uniform sample from Pn, giving the order of the pseudo-likelihood factorization. Then

P (Ri
n

|1n) =
exp [�(↵/n)d (Ri

n

, in)] · 1[1,...,n](Ri
n

)
P

r
n

2{1,...,n} exp [�(↵/n)d (rn, in)]
,

P
�

Ri
n�1 |Ri

n

,1n

�

=
exp

⇥�(↵/n)d �Ri
n�1 , in�1

�⇤ · 1[{1,...,n}\{R
i

n

}](Ri
n�1)

P

r
n�12{1,...,n}\{R

i

n

} exp [�(↵/n)d (rn�1, in�1)]
,

...

P (Ri2 |Ri3 , . . . , Ri
n

,1n) =
exp [�(↵/n)d (Ri2 , i2)] · 1[{1,...,n}\{R

i3
,...,R

i

n

}](Ri2)
P

r22{1,...,n}\{R
i3
,...,R

i

n

} exp [�(↵/n)d (r2, i2)]
,

P (Ri1 |Ri2 , . . . , Ri
n

,1n) = 1[{1,...,n}\{R
i2
,...,R

i

n

}](Ri1).

Each factor is a simple univariate distribution. We sample Ri
n

first, and then con-

ditionally on that, Ri
n�1 and so on. The k-th full sample Rk has probability q(Rk) =

P (Rk
i
n

|1n)P (Rk
i
n�1

|Rk
i
n

,1n) · · ·P (Rk
i2
|Rk

i3
, . . . , Rk

i
n

,1n).

We observe that this pseudo-likelihood construction is similar to the sequential represen-

tation of the Plackett-Luce model with a Mallows parametrization of probabilities.

Note that, in principle, we could sample rankings Rk from the Mallows model with

a di↵erent distance than the one of the target model (for example Kendall), or use the

pseudo-likelihood approach with a di↵erent “proposal distance” other than the target

distance. We experimented with these alternatives, but keeping the pseudo-likelihood

with the same distance as the one in the target was most accurate and e�cient (results

not shown). In what follows the distance in (2.8) is the same as the distance in (2.2).

Testing the Importance Sampler

We experimented by increasing the number of importance samples in powers of ten, over

a discrete grid of 100 equally spaced ↵ values between 0.01 and 10 (this is the range of

↵ which turned out to be relevant in all our applications when footrule distance is used,

typically ↵ < 5). We produced a smooth partition function simply using a polynomial

of degree 10. The ratio ẐK
n (↵)/Zn(↵) as a function of ↵ is shown in Figure 2.2 for

n = 10, 20, 50 and when using di↵erent values of K: the ratio quickly approaches 1 when

increasing K; for larger n, a larger K is needed to ensure precision, but K = 106 seems

enough to give very precise estimates.

When n is larger than 50, no exact expression for Zn(↵) is available. Then, we directly

compare the estimated ẐK
n (↵) for increasing K, to check whether the estimates stabilize.
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Figure 2.2: Ratio of the approximate partition function computed via IS to the exact,
Ẑn(↵)/Zn(↵), as a function of ↵, when using the footrule distance. From left to right,
n = 10, 20, 50; di↵erent colors refer to di↵erent values of K, as stated in the legend.

We thus inspect the maximum relative error

✏K = max
↵

2

4

�

�

�

ẐK
n (↵)� Ẑ

K/10
n (↵)

�

�

�

�

�

�

Ẑ
K/10
n (↵)

�

�

�

3

5 (2.9)

for K = 102, . . . , 108. Results are shown in Table 2.2 for n = 75 and 100. For both

values of n we see that the estimates quickly stabilize, and K = 106 appears to give good

approximations. The computations shown here were performed on a desktop computer,

and the o↵-line computation with K = 106 samples for n = 10 took less than 15 minutes,

with no e↵orts for parallelizing the algorithm, which would be easy and beneficial. K =

106 samples for n = 100 were obtained on a 64-cores computing cluster in 12 minutes.

K 102 103 104 105 106 107 108

n = 75 152.036 0.921 0.373 0.084 0.056 0.005 0.004
n = 100 67.487 1.709 0.355 0.187 0.045 0.018 0.004

Table 2.2: Approximation of the partition function via the importance sampling for the footrule
model: maximum relative error ✏K , eq. (2.9), between the current and the previousK, for n = 75
and 100.

E↵ect of Ẑn(↵) on the MCMC

In this section, we report theoretical results regarding the convergence of the MCMC,

when using the pseudo-likelihood approximation of the partition function.

Proposition 3. Algorithm 1 of Appendix 2.A using Ẑn(↵) of eq. (2.8) instead of Zn(↵)
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converges to

1

Ĉ(R1:N)
⇡(↵)⇡(⇢)Ẑn(↵)

�N exp

"

�↵
n

N
X

j=1

d(Rj,⇢)

#

, (2.10)

with the normalizing factor

Ĉ(R1:N) =

Z

⇡(↵)Ẑn(↵)
�N
X

⇢2P
n

⇡(⇢) exp

"

�↵
n

N
X

j=1

d(Rj,⇢)

#

d↵.

Proof. The acceptance probability of the MCMC in Algorithm 1 with the approximate

partition function is given by (2.6) using Ẑn(↵) of (2.8) instead of Zn(↵), which is exactly

the acceptance probability needed for (2.10).

The fact that Ĉ(R1:N) <1 is an obvious consequence of our assumption, in Section

2.1.1, that the prior ⇡(↵) is defined on the support [0,↵max). The approximation Ẑn(↵)

converges to Zn(↵) as the number K of IS samples converges to infinity. We here change

the notation, in order to explicitly show this dependence, and write ẐK
n (↵). Clearly, the

approximate posterior (2.10) converges to the correct posterior (2.2) if K increases with

N , K = K(N), and

lim
N!1

"

Ẑ
K(N)
n (↵)

Zn(↵)

#N

= 1, for all ↵. (2.11)

Proposition 4. There exists a factor c(↵, n, d(·, ·)) not depending on N , such that, if

K = K(N) tends to infinity as N !1 faster than c(↵, n, d(·, ·)) ·N2, then (2.11) holds.

Proof. We see that the ratio

"

Ẑ
K(N)
n (↵)

Zn(↵)

#N

= exp

"

N ln

 

1 +
Ẑ

K(N)
n (↵)� Zn(↵)

Zn(↵)

!#

tends to 1 in probability as K(N)!1 when N !1 if

Ẑ
K(N)
n (↵)� Zn(↵)

Zn(↵)
(2.12)

tends to 0 in probability faster than 1/N. Since (2.8) is a sum of i.i.d. variables, there

exists a constant c = c(↵, n, d(·, ·)) depending on ↵, n and the distance d chosen (but not
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on N) such that as K(N)!1,

p

K(N)(ẐK(N)
n (↵)� Zn(↵))

L�! N (0, c2).

Therefore, for (2.12) tending to 0 faster than 1/N , it is su�cient that K(N) grows faster

than N2. The speed of convergence to 1 of (2.11) depends on c.

Testing approximations of the MCMC in inference

We report results from extensive simulation experiments carried out in several di↵erent

parameter settings, to investigate if our algorithm provides correct posterior inferences.

In addition, we study the sensitivity of the posterior distributions to di↵erences in the

prior specifications, and demonstrate their increased precision when the sample size N

grows. We explore the robustness of inference when using approximations of the partition

function Zn(↵), both when obtained by applying our IS approach described in the previous

section, and when using, for large n, the asymptotic approximation Zlim(↵) proposed in

Mukherjee (2016). In order to implement Mukherjee’s strategy for the computation of

the limiting partition function, we fixed his parameter k to 103, and used the his Iterative

Proportional Fitting Procedure (IPFP) (Mukherjee 2016, Theorem 1.9) with m = 104

(after verifying in di↵erent situations that the IPFP had typically already converged after

103 iterations; not shown).

A comparison between the limiting partition function obtained by running the Mukher-

jee’s procedure, and our IS approximation for n = 50, 75, 100 is shown in Figure 2.3, where

the plot is in log scale because of better visualization.

We see from the left panel, where the exact normalizing constant is also plotted (red

points), that our IS approximation overlaps with the exact, while the Mukherjee limit

is slightly biased. In particular, for n = 50 we obtain the maximum relative errors

max
↵

 |logZ50(↵)�log ẐIS

50 (↵)|
|logZ50(↵)|

�

= 6.2 · 10�6, and max
↵

 |logZ50(↵)�log Ẑlim,50(↵)|
|logZ50(↵)|

�

= 4.68. We then

check if the asymptotic and the IS approximations move closer as n grows. Therefore we

compute the maximum relative error ✏n = max
↵

 |log ẐIS

n

(↵)�log Ẑlim,n

(↵)|
|log ẐIS

n

(↵)|
�

, for n = 50, 75, 100

and obtain the results of Table 2.3.

We notice that the two approximations become closer as n grows, and thus we can

reasonably assume that the approximation will be good also for larger n. This result is

crucial in applications where n is so large that the importance sampling approximation is
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Figure 2.3: A comparison among di↵erent approaches to compute the partition function Zn(↵)
for the Mallows footrule model. The left panel refers to n = 50, the middle panel to n = 75,
and the right panel to n = 100. The solid line refers to the IS approximation, the dashed line to
the Mukherjee limit. Note that the exact Zn(↵) is only available for n = 50, and depicted with
red dots.

n = 50 n = 75 n = 100
✏n 4.68 4.08 3.79

Table 2.3: Maximum relative error between the IS and the limiting approximations of Zn(↵),
for n = 50, 75 and 100.

computationally not feasible, and thus using the limiting partition function Zlim(f,↵) for

approximating Zn(f,↵) proves to be an excellent alternative (see Section 2.4.4).

In the remaining of this section we investigate if our algorithm provides correct poste-

rior inferences, by experiments carried out in di↵erent parameter settings, while focusing

on the footrule distance, since it enables to explore all the di↵erent settings, and being the

preferred distance in the experiments reported in Section 2.4. Some model parameters

are kept fixed in the various cases: ↵jump = 10, �↵ = 0.15, and L = n/5 (for the tuning of

the two latter parameters, see the simulation study in Section 2.1.4). Computing times

for the simulations, performed on a laptop computer, varied depending on the values of

n and N , from a minimum of 2400 in the smaller case with n = 20 and N = 20, to a

maximum of 302200 for n = 100 and N = 1000.

First, we generated data from a Mallows model with n = 20 items, using samples from

N = 20, 50, and 100 assessors, a setting of moderate complexity. The value of ↵true was

chosen to be either 1 or 3, and ⇢true was fixed at (1, . . . , n). To generate the data, we

run the MCMC sampler (see Appendix 2.B) for 105 burn-in iterations, and collected one

sample every 100 iterations after that (these settings were kept in all data generations).

In the analysis, we considered the performance of the method when using the IS
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Figure 2.4: Results of the simulations described in Section 2.2.2, when n = 20. In each plot
is represented the posterior density of ↵ (the black vertical line indicates ↵true) obtained for
various choices of N (di↵erent colors), and for di↵erent choices of the prior for ↵ (di↵erent line
types), as stated in the legend. From left to right, MCMC run with the exact Zn(↵), with the
IS approximation ẐK

n (↵) with K = 108, and with the IS approximation ẐK
n (↵) with K = 104.

First row: ↵true = 1; Second row: ↵true = 3.

approximation ẐK
n (↵) with K = 104 and 108, then comparing the results with those

based on the exact Zn(↵). In each case, we run the MCMC for 106 iterations, with 105

iterations for burn-in, and updated ↵ at every 10th update of ⇢. Finally, we varied the

prior for ↵ to be either the nonintegrable uniform or the exponential using hyperparameter

values � = 0.1, 1 and 10. The results are shown in Figure 2.4 for ↵ and Figure 2.5 for ⇢. As

expected, we can see the precision and the accuracy of the marginal posterior distributions

increasing, both for ↵ and ⇢, with N becoming larger. For smaller values of ↵true, the

marginal posterior for ↵ is more dispersed, and ⇢ is stochastically farther from ⇢true. These

results are remarkably stable against varying choices of the prior for ↵, even when the

quite strong exponential prior with � = 10 was used (with one exception: in the case of

N = 20 the rather dispersed data generated by ↵true = 1 were not su�cient to overcome

the control of the exponential prior with � = 10, which favored even smaller values of ↵;

see Figure 2.4, top panels). Finally, and most importantly, we see that inference on both

↵ and ⇢ is completely una↵ected by the approximation of Zn(↵) already when K = 104.

In a second experiment we generated data using n = 50 items, N = 50 or 500 assessors,

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.
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Figure 2.5: Results of the simulations described in Section 2.2.2, when n = 20. In each plot is
represented the posterior CDF of d(⇢,⇢true) obtained for various choices of N (di↵erent colors),
and for di↵erent choices of the prior for ↵ (di↵erent line types), as stated in the legend. From left
to right, MCMC run with the exact Zn(↵), with the IS approximation ẐK

n (↵) with K = 108, and
with the IS approximation ẐK

n (↵) with K = 104. First row: ↵true = 1; Second row: ↵true = 3.

and scale parameter ↵true = 1 or 5. This increase in the value of n gave us some basis for

comparing the results obtained by using the IS approximation of Zn(↵) with those from

the asymptotic approximation Zlim(↵) of Mukherjee (2016), while still retaining also the

possibility of using the exact Zn(↵). For the analysis, all the previous MCMC settings were

kept, except for the prior for ↵: since results from n = 20 turned out to be independent

of the choice of the prior, here we used the same exponential prior with � = 0.1 in all

comparisons, as suggested in Section 2.1.1. The results are shown in Figures 2.6 and 2.7.

Again, we observe substantially more accurate results for larger values of N and ↵true.

Concerning the impact of approximations to Zn(↵), we notice that, even in this case,

the marginal posterior of ⇢ appears completely una↵ected by the partition function not

being exact (see Figure 2.6, right panels, and Figure 2.7). In the marginal posterior for

↵ (Figure 2.6, left panels), there are no di↵erences between using the IS approximations

and the exact, but there is a di↵erence between Zlim and the other approximations: Zlim

appears to be systematically slightly worse.

Finally, we generated data from the Mallows model with n = 100 items, N = 100

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.
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Figure 2.6: Results of the simulations described in Section 2.2.2, when n = 50. Left, posterior
density of ↵ (the black vertical line indicates ↵true) obtained for various choices of N (di↵erent
colors), and when using the exact, or di↵erent approximations to the partition function (di↵erent
line types), as stated in the legend. Right, posterior CDF of d(⇢,⇢true) in the same settings.
First row: ↵true = 1; Second row: ↵true = 5.

or 1000 assessors, and using ↵true = 5 or 10. Because of this large value of n we were

no longer able to compute the exact Zn(↵), hence we only compared results from the

di↵erent approximations. We kept the same MCMC settings as for n = 50, both in

data generation and analysis. The results are shown in Figures 2.8 and 2.9. Also in this

case, we observe substantially more accurate estimates with larger values of N and ↵true,

establishing an overall stable performance of the method. Here, using the small number

K = 104 of samples in the IS approximation has virtually no e↵ect on accuracy of the

marginal posterior for ↵, while a small e↵ect can be detected from using the asymptotic

approximation (Figure 2.8, left panels). However, again, the marginal posterior for ⇢

appears completely una↵ected by the considered approximations in the partition function

(Figure 2.8, right panels, and Figure 2.9).

In conclusion, the main results, from the perspective of practical applications, are (1)

the relative lack of sensitivity of the posterior inferences to the specification of the prior

for the scale parameter ↵, and (2) the robustness of the marginal posterior inference on

⇢ on the choice of the approximation of the partition function Zn(↵). Point (1) was
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Figure 2.7: Results of the simulations described in Section 2.2.2, when n = 50 and ↵true = 5.
In the x-axis items are ordered according to the true consensus ⇢true. Each column j represents
the posterior marginal density of item j in the consensus ⇢. Concentration along the diagonal
is a sign of success of inference. From left to right, results obtained with the exact Zn(↵), with
the IS approximation ẐK

n (↵) with K = 108, with the IS approximation ẐK
n (↵) with K = 104,

and with Zlim(↵). First row: N = 50; Second row: N = 500.

not an actual surprise, as it can be understood to be a consequence of the well-known

Bernstein-von Mises principle.

Observation (2) deserves a somewhat closer inspection.

The marginal posterior P (↵|R1:N), considered in Figures 2.4, 2.6 and 2.8, is obtained

from the joint posterior (2.2) by simple summation over ⇢, then getting the expression

P (↵|R1:N) =
⇡(↵)

[Zn(↵)]N
C(↵;R1:N), (2.13)

where C(↵;R1:N) =
P

⇢2P
n

⇡(⇢) exp
h

�↵
n

PN
j=1 d(Rj,⇢)

i

is the required normalization.

For a proper understanding of the structure of the joint posterior and its modification

(2.10), it is helpful to first factorize (2.2) into the product

P (↵,⇢|R1:N) = P (↵|R1:N)P (⇢|↵,R1:N), (2.14)
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Figure 2.8: Results of the simulations described in Section 2.2.2, when n = 100. Left, posterior
density of ↵ (the black vertical line indicates ↵true) obtained for various choices of N (di↵erent
colors), and when using di↵erent approximations to the partition function (di↵erent line types),
as stated in the legend. Right, posterior CDF of d(⇢,⇢true) in the same settings. First row:
↵true = 5; Second row: ↵true = 10.
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Figure 2.9: Results of the simulations described in Section 2.2.2, when n = 100 and ↵true = 5.
In each heatplot, posterior marginal distribution of ⇢. From left to right, results obtained with
the IS approximation ẐK

n (↵) with K = 108, with the IS approximation ẐK
n (↵) with K = 104,

and with Zlim(↵). First row: N = 100; Second row: N = 1000.
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where then

P (⇢|↵,R1:N) = [C(↵;R1:N)]
�1⇡(⇢) exp

"

�↵
n

N
X

j=1

d(Rj,⇢)

#

. (2.15)

The joint posterior (2.10), which arises from replacing the partition function Zn(↵) by its

approximation Ẑn(↵), can be similarly expressed as the product

P̂ (↵,⇢|R1:N) = P̂ (↵|R1:N)P (⇢|↵,R1:N), (2.16)

where

P̂ (↵|R1:N) = [Ĉ(R1:N)]
�1
h

Zn(↵)/Ẑn(↵)
iN

P (↵|R1:N). (2.17)

This requires that the normalizing factor Ĉ(R1:N) already introduced in (2.10), and here

expressed as

Ĉ(R1:N) ⌘
Z

h

Zn(↵)/Ẑn(↵)
iN

P (↵|R1:N)d↵, (2.18)

is finite. By comparing (2.14) and (2.16) we see that, under this condition, the posterior

P̂ (↵,⇢|R1:N) arises from P (↵,⇢|R1:N) by changing the expression (2.13) of the marginal

posterior for ↵ into (2.17), while the conditional posterior P (⇢|↵,R1:N) for ⇢, given ↵,

remains the same in both cases. Thus, the marginal posteriors P (⇢|R1:N) and P̂ (⇢|R1:N)

for ⇢ arise as mixtures of the same conditional posterior P (⇢|↵,R1:N) with respect to two

di↵erent mixing distributions, P (↵|R1:N) and P̂ (↵|R1:N).

It is obvious from (2.17) and (2.18) that P̂ (↵|R1:N) = P (↵|R1:N) would hold if

the ratio Zn(↵)/Ẑn(↵) would be constant in ↵, and this would also entail the exact

equality P̂ (⇢|R1:N) = P (⇢|R1:N). It was established in (2.11) that, in the IS scheme,

Zn(↵)/Ẑn(↵) ! 1 as K ! 1. Thus, for large enough K,
h

Zn(↵)/Ẑn(↵)
iN

⇡ 1 holds as

an approximation (see Proposition 4). Importantly, however, (2.17) shows that the ap-

proximation is only required to hold well on the e↵ective support of P (↵|R1:N), and this

support is narrow whenN is large. This is evident from Figures 2.4, 2.6 (left) and 2.8 (left).

On this support, because of uniform continuity in ↵, also the integrand P (⇢|↵,R1:N) in

(2.15) remains nearly a constant. In fact, experiments (results not shown) performed by

varying ↵ over a much wider range of fixed values, while keeping the same R1:N , gave

remarkably stable results for the conditional posterior P (⇢|↵,R1:N). This contributes to

the high degree of robustness in the posterior inference on ⇢, making requirements of
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using large values of K much less stringent.

In Figures 2.5 - 2.9 we consider and compare the marginal posterior CDF’s of the

distance d(⇢,⇢true) under the schemes P (·|R1:N) and P̂ (·|R1:N).

Using the shorthand d⇤ = d(⇢,⇢true), let

Fd⇤(x|↵,R1:N) ⌘ P (d(⇢,⇢true)  x|↵,R1:N) =
X

{⇢:d(⇢,⇢true)x}

P (⇢|↵,R1:N),

Fd⇤(x|R1:N) ⌘
X

{⇢:d(⇢,⇢true)x}

P (⇢|R1:N) =

Z

Fd⇤(x|↵,R1:N)P (↵|R1:N)d↵, (2.19)

F̂d⇤(x|R1:N) ⌘
X

{⇢:d(⇢,⇢true)x}

P̂ (⇢|R1:N) =

Z

Fd⇤(x|↵,R1:N)P̂ (↵|R1:N)d↵.

For example, in Figure 2.5 we display, for di↵erent priors, the CDF’s Fd⇤(x|R1:N) on

the left, and F̂d⇤(x|R1:N) in the middle and on the right, corresponding to two di↵erent

IS approximations of the partition function. Like the marginal posteriors P (⇢|R1:N)

and P̂ (⇢|R1:N) above, Fd⇤(x|R1:N) and F̂d⇤(x|R1:N) can be thought of as mixtures of the

same function, here Fd⇤(x|↵,R1:N), but with respect to two di↵erent mixing distributions,

P (↵|R1:N) and P̂ (↵|R1:N). The same arguments, which were used above in support of

the robustness of the posterior inference on ⇢, apply here as well. Extensive empirical

evidence for their justification is provided in Figures 2.5-2.9.

Finally note that these arguments also strengthen considerably our earlier conclusion

of the lack of sensitivity of the posterior inference on ⇢ to the specification of the prior

for ↵. For this, we only need to consider alternative priors, say, ⇡(↵) and ⇡̂(↵), mutatis

mutandis in place of the mixing distributions P (↵|R1:N) and P̂ (↵|R1:N).

2.2.3 Comparisons with other methods

The procedure we propose is Bayesian, and one of its strengths is its ability to quantify

the uncertainty related the parameter estimates and predictions. In order to compare our

results with the ones obtained by other methods which provide only point estimates, we

need to summarize the posterior density of the model parameters into a single point esti-

mate, for example MAP, mode, mean, cumulative probability consensus. The cumulative

probability (CP) consensus ranking is the ranking arising from the following sequential

scheme: first select the item which has the maximum a posteriori marginal probability of

being ranked 1st; then the item which has the maximum a posteriori marginal posterior
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probability of being ranked 1st or 2nd among the remaining ones, etc. The CP consensus

can then be seen as a sequential MAP. We generated the data from the Mallows model

(for details refer to Appendix 2.B) with Kendall distance, since this is the unique distance

handled by all the considered competitors based on the Mallows model. We compare our

procedure (here denoted by BayesMallows) with the following methods:

- PerMallows (Irurozki et al. 2016a): MLE of the Mallows and the Generalized Mal-

lows models, with some right-invariant distance functions, but not footrule nor

Spearman.

- rankcluster (Jacques et al. 2014): Inference for the Insertion Sorting Rank (ISR)

model.

- RankAggreg (Pihur et al. 2009): Rank aggregation via several di↵erent algorithms.

Here we use the Cross-Entropy Monte Carlo algorithm.

- Borda count (de Borda 1781): Easy and classic way to aggregate ranks. Basically

equivalent to the average rank method, thus not a probabilistic approach.

The results of the comparisons are shown in Table 2.4. The BayesMallows estimates

are obtained through Algorithm 1 of Appendix 2.A, with the available exact partition

function corresponding to Kendall distance, and for 105 iterations (after a burn-in of

104 iterations). All quantities shown are averages over 50 independent repetitions of the

whole simulation experiment. ↵̂ is the posterior mean (for BayesMallows) or the MLE

(for PerMallows), while ⇡̂ is the MLE estimate of the dispersion parameter of ISR (for

rankcluster). ⇢̂ is the consensus ranking estimated by the di↵erent procedures. For

BayesMallows (CP) it is given by the CP consensus, while for BayesMallows (MAP)

it is given by the MAP. We compare the goodness of fit of the methods by evaluat-

ing two quantities: first, the normalized Kendall distance between the estimated con-

sensus ranking and the true one, used to generate the data, dnK(⇢̂,⇢true). Second, the

average Kendall distance between the data points and the estimated consensus ranking,

T (⇢̂, R1:N) =
1
N

PN
j=1 dK(⇢̂,Rj). This quantity makes sense here, being independent on

the likelihood assumed by the di↵erent models.

The first remark about the results in Table 2.4 is the clear improvement of the perfor-

mance in terms of dnK(⇢̂,⇢true), of all the methods, for increasing ↵. This obvious result is

a consequence of the easier task of rank aggregation when the assessors are more concen-

trated around the consensus. Because the data were generated with the same model which
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↵true method ↵̂ or ⇡̂ dnK(⇢̂,⇢true) T (⇢̂, R1:N )

1

BayesMallows (CP)
1.01 (0.22)

0.53 (0.26) 19.07 (0.54)
BayesMallows (MAP) 0.57 (0.31) 19.07 (0.56)
PerMallows 1.10 (0.19) 0.54 (0.26) 19.12 (0.56)
rankcluster 0.60 (0.02) 0.86 (0.34) 19.4 (0.58)
RankAggreg n.a. 0.66 (0.27) 19.25 (0.58)
Borda n.a. 0.54 (0.27) 19.12 (0.56)

2

BayesMallows (CP)
2.05 (0.18)

0.17 (0.12) 16.29 (0.47)
BayesMallows (MAP) 0.18 (0.13) 16.28 (0.47)
PerMallows 2.07 (0.17) 0.23 (0.13) 16.33 (0.46)
rankcluster 0.66 (0.02) 0.37 (0.22) 16.52 (0.54)
RankAggreg n.a. 0.29 (0.14) 16.41 (0.49)
Borda n.a. 0.23 (0.14) 16.33 (0.46)

3

BayesMallows (CP)
3.02 (0.07)

0.06 (0.08) 13.88 (0.5)
BayesMallows (MAP) 0.07 (0.09) 13.87 (0.5)
PerMallows 3.02 (0.21) 0.09 (0.08) 13.9 (0.51)
rankcluster 0.72 (0.01) 0.15 (0.11) 13.96 (0.49)
RankAggreg n.a. 0.14 (0.11) 13.94 (0.52)
Borda n.a. 0.09 (0.08) 13.91 (0.51)

4

BayesMallows (CP)
3.96 (0.20)

0.02 (0.05) 11.83 (0.41)
BayesMallows (MAP) 0.02 (0.04) 11.83 (0.41)
PerMallows 3.95 (0.20) 0.03 (0.05) 11.85 (0.4)
rankcluster 0.76 (0.01) 0.08 (0.08) 11.9 (0.44)
RankAggreg n.a. 0.06 (0.05) 11.87 (0.42)
Borda n.a. 0.03 (0.05) 11.85 (0.4)

Table 2.4: Results of the simulations. ↵̂, refers to the posterior mean (row: BayesMallows) or
to MLE (row: PerMallows). ⇡̂ is the dispersion parameter of ISR. ⇢̂ is the consensus ranking esti-
mated by the di↵erent procedures: MAP (row: BayesMallows (MAP)), CP (row: BayesMallows
(CP)), MLE (row: PerMallows and rankcluster), point estimate (row: RankAggreg and
Borda). In parenthesis is reported the standard deviation. Parameters setting: N = 100,
n = 10.

BayesMallows and PerMallows used for inference, we expected that the Mallows-based

methods would perform better than the rank aggregation methods we considered. The

results of Table 2.4 confirm this claim: BayesMallows and PerMallows outperform the

other rank aggregation methods, with the exception of Borda count, which gives the same

results as PerMallows. This is not surprising, since the PerMallows MLE of the consen-

sus is approximated though the Borda algorithm. Moreover, when the summary of the

Bayesian posterior is the CP consensus, the performance of BayesMallows, both in terms

of dnK(⇢̂,⇢true) and T (⇢̂, R1:N), was better than the others. This is another advantage

of our approach on the competitors: being the output a full posterior distribution of the

consensus, we can select any strategy to summarize it, possibly driven by the application
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at hand. To conclude, our approach gives slightly better results than the other existing

methods, and in the worst cases the performance is still equivalent. In Section 2.4 we

will compare inferential results on real data, not necessarily generated from the Mallows

model.

2.3 Extensions to partial rankings and heterogeneous

assessors

We now relax two assumptions of the previous section, namely that each assessor ranks

all n items and that the assessors are homogeneous, all sharing a common consensus

ranking. This allows us to treat the important situation of pairwise comparisons, and of

multiple classes of assessors, as incomplete data cases, within the same Bayesian Mallows

framework.

2.3.1 Ranking of the top ranked items

Often only a subset of the items is ranked: ranks can be missing at random, the assessors

may only have ranked the, in-their-opinion, top-k items, or can be presented with a

subset of items that they have to rank. These situations can be handled conveniently in

our Bayesian framework, by applying data augmentation techniques (Tanner and Wong

1987). In this section we discuss the top-k ranking, but the algorithm can easily be

generalized to the other cases mentioned.

Suppose that each assessor j has ranked the subset of items Aj ✓ {A1, A2, . . . , An},
giving them top ranks from 1 to nj = |Aj|. Let Rij = X

�1
j (Ai) if Ai 2 Aj, while

for Ai 2 Ac
j, Rij is unknown, except for the constraint Rij > nj, j = 1, . . . , N . We

define augmented data vectors R̃1, . . . , R̃N by assigning ranks to these non-ranked items

randomly, using an MCMC algorithm, and do this in a way which is compatible with the

rest of the data. Let Sj = {R̃j 2 Pn : R̃ij = X

�1
j (Ai) if Ai 2 Aj}, j = 1, . . . , N , be

the set of possible augmented random vectors, that is the original partially ranked items

together with the allowable “fill-ins” of the missing ranks. Our goal is to sample from the

posterior distribution

P (↵,⇢|R1, . . . ,RN) =
X

R̃12S1

· · ·
X

R̃
N

2S
N

P
⇣

↵,⇢, R̃1, . . . , R̃N |R1, . . . ,RN

⌘

.
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Our MCMC algorithm alternates between sampling the augmented ranks given the current

values of ↵ and ⇢, and sampling ↵ and ⇢ given the current values of the augmented ranks.

For the latter, we sample from the posterior P (↵,⇢|R̃1, . . . , R̃N) as in Section 2.1.3. For

the former, fixing ↵ and ⇢ and the observed ranksR1, . . . ,RN , we see that R̃1, . . . , R̃N are

conditionally independent, and moreover, that each R̃j only depends on the corresponding

Rj. This enables us to consider the sampling of new augmented vectors R̃

0
j separately

for each j, j = 1, . . . , N . Specifically, given the current R̃j (which embeds information

contained in Rj) and the current values for ↵ and ⇢, R̃0j is sampled in Sj from a uniform

proposal distribution, meaning that the highest ranks from 1 to nj have been reserved

for the items in Aj, while compatible ranks are randomly drawn for items in Ac
j. The

proposed R̃

0
j is then accepted with probability min{1, ⌘R

j

}, where

⌘R
j

= exp
h

�↵
n

⇣

d(R̃0j, ⇢)� d(R̃j, ⇢)
⌘i

. (2.20)

The MCMC scheme described above and used in the case of partial rankings is sketched

as Algorithm 3 of Appendix 2.A.

E↵ects of unranked items on the consensus ranking

In applications in which the number of items is large there are often items which none of

the assessors included in their top-list. What is the exact role of such “left-over” items

in the top-k consensus ranking of all items? Can we ignore such “left-over” items and

consider only the items explicitly ranked by at least one assessor? In the following we

first show that only items explicitly ranked by the assessors appear in top positions of the

consensus ranking. We then show that, when considering the MAP consensus ranking,

excluding the left-over items from the ranking procedure already at the start has no e↵ect

on how the remaining ones will appear in such consensus ranking.

For a precise statement of these results, we need some new notation. Suppose that

assessor j has ranked a subset Aj of nj items. Let A =
S

j=1,...,N Aj, and denote n =

|A|. Let n⇤ be the total number of items, including left-over items which have not been

explicitly ranked by any assessor. Denote by A⇤ = {Ai; i = 1, . . . , n⇤} the collection of

all items, and by Ac = A⇤ \ A the left-over items. Each rank vector Rj for assessor j

contains, in some order, the ranks from 1 to nj given to items in Aj. In the original data

the ranks of all remaining items are left unspecified, apart from the fact that implicitly,
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for assessor j, they would have values which are at least as large as nj + 1.

The results below are formulated in terms of the two di↵erent modes of analysis,

which we need to compare and which correspond to di↵erent numbers of items being

included. The first alternative is to include in the analysis the complete set A⇤ of n⇤

items, and to complement each data vector Rj by assigning (originally missing) ranks to

all items which are not included in Aj; their ranks will then form some permutation of

the sequence (nj + 1, . . . , n⇤). We call this mode of analysis full analysis, and denote the

corresponding probability measure by Pn⇤ . The second alternative is to include in the

analysis only the items which have been explicitly ranked by at least one assessor, that

is, items belonging to the set A. We call this second mode restricted analysis, and denote

the corresponding probability measure by Pn. The probability measure Pn is specified as

before, including the uniform prior on the consensus ranking ⇢ across all n! permutations

of (1, 2, . . . , n), and the uniform prior of the unspecified ranks Rij of items Ai 2 Ac
j across

the permutations of (nj + 1, . . . , n). The definition of Pn⇤ is similar, except that then the

uniform prior distributions are assumed to hold in the complete set A⇤ of items, that

is, over permutations of (1, 2, . . . , n⇤) and (nj + 1, . . . , n⇤), respectively. In the posterior

inference carried out in both modes of analysis, the augmented ranks, which were not

recorded in the original data, are treated as random variables, with values being updated

as part of the MCMC sampling.

Proposition 5. Consider two latent consensus rank vectors ⇢ and ⇢0 such that

(i) in the ranking ⇢ all items in A have been included among the top-n-ranked, while

those in Ac have been assigned ranks between n+ 1 and n⇤,

(ii) ⇢0 is obtained from ⇢ by a permutation, where the rank in ⇢ of at least one item

belonging to A has been transposed with the rank of an item in Ac.

Then, Pn⇤(⇢|data) � Pn⇤(⇢0|data), for the footrule, Kendall and Spearman distances in

the full analysis mode.

Proof. Having assumed the uniform prior across all permutations of latent consensus

ranks, the desired result will hold if and only if
PN

j= d(Rj,⇢) 
PN

j=1 d(Rj,⇢
0). This

is true if d(Rj,⇢)  d(Rj,⇢
0) holds separately for each assessor j, for j = 1, . . . , N. We

consider first the footrule distance d, and then show that the result holds also for the

Kendall and Spearman distances. This proof follows Proposition 4 in Meilǎ and Bao
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(2010).

Suppose first, for simplicity, that all assessors have ranked the same n items, that is,

A1 = A2 = . . . = AN = A. Later we allow the sets Aj of ranked items to be di↵erent

for di↵erent assessors. Thus there are n⇤ � n items, which nobody ranked in the original

data.

We now introduce synthetic rankings for all these items as well, that is, we augment each

Rj as recorded in the data by replacing the missing ranks of the items Ai 2 Ac by some

permutation of their possible ranks from n + 1 to n⇤. We then show that the desired

inequality holds regardless of how these ranks {Rij, Ai 2 Ac} were assigned. The proof is

by induction, and it is carried out in several steps.

For the first step, let ⇢ be a rank vector were the ranks from 1 to n, in any order, have

been assigned to the items in A, and the ranks Rij between n + 1 and n⇤ are given to

items in Ac. Let ⇢0 be a rank vector obtained from ⇢ by a transposition of the ranks of

two items, say, of Ai0 2 Ac and Ai1 2 A, with ⇢i0 = ⇢0i1 � n+1 and ⇢i1 = ⇢0i0  n. Fixing

these two items, we want to show that d(Rj,⇢)  d(Rj,⇢
0). For the footrule distance we

have to show that
Pn

i=1 |Rij � ⇢i| 
Pn

i=1 |Rij � ⇢0i|. Since ⇢ and ⇢0 coincide for all their

coordinates i 6= i0, i1, it is enough to compare here the terms |Ri0j � ⇢i0 | and |Ri1j � ⇢i1 |
on the left to the corresponding terms |Ri0j � ⇢0i0 | and |Ri1j � ⇢0i1 | on the right. We need

to distinguish between two situations:

(i) Suppose Ri1j  ⇢i1 . Then, ⇢
0
i1
� Ri1j > ⇢i1 � Ri1j. On the other hand, ⇢i0 � n + 1

implies that Ai0 2 Ac, and it is therefore ranked by assessor j with Ri0j � n + 1.

Therefore, |Ri0j � ⇢0i0 | � |Ri0j � ⇢i0 |. By combining these two results we get that

|Ri0j � ⇢i0 |+ |Ri1j � ⇢i1 |  |Ri0j � ⇢0i0 |+ |Ri1j � ⇢0i1 |.

(ii) Now, suppose that Ri1j > ⇢i1 . Then, Ri1j�⇢i1  n�⇢i1  Ri0j�⇢0i0 . Moreover, since

|Ri0j�⇢i0 |  |Ri1j�⇢i0 | = |Ri1j�⇢0i1 |, we have that again |Ri0j�⇢i0 |+ |Ri1j�⇢i1 | 
|Ri0j � ⇢0i0 |+ |Ri1j � ⇢0i1 | holds.

The same reasoning holds also for the Kendall distance, since the Kendall distance between

the two rank vectors, which are obtained from each other by a transposition of a pair of

items, is the same as the footrule distance. For the Spearman distance, we only need to

form squares of the distance between pairs of items, and the inequality remains valid.

For the general step of the induction, suppose that ⇢ has been obtained from its original

version with all items in A ranked to the first n positions, via a sequence of transpositions
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between items originally inA and items originally in Ac. Let ⇢0 be a rank vector where one

more transposition of this type from ⇢ to ⇢0 has been carried out. Then the argument of

the proof can still be carried through, and the conclusion d(Rj,⇢)  d(Rj,⇢
0) holds. This

argument needs to be complemented by considering the uniform random permutations,

corresponding to the assumed prior of the ranks originally missing in the data, across

their possible values from n+1 to n⇤. But this is automatic, because the conclusion holds

separately for all permutations of such ranks.

Finally, the argument needs to be extended to the situation in which the sets Aj of

ranked items can be di↵erent for di↵erent assessors. In this case we are led to consider,

as a by-product of the data augmentation scheme, a joint distribution of the rank vectors

{R̃j; j = 1, . . . , N}. Here, for each j, the nj items which were ranked first have been fixed

by the data. The remaining n � nj items are assigned augmented random ranks with

values between nj + 1 and n, where the probabilities, corresponding to the model Pn⇤ ,

are determined by the inference from the assumed Mallows model and the data. The

conclusion remains valid regardless of the particular way in which the augmentation was

done, and so it holds also when taking an expectation with respect to Pn⇤ .

Remark. The above proposition says, in essence, that any consensus lists of top-n ranked

items, which contains one or more items with their ranks completely missing in the data

(that is, the item was not explicitly ranked by any of the assessors), can be improved

locally, in the sense of increasing the associated posterior probability with respect to Pn⇤ .

This happens by trading such an item in the top-n list against another, which had been

ranked but which had not yet been selected to the list. In particular, the MAP estimate(s)

for consensus ranking assign n highest ranks to explicitly ranked items in the data (which

corresponds to the result in Meilǎ and Bao 2010, for Kendall distance). The following

statement is an immediate implication of Proposition 5, following from a marginalization

with respect to Pn⇤ .

Corollary 1. Consider, for k  n, collections {Ai1 , Ai2 , . . . , Ai
k

} of k items and the

corresponding ranks {⇢i1 , ⇢i2 , . . . , ⇢i
k

}. In full analysis mode, the maximal posterior prob-

ability Pn⇤({⇢i1 , ⇢i2 , . . . , ⇢i
k

} = {1, 2, . . . , k}|data), is attained when

{Ai1 , Ai2 , . . . , Ai
k

} ⇢ A.

Another consequence of Proposition 5 is the coincidence of the MAP estimates under

the two probability measures Pn and Pn⇤ . For proving this result a further argument,
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which goes beyond Proposition 5, has to be made explicit.

Corollary 2. Denote by ⇢MAP⇤ the MAP estimate for the consensus ranking obtained in

a full analysis, ⇢MAP⇤ := argmax⇢2P
n

⇤ Pn⇤(⇢|data), and by ⇢MAP the MAP estimate for

the consensus ranking obtained in a restricted analysis, ⇢MAP := argmax⇢2P
n

Pn(⇢|data).
Then, ⇢MAP⇤|i:A

i

2A ⌘ ⇢MAP .

Proof. It follows from Proposition 5 that the n top ranks in ⇢MAP⇤ are all assigned to

items Ai 2 A. Therefore, using shorthand ⇢A = (⇢i;Ai 2 A) and ⇢Ac = (⇢i;Ai 2 Ac) we

see that ⇢MAP⇤ must be of the form ⇢

MAP⇤ = (⇢MAP⇤
A ,⇢MAP⇤

Ac

) = (⇡,⇡0), where ⇡ is a

permutation of the set (1, 2, . . . , n), and similarly ⇡0 is some permutation of (n+1, . . . , n⇤).

To prove the statement, we show the following: (i) the posterior probabilities Pn⇤(⇢A =

⇡,⇢Ac = ⇡

0|data) and Pn⇤(⇢A = ⇡|⇢Ac = ⇡

0, data) are invariant under permutations of

⇡

0, and (ii) the latter conditional probabilities Pn⇤(⇢A = ⇡|⇢Ac = ⇡0, data) coincide with

Pn(⇢A = ⇡|data). As a consequence, a list of top-n items obtained from the full analysis

estimate ⇢MAP⇤ qualifies also as the restricted analysis estimate ⇢MAP , and conversely,

⇢

MAP can be augmented with any permutation ⇡0 of (n + 1, . . . , n⇤) to jointly form

⇢

MAP⇤.

The first part of (i) follows by noticing that the likelihood in the full analysis, when

considering consensus rankings of the form ⇢ = (⇢A,⇢Ac) = (⇡,⇡0), only depends on

the observed data via ⇡. Since the assessors act independently, each imposing a uniform

prior on their unranked items, also the posterior Pn⇤(⇢A = ⇡,⇢Ac = ⇡0|data) will depend
only on ⇡. The second part follows from the first, either by direct conditioning in the

joint distribution, or by first computing the marginal Pn⇤(⇢Ac = ⇡0|data) by summation,

and then dividing. (ii) follows then because, for both posterior probabilities, the sample

space, the prior, and the likelihood are the same.

Remark. The above result is very useful in the context of applications, since it guarantees

that the top-n items in the MAP consensus ranking do not depend on which version of

the analysis is performed. Recall that a full analysis cannot always be carried out in

practice, due to the fact that left-over items might be unknown, or their number might

be too large for any realistic computation.
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2.3.2 Pairwise comparisons

In many situations, assessors compare pairs of items rather than ranking all or a subset

of items. We extend our Bayesian data augmentation scheme to handle such data. Our

approach is an alternative to Lu and Boutilier (2014), who treated preferences by applying

their Repeated Insertions Model (RIM). Our approach is simpler, it is fully integrated

into our Bayesian inferential framework, and it works with any right-invariant distance.

As an example of paired comparisons, assume assessor j stated the preferences Bj =

{A1 � A2, A2 � A5, A4 � A5}. Here Ar � As means that Ar is preferred to As, so that

Ar has a lower rank than As. Let Aj be the set of items constrained by assessor j, in this

case Aj = {A1, A2, A4, A5}. Di↵erently from Section 2.3.1, the items which have been

considered by each assessor are now not necessarily fixed to a given rank. Hence, in the

MCMC algorithm, we need to propose augmented ranks which obey the partial ordering

constraints given by each assessor, with the di�culty that none of the items is now fixed

to a given rank. Note that we can also handle the case when assessors give ties as a

result of some pairwise comparisons: in such a situation, each pair of items resulting in

a tie is randomized to a preference at each data augmentation step inside the MCMC,

thus correctly representing the uncertainty of the preference between the two items. None

of the experiments included in this chapter involve ties, thus this randomization is not

needed.

In this chapter we assume that the pairwise orderings in Bj are mutually compatible,

and define by tc(Bj) the transitive closure of Bj, that is, the smallest set that consistently

extends the original preference set. It is defined as the set union of Bj and all pairwise

preferences that are not explicitly given but are induced by Bj by transitivity. In the

example above, tc(Bj) = Bj [ {A1 � A5}. For the case of ordered subsets of items,

the transitive closure is simply the single set of pairwise preferences compatible with the

ordering, for example {A1 � A2 � A5} yields tc(Bj) = {A1 � A2, A2 � A5, A1 � A5}.
The R packages sets (Meyer and Hornik 2009) and relations (Hornik and Meyer 2014)

e�ciently compute the transitive closure.

The main idea of our method for handling such data remains the same as in Section

2.3.1, and the algorithm is the same as Algorithm 3. However, here a “modified” L-S

proposal distribution, rather than a uniform one, is used to sample augmented ranks

which are compatible with the partial ordering constraint. Suppose that, from the latest

step of the MCMC, we have a full augmented rank vector R̃j for assessor j, which is
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compatible with tc(Bj). Draw a random number u uniformly from {1, . . . , n}. If Au 2 Aj,

let lj = max{R̃kj : Ak 2 Aj, k 6= u, (Ak � Au) 2 tc(Bj)}, with the convention that lj = 0

if the set is empty, and rj = min{R̃kj : Ak 2 Aj, k 6= u, (Ak � Au) 2 tc(Bj)}, with the

convention that rj = n+ 1 if the set is empty. Now complete the leap step by drawing a

new proposal R̃0uj uniformly from the set {lj + 1, . . . , rj � 1}. Otherwise, if Au 2 Ac
j, we

complete the leap step by drawing R̃0uj uniformly from {1, . . . , n}. The shift step remains

unchanged. Note that this modified L-S is symmetric.

In Chapter 3 we will come back to the subject of this section, and provide more

mathematical details. We will then move to explaining a strategy to relax the assumption

of mutually compatible pair comparisons, that will be the main topic of that chapter.

2.3.3 Clustering assessors giving full rankings

So far we have assumed that there exists a unique consensus ranking shared by all as-

sessors. In many cases the assumption of homogeneity is unrealistic: the possibility of

clustering assessors into more homogeneous subsets, each sharing a consensus ranking of

the items, brings the model closer to reality. We then introduce a mixture of Mallows

models, able to handle heterogeneity. We here assume that the data consist of complete

rankings

Let z1, . . . , zN 2 {1, . . . , C} be the class labels indicating how individual users are

assigned to one of the C clusters. The assessments within each cluster c 2 {1, . . . , C}
are described by a Mallows model with parameters ↵c and ⇢c. Assuming conditional

independence given the Mallows parameters and the class labels, the augmented data

formulation of the likelihood for the observed rankings R1:N is given by

P (R1:N |⇢1:C ,↵1:C , z1:N) =
N
Y

j=1

1

Zn(↵z
j

)
exp

h

�↵z
j

n
d(Rj,⇢z

j

)
i

.

For the scale parameters, following Section 2.1.1, we assume the prior

⇡(↵1, . . . ,↵C) =



�

1� e�↵max

�C

e��
P

C

c=1 ↵c

C
Y

c=1

1[0,↵max)(↵c).

We further assume that the cluster labels are a priori conditionally independent given the
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mixing parameters of the clusters, ⌧1, ..., ⌧C , and distributed according to

P (z1, . . . , zN |⌧1, . . . , ⌧C) =
N
Y

j=1

⌧z
j

,

where ⌧c � 0, c = 1, . . . , C and
PC

c=1 ⌧c = 1. Finally ⌧1, . . . , ⌧C are assigned the standard

Dirichlet prior with parameter  , ⇡(⌧1, . . . , ⌧C) = �( C)�( )�C
QC

c=1 ⌧
 �1
c , where �(·)

denotes the gamma function.

The number of clusters C is often not known, and the selection of C can be based

on di↵erent criteria. Here we inspect the posterior distribution of the within-cluster

sum of distances of the observed ranks from the corresponding cluster consensus, ⇢c,

T (⇢1:C ,R1:N) =
PC

c=1

PN
j:z

j

=c d(Rj,⇢c) (see also Section 2.4.3). This approach is a

Bayesian version of the more classical within-cluster sum-of-squares criterion for model

selection, and we expect to observe an elbow when plotting T (⇢1:C ,R1:N) as a function

of C, driving the choice of the number of clusters.

Label switching is not explicitly handled inside our MCMC, to ensure full convergence

of the chain (Jasra et al. 2005, Celeux et al. 2000). MCMC iterations are re-ordered after

convergence is achieved, as in Papastamoulis (2015).

The MCMC algorithm alternates between sampling ⇢1, . . . ,⇢C and ↵1, . . . ,↵C in a M-H

step, and ⌧1, . . . , ⌧C and z1, . . . , zN in a Gibbs sampler step. The former step is straight-

forward, since (⇢c,↵c)c=1,...,C are conditionally independent given z1, . . . , zN . In the latter,

we exploit the fact that the Dirichlet prior for ⌧1, . . . , ⌧C is conjugate to the multinomial

conditional prior for z1, . . . , zN given ⌧1, . . . , ⌧C . Therefore in the Gibbs step for ⌧1, . . . , ⌧C ,

we sample from D( +n1, . . . , +nC), where D(·) denotes the Dirichlet distribution and

nc =
PN

j=1 1c(zj), c = 1, . . . , C. Finally, in the Gibbs step for zj, j = 1, . . . , N , we sample

from P (zj = c|⌧c,⇢c,↵c, Rj) / ⌧cP (Rj|⇢c,↵c) = ⌧cZn(↵c)�1 exp [�(↵c/n)d(Rj,⇢c)]. The

pseudo-code of the clustering algorithm is sketched in Algorithm 2 of Appendix 2.A.

2.3.4 Clustering assessors giving pairwise comparisons

It happens frequently in applications that the model extensions described in Sections

2.3.1, 2.3.2, and 2.3.3 occur jointly: the assessors only provide partial rankings or pair-

wise comparisons, and they cannot be assumed to form a sample from a homogeneous

population. For example, we can think of situations where internet users provide their
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preferences on some selected movies (see the data experiment described in Section 2.4.4).

It is straightforward to treat such complexities in our Bayesian Mallows model: Algo-

rithms 3 and 2 of Appendix 2.A can be simply merged by iterating between augmentation,

clustering, and ↵ and ⇢ updates.

We cluster the data using the same mixture approach described in Section 2.3.3.

However, assessors do not provide complete rankings R1, . . . ,RN , but they rather give

partial rankings described by the sets S1, . . . ,SN , or some preferences contained in the

sets B1, . . . ,BN . Hence, di↵erently from Algorithm 2, we here need to provide these sets

as input to the MCMC algorithm, as already sketched in Algorithm 3. Embedded in

the new algorithm, after the Gibbs step devoted to the updating of cluster assignments

z1, . . . , zN , we need to perform the updating of the augmented rankings R̃1, . . . , R̃N . For

each assessor j, j = 1, . . . , N, a new augmented rank vector R̃0j is proposed with the same

strategy used in Algorithm 3: we use the L-S distribution centered at R̃j, and subject to

the constraints given by either Sj or Bj.

The MCMC algorithm for clustering based on partial rankings or pairwise preferences

is sketched in Algorithm 4 of Appendix 2.A.

2.3.5 Example: preference prediction

Consider a situation in which the assessors have expressed their preferences on a collection

of items, by performing only partial rankings. Or, suppose that they have been asked to

respond to some queries containing di↵erent sets of pairwise comparisons. One may then

ask how the assessors would have ranked a subset of the items when such ranking could not

be concluded directly from the data they provided. Sometimes the interest is to predict

the assessors’ top preferences, accounting for the possibility that such top lists could

contain items which some assessors had not seen. Problems of this type are commonly

referred to as personalized ranking, or preference learning (Fürnkranz and Hüllermeier

2010), being a step towards personalized recommendation (see also Section 1.3). There is

a large and rapidly expanding literature describing a diversity of methods in this area.

Our framework, based on the Mallows model, and its estimation algorithms as de-

scribed in the previous sections, form a principled approach for handling such problems.

Assuming a certain degree of similarity in the individual preferences, and with di↵er-

ent assessors providing partly complementary information, it is natural to try to borrow

strength from such partial preference information from di↵erent assessors for forming a
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consensus. Expanding the model to include clusters allows handling heterogeneity that

may be present in the assessment data. The Bayesian estimation procedure provides then

the joint posterior distribution, expressed numerically in terms of the MCMC output

consisting of sampled values of all cluster membership indicators, zj, and of complete in-

dividual rankings, R̃j. For example, if assessor j did not compare A1 to A2, we might be

interested in computing P (A1 �j A2|data), the predictive probability that this assessor

would have preferred item A1 to item A2. This probability is then readily obtained from

the MCMC output, as a marginal of the posterior P (R̃j|data).

To illustrate how this is possible with our approach, we present a small simulated

experiment, where we considered heterogeneous assessors expressing some of their pairwise

preferences, and then wanted to predict the full individual latent ranking R̃j of all items,

for all j. For this, we generated pairwise preference data from a mixture of Mallows models

with footrule distance, using the procedure explained in Appendix 2.B. We generated the

data with N = 200, n = 15, C = 3, ↵1, ...,↵C = 4,  1, ..., C = 50, obtaining the true

R̃j,true for every assessor. Then, we assigned to each assessor j a di↵erent number, Tj ⇠
TruncPoiss(�T , Tmax), of pair comparisons, sampled from a truncated Poisson distribution

with �T = 20, denoting by Tmax = n(n � 1)/2 the total number of possible pairs from n

items. Each pair comparison was then ordered according to the true R̃j,true. The average

number of pairs per assessor was around 20, less than 20% of Tmax.

In the analysis, we ran Algorithm 4 of Appendix 2.A on these data, using the exact par-

tition function, for 105 iterations (of which 104 were for burn-in). Separate analyses were

performed for C 2 {1, . . . , 6}. Then, in order to inspect if our method correctly identified

the true number of clusters, we computed two quantities: a version of the within-cluster

sum of footrule distances introduced earlier, T (⇢1:C , R̃1:N) =
PC

c=1

P

j:z
j

=c d(R̃j,⇢c), here

computed with respect to the the estimated full rankings R̃1:N , and a within-cluster indi-

cator of mis-fit to the data,
PC

c=1

P

j:z
j

=c |{B 2 tc(Bj) : B not consistent with ⇢c}|, where
a pair comparison B 2 tc(Bj), B = (Ar � As) is not consistent with ⇢c if ⇢c,r > ⇢c,s. The

number of such non-consistent pairs in Bj gives an indication of the mis-fit of the j-th

assessor to its cluster. Notice that, while the latter measure takes into account the data

directly, the former is based on the augmented rankings R̃j only. Hence, the within-

cluster sum of footrule distances could be more sensitive to possible mis-specifications in

R̃j when the data are very sparse. Notice also that the second measure is a ‘modified’

version of the Kendall distance between the data and the cluster centers. The boxplots of
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the posterior distributions of these two quantities are shown in Figure 2.10: the two mea-

sures are very consistent in indicating a clear elbow at C = 3, thus correctly identifying

the value we used to generate the data.
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Figure 2.10: Results of the simulation in Section 2.3.5. Boxplots of the posterior distribution
of the within-cluster sum of footrule distances (left), and of the within-cluster indicator of mis-fit
to the data (right), for di↵erent choices of C.

We then studied the success rates of correctly predicting missing individual pairwise

preferences. A pairwise preference between items Ai1 and Ai2 was considered missing for

assessor j if it was not among the sampled pairwise comparisons included in the data

as either Ai1 �j,true Ai2 or Ai2 �j,true Ai1 , nor could such ordering be concluded from

the data indirectly by transitivity. Thus we computed, for all assessors j, the predictive

probabilities P (Ai1 �j Ai2 |data) for all pairs of items {Ai1 , Ai2} not ordered in tc(Bj).

The rule for practical prediction was to always bet on the ordering with the larger pre-

dictive probability of these two probabilities, then at least 0.5. Each resulting predictive

probability is a direct quantification of the uncertainty in making the bet: a value close

to 0.5 expresses a high degree of uncertainty, while a value close to 1 would signal greater

confidence in that the bet would turn out right. In the experiment, these bets were finally

compared to the orderings of the same pairs in the simulated true rankings R̃j,true. If they

matched, this was registered as a success, and if not, as a failure. In Figure 2.11 are shown

the barplots of the results from this experiment, expressed in terms of the frequency of

successes (red columns) and failures (blue columns), obtained by combining the outcomes

from all individual assessors. For this presentation, the predictive probabilities used for

betting were grouped into the respective intervals [0.50, 0.55], (0.55, 0.60], . . . , (0.95, 1.00]
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Figure 2.11: Results of the simulation in Section 2.3.5. Barplots of the frequency of successes
(red columns) and failures (blue columns) obtained fixing C = 1 (left), 3 (middle), and 5 (right),
for the data generated with �T = 20. For C = 1, 75% of all predictions were correct, for C = 3,
79.1%, and for C = 5, 79%.

on the horizontal axis, so that pair preferences become more di�cult to predict the more

one moves to the left, along the x-axis. On top of each column the percentage of successes,

or failures, of the corresponding bets is shown. For the results considered on the left, the

predictions were made without assuming a cluster structure (C = 1) in the analysis, in

the middle graph the same number (C = 3) of clusters was assumed in the analysis as

in the data generation, and on the right, we wanted to study whether assuming an even

larger number (C = 5) of clusters in the analysis might influence the performance of our

method for predicting missing preferences.

Two important conclusions can be made from the results of this experiment. First,

from comparing the three graphs, we can see that not assuming a cluster structure (C = 1)

in the data analysis led to an overall increased proportion of uncertain bets, in the sense

of being based on predictive probabilities closer to the 0.5 end of the horizontal axis,

than if either C = 3 or C = 5 was assumed. On the other hand, there is almost no

di↵erence between the graphs corresponding to C = 3 and C = 5. Thus, moderate

overfitting of clusters neither improved nor deteriorated the quality of the predictions

(this seems consistent with the very similar within-cluster distances in these two cases,

shown in Figure 2.10). A second, and more interesting, observation is that, in all three

cases considered, the predictive probabilities used for betting turned out to be empirically

very well calibrated (see, for example, Dawid 1982, Little 2011). For example, of the bets

based on predictive probabilities in the interval (0.70, 0.75], 74% were successful for C = 1,

73% when C = 3, and 75% when C = 5. By inspection, such correspondence can be seen
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to hold quite well on all intervals in all three graphs. That the same degree of empirical

calibration holds also when an incorrect number of clusters was fitted to the data as with

the correct one, signals a certain amount of robustness of this aspect towards variations

in the modeling.

We repeated the same experiment with �T = 10. This gives an average number of

pairs per assessor around 10% of Tmax. Results are displayed in Figure 2.12. Predictive

probabilities are still very well calibrated, but of course the quality of prediction is worse.

Nonetheless, for C = 3, 76.8% of all predictions were correct.
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Figure 2.12: Results of the simulation in Section 2.3.5. Barplots of the total numbers of
successes (red columns) and failures (blue columns) obtained fixing C = 1 (left), 3 (middle),
and 5 (right), for the data generated with �T = 10. For C = 1, 71% of all predictions was
correct, for C = 3, 76.8%, and for C = 5, 76.7%.

2.4 Experiments

In this section we illustrate the use of our Bayesian Mallows model in various situations

corresponding to di↵erent data structures. In Section 2.4.1 we consider a very sparse

dataset consisting of top-k rankings, and in Section 2.4.2 we illustrate the method on

a pairwise comparisons dataset, both without clusters. We then illustrate the mixture

model extension, both on complete rankings in Section 2.4.3, and on pairwise comparisons,

in Section 2.4.4.

2.4.1 Meta-analysis of di↵erential gene expression

Studies of di↵erential gene expression between two conditions produce lists of genes,

ranked according to their level of di↵erential expression as measured by, for example,
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p-values. There is often little overlap between gene lists found by independent studies

comparing the same condition. This situation raises the question of whether a consensus

top list over all available studies can be found.

We handle this situation in our Bayesian Mallows model for top-k rankings (Section

2.3.1). We consider each study j 2 {1, . . . , N} to be an assessor, providing a top-nj

list of di↵erentially expressed genes, which constitute the ranked items. This problem

was studied by DeConde et al. (2006), Deng et al. (2014), and Lin and Ding (2009),

who all used the same 5 studies comparing prostate cancer patients with healthy controls

(Dhanasekaran et al. 2001, Luo et al. 2001, Singh et al. 2002, True et al. 2006, Welsh

et al. 2001). We consider the same 5 studies, and we aim at estimating a consensus with

uncertainty. Data consist of the top-25 lists of genes from each study, in total 89 genes.

Here we perform a restricted analysis with nj = 25 for all j = 1, . . . , 5, and n = 89.

⇢ MAP P (⇢
i

 i) P (⇢
i

 10) P (⇢
i

 25)
1 HPN 0.58 0.72 0.84
2 AMACR 0.59 0.69 0.8
3 NME2 0.26 0.56 0.64
4 GDF15 0.32 0.67 0.79
5 FASN 0.61 0.65 0.76
6 SLC25A6 0.19 0.63 0.71
7 OACT2 0.61 0.63 0.71
8 UAP1 0.62 0.64 0.74
9 KRT18 0.6 0.61 0.72

10 EEF2 0.64 0.64 0.75
11 GRP58 0.13 0.07 0.61
12 NME1 0.68 0.15 0.79
13 STRA13 0.49 0.06 0.56
14 ALCAM 0.33 0.05 0.65
15 SND1 0.51 0.07 0.71
16 CANX 0.59 0.07 0.64
17 TMEM4 0.34 0.05 0.58
18 DAPK1 0.15 0.04 0.21
19 CCT2 0.59 0.05 0.62
20 MRPL3 0.36 0.06 0.6
21 MTHFD2 0.43 0.06 0.58
22 PPIB 0.51 0.06 0.57
23 SLC19A1 0.42 0.06 0.53
24 FMO5 0.58 0.05 0.59
25 TRAM1 0.14 0.04 0.14

Table 2.5: Top-25 genes in the MAP consensus ranking from a total of 89 genes. The cumulative
probability of each gene in the top-25 positions in the MAP of being in that position, or higher,
is shown in the third column of the table, P (⇢i  i). The probabilities of being among the
top-10 and top-25 are also shown for each gene.

We analyze the five gene lists with the Bayesian Mallows model for partial data (Sec-

tion 2.3.1), with footrule distance. We run 20 di↵erent chains, for a total of 107 iterations

(computing time was 160400), and discarded the first 5 · 104 iterations of each as burn-in.

For the partition function, we used the IS approximation ZK
n (↵) with K = 107, computed

o↵-line on a grid of ↵’s in (0, 40]. After some tuning, we set L = 40, �↵ = 0.95, � = 0.05
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Figure 2.13: Heatplot of the posterior probabilities, for 89 genes, for being ranked as the k�th
most preferred, for k = 1, ..., 89. On the x-axis the genes are ordered according to the estimated
CP consensus.

and ↵jump = 1.

In Figure 2.13 we report the heatplot of the marginal posterior probabilities, for the

89 genes (on the x-axis), for being ranked as the k�th most preferred, for k = 1, ..., 89

(on the y-axis). The genes are ordered according to the CP consensus.

Like DeConde et al. (2006), Deng et al. (2014), and Lin and Ding (2009), our method

ranked the genes HPN and AMACR first and second in the MAP consensus ranking.

The low value of the posterior mean of ↵, being 0.56 (mode 0.43, high posterior density

interval HPDI=(0.04, 1.29)), is an indicator of a generally low level of agreement between

the studies. In addition, the fact that n > N , and having partial data, both contribute

to keeping ↵ small. However, the posterior probability for each gene to be among the

top-10 or top-25 is not so low (see columns 4 and 5 of Table 2.5), thus demonstrating that

our approach can provide a valid criterion for consensus. In the hypothetical situation in

which we had included in our analysis all n⇤ genes following a full analysis mode, with

n⇤ being at least 7567, the largest number of genes included in in any of the five original

studies (DeConde et al. 2006), this would have had the e↵ect of making the posterior

probabilities in Table 2.5 smaller. On the other hand, because of Corollary 2 of Section

2.3.1, the ranking order obtained from such a hypothetical analysis based on all n⇤ genes

would remain the same as in Table 2.5.
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⇢ CE algorithm GA algorithm
1 HPN HPN
2 AMACR AMACR
3 FASN NME2
4 GDF15 0ACT2
5 NME2 GDF15
6 0ACT2 FASN
7 KRT18 KRT18
8 UAP1 SLC25A6
9 NME1 UAP1

10 EEF2 SND1
11 STRA13 EEF2
12 ALCAM NME1
13 GRP58 STRA13
14 CANX ALCAM
15 SND1 GRP58
16 SLC25A6 TMEM4
17 TMEM4 CCT2
18 PPIB FM05
19 CCT2 CANX
20 MRPL3 DYRK1A
21 MTHFD2 MTHFD2
22 SLC19A1 CALR
23 FM05 MRPL3
24 PRSS8 TRA1
25 NACA NACA

⇢ mean median geo.mean l2norm
1 HPN HPN HPN HPN
2 AMACR AMACR AMACR AMACR
3 GDF15 FASN FASN GDF15
4 FASN KRT18 GDF15 NME1
5 NME1 GDF15 NME2 FASN
6 KRT18 NME1 SLC25A6 KRT18
7 EEF2 EEF2 EEF2 EEF2
8 NME2 UAP1 0ACT2 NME2
9 0ACT2 CYP1B1 OGT UAP1

10 SLC25A6 ATF5 KRT18 0ACT2
11 UAP1 BRCA1 NME1 SLC25A6
12 CANX LGALS3 UAP1 STRA13
13 GRP58 MYC CYP1B1 CANX
14 STRA13 PCDHGC3 ATF5 GRP58
15 SND1 WT1 CBX3 SND1
16 OGT TFF3 SAT ALCAM
17 ALCAM MARCKS CANX TMEM4
18 CYP1B1 OS-9 BRCA1 MTHFD2
19 MTHFD2 CCND2 GRP58 MRPL3
20 ATF5 DYRK1A MTHFD2 PPIB
21 CBX3 TRAP1 STRA13 OGT
22 SAT FM05 LGALS3 CYP1B1
23 BRCA1 ZHX2 ANK3 SLC19A1
24 MRPL3 RPL36AL GUCY1A3 ATF5
25 LGALS3 ITPR3 LDHA CBX3

Table 2.6: Results given by the RankAggreg R package (left) and by the TopKLists R package
(right).

Next we compared the result shown in Table 2.5 with other approaches: Table 2.6

(left) reports results obtained with RankAggreg (Pihur et al. 2009), which targets meta-

analysis problems, while in Table 2.6 (right) di↵erent aggregation methods implemented

in TopKLists (Schimek et al. 2015) are considered. The results obtained via RankAggreg

turned out unstable, with the final output changing in every run, and the list shown in

Table 2.6 di↵ers from that in Pihur et al. (2009). Overall, apart from the genes ranked to

the top�2 places, there is still considerable variation in the exact rankings of the genes.

Rather than considering such exact rankings, however, it may in practice be of more

interest to see to what extent the same genes are shared between di↵erent top-k lists.

Here the results are more positive. For example, of the 10 genes on top of the MAP

consensus list of Table 2.5, always 9 genes turned out to be in common with each of the

lists of Table 2.6, with the exception of the median (column 3 of Table 2.6, right), where

only 7 genes are shared. Column 4 of Table 2.5 provides additional support to the MAP

selection of the top�10: all genes included in that list have posterior probability at least

0.56 for being among the top�10, while for those outside the list it is maximally 0.15.

In order to have a quantification of the quality of the di↵erent estimates, we compute

the footrule distance for partial data (Critchlow 2012, p. 30) between ⇢ and Rj, averaged
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over the assessors, defined as follows

Tpartial(⇢, R) =
1

N

N
X

j=1

n
X

i=1

|⌫R
ij

� ⌫⇢
i

|,

where ⌫⇢, ⌫R
j

2 Pn are equal to ⇢ and Rj in their top�nj ranks (top�25 in the case of

gene lists), while the rank n+n
j

+1
2 is assigned to the items whose rank in ⇢ and Rj is not

in their top�nj. Note that n+n
j

+1
2 (equal to 57.5 in this case) is the average of the ranks

of the excluded items. Table 2.7 reports the values of Tpartial for the various methods. We

notice that the minimum value is achieved by the Mallows MAP consensus list.

MAP CE GA mean median geo.mean l2norm

Tpartial(⇢, R) 12.56 12.67 12.98 13.52 15.26 14.05 13.04

Table 2.7: Values of the average footrule distance for partial data Tpartial between the partial
gene lists and the di↵erent estimated consensus rankings.

2.4.2 Beach preference data

Here we consider pair comparison data generated as follows: first we chose n = 15 images

of tropical beaches, shown in Figure 2.14, such that they di↵er in terms of presence of

building and people. For example, beach B9 depicts a very isolated scenery, while beach

B2 presents a large hotel seafront.

The pairwise preference data were collected as follows. Each assessor was shown a

sequence of 25 pairs of images, and asked on every pair the question: Which of the two

beaches would you prefer to go to in your next vacation?”. Each assessor was presented

with a random set of pairs, arranged in random order. As there are 105 possible pairs,

25 pairs is less than 25% of the total. We collected N = 60 answers. Seven assessors

did not answer to all questions, but we kept these responses as our method is able to

analyze also incomplete data. Nine assessors returned orderings which contained at least

one non-transitive pattern of comparisons. In this analysis we dropped the non-transitive

patterns from the data. Systematic methods for dealing with non-transitive ranking data

will be considered in Chapter 3, and in Section 3.4.1, we will come back to this dataset,

considering also the non-transitive patterns here dropped.

We analyze these data with the Mallows model for pairwise comparisons (Section

2.3.2), with footrule distance. Since the number of items is n = 15, we here make use the
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Figure 2.14: The 15 images used for producing the Beach dataset.

exact partition function (see Section 2.2.1). We run the MCMC (Algorithm 3 of Appendix

2.A) for 106 iterations, and discarded the first 105 iterations as burn-in. We set L = 2,

�↵ = 0.1, � = 0.1 and ↵jump = 100. Computing time was less than 20.

The posterior mean of ↵ was E(↵|data) = 3.38 (2.94, 3.82). In Table 2.8 we report

the consensus ranking of the beaches arranged according to the CP procedure. The 95%

HPDI for each item represents the posterior uncertainty. In column 3 is also reported the

cumulative probability of each image to be ranked in that position, or higher, P (⇢i  i).

⇢ CP P (⇢
i

 i) 95% HPDI
1 B9 0.81 (1,2)
2 B6 1 (1,2)
3 B3 0.83 (3,4)
4 B11 0.75 (3,5)
5 B15 0.68 (4,7)
6 B10 0.94 (4,7)
7 B1 1 (6,7)
8 B13 0.69 (8,10)
9 B5 0.55 (8,10)
10 B7 1 (8,10)
11 B8 0.41 (11,14)
12 B4 0.62 (11,14)
13 B14 0.81 (11,14)
14 B12 0.94 (12,15)
15 B2 1 (14,15)

Table 2.8: Results of the pair comparisons. Beaches arranged according to the CP consensus
ordering together with the corresponding 95% highest posterior density intervals.

In Table 2.9 we also report the consensus ranking obtained by two other methods,

for comparison. BT denotes the Bradley Terry ordering, obtained by ordering the score
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vectors µ1, ..., µn (see Section 1.1.2), as returned by the BradleyTerry2 R package (Firth

and Turner 2012); PR denotes the popular Google PageRank output (Brin and Page

1998) given by the igraph R package (Csardi and Nepusz 2006).

⇢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BT B6 B9 B3 B11 B10 B15 B1 B5 B7 B13 B4 B8 B14 B12 B2
PR B6 B9 B10 B15 B3 B1 B11 B13 B7 B5 B8 B12 B4 B14 B2

Table 2.9: Consensus ordering given by other methods: BT denotes the Bradley Terry ordering
as returned by the BradleyTerry2 R package; PR denotes the popular Google PageRank output
given by the igraph R package.

One advantage of our method is that it is designed to also estimate the latent full

rankings of each assessor. Figure 2.15 was obtained as follows: in the separate column

on the left, we display the posterior probability P (⇢Bi  3|data) that a given image Bi,

i = 1, ..., 15, was among the top-3 in the consensus ⇢. In the other columns we show, for

each beach Bi, the individual posterior probabilities P (R̃j,Bi  3|data), of being among

the top-3 for each assessor j, j = 1, ..., 60. We see for example that beach B5, which was

ranked only 9th in the consensus, had, for 4 assessors, posterior probability very close to

1 (as indicated by purple cells) of being included among their top-3 beaches.

Figure 2.15: Posterior probability, for each beach, of being ranked among the top-3 in ⇢
(column 1), and in Rj , j = 1, ..., 60 (next columns).

2.4.3 Sushi data

We illustrate clustering based on full rankings using the benchmark dataset of sushi

preferences collected across Japan (Kamishima 2003), see also Lu and Boutilier (2014).

N = 5000 people were interviewed, each giving a complete ranking of n = 10 sushi vari-

ants. Cultural di↵erences among Japanese regions influence food preferences, so we expect
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the assessors to be clustered according to di↵erent shared consensus rankings. We ana-

lyzed the sushi data using mixtures of Mallows models (Section 2.3.3) with the footrule

distance (with the exact partition function, see Section 2.2.1). We run the MCMC (Al-

gorithm 2 of Appendix 2.A) for 106 iterations, and discarded the first 105 iterations as

burn-in. After some tuning, we set L to its minimum value 1, �↵ = 0.1, � = 0.1 and

↵jump = 100. In the Dirichlet prior for ⌧ , we set the hyper-parameter  = N/C, thus

favoring high-entropy distributions. For each possible number of clusters C 2 {1, . . . , 10},
we used a thinned subset of MCMC samples to compute the posterior footrule distance

between ⇢c and the ranking of each assessor assigned to that cluster, T (⇢1:C ,R1:N), in-

troduced in Section 2.3.3. The posterior of this quantity, over all assessors and cluster

centers, was then used for choosing the appropriate value for C, see Figure 2.16. We

found an elbow at C = 6, which was then used to further inspect results.

Mallows model with footrule distance
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Figure 2.16: Results of the Sushi experiment. Boxplots of the posterior distributions of
the within-cluster sum of footrule distances of assessors’ ranks from the corresponding cluster
consensus for di↵erent choices of C (note the y-axis break, for better visualization).

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6
⌧c 0.243 (0.23,0.26) 0.131 (0.12,0.14) 0.107 (0.1,0.11) 0.117 (0.11,0.12) 0.121 (0.11,0.13) 0.278 (0.27,0.29)
↵c 3.62 (3.52,3.75) 2.55 (2.35,2.71) 3.8 (3.42,4.06) 4.02 (3.78,4.26) 4.46 (4.25,4.68) 1.86 (1.77,1.94)
1 fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
2 sea urchin sea eel fatty tuna salmon roe tuna tuna
3 salmon roe egg shrimp tuna tuna roll sea eel
4 sea eel squid tuna tuna roll shrimp shrimp
5 tuna cucumber roll squid shrimp squid salmon roe
6 shrimp tuna tuna roll egg sea eel tuna roll
7 squid tuna roll salmon roe squid egg squid
8 tuna roll fatty tuna cucumber roll cucumber roll cucumber roll sea urchin
9 egg salmon roe egg sea eel salmon roe egg

10 cucumber roll sea urchin sea eel sea urchin sea urchin cucumber roll

Table 2.10: Results of the Sushi experiment when setting C = 6. Sushi items arranged
according to the MAP consensus ranking found from the posterior distribution of ⇢c, c = 1, . . . , 6.
At the top of the table, corresponding MAP estimates for ⌧ and ↵, with 95% HPDIs (in
parenthesis). Results are based on 106 MCMC iterations.
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Table 2.10 shows the results when the number of clusters is set to C = 6: for each

cluster, the MAP estimates for ⌧ and ↵, together with their 95% HPDIs, are shown on

the top of the Table. Table 2.10 also shows the sushi items, arranged in cluster-specific

lists according to the MAP consensus ordering (in this case equal to the CP consensus).

Our results can be compared with the ones in Lu and Boutilier (2014) (reported in Table

1 of their section 5.3.2): the correspondence of the clusters could be 1-4, 2-1,3-2,4-5,5-4,6-

0. Note that the dispersion parameter ↵ in our Bayesian Mallows model is connected to

the dispersion parameter � in Lu and Boutilier (2014) by the link ↵ = �n ln(�). Hence,

we can also observe that the cluster-specific ↵ values reported in Table 2.10 are quite

comparable to the dispersion parameters of Lu and Boutilier (2014).

We investigate the stability of the clustering in Figure 2.17, which shows the heatplot

of the posterior probabilities, for all 5000 assessors (on the x-axis), of being assigned

to each of the 6 clusters in Table 2.10 (clusters c = 1, . . . , 6 from bottom to top in

Figure 2.17): most of these individual probabilities were concentrated on some particular

preferred value of c among the six possibilities, indicating a reasonably stable behavior in

the cluster assignments.
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Figure 2.17: Heatplot of posterior probabilities for all 5000 assessors (on the x-axis) of being
assigned to each cluster (c = 1, . . . , 6 from bottom to top).

In a second moment, we tried to compare the performance of our model with the one

given by the rankcluster R package, in terms of T (⇢1:C ,R1:N). However the method had

di�culties in converging, probably because of the high dimensionality of the data. We then

compared the results with the rankdist R package that implements the Mallows model

with Kendall distance. Since the main function does not return the cluster assignments,

we could not compute T (⇢1:C ,R1:N). We then only compare the results in terms of the
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estimated cluster consensuses, reported in Table 2.11: note that there is good agreement

with our MAP consensus lists in Table 2.10, and the correspondence BayesMallows-

rankdist could be 1-3, 2-5, 3-6, 4-4, 5-2, 6-1.

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6
1 fatty tuna fatty tuna fatty tuna fatty tuna shrimp fatty tuna
2 salmon roe tuna sea urchin tuna sea eel sea eel
3 tuna tuna roll salmon roe salmon roe squid sea urchin
4 shrimp shrimp tuna shrimp egg tuna
5 tuna roll squid shrimp sea urchin fatty tuna salmon roe
6 squid sea eel sea eel tuna roll tuna shrimp
7 sea eel egg squid squid tuna roll tuna roll
8 egg cucumber roll tuna roll sea eel cucumber roll squid
9 cucumber roll salmon roe egg egg salmon roe egg

10 sea urchin sea urchin cucumber roll cucumber roll sea urchin cucumber roll

Table 2.11: Results of the Sushi experiment when setting C = 6 and using the rankdist

package. Sushi items arranged according to the estimated consensus ranking.

2.4.4 Movielens data

The Movielens dataset1 contains movie ratings from 6040 users. In this example, we

focused on the n = 200 most rated movies, and on the N = 6004 users who rated (not

equally) at least 3 movies. Each user had considered only a subset of the n movies (30.2

on average). We converted the ratings given by each user from a 1-5 scale to pairwise

preferences as described in Lu and Boutilier (2014): each movie was preferred to all movies

which the user had rated strictly lower. We selected users whose rating included at least

3 movies, because two of them were needed to create at least a pairwise comparison, and

the third one was needed for prediction, as explained in the following.

Since we expected heterogeneity among users, due for example to age, gender, social

factors or education, we applied the clustering scheme for pairwise preferences (sketched

in Section 2.3.3), with the footrule distance. Since n = 200, we used the asymptotic

approximation for Zn(↵) described in Mukherjee (2016) (see Section 2.2.2 for details).

We then run the MCMC (Algorithm 4 of Appendix 2.A) for 105 iterations, after a burn-

in of 5 · 104 iterations. We set: L = 20, �↵ = 0.05, ↵jump = 10 and � = 0.1, after some

tuning. Note that the label switching problem only a↵ects inference on cluster-specific

parameters, but it does not a↵ect predictive distributions (Celeux et al. 2006). We varied

the number C of clusters in the set {1, . . . , 15}, and inspected the within-cluster indicator

of mis-fit to the data introduced in Section 2.3.5, see Figure 2.18: the posterior within-

cluster indicator shows two possible elbows: C = 5, and C = 11. Hence, according to

1www.grouplens.org/datasets/.
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these criteria, both choices seemed initially conceivable. However, it is beyond the scope

of this chapter to discuss ways to decide the number of clusters.
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Figure 2.18: Results of the Movielens experiment. Boxplots of the posterior distributions of
the within-cluster indicator of mis-fit to the data, as introduced in Section 2.3.5, for di↵erent
choices of C.

In order to select one of these two models, we examined their predictive performance.

Before converting ratings to preferences, we discarded for each user j one of the rated

movies at random. Then, we randomly selected one of the other movies rated by the

same user, and used it to create a pairwise preference involving the discarded movie. This

preference was then not used for inference. After running the Bayesian Mallows model,

we computed for each user the predictive probabilities P (R̃j|all data), and thereby the

probabilities for correctly predicting the discarded preference. The median, across all

users, of these probabilities was 0.8225 for the model with C = 5 clusters, and 0.796 for

C = 11 clusters. Moreover, for C = 5, 88 % of these probabilities were higher than 0.5.

These are very positive results, and they suggest that the predictive performance of the

model with 5 clusters is slightly better than the one with 11 clusters. It appears that the

larger number of clusters in the latter model leads to a slight overfitting, and this is likely

to be the main cause of the loss in the predictive success. Figure 2.19 shows the boxplots

of the posterior distribution of the probability for correct preference prediction of the

left-out comparison, stratified with respect to the number of preferences given by each

user, for the model with C = 5. The histogram on the right shows the same posterior

probability for correctly predicting the discarded preference for all users, for the same

model, regardless of how many preferences each user had expressed. Interestingly, in this
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data, the predictive power is rather stable and high, irrespectively from how many movies

the users rated. In other applications, we would expect the predictions to become better

the more preferences are expressed by a user. In this case, a figure similar to Figure 2.19

could guide personal recommendation algorithms, which should not rely on estimated

point preferences, if these are too uncertain, as happens for users who have given just a

few ratings.
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Figure 2.19: Results of the Movielens experiment. Boxplots of the posterior probability for
correctly predicting the discarded preference conditionally on the number of preferences stated
by the user, for the model with C = 5. The histogram on the right shows the marginal posterior
probability for correct preference prediction.

c = 1 c = 2 c = 3 c = 4 c = 5
⌧c 0.325 (0.32,0.33) 0.219 (0.21,0.23) 0.156 (0.15,0.17) 0.145 (0.14,0.15) 0.155 (0.15,0.16)
↵c 2.53 (2.36,2.7) 3.33 (3.2,3.48) 2.58 (2.27,2.81) 1.87 (1.67,2.02) 2.68 (2.47,2.89)
1 A Christmas Story Citizen Kane The Sting Indiana Jones (I) Shawshank Redempt.
2 Schindler’s List The Godfather Dr. Strangelove A Christmas Story Indiana Jones (I)
3 The Godfather Pulp Fiction 2001: Space Odyssey Star Wars (IV) Braveheart
4 Casablanca Dr. Strangelove The Maltese Falcon The Princess Bride Star Wars (IV)
5 Star Wars (IV) A Clockwork Orange Casablanca Schindler’s List Saving Private Ryan
6 Shawshank Redempt. Casablanca Taxi Driver The Matrix The Green Mile
7 Saving Private Ryan The Usual Suspects Citizen Kane Shawshank Redempt. Schindler’s List
8 The Sting 2001: Space Odyssey Schindler’s List Indiana Jones (III) The Sixth Sense
9 The Sixth Sense American Beauty Chinatown The Sting The Matrix

10 American Beauty Star Wars (IV) The Godfather The Sixth Sense Star Wars (V)

Table 2.12: Results of the Movielens experiment. Movies arranged according to the CP
consensus ranking, from the posterior distribution of ⇢c, c = 1, . . . , 5.

In Table 2.12 the MAP estimates for ⌧ and ↵, together with their 95% HPDIs, are

shown at the top. The table also shows a subset of the movies, arranged in cluster-specific

top�10 lists according to the CP consensus ranking, from the posterior distribution of

⇢c, c = 1, . . . , 5. We note that all ↵ values correspond to a reasonable within-cluster

variability. Moreover, the lists reported in Table 2.12 characterize the users in the same

cluster as individuals sharing a reasonably well interpretable preference profile. Since

in the Movielens dataset additional information on the users is available, we compared

the estimated cluster assignments with the age, gender, and the occupation of the users.
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While occupation showed no interesting patterns, the second and fifth clusters had more

males than expected, in contrast to the first and fourth clusters which included more

females than average, the former above 45 and the latter below 35 of age.

2.5 Discussion

In this chapter, we developed a fully Bayesian hierarchical framework for the analysis of

ranking data. An important advantage of the Bayesian approach is that it o↵ers coherently

propagated and directly interpretable ways to quantify posterior uncertainties of estimates

of any quantity of interest. Earlier Bayesian treatments of the Mallows ranking model are

extended in many ways: we develop an importance sampling scheme for Zn(↵) allowing

to use other distances than Kendall’s, and our MCMC algorithm e�ciently samples from

the posterior distribution of the consensus ranking and of the latent assessor-specific full

rankings. We also develop various extensions of the model, motivated by applications in

which data take particular forms.

All methods presented have been implemented in C++, and run e�ciently on a desktop

computer, with the exception of the Movielens experiment, which needed to be run on a

cluster. Obtaining a su�ciently large sample from the posterior distribution takes from

a few seconds, for small problems, to several minutes, in the examples involving massive

data augmentation. We are currently working on distributed versions of the MCMC.

The proposed models perform very well with a large number of assessors N , but

may not be computationally feasible when the number of items is extremely large, for

example n � 104, which is not uncommon in certain applications (Volkovs and Zemel

2014). Already in the considered case of n = 200, the MCMC converges slowly, a problem

also shared by maximum likelihood estimation of ⇢ (Aledo et al. 2013, Ali and Meilă

2012). For footrule and Spearman distances, there exist an asymptotic approximation

for Zn(↵) as n ! 1 (Mukherjee 2016), which we compared to our IS procedure in

Section 2.2.2, and used in a real data application (Section 2.4.4). Many of the extensions

we propose for solving specific problems (for example, clustering, preference prediction,

pairwise comparisons) are needed jointly in real applications, as we illustrate for example

in the Movielens data. Our general framework is flexible enough to handle such extensions.

There are many situations in which rankings vary over time, as in political surveys

(Regenwetter et al. 1999) or book bestsellers (Caron and Teh 2012). This case is dealt
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with in Asfaw et al. (2017), where the approach described in this chapter is extended to

dynamic rankings.

A natural generalization of the Mallows model is to allow for a multivariate dispersion

parameter, ↵. This is known as generalized Mallows’s model (GMM), first implemented

in Fligner and Verducci (1986), for Kendall and Cayley distances, and further extended

in Meilǎ and Bao (2010), for Kendall distance only, to the Bayesian framework (see also .

The generalized Mallows model with footrule and Spearman cannot be enforced, because

these two distances do not factorize into (n � 1) terms. An alternative generalization

was proposed by Lee and Yu (2010) (further developed in Lee and Yu 2012), where the

authors propose their weighted distance-based ranking models by using weighted distances

between rankings. Starting from their model, we believe that, also within our framework,

it is feasible to generalize the Bayesian Mallows model with a multidimensional dispersion

parameter of length n.
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Appendix

2.A Pseudo-codes of the algorithms

We here report the pseudo-codes of the algorithms. Our codes can handle any right

invariant distance. The distances currently implemented are Kendall, footrule, Spearman

and Cayley. For Kendall and Cayley there is no need to run the IS to approximate Zn(↵),

as it is implemented the available closed form of Fligner and Verducci (1986). The same is

true for footrule (n  50) and Spearman (n  14), thanks to the results of Section 2.2.1.

For footrule (n > 50) and Spearman (n > 14) the IS procedure have to be un o↵-line,

before the MCMC procedure.

Algorithm 1: Basic MCMC Algorithm for Complete Rankings
input : R1, . . . ,RN ; �, �↵, ↵jump, L, d(·, ·), Zn(↵), M .
output: Posterior distributions of ⇢ and ↵.

Initialization of the MCMC: randomly generate ⇢0 and ↵0.

for m 1 to M do
M-H step: update ⇢:

sample: ⇢0 ⇠ L-S(⇢m�1, L) and u ⇠ U(0, 1)

compute: ratio equation (2.4) with ⇢ ⇢m�1 and ↵ ↵m�1

if u < ratio then ⇢m  ⇢0

else ⇢m  ⇢m�1

if m mod ↵
jump

= 0 then M-H step: update ↵:

sample: ↵0 ⇠ lnN (↵m�1,�
2
↵) and u ⇠ U(0, 1)

compute: ratio equation (2.6) with ⇢ ⇢m and ↵ ↵m�1

if u < ratio then ↵m  ↵

0

else ↵m  ↵m�1

end

2.B Sampling from the Mallows model

We here explain the procedure we used to sample data from the Mallows model. To

sample N full rankings R1, ...,RN ⇠ M(⇢,↵), we use the following scheme (sketched

in Algorithm 5). We run a basic Metropolis-Hastings algorithm with fixed consensus

⇢ 2 Pn, ↵ > 0 and with a given distance measure, d(·, ·), until convergence. Then we
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Algorithm 2: MCMC Algorithm for Clustering Complete Rankings
input : R1, . . . ,RN ; C,  , �, �↵, ↵jump, L, d(·, ·), Zn(↵), M .
output: Posterior distributions of ⇢1, . . . ,⇢C , ↵1, . . . ,↵C , ⌧1, . . . , ⌧C , z1, . . . , zN .

Initialization of the MCMC: randomly generate ⇢1,0, . . . ,⇢C,0, ↵1,0, . . . ,↵C,0, ⌧1,0, . . . , ⌧C,0, and z1,0, . . . , zN,0.

for m 1 to M do
Gibbs step: update ⌧1, . . . , ⌧C
compute: nc =

PN
j=1 1c(zj,m�1), for c = 1, . . . , C

sample: ⌧1, . . . , ⌧C ⇠ D( + n1, . . . , + nC)

for c 1 to C do
M-H step: update ⇢c
sample: ⇢0c ⇠ L-S(⇢c,m�1, L) and u ⇠ U(0, 1)

compute: ratio equation (2.4) with ⇢ ⇢c,m�1 and ↵ ↵c,m�1, and where the sum is over {j : zj,m�1 = c}
if u < ratio then ⇢c,m  ⇢0c
else ⇢c,m  ⇢c,m�1

if m mod ↵
jump

= 0 then M-H step: update ↵c sample: ↵0
c ⇠ N (↵c,m�1,�

2
↵) and u ⇠ U(0, 1)

compute: ratio equation (2.6) with ⇢ ⇢c,m and ↵ ↵c,m�1, and where the sum is over {j : zj,m�1 = c}
if u < ratio then ↵c,m  ↵

0
c

else ↵c,m  ↵c,m�1

end

Gibbs step: update z1, . . . , zN
for j  1 to N do

foreach c 1 to C do compute cluster assignment probabilities: pcj =
⌧c,m

Zn(↵c,m)
exp

h�↵c,m
n d(Rj ,⇢c,m)

i

sample: zj,m ⇠Mn(p1j , . . . , pCj)

end

end

Algorithm 3: MCMC Algorithm for Partial Rankings or Pairwise Preferences
input : {S1, . . . ,SN} or {tc(B1), . . . , tc(BN )}; �, �↵, ↵jump, L, d(·, ·), Zn(↵), M .

output: Posterior distributions of ⇢, ↵ and R̃1, . . . , R̃N .
Initialization of the MCMC: randomly generate ⇢0 and ↵0.

if {S1, . . . ,SN} among inputs then
foreach j  1 to N do randomly generate R̃0

j in Sj

else
foreach j  1 to N do randomly generate R̃0

j compatible with tc(Bj)

end

for m 1 to M do
M-H step: update ⇢:

sample: ⇢0 ⇠ L-S(⇢m�1, L) and u ⇠ U(0, 1)

compute: ratio equation (2.4) with ⇢ ⇢m�1 and ↵ ↵m�1

if u < ratio then ⇢m  ⇢0

else ⇢m  ⇢m�1

if m mod ↵
jump

= 0 then M-H step: update ↵:

sample: ↵0 ⇠ N (↵m�1,�
2
↵) and u ⇠ U(0, 1)

compute: ratio equation (2.6) with ⇢ ⇢m and ↵ ↵m�1

if u < ratio then ↵m  ↵

0

else ↵m  ↵m�1

M-H step: update R̃1, . . . , R̃N :
for j  1 to N do

if {S1, . . . ,SN} among inputs then sample: R̃0
j in Sj from the L-S distribution centered at R̃m�1

j

else sample: R̃0
j from the L-S distribution centered at R̃m�1

j and compatible with tc(Bj)

compute: ratio equation (2.20) with ⇢ ⇢m, ↵ ↵m and R̃j  R̃m�1
j

sample: u ⇠ U(0, 1)

if u < ratio then R̃m
j  R̃0

j

else R̃m
j  R̃m�1

j

end

end

took N sampled rankings with a large enough interval between each of them to achieve

independence.

In case of heterogeneous rankings, we sampled from Algorithm 6. As inputs, we give

the number of clusters C, the fixed consensuses ⇢1, ...,⇢C, the fixed ↵1, ...,↵C, the hyper-
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Algorithm 4: MCMC Algorithm for Clustering Partial Rankings or Pairs
input : {S1, . . . ,SN} or {tc(B1), . . . , tc(BN )}; C,  , �, �↵, ↵jump, L, d(·, ·), Zn(↵), M .

output: Posterior distributions of ⇢1, . . . ,⇢C , ↵1, . . . ,↵C , ⌧1, . . . , ⌧C , z1, . . . , zN , and R̃1, . . . , R̃N .

Initialization of the MCMC: randomly generate ⇢1,0, . . . ,⇢C,0, ↵1,0, . . . ,↵C,0, ⌧1,0, . . . , ⌧C,0, and z1,0, . . . , zN,0.

if {S1, . . . ,SN} among inputs then
foreach j  1 to N do randomly generate R̃0

j in Sj

else
foreach j  1 to N do randomly generate R̃0

j compatible with tc(Bj)

end

for m 1 to M do
Gibbs step: update ⌧1, . . . , ⌧C
compute: nc =

PN
j=1 1c(zj,m�1), for c = 1, . . . , C

sample: ⌧1, . . . , ⌧C ⇠ D( + n1, . . . , + nC)

for c 1 to C do
M-H step: update ⇢c
sample: ⇢0c ⇠ L-S(⇢c,m�1, L) and u ⇠ U(0, 1)

compute: ratio equation (2.4) with ⇢ ⇢c,m�1 and ↵ ↵c,m�1, , and where the sum is over {j : zj,m�1 = c}
if u < ratio then ⇢c,m  ⇢0c
else ⇢c,m  ⇢c,m�1

if m mod ↵
jump

= 0 then M-H step: update ↵c

sample: ↵0
c ⇠ N (↵c,m�1,�

2
↵) and u ⇠ U(0, 1)

compute: ratio equation (2.6) with ⇢ ⇢c,m and ↵ ↵c,m�1 , and where the sum is over {j : zj,m�1 = c}
if u < ratio then ↵c,m  ↵

0
c

else ↵c,m  ↵c,m�1

end

Gibbs step: update z1, . . . , zN
for j  1 to N do

foreach c 1 to C do compute cluster assignment probabilities: pcj =
⌧c,m

Zn(↵c,m)
exp

h�↵c,m
n d(R̃m�1

j ,⇢c,m)
i

sample: zj,m ⇠Mn(p1j , . . . , pCj)

end

M-H step: update R̃1, . . . , R̃N :
for j  1 to N do

if {S1, . . . ,SN} among inputs then sample: R̃0
j in Sj from the L-S distribution centered at R̃m�1

j

else sample: R̃0
j from the L-S distribution centered at R̃m�1

j and compatible with tc(Bj)

compute: ratio equation (2.20) with ⇢ ⇢zj,m,m, ↵ ↵zj,m,m and R̃j  R̃m�1
j

sample: u ⇠ U(0, 1)

if u < ratio then R̃m
j  R̃0

j

else R̃m
j  R̃m�1

j

end

end

Algorithm 5: MCMC Sampler for full rankings
input : ⇢, ↵, d, N, L
output: R1, ...,RN

Initialization of the MCMC: randomly generate R1,0, ...,RN,0

for m 1 to M do
for j  1 to N do

sample R0
j ⇠ L-S(Rj,m�1, L) and u ⇠ U(0, 1)

compute: ratio =
PL(Rj |R

0
j)

PL(R0
j |Rj)

exp
n

�↵
n

PN
j=1

h

d(R0
j ,⇢)� d(Rj ,⇢)

io

with Rj  Rj,m�1

if u < ratio then R̃m
j  R̃0

j

else R̃m
j  R̃m�1

j

end

end

parameter  = ( 1, ..., C) of the Dirichlet density over the proportion of assessors in the

clusters, and d(·, ·). The algorithm then returns the rankings R1, ...,RN , sampled from a

Mixture of Mallows models, as well as the the cluster assignments z1, ..., zN .

For generating top-k rankings, we simply generate R1, ...,RN with Algorithm 5, and
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Algorithm 6: MCMC Sampler for full rankings with clusters
input : C, ⇢1:C , ↵1:C ,  , d, N, L
output: R1, ...,RN and z1, ..., zN

Initialization of the MCMC: randomly generate R1,0, ...,RN,0, ⌧1, ..., ⌧C ⇠ Dir( ), and z1, ..., zN ⇠Mn(1, ⌧1, ..., ⌧C)

for m 1 to M do
for c 1 to C do

compute: Nc =
PN

j=1 1c(zj), and sample Nc ranks with Algortihm 5

end

end

then keep only the top-k items. In case of clusters, we do the same as above, but starting

with Algorithm 6.

Finally, to sample data made of pairwise comparisons, we first generate R1, ...,RN

with Algortihm 5. Then, we select the number of pairwise comparisons, T1, ..., TN , Tj <

n(n�1)/2, for all j = 1, ..., N , that each assessor will evaluate2. Finally, given R1, ...,RN

and T1, ..., TN , for each assessor j, we randomly sample without replacement Tj pairs in

the collection of all possible n(n � 1)/2 pairs, and order each of them according to Rj.

For generating pairwise comparisons with clusters, we follow the previous procedure, but

starting with Algorithm 6.

2It is possible to choose a di↵erent number of pairs per assessor.
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Chapter 3

The Bayesian Mallows model for

non-transitive pair comparisons

In this chapter, we propose a flexible extension of the model of Chapter 2, able to learn

the individual rankings of a set of items from non-transitive pairwise comparison data.

Lack of transitivity may naturally arise when the items compared are perceived as rather

similar, if the pairwise comparisons are presented sequentially without allowing for con-

sistency checks, or simply because of users’ inattentiveness. Situations of this kind are

very common when the set of items is large, and when the users are unlikely to be able, or

willing, to compare all of them in order to perform a ranking. In such cases, a pairwise

comparison experiment is then often preferred, and sometimes it is the only possible ex-

perimental procedure (Agresti 1996, David 1963). As already discussed in Section 1.2.1,

to our knowledge most of the methods to estimate individual rankings from sparse (not

repeated) pairwise comparison data are not able to handle individual-level non-transitivity.

They either drop such pairs, or they only focus on the estimation of the consensus ranking,

which can indeed contradict individual preferences, and in such way they do not specif-

ically model the non-transitivity characterizing the data. For a complete description of

these methods we refer to Section 1.2.1. Instead, we incorporate the non-transitive pat-

terns of the data directly into the Bayesian Mallows model for pairwise comparisons of

Section 2.3.2, and provide a strategy to estimate, with uncertainty, the individual pref-

erences of the users. We accomplish this by postulating the existence of a true latent

individual ranking of the items, and assuming that non-transitive patterns arise because

users make mistakes by switching the order between some pairs under comparison.

This chapter contains joint work with Valeria Vitelli, Elja Arjas, Natasha Barrett and

Arnoldo Frigessi, and is based on Crispino et al. (2017).
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Outline

In Section 3.1, we present the basic Mallows model for non-transitive pair comparisons,

and we propose some model specifications, including two mixture models. In particular, in

Section 3.1.1 we model the probability of making a mistake as a constant, independent of

the pairs being assessed, and also independent of all other comparisons made by the same

user. This models, for example, a mouse click mistake or a random preference between

a pair of items. In Sections 3.1.2 and 3.1.3, instead, we assume that the probability of

making a mistake depends on the items compared: the stronger is the preference between a

pair of items, the smaller is the probability of making a mistake. This models a situation

when items are more easily mis-compared by the user when they are rather similar in the

personal ranking (Section 3.1.2), or in the consensus ranking (Section 3.1.3). We then

develop two mixture model extensions: in 3.1.4 we consider users who di↵er in their ability

to stay consistent with logical transitivity when announcing their pairwise comparisons,

which results in a mixture on the probability of making a mistake; in 3.1.5, we deal with

the case when users are suspected to be heterogeneous in their preferences, that calls for a

model able to learn individual preferences associated to multiple consensus rankings. The

Markov Chain Monte Carlo algorithm, is outlined in Section 3.2 (and further specified in

3.A), while Section 3.3 is devoted to simulations.

In Section 3.4 we then report the analysis of two toy datasets, also including the Beach

preference data of Section 2.4.2. Finally, in Section 3.5 we discuss the contributions of

this chapter.
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3.1 The main model

We consider the situation where N users independently express their preferences between

pairs of items in a set A = {A1, ..., An}, as in Section 2.3.2. In many situations of

practical interest the users do not decide on the set of pairs to be considered, which are

instead assigned to the users by an external authority. We here don’t model the way

in which the pairs are chosen, and simply assume a general framework, where each user

j receives a di↵erent subset Cj = {Cj1, ..., CjT
j

} of Tj  n(n � 1)/2 random pairs. Let

Bj = {Bj1, ...,BjT
j

} be the set of pairwise preferences given by user j, where Bjt is the

order that user j assigned to the pair Cjt. For example, if Cjt = {At1 , At2}, it could be

that Bjt = (At1 � At2), t1, t2 2 {1, ..., n}, meaning that item At1 is preferred to item At2 .

Such data are incomplete since not all items, nor pairs, are handled by each user. We here

assume no ties in the data, that is, users are forced to express their preference for all pairs

in the list Cj assigned to them, and neither indi↵erence nor abstention are permitted.

Like in Section 2.3.2, we assume that each user j has a personal latent ranking, R̃j 2
Pn, distributed according the Mallows density of eq. (1.6), R̃1, ..., R̃N |⇢,↵ i.i.d⇠ M(⇢,↵).

In this chapter we will denote the individual latent rankings R̃j by Rj, for simplifying

the notation. This should not create confusion, since the data considered in this chapter

are only in the form of pairwise preferences, B1:N , while by R1:N we denote the latent

individual rankings. As a consequence, since Rj is here a random variable, it is object of

inference itself.

We model the situation where each user j, when announcing her preferences, mentally

matches the items under comparison with her latent rankingRj. The situation considered

in Section 2.3.2, corresponded to users who were consistent with Rj. Then the pairwise

orderings in Bj were induced by Rj following the rule:

(At1 � At2) () Rjt1 < Rjt2 , (3.1)

where Rjt
i

denotes the rank of item At
i

inRj. Being the preferences in Bj induced by a full

ranking, the set contained only transitive preferences. Under these assumptions, inference

for the Mallows parameters ↵ and ⇢, and the individual rankings R1:N , was performed

by first computing the transitive closure of each preference set, tc(Bj), and second, by

integrating out all the rankings R 2 Pn that were compatible with the transitive closure

of the preference sets, here denoted by Rj  tc(Bj). This corresponded to the following
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posterior distribution,

P (↵,⇢|B1:N) =
X

R1 tc(B1)

...
X

R
N

 tc(B
N

)

P (↵,⇢,R1:N |B1:N) =
X

R1 tc(B1)

...
X

R
N

 tc(B
N

)

P (↵,⇢|R1:N) /

/ ⇡(↵)⇡(⇢)
N
Y

j=1

2

4

X

R
j

 tc(B
j

)

P (Rj|↵,⇢)
3

5 .
(3.2)

In equation (3.2) is implicitly assumed: (i) (B1:N ?? ↵,⇢) |R1:N ; (ii) 8j, k 2 {1, ..., N},
(Bj ?? Bk) |R1:N ; (iii) 8j 2 {1, ..., N}, P (Bj|R1:N) = P (Bj|Rj) = 1, for all Rj  tc(Bj).

In this chapter, instead, we consider the case of users who are not fully consistent

with their latent rankings: the pairwise orderings in Bj may not be mutually compatible.

Since the transitive closure of a non-transitive set does not exist, the previous procedure

cannot be followed in such a case. We propose a probabilistic strategy to deal with this

issue, based on the assumption that non-transitivities are due to mistakes in deriving the

pair order from the latent raking Rj. The likelihood of set of preferences Bj, analogous

to the summation of eq. (3.2), second line, is

P (Bj|↵,⇢) =
X

R
j

2P
n

P (Bj,Rj|↵,⇢) =
X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|Rj) , (3.3)

where P (Bj|Rj) is the probability of ordering the pairs in Cj as in Bj, possibly generating

non-transitivities, when the latent ranking for user j is Rj. It can therefore be seen as

forming the error model in this context, which will be specified in complete detail in the

next sections. The joint posterior of the model parameters is then:

P (↵,⇢| B1, ...,BN) / ⇡(↵)⇡(⇢)
N
Y

j=1

2

4

X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|Rj)

3

5 ,

where we assumed a truncated gamma prior, ⇡(↵) / ↵��1e��↵1[0,↵max)(↵), for ↵, and

the uniform prior on Pn, ⇡(⇢) = 1P
n

(⇢)
n! , for ⇢ (see Section 2.1.1, for justifications, and

Chapters 5 and 6 for alternatives). This strategy is able to recover possible linear orderings

close, in terms of some given distance, to the non-transitive sets of preferences. We

developed two basic models for P (Bj|Rj), that is the probability of making a mistake:

the Bernoulli model (BM) and the Logistic model (LM). In BM, outlined in Section

3.1.1, we assume that non-transitivities arise from random mistakes while LM, presented
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in Section 3.1.2, assumes that non-transitivities arise from mistakes due to di�culty in

ordering items that are perceived individually rather similarly. In Sections 3.1.3, 3.1.4

and 3.1.5, we then present some extensions of BM and LM.

3.1.1 Bernoulli model (BM) for mistakes

We first assume that the pairwise comparisons given by a user are conditionally indepen-

dent given her latent ranking Rj,

P (Bj|Rj) =

T
j

Y

t=1

P (Bjt|Rj) . (3.4)

We here define g(Bjt,Rj), an indicator function of a given comparison Bjt = (At1 � At2)

and of a given ranking Rj = {Rj1, ..., Rjn} 2 Pn,

g(Bjt,R) =

8

>

<

>

:

0 if Rjt1 < Rjt2

1 otherwise ,

where t1 is the index of the preferred item At1 in Bjt, the t-th comparison of user j,

and t2 is the index of the least preferred item. Thus g(Bjt,Rj) = 1 if the preference order

of Bjt is not implied by the ranking Rj, in the sense of eq. (3.1), i.e. Bjt and Rj disagree

in their preference ordering between items At1 and At2 .

We then assume the following Bernoulli type model for modeling the probability that

a user j makes a mistake in a given pairwise comparison Bjt, i.e. the probability that she

reverses the true latent preference implied by her latent ranking Rj:

P (Bjt mistake | ✓,Rj) = P [g(Bjt,Rj) = 1 | ✓,Rj] = ✓, ✓ 2 [0, 0.5) .

The probability of eq. (3.4) is then given by

P (Bj | ✓,Rj) =

✓

✓

1� ✓
◆

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓)Tj . (3.5)

As prior density for ✓, we choose the Beta distribution truncated on the interval

[0, 0.5), with given hyperparameters 1 and 2: ⇡(✓) / ✓1�1(1 � ✓)2�11[0,0.5)(✓). We

truncate it on [0, 0.5) mainly for identification purposes, but also because we want to
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force the probability of making a mistake to be less than 0.5. The reason for this, lies

in the fact that we do not admit the possibility that a users makes more than 50% of

mistakes in data she provides. The posterior density of the model parameters, defined on

the support, S = 1
�{0  ↵ < ↵max} \ {⇢ 2 Pn} \ {Rj 2 Pn}Nj=1 \ {0  ✓ < 0.5}� , has

then the following form,

P (↵,⇢, ✓|B1:N)/⇡(↵)⇡(⇢)⇡(✓)
N
Y

j=1

2

4

X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|✓,Rj)

3

5 . (3.6)

We sample from the density of equation (3.6), through an augmented sampling scheme

by first updating ↵,⇢ and ✓ given B1:N and R1:N , and then, updating R1:N given ↵,⇢, ✓

and B1:N . The former step is done by using the conditional density

P (↵,⇢, ✓|B1:N ,R1:N) =↵
��1e�↵[�+

1
n

P
N

j=1 d(Rj

,⇢)]�N ln[Z
n

(↵)]

·
✓

✓

1� ✓
◆1�1+

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓)2+1�2+
P

N

j=1 Tj .

(3.7)

The second step, is performed by using the density

P (R1:N |↵,⇢, ✓,B1:N) / P (R1:N |↵,⇢)P (B1:N |✓,R1:N) =

=
e�

↵

n

P
N

j=1 d(Rj

,⇢)

[Zn(↵)]N

✓

✓

1� ✓
◆

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓)
P

N

j=1 Tj .

(3.8)

Figure 3.1 shows the graphical representation of the Bernoulli model for mistakes. The

MCMC algorithm is presented in details in Section 3.2.

↵

⇢

Rj

Bjt

✓Tj

N

Figure 3.1: Graphical representation of the Bernoulli model for mistakes.

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



91

3.1.2 Logistic model (LM) for mistakes

The idea of the logistic model for mistakes is that a user j is more likely to be confused,

and consequently to make a mistake, if two items in pair are more similar according to her

latent ranking vector Rj. We assume the following logistic type model for the probability

of making a mistake in a given pairwise comparison

logitP [g(Bjt,Rj) = 1 |Rj, �0, �1] = ��0 � �1
dR

j

,t � 1

n� 2
,

where dR
j

,t is the l1 distance of the ranks of the two items under comparison in Bjt,

according to Rj: if Bjt = (At1 � At2), then dR
j

,t = |Rjt1 � Rjt2 |. Note that dR
j

,t 2
{1, ..., n � 1}, and thus its minimum value dR

j

,t = 1 serves as a reference value, and �0

is the corresponding parameter for a mistake in case of paired items which are ranked as

neighbors. This corresponds to the usual practice in logistic regressions, where one of the

covariate levels is chosen as a reference, with its own intercept parameter.

We assume that �1 and �0 are a priori independent and distributed according to a

gamma prior, �1 ⇠ �(�11,�12), and �0 ⇠ �(�01,�02). These choices are motivated by the

fact that we want to model a negative dependence between the distance of the items and

the probability of making a mistake (�1 > 0), and second, we want to force the probability

of making a mistake when the items have ranks di↵ering by 1 to be less than 0.5 (�0 > 0),

for the same reasons that drove this choice in the case of the BM.

The rationale behind this model is that if two items have ranks close to each other in

the latent ranking Rj, their relative preference is presumably rather vague, and this could

lead to inverting their order in Bj. If this happens, it should have only a relatively small

influence on the likelihood. In contrast, if two items have far away ranks in Rj, then their

mutual preference should be clearer, and incorrectly reversing their ordering should have a

large influence on the likelihood. Therefore, the posterior density of the model, defined on

the support, S = 1 ({0  ↵ < ↵max} \ {⇢ 2 Pn} \ {R1:N 2 Pn} \ {�1 > 0} \ {�0 > 0}) ,
is given by

P (↵,⇢, �0, �1|B1:N) / ⇡(�0)⇡(�1)⇡(⇢)⇡(↵)
N
Y

j=1

2

4

X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|�0, �1,Rj)

3

5 . (3.9)

Analogously to equation (3.6), we sample from the posterior of equation (3.9) by first

updating ↵,⇢, �0 and �1, given B1:N and R1:N , that is from the conditional
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P (↵,⇢, �0, �1|B1:N ,R1:N) /↵��1��01�10 ��11�11

2

4

N
Y

j=1

T
j

Y

t=1

✓

1 + e��0��1
dR

j

,t

�1

n�2

◆

3

5

�1

· e�↵[�+ 1
n

P
N

j=1 d(Rj

,⇢)]��0
h
�02+

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)
i

· e��1
h
�12+

1
n�2

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)(dR
j

,t

�1)
i
�N ln[Z

n

(↵)]
.

(3.10)

Secondly, we update R1:N , given ↵,⇢, �0, �1, and B1:N , from

P (R1:N |↵,⇢,�0, �1,B1:N) / P (R1:N |↵,⇢)P (B1:N |�0, �1,R1:N) /
/ e�

↵

n

P
N

j=1 d(Rj

,⇢)�N ln[Z
n

(↵)]��0
P

N

j=1

P
T

j

t=1 g(Bjt

,R
j

)

· e� �1
n�2

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)(dR
j

,t

�1)

2

4

N
Y

j=1

T
j

Y

t=1

✓

1 + e��0��1
dR

j

,t

�1

n�2

◆

3

5

�1

.

(3.11)

The algorithm for the Logistic mistake model is sketched in Appendix 3.A.

3.1.3 Logistic-consensus model (LCM) for mistakes

It is natural to think of a modification of the LM, where the probability of making a

mistake depends on some dissimilarity between the items, shared by all the users, rather

than on the individual ranking. For example, each user could be more likely to make a

mistake, when assessing a pairwise comparison, if the two items in pair are more similar

according to some given item-dependent covariate, Y = (Y1, ..., Yn). We here develop a

model where Y coincides with the unknown consensus ranking of the items ⇢ = (⇢1, ..., ⇢n).

We then assume the following specialization of the logistic model of Section 3.1.2, for

the probability of making a mistake

logitP [g(Bjt,Rj) = 1 |⇢, �0, �1] = ��0 � �1d⇢,t � 1

n� 2
,

where d⇢,t is defined, similarly to Section 3.1.2, as the l1 distance of the ranks of the two

items under comparison in Bjt, according to ⇢: if Bjt = (At1 � At2), then d⇢,t = |⇢t1�⇢t2 |.
Note, as before, that d⇢,t 2 {1, ..., n� 1}, thus d⇢,t = 1 serves as a reference value, and �0

is the corresponding parameter for a mistake in case of paired items which are ranked as
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neighbors. The prior densities of �1 and �0 are the same as in Section 3.1.2. The posterior

density of this model is therefore given by

P (↵,⇢, �0, �1|B1:N) / ⇡(�0)⇡(�1)⇡(⇢)⇡(↵)
N
Y

j=1

X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|�0, �1,⇢,Rj), (3.12)

where

P (Bj|�0, �1,⇢,Rj) =

T
j

Y

t=1

P (Bjt|�0, �1,⇢,Rj) =

T
j

Y

t=1

⇣

e��0��1
d⇢,t�1

n�2

⌘g(B
jt

,R
j

)

1 + e��0��1
d⇢,t�1

n�2

.

The sampling scheme is similar to the one outlined in Section 3.1.2: we sample from

the posterior of equation (3.12) by first updating ↵,⇢, �0 and �1, given B1:N and R1:N

from the conditional distribution

P (↵,⇢, �0, �1|B1:N ,R1:N) / ↵��1��01�10 ��11�11

2

4

N
Y

j=1

T
j

Y

t=1

✓

1 + e��0��1
d⇢

j

,t

�1

n�2

◆

3

5

�1

· e�↵[�+ 1
n

P
N

j=1 d(Rj

,⇢)]��0
h
�02+

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)
i

· e��1
h
�12+

1
n�2

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)(d⇢,t�1)
i
�N ln[Z

n

(↵)]
.

(3.13)

Secondly, we update R1:N , given ↵,⇢, �0, �1, and B1:N , from

P (R1:N |↵,⇢,�0, �1,B1:N) / P (R1:N |↵,⇢)P (B1:N |�0, �1,⇢,R1:N) /
/ e�

↵

n

P
N

j=1 d(Rj

,⇢)�N ln[Z
n

(↵)]��0
P

N

j=1

P
T

j

t=1 g(Bjt

,R
j

)

· e� �1
n�2

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)(d⇢,t�1)

2

4

N
Y

j=1

T
j

Y

t=1

⇣

1 + e��0��1
d⇢,t�1

n�2

⌘

3

5

�1

.

(3.14)

The algorithm for the Logistic-consensus mistake model is in a straightforward special-

ization of Algorithm 8, presented in Appendix 3.A.

3.1.4 Mixture model on ✓

Suppose that the users are thought to di↵er in their ability to stay consistent with logical

transitivity when announcing their pairwise comparisons. Accounting for such heterogene-

ity leads to a generalization of the model of Section 3.1.1, where a mixture of Bernoulli
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distributions is proposed for modeling the generation of mistakes, and a consequent group-

ing of the users into clusters is performed. In this section, we assume that all the N users

share the same consensus ranking ⇢ and dispersion parameter, ↵, and only di↵er in the

✓ parameter, that is the probability of making a mistake when announcing a pairwise

preference between a pair of items. Letting ⇠1, ..., ⇠N 2 {1, ..., K} assign each user to one

of K clusters, each described by a di↵erent ✓k, k = 1, ..., K, the likelihood is

P (B1:N |↵,⇢, ✓1:K , ⇠1:N) =
N
Y

j=1

2

4

X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|✓⇠
j

,Rj)

3

5 ,

where

P (Bj | ✓⇠
j

,Rj) =

✓

✓⇠
j

1� ✓⇠
j

◆

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓⇠
j

)Tj . (3.15)

We assume that the ✓k are i.i.d. according to a Beta distribution truncated on the

interval [0, 0.5), with hyperparameters 1 and 2: ⇡(✓k) / ✓1�1k (1�✓k)2�11[0,0.5)(✓k), k =

1, ..., K. We further assume that the cluster labels are a priori conditionally independent

given the mixing parameters of the clusters, ⌧1, ..., ⌧K , and distributed according to a

categorical distribution

P (⇠1, ..., ⇠N |⌧1, ..., ⌧K) /
N
Y

j=1

⌧⇠
j

=
N
Y

j=1

K
Y

k=1

⌧
1
k

(⇠
j

)
k ,

where ⌧k � 0, 8k = 1, ..., K and
P

k ⌧k = 1. Finally, we assign to ⌧1, ..., ⌧K the Dirichlet

density with parameter  . These choices lead to the following posterior density

P (↵,⇢, ✓1:K , ⇠1:N ,⌧1:K |B1:N) / ⇡(↵)⇡(⇢)
K
Y

k=1

[⇡(✓k)⇡(⌧k)]

·
N
Y

j=1

8

<

:

P (⇠j|⌧1:K)
X

R
j

2P
n

P (Rj|↵,⇢)P (Bj|✓⇠
j

,Rj)

9

=

;

.

(3.16)

Similarly to the homogeneous case, we sample from the posterior of equation (3.16) by

first updating ↵,⇢, ⌧1:K , ⇠1:N and ✓1:K given B1:N and R1:N , and then updating R1:N given

↵,⇢, ⌧1:K , ⇠1:N , ✓1:K and B1:N . The former step is done by using the conditional density,
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P (↵,⇢, ⌧1:K ,✓1:K , ⇠1:N |B1:N ,R1:N) / ↵��1
K
Y

k=1



⌧
 �1+

P
N

j=1 1
k

(⇠
j

)

k ✓1�1k (1� ✓k)2�1
�

·
N
Y

j=1

2

4

e�↵[�+
1
n

d(R
j

,⇢)]

Zn(↵)

✓

✓⇠
j

1� ✓⇠
j

◆

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓⇠
j

)Tj

3

5 ,

(3.17)

The second step, is performed by using the density,

P (R1:N |↵,⇢, ⌧1:K , ✓1:K , ⇠1:N ,B1:N) /
N
Y

j=1

e�
↵

n

d(R
j

,⇢)

Zn(↵)
P (Bj | ✓⇠

j

,Rj) , (3.18)

where P (Bj | ✓⇠
j

,Rj) is defined in eq. (3.15). Figure 3.2 shows the graphical representation

of the hierarchical construction of the mixture model for mistakes. The algorithm for this

mixture extension is in Appendix 3.A.

↵

⇢

Rj

Bjt

✓1:K

⇠j ⌧1:K

Tj

N

Figure 3.2: Graphical representation of the mixture model on ✓.

3.1.5 Mixture model on ↵ and ⇢

So far we assumed that a unique consensus ranking was shared by all users. Since in

many situations the assumption of homogeneity with respect to an underlying common

consensus ranking is unrealistic, we here allow for clustering the users into separate sub-

sets, each sharing a consensus ranking of the items, similarly to Section 2.3.3. In this

section we then propose a mixture model generalization of the Bernoulli model of Section

3.1.1 to deal with heterogeneous users expressing pairwise preferences with mistakes.
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Let z1, ..., zN 2 {1, ..., C} be the class labels indicating how individual users are as-

signed to one of the C clusters. Each cluster is described by a di↵erent pair of Mallows

parameters (↵c,⇢c), c = 1, ..., C, so that the likelihood has the form,

P (B1:N |↵1:C ,⇢1:C , ✓, ⌘1:C , z1:N)=
N
Y

j=1

2

4

X

R
j

2P
n

P (Rj|↵z
j

,⇢z
j

)P (Bj|✓,Rj)

3

5 ,

where

P (Rj|↵z
j

,⇢z
j

) =
1

Zn(↵z
j

)
exp

n

�↵z
j

n
d(Rj,⇢z

j

)
o

.

Again, we assume that the cluster labels are a priori conditionally independent given the

mixing parameters of the clusters, ⌘1, ..., ⌘C , and distributed according to a categorical

distribution

P (z1, ..., zN |⌘1, ..., ⌘C) /
N
Y

j=1

⌘z
j

=
N
Y

j=1

C
Y

c=1

⌘1
c

(z
j

)
c ,

where ⌘c � 0, 8c = 1, ..., C,
P

c ⌘c = 1; further ⌘1, ..., ⌘C are assumed to have Dirichlet

density with parameter �. These choices lead to the following posterior density,

P (↵1:C ,⇢1:C , ⌘1:C ,z1:N , ✓|B1:N) / ⇡(✓)
C
Y

c=1

⇥

⇡(↵c)⇡(⇢c)⇡(⌘c)
⇤

·
N
Y

j=1

2

4P (zj|⌘1:C)
X

R
j

2P
n

P (Rj|↵z
j

,⇢z
j

)P (Bj|✓,Rj)

3

5 .

(3.19)

We sample from the posterior of eq. (3.19) by first updating ↵1:C ,⇢1:C , ⌘1:C , z1:N and ✓

given B1:N and R1:N , and second updating R1:N given ↵1:C ,⇢1:C , ⌘1:C , z1:N , ✓ and B1:N .

The former step is done by using the conditional density,

P (↵1:C ,⇢1:C , ⌘1:C , z1:N , ✓|B1:N ,R1:N) /
C
Y

c=1



↵��1c e��↵c⌘
��1+

P
N

j=1 1
c

(z
j

)
c

�

·
✓

✓

1� ✓
◆1�1+

P
N

j=1

P
T

j

t=1 g(Bjt

,R
j

)

(1� ✓)2+1�2+
P

N

j=1 Tj

N
Y

j=1

"

e�
↵

z

j

n

d(R
j

,⇢
z

j

)

Zn(↵z
j

)

#

.

(3.20)

The second step, is performed by using the density,

P (R1:N |↵1:C ,⇢1:C , ⌘1:C , ✓, z1:N ,B1:N) /
N
Y

j=1

e�
↵

z

j

n

d(R
j

,⇢
z

j

)

Zn(↵z
j

)
P (Bj|✓,Rj) , (3.21)
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where P (Bj|✓,Rj) is defined in eq. (3.5). Figure 3.3 shows the graphical representation

of the hierarchical construction of the Mixture model for the Mallows parameters. The

algorithm for this second misture extension is Appendix 3.A.

↵1:C

⇢1:C

Rj Bjt

✓

zj

⌘1:C

Tj

N

Figure 3.3: Graphical representation of the mixture model on (↵,⇢).

3.2 The MCMC algorithm for non-transitive pair-

wise preferences

We here outline the developed MCMC algorithm to sample from the posterior density of

eq. (3.6). Details on the MCMC adaptations to the models on Sections 3.1.2-3.1.5, are

provided in Appendix 3.A.

As mentioned in Section 3.1.1, the MCMC iterates between two main steps:

1. Update ↵,⇢ and ✓ given B1:N and R1:N , using eq. (3.7):

(a) Metropolis update of ⇢

(b) Metropolis update of ↵

(c) Gibbs update of ✓

2. Update R1:N given ↵,⇢, ✓ and B1:N , using eq. (3.8).

In step 1(a), we propose a new consensus ranking ⇢0 according to a symmetric proposal

which is centered around the current consensus ranking ⇢.

Definition 3. Swap proposal. Denote the current version of the consensus ordering vector

by x = (⇢)�1, which is the vector whose n components are the items in A ordered from best

to worst according to ⇢, i.e., xt
i = Ak () ⇢tk = i (see Section 1.1). Let L⇤ 2 {1, .., n}.
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Sample uniformly an integer l from U{1, 2, ..., L⇤} and draw a random number u uniformly

in {1, 2, ..., n� l}. The proposal x0 has components

x0i =

8

>

>

>

>

<

>

>

>

>

:

xi if i 6= {u, u+ l}
xu+l if i = u

xu if i = u+ l ,

and the proposed ranking is ⇢0 = (x0)�1.

The parameter L⇤ plays the role of the maximum allowed distance between the ranks

of the swapped items, and is used for tuning the acceptance probability in the Metropolis-

Hastings step. The transition probability of the Swap proposal is symmetric, as

q(⇢0 ! ⇢) = q(⇢! ⇢

0) =
L⇤
X

l=1

P (L = l)P (⇢0 ! ⇢|L = l)1(|⇢0 � ⇢| = 2l) =

=
1

L⇤

L⇤
X

l=1

1

n� l
1(|⇢0 � ⇢| = 2l) .

This is a very intuitive and simple way of exploring Pn, but has appealing properties

for us, that will become clear in step 2. In this step, alternative proposals could be

considered, for example the L-S introduced in Chapter 2, Section 2.1.3.

Remark 1. The Swap proposal ⇢0 is a local perturbation of ⇢, separated from ⇢ by Cayley

distance dC = 1, by Hamming distance dH = 2, expected Kendall distance E(dK) = L⇤,

expected footrule distance E(dF ) = L⇤ + 1, and expected Spearman’ distance E(dS) =
(L⇤+1)(2L⇤+1)

3 . This follows by the definitions of the various distances and by simple calcu-

lations.

The proposed ranking is then accepted with probability min{1, a⇢}, where

ln a⇢ = �↵
n

N
X

j=1

[d(Rj,⇢
0)� d(Rj,⇢)] . (3.22)

Notice that (3.22) is very similar to (2.4), but does not include the correction accounting

for the L-S asymmetric proposal.

In step 1(b) we propose ↵0 from a log-normal density lnN (ln↵, �2
↵) and accept it with
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probability equal to min{1, a↵}, where

ln a↵ =� ln(↵0/↵)�
"

�+
1

n

N
X

j=1

d(Rj,⇢)

#

(↵0 � ↵)�N ln[Zn(↵
0)/Zn(↵)]. (3.23)

The previous acceptance probability takes into account the asymmetric transition prob-

ability of the chain, that results from the log-normal proposal, like in (2.6).

The partition function Zn(↵) can be either computed exactly or approximated by the

Importance Sampling introduced in Chapter 2, depending on the distance function chosen

and on the number n of items considered. In this chapter we always use footrule distance

with n  50, so that Zn(↵) is always to be intended as exact.

In step 1(c) we sample ✓ from the beta distribution, truncated to the interval [0, 0.5),

with updated hyper-parameters,

01 = 1 +
N
X

j=1

T
j

X

t=1

g(Bjt,Rj) , 02 = 2 +
N
X

j=1

T
j

X

t=1

[1� g(Bjt,Rj)] . (3.24)

Step 2 is a Metropolis-Hastings for the individual rankings. We exploit, like in Chap-

ter 2, the fact that fixing all other parameters and the data, R1, ...,RN are conditionally

independent, and that each Rj only depends on the corresponding set of pairwise com-

parisons, Bj. We thus sample R0j from the Swap proposal, separately for each j = 1, ..., N .

The Swap proposal is here advantageous because it perturbs locally not only the current

individual ranking Rj, but also the function g(Bjt,Rj).

Remark 2. The Swap proposal always gives a proposed individual ranking R

0
j 6= Rj.

However, it may happen that g(Bjt,R
0
j) = g(Bjt,Rj), 8t = 1, ..., Tj.

This is important for what concerns the acceptance probability of R0j. If g(Bjt,R
0
j) =

g(Bjt,Rj), 8t = 1, ..., Tj, the acceptance probability depends only on the ratio of the

Mallows kernels of R0j and Rj, and is equal to min{1, a1}, where

ln a1 = �↵
n

⇥

d(R0j,⇢)� d(Rj,⇢)
⇤

. (3.25)

If g(Bjt,R
0
j) 6= g(Bjt,Rj), for some t = 1, ..., Tj, the acceptance probability depends
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also on the mistakes model, and is equal to min{1, a2} where

ln a2 = ln a1 +

T
j

X

t=1

⇥

g(Bjt,R
0
j)� g(Bjt,Rj)

⇤

ln [✓/(1� ✓)] . (3.26)

Example To illustrate this step of the algorithm, suppose that a user expresses the fol-

lowing set of preferences,

Bj = {A2�A1, A5�A4, A5�A3, A5�A2, A5�A1, A3�A2, A1�A3}.

This set contains the non-transitive pattern A2 � A1 � A3 � A2. For the illustration,

suppose that the current value of the individual ranking vector is Rj = (5, 4, 3, 2, 1), which

corresponds to the individual ordering vector Xj = (A5, A4, A3, A2, A1), and for which
P7

t=1 g(Bjt,Rj) = 1, because the only pairwise preference in Bj that contradicts Rj is

A1 � A3. If we sample the proposal X 0
j = (A5, A3, A4, A2, A1), this gives g(Bjt,R

0
j) =

g(Bjt,Rj), 8t = 1, ..., 7, and R

0
j = (5, 4, 2, 3, 1) 6= Rj. However, if we sample X

0
j =

(A4, A5, A3, A2, A1), then R

0
j = (5, 4, 3, 1, 2) 6= Rj and also

P7
t=1 g(Bjt,R

0
j) = 2 6=

P7
t=1 g(Bjt,Rj) since, also the the preference A5�A4 contradicts the sampled R

0.

Algorithm 7: MCMC Algorithm for the Bernoulli model for mistakes.
input : B1, . . . ,BN ; �, �, �↵, L

⇤, 1, 2, d(·, ·), Zn(↵), M .
output: Posterior distributions of ⇢, ↵, ✓, R1, . . . ,RN .

Initialization of the MCMC: randomly generate ⇢0, ↵0, ✓0 and R0
1, . . . ,R

0
N .

for m 1 to M do
M-H step: update ⇢:

sample: ⇢0 ⇠ Swap(⇢m�1, L
⇤) and u ⇠ U(0, 1)

compute: ratio eq. (3.22) with ⇢ ⇢m�1, ↵ ↵m�1, and R1:N  Rm�1
1:N

if u < ratio then ⇢m  ⇢0

else ⇢m  ⇢m�1

M-H step: update ↵:

sample: ↵0 ⇠ lnN (ln↵m�1,�
2
↵) and u ⇠ U(0, 1)

compute: ratio eq. (3.23) with ⇢ ⇢m, ↵ ↵m�1, and R1:N  Rm�1
1:N

if u < ratio then ↵m  ↵

0

else ↵m  ↵m�1

Gibbs step: update ✓:

compute: 0
1 and 0

2 from eq. (3.24) with R1:N  Rm�1
1:N , and sample: ✓0 ⇠ Be(0

1,
0
2) truncated to the interval [0, 0.5)

M-H step: update R1, ...RN :
for j  1 to N do

sample: R0
j ⇠ Swap(Rm�1

j , L

⇤) and u ⇠ U(0, 1)

if
P

Tj
t=1 g(Bjt,R

0
j) =

P

Tj
t=1 g(Bjt,R

m�1
j ) then compute: ratio eq. (3.25) with ⇢ ⇢m and ↵ ↵m

else compute: ratio eq. (3.26) with ⇢ ⇢m, ↵ ↵m and ✓  ✓m

if u < ratio then Rm
j  R0

j

else Rm
j  Rm�1

j

end

end

The pseudo-code of the MCMC for Bernoulli mistakes is here reported as Algorithm 7.

Appropriate convergence of the MCMCmust in practice be checked by inspecting the trace
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plots of the parameters, and by monitoring, for example, the integrated autocorrelation,

like we did in Chapter 2. In Appendix 3.A we explain in detail how the algorithm is

adapted to the logistic mistake model and to the mixture extensions, and report the

pseudo-codes of the Algorithms.

3.3 Simulation study

Several simulation experiments were carried out to assess the performance of the method-

ology introduced in this chapter. An important aspect in the design of these experiments

was finding appropriate values for the model parameters. The parameter ↵true controls

the concentration of the individual latent rankings R1,true, ...,RN,true around the true con-

sensus ⇢true: the larger ↵true is, the more concentrated the individual rankings are. To give

an idea of this e↵ect, we plot in Figure 3.1, for a range of di↵erent ↵true values, average

distances 1
N

PN
j=1 d(Rj,true,⇢true) obtained when Rj,true ⇠M(↵true,⇢true), with N = 100

and n = 10 (left), n = 30 (right). For each considered ↵true, each boxplot in the Figures

is computed from a set of 100 simulated samples.
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Figure 3.1: Boxplots of the average footrule distance, 1
N

PN
j=1 d(Rj,true,⇢true), for N = 100,

and for individual rankings, R1:N,true, generated from the Mallows model, M(↵true,⇢true), for
increasing values of ↵true. Left: n = 10; Right: n = 30.

With the number of items growing, identifying a consensus ranking becomes increas-

ingly hard due to the n! possible permutations. To balance this, N , the number of

users, and �T , the average number of pairs compared by each user, must be chosen ac-

cordingly. For instance, if n = 10, the maximal number of pairs that can be formed is
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Tmax =
�

n
2

�

= 45, while for n = 20, Tmax = 190. Choosing �T = 30 would in the case

of n = 10 correspond to providing the individual users, on average, with the proportion
�
T

Tmax
= 30

45 ' 0.67 of all possible pair comparisons, while for n = 20 the corresponding

proportion is only �
T

Tmax
= 30

190 ' 0.16.

One should also account for the e↵ect of the parameter ✓ (or the logistic parameters

�0 and �1) controlling the level of noise in the data, in the form of mistakes in reporting

individual pairwise comparisons. While larger values of N will generally facilitate the

estimation of the consensus ranking, larger ✓ will render individual ranking estimates

much less reliable.

3.3.1 Simulations with Bernoulli mistake model

The aim of the experiments was to validate the method and to evaluate its performance

in some test situations. The data were simulated from the Mallows model with Bernoulli

mistakes, varying parameters ✓, ↵, n, N , and Tj, j = 1, ...N , while always using the

footrule distance. The number of items n was always kept below 50, thus enabling us

to use exact values for the partition function, see Section 2.2.1. For a more detailed

description of the data generation used in this section, see Appendix 3.B.

Various point estimates can be deduced from the posterior distribution of ⇢, one

being the maximum a posteriori (MAP). In this section we always choose the cumulative

probability (CP) consensus ordering, defined in Chapter 2, Section 2.2.3.

In order to assess the performance of our methods, in Figure 3.2 we plot the posterior

distribution of the normalized footrule distance (denoted by the apex ‘n’) of the esti-

mated consensus ⇢ and the true consensus, dnF (⇢,⇢true) =
1
n

Pn
i=1 |⇢i� ⇢i,true|, for varying

parameters ↵, ✓, �T and N , while keeping fixed n = 10.

As expected, the performance of the method improves as the number of users N in-

creases (Figure 3.2, top-left), as the probability of making mistakes ✓ decreases (Figure

3.2, top-right), as the dispersion of the individual latent rankings Rj,true around ⇢true de-

creases, that is when ↵ increases, (Figure 3.2, bottom-left), and when the average number

of pairwise comparisons �T becomes larger, (Figure 3.2, bottom-right). Interestingly, in

the last case, the method performs generally well also if the average number of pairs is

�T = 15, being only 1/3 of the maximal number of pairs possible.

In Figure 3.3 we plot the posterior distribution of dnF (⇢,⇢true), corresponding to simula-

tion experiments with a larger number of items, n 2 {15, 25}, for increasing N . Note that
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Figure 3.2: Results of the simulated data. Posterior CDFs of dnF (⇢,⇢true) as a function of N
for ↵ = 3, �T = 25, ✓ = 0.1 (top-left); as a function of ✓ for ↵ = 3, N = 40, �T = 25 (top-right);
as a function of ↵, for ✓ = 0.1, N = 40, �T = 25 (bottom-left); as a function of �T for ↵ = 3,
N = 40, ✓ = 0.1 (bottom-right).

the number of pairs assessed by each user in the case n = 25 is around 50, which is only

1/6 of all the possible pairs.

Next, we studied the performance of the method in terms of the precision of the in-

dividual ranking estimation. We quantify the results by the probability of getting at

least 3 items right, among the top-5, defined as follows. For each user j = 1, ..., N ,

we found the triplet of items Dj
3 = {Ai1 , Ai2Ai3} that had maximum posterior proba-

bility of being ranked jointly among the top-3 items, that is the triplet that maximized
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Figure 3.3: Results of the simulated data. Posterior CDFs of dnF (⇢,⇢true) as a function of N ,
for ✓ = 0.1, ↵ = 3.5, �T = 25, n = 15 (left), and for ✓ = 0.1, ↵ = 4.5, �T = 50, n = 25 (right).

P

�2P3
P ({Rji1 , Rji2 , Rji3} = � | data), where � denotes a permutation of the set {1, 2, 3}.

This posterior quantity is estimated along the MCMC trajectory. We defined Hj
5 to be

the set of 5 highest ranked items in Rj,true, for each user j. We then checked whether

Dj
3 ⇢ Hj

5 (that is the top-3 estimated items are all among the top-5 of each user). The

percentages of users for which this is true is reported in Table 3.1.

We notice that the results are overall very good: when n is set to 10 (first 4 sub-tables

from the left in Table 3.1), we consistently learn 3 out of the top-5 items in more than

70% of the users (with a peak of 100%). Also in the more di�cult cases of n = 15 and

n = 25 (first 2 sub-tables from the right in Table 3.1) the results are very good, especially

considering that this percentage does not include the cases where only 2 (or 1) items

where correctly estimated in the top positions.

N % ✓ % ↵ % �M % N % N %
20 88 0.05 92.5 2 82.5 15 85 50 65 100 44
30 83 0.1 87.5 4 95 25 97.5 100 58 150 46
60 83 0.15 75 6 92.5 35 100 150 60 300 45
120 75 0.2 72.5

Table 3.1: Results of the simulated data. Percentage of users for which the estimated top-3
items belong to the true top-5. Data corresponding to simulations with parameter settings of
Figures 3.2 and 3.3: from left to right, same parameters as in Figure 3.2 top-left, top-right,
bottom-left, bottom-right; Figure 3.3, left, right.

We then chose one of the simulated data cases and computed the posterior probabili-
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ties of correctly predicting the preference order of all pairs not assessed by the users, i.e.

P
⇥

g(Bjnew,Rj) = g(Bjnew,Rj,true)
�

� data
⇤

. Figure 3.4 shows the boxplots for these predic-

tive probabilities, (left) stratified according to the number of pairs each user assessed in the

data, and (right) stratified according to the footrule distance between the true individual

ranking Rj,true and the true consensus ⇢true, dF (⇢true,Rj,true) =
Pn

i=1 |⇢i,true �Rji,true|.

Figure 3.4: Results of the simulated data. Posterior probabilities of correctly predicting the
preference order of all pairs not assessed by the users, (left) stratified according to the number
of pairs each user assessed in the data, and (right) stratified according to dF (⇢true,Rj,true).

In the case considered, the model had a very good predictive power, especially consid-

ering that the simulated data had many mistakes (around 10%). We also notice a slight

increase of the predictive probabilities as Tj increases (left panel) and as d(⇢true,Rj,true)

decreases (right panel). These results are not surprising: it is easier to predict correct or-

derings of new pairs when (i) the user assesses more pairs, and (ii) the user’s own ranking

resembles more the shared consensus.

As a final check, we applied the logistic MCMC on these BM generated data. The

results were very similar to those obtained above and the posterior distribution of �1

was highly concentrated around 0, which is consistent with the fact that, at �1 = 0, LM

collapses to BM.

3.3.2 Simulations with logistic mistake model

In this section we show results obtained from experiments on simulated data generated

from the logistic model for mistakes of Section 3.1.2. The procedure is similar to the one

described in the previous section, as well as the data generation procedure (see Appendix
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3.B). We varied the parameters N , �0, �1, ↵, and �T , while, as in Section 3.3.1, we

fixed the true consensus ranking ⇢true and the footrule distance. We then analyzed the

generated datasets by applying both the logistic (LM) and the Bernoulli (BM) models.

No systematic di↵erences in the results could be detected in the accuracy of the con-

sensus ranking estimate, evaluated in terms of the posterior CDF of dnF (⇢,⇢true) (not

shown). We then studied whether clear di↵erences could be found when comparing the

estimates of the individual ranking vectors to the corresponding true values. For this,

we inspected the performance of the LM model by using two sets of simulations where

n = 10, N = 100, Tj = 25 8j, ↵ = 2.5, but with di↵erent settings of logistic parameters:

S1: We varied �0 while keeping constant �1 = 5, with the nested procedure explained

in Appendix 3.B;

S2: We varied the parameters �0 and �1 together, keeping the probability of making a

mistake (averaged across the simulated distances) constant to ca. 0.1.

In Figure 3.5 we plot the theoretical values of the logistic mistake probability,

P [g(Bjt,Rj) = 1 | Rj, �0, �1], as a function of the distance dR
j

,t between the items com-

pared, when varying �0 and �1 according to the schemes S1 (left) and S2 (right).

Figure 3.5: Logistic theoretical probabilities of making a mistake as a function of the distance
between the items compared, for the two sets of simulations, S1 left, S2 right.

In S1, where �1 if fixed, the smaller the value of �0, the more likely are mistakes in

the data. With scheme S2 instead, we want to inspect whether the performance of LM

changes as the dependence on the distance dR
j

,t becomes stronger. For this, we used the

same measure as in Table 3.1 of Section 3.3.1, namely the percentage of users for which
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the estimated top-3 items belong to the true top-5. In Table 3.2, we report the results for

all the simulated datasets, when estimated with the BM and the LM algorithms.

Simulation Model % Simulation Model %

S1: �0 = 1.4
LM 94%

S2: black line
LM 91%

BM 90% BM 92%

S1: �0 = 1.2
LM 92%

S2: red line
LM 89%

BM 92% BM 87%

S1: �0 = 1
LM 93%

S2: green line
LM 92%

BM 91% BM 91%

S1: �0 = 0.8
LM 88%

S2: blue line
LM 91%

BM 85% BM 91%

Table 3.2: Percentage of users for which the estimated top-3 items belong to the true top-5.
Simulations with parameter settings of Figure 3.5.

As expected, the performance of both models deteriorates as �0 decreases when �1 is

fixed (left panel in Table 3.2, corresponding to simulations in Figure 3.5 left). Somewhat

surprisingly, BM and LM perform in very similar ways (right panel in Table 3.2, corre-

sponding to simulations parameters in Figure 3.5 right), and this remains true when the

dependence in LM on the distance becomes stronger.

We then computed the posterior probabilities of correctly predicting the preference

order of all pairs not assessed by the users. Figure 3.6 shows the boxplots for these

predictive probabilities, stratified according to the true distance between the items.

Figure 3.6: Box-plots of the posterior probability for correctly predicting the missing prefer-
ences stratified by dR

j

,t, the distance between the items in Rj,true. Simulation S2, red line in
Figure 3.5 right.
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In this comparison, both models had a very good predictive power, especially con-

sidering that the simulated data had many mistakes (around 10%) and the assessments

provided by di↵erent users were quite variable (↵ = 2.5). In many instances, the more

general LM model appears to have had a slight edge over the simpler BM, but this was

not true always, and overall, both methods produced very similar estimates of the indi-

vidual rank vectors. The similarity of their performances may be because the transitivity

property required in constructing versions of complete rankings Rj is so strong that the

precise form of the error model no longer has a major impact on the results.

3.3.3 Ability to detect mistakes

One way to measure the performance of our procedure is to study its ability in terms of

detection of the mistakes made by the users.

When we simulate the data, we know which preferences were mistakes, and which ones

were not. We can then look at the sensitivity and specificity of the results. The sensitivity

is the proportion of positives (i.e. mistakes) that are correctly identified as positives (also

known as true positive rate, TPR). The specificity is the proportion of negatives that

are correctly identified as negatives (also equal to 1-FPR, where FPR denotes the false

positive rate). In particular, we can compute, for each pairwise comparison assessed in

the data Bjt, the posterior probability that it is identified as a mistake, given that it was

a mistake (i.e. the probability that Bjt is a true positive)

P
⇥

g(Bjt,Rj) = 1
�

� data, g(Bjt,Rj,true) = 1)
⇤

. (3.27)

In Figure 3.7 we show the results from data simulated from the BM with ✓ = 0.2, ↵ = 3

and n = 10. It is reported the posterior probability, for each comparison (columns) and

for each user (rows), to estimate the preference as in the ground truth. In each cell, it is

therefore reported the posterior of equation (3.27) if the comparison was a mistake in the

data (represented as a white 1 on the cell) and

P
⇥

g(Bjt,Rj) = 0
�

� data, g(Bjt,Rj,true) = 0)
⇤

(3.28)

if was not a mistake in the data (represented as a white 0 on the cell). Eq. (3.28)

represents the probability that Bjt is a true negative.
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User1
User2
User3
User4
User5
User6
User7
User8
User9
User10
User11
User12
User13
User14
User15
User16
User17
User18
User19
User20
User21
User22
User23
User24
User25
User26
User27
User28
User29
User30
User31
User32
User33
User34
User35
User36
User37
User38
User39
User40

T
F
F
T
F
F
F
F
F
F
F
T
F
F
F
F
T
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
T
F
F
F
F
F
F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1
0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0.2 0.4 0.6 0.8 1.0

Figure 3.7: Posterior probability of estimating the preferences as in the ground truth. Cells
labeled with a white ‘1’, show the posterior probability of equation (3.27), cells labeled with a
white ‘0’, show the posterior probability of equation (3.28). The column on the right side of the
table indicates if the original set of data given by user j was transitive (T) or non-transitive (F).
Data simulated with ✓ = 0.2, ↵ = 3 and n = 10.

In case of perfect classification, that is when the procedure correctly identifies all the

pair preferences expressed by the users, all the cells would be red. A blue cell represents a

mis-classification. On the one hand, a blue cell labelled with a ‘1’, means that the user’s
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choice was a mistake, but the algorithm fails to identify it as a mistake (a false negative).

On the other hand, a blue cell labelled with a ‘0’ means that the user’s choice was correct,

but the algorithm erroneously classify it as a mistake (a false positive).

The column on the right side of the Figure indicates if the original set of data given

by user j was transitive (T) or non-transitive (F). This latter information is useful to

understand the di↵erent behavior of the model when the set of preferences is not tran-

sitive. Indeed, in such a case the algorithm is forced to detect at least one mistake in

the individual data; this is because of the augmentation scheme, where is proposed an

individual ranking that embeds only transitive preferences. If the set of preferences is

transitive, instead, there is no need to change any pair preference, but, at the same time,

it is allowed. Interestingly, we notice that the algorithm barely corrects preferences from

transitive users: looking at the rows relative to users 1, 4, 12, 17, 34, we see that most of

the mistakes (labelled with a white 1 on the cell), are blue, thus not identified as mistakes.

This can be due to the fact that the algorithm seeks to minimize the number of mistakes

in the data, and mostly corrects those necessary to make the sets of preferences transitive.

From Figure 3.7 it is indeed clear that the majority of mis-classified cells are labeled ‘1’,

which means that the majority of mis-classified cells are false negatives. This result is

encouraging, because it is more important not to change the ordering of a preference that

was correct, rather than failing to identifying a mistake in the data. The reason for this

will be clear in Section 3.4.1, where, in analyzing a real dataset, our main concern regards

identifiability.

We then investigate more deeply the intuition explained above, with a first series

of simulated data, where we vary the ✓ parameter controlling the average number of

mistakes in the BM generated data. We here quantify the performance of the method by

considering ROC-curves. The ROC curve is drawn by considering di↵erent thresholds u,

0 < u < 1, and then classifying for each u a pair as positive if the posterior probability

P
⇥

g(Bjt,Rj) = 1
�

� data)
⇤

> u. The curve is then formed by plotting the TPR versus

FPR, for varying u.

In Figure 3.8 (left), we draw the ROC curves corresponding to data simulated with

BM, for increasing (and nested) ✓, and fixed n = 10, N = 50, ↵ = 3.5, �T = 25, while

in Figure 3.8 (right), the ROC curves correspond to the data simulated with BM for

increasing ↵, already considered in Section 3.3.1.

In Figure 3.9, we draw the ROC curves corresponding to the simulated data of Section
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Figure 3.8: BM Simulated data. Left: ROC curve for the binary classification for increasing ✓.
n = 10, N = 50, ↵ = 3.5, �T = 25; Right: ROC curve for the binary classification for increasing
↵. Simulated data of Section 3.3.1, Figure 3.2 bottom-left.

3.3.2, Figure 3.5 left, for increasing �0. On the left are shown the results obtained by LM

estimation, on the right by BM estimation.

Figure 3.9: LM Simulated data. Left: ROC curve for simulated data with increasing �0
estimated with LM. Right: ROC curve for the same data estimated with BM.

Since the di↵erences are tiny as expected, in order to inspect wether there is any

di↵erence we also report the results of the AUC statistics, in Table 3.3.

We see that, in terms of the AUC statistics, the results obtained with the LM are

slightly better than those obtained by BM.
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�0 LM BM
1.4 0.90 0.88
1.2 0.91 0.89
1 0.90 0.87

0.8 0.89 0.88

Table 3.3: Simulated data. AUC statistics.

3.4 Examples

3.4.1 Beach preference data revisited

We here analyze the same dataset introduced in Section 2.4.2, but considering the non-

transitive patterns of the data.

As already mentioned earlier, in our data 9 out of 60 (the 15%) users1 returned queries

which contained at least one non-transitive pattern of comparisons. In Section 2.4.2

we dropped such patterns, and analyzed the remaining transitive data with the model

of Section 2.3.2. Here, instead, we account for the non-transitivities and analyze the

data with the Bernoulli and logistic models for mistakes for homogeneous users. We

run both algorithms with 105 iterations (computing time was 100 each), and discarded

the first 2 · 104 iterations of each as burn-in. For the partition function, we used the

exact Zn(↵), since n = 15. After some tuning, we set L⇤ = 1, �↵ = 0.3, � = 0.1,

� = 2, in both algorithms and ��0 = ��1 = 0.4, in the logistic. The posterior means of the

parameters of interest, when using the Bernoulli (BM) and the Logistic (LM) models were

EBM(↵ | data) = 5.15 (4.53, 5.78), EBM(✓ | data) = 0.023 (0.013, 0.035), ELM(↵ | data) =

5.25 (4.62, 5.9), ELM(�0 | data) = 2.29 (1.29, 3.26), ELM(�1 | data) = 4.43 (1, 8.47).

In Table 3.1 we report the CP consensus lists of the beaches obtained with the two

procedures (columns 2 and 5), along with the cumulative probability for each beach of be-

ing ranked in that position or higher, P (⇢i < i) (columns 3 and 6), and the corresponding

95% HPD interval for each (columns 4 and 7). We see that the two procedures converge

to two slightly di↵erent consensus orderings: the pairs B4 and B8, and B12-B14 are in-

verted. The uncertainty on the exact ordering of these beaches pairs is indeed indicated

by both P (⇢i < i) and the corresponding HPDIs. We also notice that the resulting list is

very similar to the one obtained without the model for mistakes in Table 2.8. The reason

for this is that these data have very few non-transitive patterns, which is also indicated

1The users labelled 2, 5, 6, 10, 17, 20, 28, 42, 59.
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by the posterior means of the parameters governing the number mistakes in the data in

BM and LM (✓ for BM and �0, �1 for LM).

⇢ CPLM P (⇢i < i) 95% HPDI CPBM P (⇢i < i) 95% HPDI

1 B9 0.87 (1,2) B9 0.91 (1,2)
2 B6 1 (1,2) B6 1 (1,2)
3 B3 0.85 (3,4) B3 0.85 (3,4)
4 B11 0.98 (3,4) B11 0.98 (3,4)
5 B15 0.96 (4,5) B15 0.98 (5,5)
6 B10 0.93 (6,7) B10 0.85 (6,7)
7 B1 1 (6,7) B1 1 (6,7)
8 B7 0.55 (8,10) B7 0.58 (8,10)
9 B5 0.87 (8,10) B5 0.8 (8,10)
10 B13 1 (8,10) B13 1 (8,10)
11 B4 0.6 (11,13) B8 0.49 (11,13)
12 B8 0.55 (11,14) B4 0.78 (11,14)
13 B14 0.8 (11,14) B12 0.58 (12,14)
14 B12 0.98 (12,14) B14 0.99 (12,14)
15 B2 1 (15,15) B2 1 (15,15)

Table 3.1: Beaches arranged by the estimated CP consensus ranking. Left columns: logistic
procedure; Right columns: Bernoulli procedure.

Therefore, with few non-transitivities in the data, it appears to be non crucial, at

least for the estimation of the consensus ordering, the use of the more complicated model

for mistakes introduced in this chapter. On the other hand this model allows not to

drop the non-transitive pairs of the data, which is, in our opinion, the best procedure

when approaching a dataset. Indeed, it may happen that the information contained is of

interest, which could change markedly the results of the analysis.

We then repeated the same analysis on the latent full rankings of each assessor of

Section 2.4.2, and report the results obtained with LM (similar results, not shown, were

obtained with BM). Figure 3.1 is the corresponding of Figure 2.15. The main di↵erence

is that in 3.1 the estimated users’ individual rankings resemble more the consensus. In

particular, in 2.15 some of the users’ estimated top-3 beaches appear in the bottom

positions of the consensus ranking (the users labelled 16, 18, 27, 36, 45, 48, 50). In 3.1

instead, there is not such e↵ect (with the exception of user 50).

This result indicates that the model for mistakes has indeed an e↵ect on the analysis,

and that, as we expected, this e↵ect is mainly related with the estimation of the individual

latent rankings. It is however important to comment on a possible identification problem.

The homogeneity of the users, clear from Figure 3.1, follows from the fact that LM has

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



114

Figure 3.1: Posterior probability, for each beach, of being ranked among the top-3 in ⇢LM
(column 1), and in Rj , j = 1, ..., 60 (next columns). Results from the LM.

the e↵ect of correcting the mistakes by the users. However, since the model for mistakes

corrects the individual preferences also when they are transitive (indeed none of the above

mentioned users produced non-transitivities in the reported data), this e↵ect could be due

to two mechanisms:

(i) The users were indeed more homogeneous than what seemed by looking at Figure

2.15, but made mistakes that we could not notice by looking at the data (because

their sets of preferences were transitive, that is they managed to stay consistent

with themselves);

(ii) The LM model corrects pairs which were not mistakes, because of the relevance of

the borrowing strength e↵ect.

We studied this possible mis-identification in Section 3.3.3, where we inspected the

ability to detect mistakes on simulated data. In particular, the false positive rate was

always very low, thus reassuring about this matter.

Since we are here working with real data, that are not necessarily generated by our

model, we perform an additional check, to test for the mis-identification concern. We

studied how well the di↵erent procedures (namely the model without accounting for mis-

takes, here denoted by NoM, the BM and the LM) are able to recover the true top-3

beaches for each respondent. Indeed, in the questionnaire we also asked, as a final ques-

tion after all the pairwise comparisons, to choose the top-3 beaches among all the images,

and to order them from the most preferred to the least preferred. Like in the previous

sections, we denote these sets by Hj
3 , j = 1, ..., 53, which are available for only 53 (out of

60) users, who answered the final question.
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We then found the triplet of beaches that had maximum posterior probability of being

ranked jointly among the top-3, and denote it with Dj
3 = {Bi1,Bi2,Bi3} (for details on the

calculations see Section 3.1.1). Finally, we checked how many (0-3 out of 3) of the beaches

in Dj
3, j = 1, .., 53, were correctly identified in Hj

3 by the 3 procedures, and give the results

in Table 3.2, where we report the number of assessors for which we correctly identify the

number of beaches indicated in the corresponding column by the three procedures (rows).

0 1 2 3

LM - 10 31 12
BM - 11 33 9
NoM 6 10 31 6

Table 3.2: Number of assessors for which we correctly identify the number of beaches indicated
in the corresponding column in their top-3, by the three procedures (rows).

It is clear that allowing for a model for mistakes (BM and LM rows) outperforms not

considering them (NoM row). We also notice that, for these data, LM performs better

than BM. This suggests that, in this survey, the more realistic logistic model for mistakes

is the most appropriate.

3.4.2 Movie survey

In this section we consider data collected through an ad hoc survey created as follows.

We selected the 15 highest grossing movies worldwide (n = 15), adjusted for ticket in-

flation price2, and then assigned to each assessor j, randomly, Tj = 30 pairs of movies

to be compared. The question put to the assessors, for each pair, was: “Which of the

following two movies has so far brought in more box-o�ce revenues (when adjusted for in-

flation)?”. We randomized the pairs of movies both within the same survey and across the

surveys: every user was asked to answer to a di↵erent randomized collection of pairwise

comparisons. Notice that the maximum number of pairwise comparisons out of n = 15

movies is n(n� 1)/2 = 105, thus we asked less than 30% of the total number of pairwise

comparisons. We then sent the survey to 34 colleagues (N = 34).

This survey was much more di�cult than the one of Section 3.4.1, thus we expected

that the data showed many non-transitive patters. Indeed 10 out of 34 (the 30%) users3

2http://www.imdb.com/list/ls077140585/.
3The users labelled 2, 6, 7, 9, 13, 14, 18, 23, 30, 32.
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returned pairwise sets which contained at least one non-transitive pattern of comparisons.

In Table 3.3, we report the CP consensus of the movies obtained when applying the LM

Algorithm with the same settings as in Section 3.4.1. The estimated consensus ranking

is quite a lot di↵erent from the truth. This is not surprising since the respondents, who

were our department colleagues, had no expertise in cinema, and also because some of the

true cash magnets were quite old. We notice though a consensus of the users as regards

the top movies and the last movies (as indicated by the narrower HPDIs). On the other

hand, there is much uncertainty in the central rankings.

⇢true ⇢LM CPLM P (⇢i < i) 95% HPDI
7 1 Star Wars 0.7 (1,2)
3 2 Titanic 0.94 (1,3)
10 3 Jurassic Park 0.57 (2,5)
4 4 Avatar 0.51 (2,6)
14 5 The Godfather 0.81 (3,6)
12 6 The Lion King 0.87 (3,7)
9 7 E.T. 0.72 (6,9)
1 8 Gone with the wind 0.67 (6,10)
8 9 The sound of music 0.43 (7,12)
11 10 Jaws 0.68 (8,12)
15 11 Jurassic World 0.86 (8,12)
5 12 Ben Hur 0.85 (10,13)
2 13 Snow White 0.68 (12,15)
13 14 The Exorcist 0.56 (13,15)
6 15 The Ten Commandments 1 (13,15)

Table 3.3: Movies arranged by the estimated CP ordering with the logistic model for mistakes.

Figure 3.2: Posterior probability, for each movie, of being ranked among the top 3 in ⇢LM
(column 1), and in Rj , j = 1, ..., 34 (next columns).

In Figure 3.2 is represented the posterior probability P (⇢A
i

 3|data) that a given

movie Ai, i = 1, ..., 15, was among the top-3 in the consensus ranking ⇢LM (first column),

and in the individual rankings of all users, j = 1, ..., 34 (remaining columns). As is clear
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Figure 3.3: Preference matrices. Each entry (i, k) of the matrix represents the posterior
probability that movie of row i is preferred to movie of column k in the CP consensus (left), in
user 13 (middle), and in user 15 (right). The white numbers on each cell indicate wether the
preference was assessed (1) or not (0) by the user in the data.

from the Figure, the top-3 movies are not shared by all users. For example Stars Wars,

which is the top ranked movie in the consensus, was not estimated among the top-3

movies in 7 out of 34 users. We then computed the probability that movie Ai is preferred

to movie Ak, for all pairs of movies, based on ⇢LM, and obtained the left half matrix

of Figure 3.3. Each entry (i, k) of the matrix represents the posterior probability that

movie i is preferred to movie k in the consensus ordering, that is P (⇢A
i

< ⇢A
k

|data). We

then produced the same half matrix on the basis of the individual rankings of the two

users that were farthest from the consensus (in terms of top-3 detection). The results are

showed in the middle and right matrices of Figure 3.3, where is clear that both the users

are very di↵erent from the consensus.

3.5 Discussion

The main contribution of this chapter is to introduce a new Bayesian method for consid-

ering and correcting non-transitive pairwise preference data. The principal advantage of

the Bayesian approach in this context comes from its ability to combine di↵erent types

of uncertainty in the reported data, coming from di↵erent sources, and from being able

to convert such data into the form of meaningful probabilistic inferences. Our method

provides the posterior distribution of the consensus ranking, based on pairwise assess-

ment data from a pool of users, who may have individually violated logical transitivity

in their reporting. The method is also able to produce the posterior distributions of the
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latent individual rankings of the users. Importantly such rankings can be used in the

construction of personalized recommendations, or in studying how individual preferences

change with user related covariates. We also developed mixture models generalization of

the main model, able to handle heterogeneity in pairwise and non-transitive preference

data, that will prove to be crucial in applications (see Chapter 4).
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Appendix

3.A Algorithms

Algorithm for the logistic mistake model

The structure of the MCMC algorithm for the logistic model is the same as the one of

Section 3.2. The di↵erences in the LM version of the algorithm are (1) the acceptance

ratios for R1, ...,RN (step 2 of Section 3.2), and (2) the way in which the parameters of

the error model are updated (step 1(c) of Section 3.2).

The acceptance probability of an individual ranking, R0j, is the following.

If g(Bjt,R
0
j) = g(Bjt,Rj), 8t = 1, ..., Tj, the acceptance probability, conditioned on the

current values of ↵, ⇢, �0, and �1, is min{1, a3} where

ln a3 = ln a1 � �1
n� 2

T
j

X

t=1

g(Bjt,Rj)
h

dR0
j

,t � dR
j

,t

i

+

+

T
j

X

t=1

ln
1 + exp

h

��0 � �1 dRj

,t

�1
n�2

i

1 + exp



��0 � �1
dR0

j

,t

�1

n�2

� .

(3.29)

and where ln a1 is given by eq. (3.25). If g(Bjt,R
0
j) 6= g(Bjt,Rj), for some t = 1, ..., Tj,

the acceptance probability is min{1, a4} where

ln a4 = ln a1 � �0
T
j

X

t=1

h

g(Bjt,R
0
j)� g(Bjt,Rj)

i

+

T
j

X

t=1

ln
1 + exp

h

��0 � �1 dRj

,t

�1
n�2

i

1 + exp



��0 � �1
dR0

j

,t

�1

n�2

�+

� �1
n� 2

T
j

X

t=1

h

g(Bjt,R
0
j)(dR0

j

,t � 1)� g(Bjt,Rj)(dR
j

,t � 1)
i

. (3.30)

In place of the Gibbs step for ✓, there are two Metropolis steps for updating �0 and �1.
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The �1 step, conditioning on the current values of ↵, ⇢, �0 and R1, ...,RN , is performed as

follows. We sample the proposal �01 from lnN (ln �1, ��1), and accept it with probability

min{1, a�1}, where:

ln a�1 = (�1 � �01)
h

�12 +
1

n� 2

N
X

j=1

T
j

X

t=1

g(Bjt,Rj)(dR
j

,t � 1)
i

+

+
N
X

j=1

T
j

X

t=1

ln
1 + exp

h

��0 � �1 dRj

,t

�1
n�2

i

1 + exp
h

��0 � �01
dR

j

,t

�1
n�2

i + �11 [ln(�
0
1/�1)] .

(3.31)

The �0 step is performed by conditioning on the current values of ↵, ⇢, �1 and R1, ...,RN .

We sample the proposal �00 from lnN (ln(�0), ��0), and accept with probability min{1, a�0},
where:

ln a�0 = (�0 � �00)
h

�01 +
N
X

j=1

T
j

X

t=1

g(Bjt,Rj)
i

+ �00 [ln(�
0
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(3.32)

The pseudo-code of the MCMC for logistic mistakes is reported as Algorithm 8.

Algorithm 8: MCMC Algorithm for logistic model for mistakes.
input : B1, . . . ,BN ; �, �, �↵, L

⇤, �01, �02, �11, �12, ��0
, ��1

, d(·, ·), Zn(↵), M .

output: Posterior distributions of ⇢, ↵, �0, �1 and R1, . . . ,RN .

Initialization of the MCMC: randomly generate ⇢0, ↵0, �0,0, �1,0 and R0
1, . . . ,R

0
N .

for m 1 to M do
M-H step: update ⇢: Same as Algorithm 7
M-H step: update ↵: Same as Algorithm 7

M-H step: update �1:

sample: �0
1 ⇠ lnN (�1,m�1,�

2
�1

) and u ⇠ U(0, 1)

compute: ratio eq. (3.31) with �0 = �0,m�1 and R1:N  Rm�1
1:N

if u < ratio then �1,m  �

0
1

else �1,m  �1,m�1

M-H step: update �0:

sample: �0
0 ⇠ lnN (�0,m�1,�

2
�0

) and u ⇠ U(0, 1)

compute: ratio eq. (3.32) with �1 = �1,m and R1:N  Rm�1
1:N

if u < ratio then �1,m  �

0
1

else �1,m  �1,m�1

M-H step: update R1, ...RN :
for j  1 to N do

sample: R0
j ⇠ Swap(Rm�1

j , L

⇤) and u ⇠ U(0, 1)

if
P

Tj
t=1 g(Bjt,R

0
j) =

P

Tj
t=1 g(Bjt,R

m�1
j ) then compute: ratio eq. (3.29) with ⇢ ⇢m, ↵ ↵m,

�1  �1,m and �0  �0,m

else compute: ratio eq. (3.30) with ⇢ ⇢m, ↵ ↵m �1  �1,m and �0  �0,m

if u < ratio then Rm
j  R0

j

else Rm
j  Rm�1

j

end

end
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Algorithm for the mixture on ✓

As mentioned in Section 3.1.4, the structure of the MCMC is:

1. Update ↵,⇢, ⌧1:K , ✓1:K and ⇠1:N given B1:N and R1:N , using eq. (3.17):

(a) Metropolis update of ⇢ (same as Algorithm 7)

(b) Metropolis update of ↵ (same as Algorithm 7)

(c) Gibbs update of ⌧1:K

(d) Gibbs update of ⇠1:N

(e) Gibbs update of ✓1:K

2. Update R1:N given ↵,⇢, ⌧1:K , ✓1:K , ⇠1:N and B1:N , using eq. (3.18).

In step 1(c) we update ⌧1, ..., ⌧K , by sampling from a Dirichlet density with updated

hyperparameters, ⌧1, ..., ⌧K ⇠ D( +n1, ..., +nK), where nk =
PN

j=1 1k(⇠j), k = 1, ..., K.

In step 1(d) we then sample each ⇠j, independently, from the categorical distribution with

probabilities,

P (⇠j = k|⌧k,✓k,Rj,Bj) / ⌧k

✓

✓k
1� ✓k

◆

P
T

j

t=1 g(Bj,t

,R
j

)

(1� ✓k)Tj , 8k. (3.33)

Step 1(e) consists of K independent Gibbs steps for updating ✓1, ..., ✓K : for each k =

1, ..., K we sample ✓k from the beta distribution, truncated to the interval [0, 0.5), with

updated hyper-parameters,

01 = 1 +
X

j:⇠
j

=k

T
j

X

t=1

g(Bjt,Rj), 02 = 2 +
X

j:⇠
j

=k

T
j

X

t=1

[1� g(Bjt,Rj)]. (3.34)

Step 2 goes as follows. For each user j = 1, ..., N , a new rank vector R0j is proposed

with the Swap proposal centered at Rj, and accepted with probability min{1, a1}, like
in (3.25), if g(Bjt,R

0
j) = g(Bjt,Rj), 8t = 1, ..., Tj. If g(Bjt,R

0
j) 6= g(Bjt,Rj), for some

t = 1, ..., Tj, R0j is accepted with probability min{1, a5}, where

ln a5 = ln a1 +

T
j

X

t=1

⇥

g(Bjt,R
0
j)� g(Bjt,Rj)

⇤

ln
⇥

✓⇠
j

/(1� ✓⇠
j

)
⇤

. (3.35)

The pseudo-code of the MCMC for the mixture on ✓ is reported as Algorithm 9.
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Algorithm 9: MCMC Algorithm for mixture on ✓.
input : B1, . . . ,BN ; �, �, �↵, L

⇤, 1, 2, d(·, ·), Zn(↵), n, M , K,  
output: Posterior distributions of ⇢, ↵, ✓1, ..., ✓K , ⌧1, ..., ⌧K , ⇠1, ..., ⇠N and R1, . . . ,RN

Initialization of the MCMC: randomly generate ⇢0, ↵0, ⌧1,0, ..., ⌧K,0, ⇠1,0, ..., ⇠N,0, ✓1,0, ..., ✓K,0 and R0
1, . . . ,R

0
N

for m 1 to M do

M-H step: update ⇢: Same as Algorithm 7
M-H step: update ↵: Same as Algorithm 7

Gibbs step: update ⌧1, . . . , ⌧K
compute: nk =

PN
j=1 1k(⇠j,m�1), for k = 1, . . . , K

sample: ⌧1,m, . . . , ⌧K,m ⇠ D( + n1, . . . , + nK)

Gibbs step: update ⇠1, ..., ⇠N
for j  1 to N do

foreach k  1 to K do compute cluster assignment probabilities pj,k from equation (3.33), with ⌧1:K  ⌧1:K,m,

✓1:K  ✓1:K,m�1 and R1:N  Rm�1
1:N

sample: ⇠j,m ⇠ Cat(pj,1, ..., pj,K)

end

Gibbs steps: update ✓1, ..., ✓K
for k  1 to K do

compute: 0
1 and 0

2 from eq. (3.34), with R1:N  Rm�1
1:N and ⇠1:N  ⇠1:N,m

sample: ✓k,m ⇠ Be(0
1,

0
2) truncated to the interval [0, 0.5)

end

Update R1, . . . ,RN
for j  1 to N do

sample: R0
j ⇠ Swap(Rm�1

j , L

⇤) and u ⇠ U(0, 1)

if
P

Tj
t=1 g(Bjt,R

0
j) =

P

Tj
t=1 g(Bjt,R

m�1
j ) then compute: ratio eq. (3.25) with ⇢ ⇢m and ↵ ↵m

else compute: ratio eq. (3.35) with ⇢ ⇢m, ↵ ↵m ✓⇠j
 ✓⇠j,m,m

if u < ratio then Rm
j  R0

j

else Rm
j  Rm�1

j

end

end

Algorithm for the mixture on on ⇢ and ↵

As mentioned in Section 3.1.5, the structure of the MCMC is:

1. Update ↵1:C ,⇢1:C , ⌘1:C , ✓ and z1:N given B1:N and R1:N , using eq. (3.20):

(a) Metropolis update of ⇢1:C

(b) Metropolis update of ↵1:C

(c) Gibbs update of ⌘1:C

(d) Gibbs update of z1:N

(e) Gibbs update of ✓ (same as Algorithm 7)

2. Update R1:N given ↵1:C ,⇢1:C , ⌘1:C , ✓, z1:N and B1:N , using eq. (3.21).

Steps 1(a) and 1(b) are straightforward, since (⇢c,↵c)c=1,...,C are conditionally inde-

pendent given z1, ..., zN . The proposal ⇢0c for each cluster is sampled from the Swap

distribution centered at ⇢c, and accepted with probability min{1, a⇢
c

}, where:

ln a⇢
c

= �↵c

n

X

j: z
j

=c

[d(Rj,⇢
0
c)� d(Rj,⇢c)] . (3.36)
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Next, ↵0c ⇠ logN (ln↵c, �
2
↵) is accepted with probability min{1, a↵

c

}, where

ln a↵
c

=� ln(↵0c/↵c)�


�+
1

n

X

j: z
j

=c

d(Rj,⇢c)

�

(↵0 � ↵)�Nc ln [Zn(↵
0
c)/Zn(↵c)] , (3.37)

and Nc =
PN

j=1 1c(zj), 8c = 1, ..., C.

In 1(c), ⌘1, ..., ⌘C are sampled from a Dirichlet density with updated hyperparameters,

⌘1, ..., ⌘C ⇠ D(� + N1, ...,� + NC), and in 1(d) we sample each zj, independently, from

the categorical distribution with probabilities,

P (zj = c|⌘c,⇢c,↵c,Rj) / ⌘cP (Rj|⇢c,↵c) = ⌘c
e�

↵

c

n

d(R
j

,⇢
c

)

Zn(↵c)
c = 1, ..., C. (3.38)

The Gibbs Sampler step for ✓, is the same as step 1(c) of Section 3.2.

In step 2, for each j = 1, ..., N , we sample a new rank vector R

0
j from the the Swap

proposal centered at Rj, and accept it with probability min{1, a6}, where

ln a6 = �
↵z

j

n

⇥

d(R0j,⇢z
j

)� d(Rj,⇢z
j

)
⇤

, (3.39)

if g(Bjt,R
0
j) = g(Bjt,Rj), 8t = 1, ..., Tj, and with probability min{1, a7}, where

ln a7 = ln a6 +

T
j

X

t=1

⇥

g(Bjt,R
0
j)� g(Bjt,Rj)

⇤

ln [✓/(1� ✓)] , (3.40)

if g(Bjt,R
0
j) 6= g(Bjt,Rj), for some t = 1, ..., Tj.

The pseudo-code of the MCMC for for the mixture on the Mallows parameters is

reported as Algorithm 10.

3.B Sample simulated data from the Mallows model

with mistakes

In this section we explain the procedure we used to sample a set of pairwise preferences,

B = B1, ...,BN , where Bj = {Bj1, ...,BjT
j

}, from the Mallows model in the presence of

mistakes, thereby extending the procedure of Appendix 2.B. The scheme is the following:

1. Sample R1,true, ...,RN,true, from the Mallows density, M(↵true,⇢true);
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Algorithm 10: MCMC Algorithm for mixture on ⇢ and ↵.
input : B1, . . . ,BN ; �, �, �↵, L

⇤, 1, 2, d(·, ·), Zn(↵), n, M , K, �, C

output: Posterior distributions of ⇢1, ...,⇢C , ↵1, ...↵C , ✓, ⌘1, ..., ⌘C , z1, ..., zN and R1, . . . ,RN

Initialization of the MCMC: randomly generate ⇢1,0, . . . ,⇢C,0, ↵1,0, . . . ,↵C,0, ⌘1,0, . . . , ⌘C,0, z1,0, . . . , zN,0, and R0
1, . . . ,R

0
N

for m 1 to M do
for c 1 to C do

M-H step: update ⇢c
sample: ⇢0c ⇠ Swap(⇢c,m�1, L

⇤) and u ⇠ U(0, 1)

compute: ratio eq. (3.36) with ⇢c  ⇢c,m�1, ↵c  ↵c,m�1, and z1:N  z1:N,m�1

if u < ratio then ⇢c,m  ⇢0c
else ⇢c,m  ⇢c,m�1

M-H step: update ↵c

sample: ↵0
c ⇠ lnN (ln↵c,m�1,�

2
↵) and u ⇠ U(0, 1)

compute: ratio eq. (3.37) with ⇢c  ⇢c,m, ↵c  ↵c,m�1, and z1:N  z1:N,m�1

if u < ratio then ↵c,m  ↵

0
c

else ↵c,m  ↵c,m�1

end

Gibbs step: update ⌘1, . . . , ⌘C
compute: Nc =

PN
j=1 1c(zj,m�1), for c = 1, . . . , C

sample: ⌘1,m, . . . , ⌘C,m ⇠ D(� + N1, . . . ,� + NC)

Gibbs step: update z1, ..., zN
for j  1 to N do

foreach c 1 to C do compute cluster assignment probabilities pj,c from equation (3.38)

with ⌘1:C  ⌘1:C,m, ↵1:C  ↵1:C,m, R1:N  Rm�1
1N

and ⇢1:C  ⇢1:C,m

sample: zj,m ⇠ Cat(pj,1, ..., pj,C)

end

Gibbs step: update ✓: Same as Algorithm 7
Update R1, . . . ,RN
for j  1 to N do

sample: R0
j ⇠ Swap(Rm�1

j , L

⇤) and u ⇠ U(0, 1)

if
P

Tj
t=1 g(Bjt,R

0
j) =

P

Tj
t=1 g(Bjt,R

m�1
j ) then compute: ratio eq. (3.39) with ⇢c  ⇢c,m and ↵c  ↵c,m

else compute: ratio eq. (3.40) with ⇢c  ⇢c,m, ↵c  ↵c,m ✓zj  ✓zj,m,m

if u < ratio then Rm
j  R0

j

else Rm
j  Rm�1

j

end

end

2. For each j = 1, ..., N , select the numbers of pairwise comparisons, Tj < TMax and,

sample, without replacement, Tj unordered pairs from the collection of TMax possible

pairs Cj = {Cj1, ..., CjT
j

};

3. For each pair Cjt, generate the ordered comparison Bjt, either correctly (w.r.t.

Rj,true) or reversed, with probability depending on the model used, BM or LM.

Steps 1-3 are almost the same as in Appendix 2.B, the only di↵erence being in that the

data were here produced in a nested fashion. This was done to facilitate the comparability

of the simulation results generated under di↵erent parameter settings.

When increasing N , the number of users

For fixed n, ✓, �T , ↵ and ⇢, we first generated B = B1, ...,BN with the largest N , through

steps 1-4 of Section 3.B. Then we created the nested datasets by subsampling from B the

intended smaller number of users.
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When increasing �T , the average number of pairs per user

Fix n, ✓, N , ↵ and ⇢, and let 1  �1T < · · · < �TT  Mmax. The goal here was to create,

for all users j, individual nested pairwise datasets, B�t
T

, 1  t  T , such that (i) all pairs

present in B�t
T

had to be present also in B�t+1
T

, an (ii) the cardinalities T t
j = |Bj,�t

T

| would
satisfy the approximation E(T t

j ) ⇡ �tT . This was achieved by first sampling T T
j = |Bj,�T

T

|
from the truncated Poisson distribution with parameter �TT , truncated at Tmax, and then

performing sequential thinning of the pairs, moving first from B�T
T

to B�T�1
T

, then from

B�T�1
T

to B�T�2
T

, etc., until finally reaching B�1
T

. Thinning was done independently for

di↵erent users j, and so that approximately the proportion �t�1T /�tT of the T t
j pairs in B�t

T

were kept also in B�t�1
T

, 1  t  T , with the other pairs being removed.

When increasing the number of mistakes in the BM model

The goal here was to create nested datasets, B✓1 , ...,B✓
T

, corresponding to increasing

average numbers of mistakes, 0 < ✓1 < ... < ✓T < 0.5. Each B✓
t

= {B1,✓
t

, ...,BN,✓
t

},
t 2 {1, ..., T}, is then the collection of the pairwise comparisons of the N assessors,

corresponding to ✓t number of mistakes. For generating the nested sequence of datasets,

the rule was that the mistakes of Bj,✓
t

had to remain in Bj,✓
t+1 , and the probability of a

mistake in each pair in Bj,✓
t

was ✓t.

We implemented points 1-3 of section B.1, while step 4 was done as follows. For each

Cjt, j = 1, ..., N , t = 1, ..., Tj:

- Divide the interval [0, 1) into subintervals: [0, ✓1), ..., [✓T�1, ✓T ), [✓T , 1);

- Sample u ⇠ U(0, 1);

- If u 2 [✓t, ✓t+1), t 2 {0, ..., T}, then, in generating the datasets Bj,✓1 , ...,Bj,✓
t�1 , keep

the order of the pair comparison Bj,t the same as it is in Rj,true, and reverse it in

the data sets Bj,✓
t

, ...,Bj,✓
T

.

When increasing the number of mistakes in the LM model

The goal here was to create nested data with an increasing number of mistakes generated

from the logistic model:

logitP
�Bjt mistake

�

�

Rj, �0, �1
�

= ��0 � �1
dR

j

,t � 1

n� 2
.
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To do so, we either fixed �1 but varied �0, or fixed �0 but varied �1. Here we explain the

case of �1 fixed at �⇤1 and �0 varying. Let us denote the nested datasets as B�0,1 , ...,B�0,T ,
corresponding to the decreasing sequence �0,1 > ... > �0,T > 0, and assume, as in the

previous section, that the mistakes in Bj,�0,t had to remain in Bj,�0,t�1 (notice that here

the larger �0 is, the less mistakes are in the data).

For an illustration, consider datasets of n = 10 items.

In Table 3.B.1, we show P
�Bjt mistake

�

�

Rj, �0, �1 = �⇤1
�

, for �⇤1 = 5, for some chosen

values of �0 (columns), depending on the value of the distance between the compared

items (rows).

dR
j,m

�0,1 = 1.6 �0,2 = 1.1 �0,3 = 0.6 �0,4 = 0.1
1 0.17 0.25 0.35 0.48
2 0.11 0.17 0.25 0.35
3 0.07 0.11 0.17 0.25
4 0.04 0.07 0.11 0.17
5 0.03 0.04 0.07 0.11
6 0.02 0.03 0.04 0.07
7 0.01 0.02 0.03 0.04
8 0.01 0.01 0.02 0.03
9 0.00 0.01 0.01 0.02

Table 3.B.1: Logistic theoretical values of the probability of making a mistake depending on
the value of the distance between the compared items.

We denote the matrix of values of Table 3.B.1 by ⇤, and its d-th row by ⇤d. For

each user j, we first sampled a set of pair comparisons Cj, as in steps 1-3 of 3.B, and

then generated four (corresponding to the 4 values of �0) nested datasets with increasing

number of mistakes as follows. For each Cjt, j = 1, ..., N , t = 1, ..., Tj:

- Compute dR
j

,t and select the corresponding row ⇤dR
j

,t

;

- Divide the interval [0, 1) into 4 subintervals with, as extremes, the values of ⇤dR
j

,t

[0, �0,4(dR
j

,t)), ..., [�0,1(dR
j

,t), 1);

- Sample u ⇠ U(0, 1);

- If u 2 [�0,t+1(dR
j

,t), �0,t(dR
j

,t)), t 2 {0, ..., T}, with �0,0 = 1 and �0,T+1 = 0, then,

in generating the datasets B�0,T , ...,B�0,t , keep the order of the pair comparison Bjt

the same as it is in Rj,true, and reverse it in the data sets B�0,t+1 , ...,B�0,1 .
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3.C A generalized version of the Bradley Terry model

In this appendix we implement a model extension proposed by an anonymous referee,

which is an extension of the Bradley Terry model (Bradley and Terry 1952), with an

additional layer for individual variability. Here, we show how we implemented this

model (which we henceforth call BTI), and make a fair comparison between our pro-

posed Bayesian Mallows with Bernoulli mistakes (of Section 3.1.1) and the BTI, based on

data that resemble the ones for which our method is designed for. All in all we find that

the BTI is better suited to data of di↵erent type than the ones motivating our approach.

Throughout we only consider homogeneous data, even if both models can be extended

to include clustering of users, as we explicitly do for the BM.

The BTI model

As in the Bradley Terry model (Section 1.2), suppose that the preferences expressed by a

user in pair comparisons have the form (1.12), but now allowing for the score parameters

to vary from one user to another. Denoting the parameter vector of user j by µj =

(µj1, ..., µjn), we assume that

Pr(Ai �j Ak|µji, µjk) =
µji

µji + µjk

, (3.41)

where with �j is meant the preference according to user j.

Thus, given µj, the outcomes of the pair comparisons for user j depend only on the

relative sizes of the individual score parameters of the items being compared. Assuming

in addition that such outcomes, given µj, are conditionally independent leads to the

corresponding product form likelihood of expressions of the form (3.41).

Suppose that N users express a number of pairwise comparisons among n items. We

denote by D = {D1, ...,DN} the associated data, where Dj denotes the data coming

from user j. Let wjik denote the number of comparisons of user j where Ai is preferred to

Ak, wji :=
Pn

k=1
k 6=i

wjik the number of times item Ai is preferred to any other item by user j,

and njik = wjik+wjki the number of comparisons that user j assesses between Ai and Ak.

Assume that the data D1, ...,DN , are conditionally independent given µ1, ...,µN , and the

distribution of the pairs in each Dj depends only on the corresponding parameters µj.
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The log-likelihood function of µ1, ...,µN for the joint data is then

l(µ1, ...,µN ;D) =
N
X

j=1

l(µj|Dj) =
N
X

j=1

X

1i 6=kn

wjik [lnµji � ln(µji + µjk)] =

=
N
X

j=1

n
X

i=1

wji lnµji �
N
X

j=1

X

1i<kn

njik ln(µji + µjk).

(3.42)

Next, we specify a prior for all the user specific parameters µj, centered around the shared

consensus parameter vector µ, again postulating conditional independence. This is done

in terms of a lower level gamma model, specified as

⇡(µ1:N |µ) =
N
Y

j=1

n
Y

i=1

Ga(µji; aµ, aµ/µi), (3.43)

where with Ga(x; a, b) is denoted the gamma density with shape a and rate b, so that in

this case the expected mean of µij is equal to µi, and the variance to µ2
i /aµ.

Finally, we propose a prior for µ, and assume an inverse gamma, conjugate to the model

⇡(µ) =
n
Y

i=1

IG(µi; a, b) /
n
Y

i=1

e
� b

µ

i

µa+1
i

. (3.44)

Following the augmentation scheme of Caron and Doucet (2012), we define, for each j,

and for each pair of items {Ai, Ak}, the following augmented variable

Zjik =

n
jik

X

m=1

min(Ymji, Ymjk)

which, by definition, is gamma distributed, with parameters njik and (µji + µjk).

The probability density of Zj = {Zj12, Zj13, ..., Zj(n�1)n} is therefore given by

p(zj|Dj, µj) =
Y

1i<kn:n
jik

�1

Ga(zjik;njik, µji + µjk),
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and the resulting augmented data log-likelihood is given by

lc(D,Z;µ1, ...,µN) =
N
X

j=1

lc(Dj,Zj;µj) =
N
X

j=1

"

n
X

i=1

wji lnµji�

�
X

1i<kn : n
jik

�1

[(µji + µjk)zjik � (njik � 1) ln zjik + ln�(njik)]

#

.
(3.45)

The posterior distribution based on the data D is therefore given by

⇡(µ,µ1, ...,µN ,Z|D, aµ) / ⇡(µ)⇡(µ1, ...,µN |µ, aµ)lc(D,Z;µ1, ...,µN) /
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(3.46)

We can then sample from the posterior distribution of eq. (3.46), using the above data

augmentation scheme, with Algorithm 11, when aµ is given.

Algorithm 11: Gibbs Sampler for the BTL model
Data: D1, ...,DN , T , aµ, a, b

Output: µ and µ1, ...,µN

for t = 1, ..., T do

Update µ
for i = 1, ..., n do

Sample: µ

(t)
i

�

�

�

D,Z(t�1)
,µ

(t�1)
1:N ⇠ IG

⇣

a + Naµ, b + aµ
PN

j=1 µ

(t�1)
ji

⌘

end

Update µ1, ...µN
for 1  i < k  n do

for i = 1, ..., n such that njik � 1 do

Sample: Z

(t)
jik

�

�

�

D,µ
(t�1)
j ,µ(t) ⇠ Ga

⇣

njik, µ
(t�1)
ji + µ

(t�1)
jk

⌘

end
for i = 1, ..., n do

Sample µ

(t)
ji

�

�

�

D,Z
(t)
j ,µ(t) ⇠ Ga

✓

aµ + wji, aµ/µ

(t)
i +

P

i<k:njik�1 Z

(t)
jik +

P

i>k:njik�1 Z

(t)
jki

◆

end

end

end

Hyperparameter estimation

We implemented a version of Algorithm 11, where we estimate aµ from the data, and

where we choose a gamma prior ⇡(aµ) / a��1µ e��aµ on aµ (see Algorithm 12).

Then, we added a M-H random walk step to update aµ: We propose aPµ = lnN (ln(aCµ), �
2
a),

where aCµ is the current value of aµ, and accept it with probability min{1, raµ}, where
Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



130

ln(raµ) =(nNaPµ + �) ln(aPµ)� (nNaCµ + �) ln(aCµ)� nN [ln�(aPµ)� ln�(aCµ)]+

�(aPµ � aCµ)
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+N ln(µi)�
N
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##

.
(3.47)

The hyperparameters were chosen so that the prior is rather vague: � = 1/5 and

� = 2, which correspond to prior mean E(aµ) = 10, and variance V(aµ) = 50.

Algorithm 12: Gibbs Sampler for the BTL model with M-H step for aµ.
Data: D1, ...,DN , T , a, b, �, �
Output: µ, aµ and µ1, ...,µN
for t = 1, ..., T do

Update µ
for i = 1, ..., n do

Sample: µ

(t)
i

�

�

�

D,Z(t�1)
,µ

(t�1)
1:N ⇠ IG

⇣

a + Na

(t�1)
µ , b + a

(t�1)
µ

PN
j=1 µ

(t�1)
ji

⌘

end

Update aµ

Sample: a

P
µ ⇠ lnN (ln(a

(t�1)
µ ),�2

a) and u ⇠ U(0, 1)

Compute: ln(raµ ) (eq. (3.47)), with aµ = a

(t�1)
µ , µ = µ(t), and µ1:N = µ

(t�1)
1:N

if u < raµ then

a

(t)
µ = a

P
µ

else

a

(t)
µ = a

(t�1)
µ

end

Update µ1, ...µN
for 1  i < k  n do

for i = 1, ..., n such that njik � 1 do

Sample: Z

(t)
jik

�

�

�

D,µ
(t�1)
j ,µ(t) ⇠ Ga

⇣

njik, µ
(t�1)
ji + µ

(t�1)
jk

⌘

end
for i = 1, ..., n do

Sample: µ

(t)
ji

�

�

�

D,Z
(t)
j ,µ(t) ⇠ Ga

✓

a

(t)
µ + wji, a

(t)
µ /µ

(t�1)
i +

P

i<k:njik�1 Z

(t)
jik +

P

i>k:njik�1 Z

(t)
jki

◆

end

end

end

Experimental results

Estimating parameters with the BTI

We choose n = 5 items and N = 50 users. For fixed µ = (µ1, ..., µ5) and aµ, we generated

a dataset of N = 50 individual rankings µ1, ...,µN from a gamma distribution as in eq.

(3.43). For each user j = 1, ..., 50, we then simulated on average M = 20n(n � 1)/2

pair comparisons, from the BTI likelihood, eq. (3.41), expecting roughly 20 repeated

assessments for each pair. We then run 5000 iterations of Algorithm 12.

We report here the trace plots of aµ, µ and of some of the µj, to show convergence, which

should be checked more formally.
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Figure 3.C.1: Trace plots of aµ (left) and µ (right)
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Figure 3.C.2: Trace plots of µj for some users.

Then, we reduce the average number of pair comparisons assessed by each user, con-

sidering the following cases: M = 10n(n � 1)/2, 5n(n � 1)/2, n(n � 1)/2, 0.5n(n � 1)/2.

We are interested in studying the performance of the BTI in situations where there are

few replicated assessments, as in our musicology case, where no replications at all were

present. In the next tables we report the MSE of µ, MSE(µ)= 1
n

Pn
i=1(µi � µ̂i)2, and

the average MSE of µ1, ...,µN , MSE(µ1, ...,µN)=
1
N

PN
j=1

1
n

Pn
i=1(µij � µ̂ij)2, where the

estimated quantities µ̂i, µ̂ij are posterior means.

The experiment should be in principle repeated several times, independently. We

notice that, as expected, the performance deteriorates as the number of pairs decreases,
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M 20n(n� 1)/2 10n(n� 1)/2 5n(n� 1)/2 n(n� 1)/2 0.5n(n� 1)/2
MSE(µ) 0.00038 0.00034 0.00025 0.00086 0.0025

Table 3.C.1: MSE of µ.

M 20n(n� 1)/2 10n(n� 1)/2 5n(n� 1)/2 n(n� 1)/2 0.5n(n� 1)/2
MSE(µ1, ...,µN ) 0.012 0.014 0.016 0.033 0.035

Table 3.C.2: MSE of µ1, ...,µN .

and that estimates of the individual µj are more di�cult than the estimate of µ.

Comparison: data generated from BM

We first performed the following experiment.

• Simulate 6 datasets with the Mallows model with Bernoulli mistakes, BM.

– Fix n = 10, N = 50, ↵⇤ = 4, and simulate randomly ⇢⇤ 2 Pn;

– Sample R

⇤
1, ...,R

⇤
N ⇠ Mallows(↵⇤,⇢⇤);

– Set the average number of pairwise comparisons per user to either 0.7n(n�1)/2
or 0.5n(n� 1)/2;

– Set ✓⇤ = 0.05, 0.1, 0.15;

– Simulate the pair comparison data from the Bernoulli model from mistakes

with the di↵erent values of ✓⇤, without repetitions.

• We then have the following cases, corresponding to di↵erent setting of parameters:

(e1) M = 0.5n(n � 1)/2, ✓ = 0.05, (e2) M = 0.5n(n � 1)/2, ✓ = 0.1, (e3) M =

0.5n(n� 1)/2, ✓ = 0.15, (e4) M = 0.7n(n� 1)/2, ✓ = 0.05, (e5) M = 0.7n(n� 1)/2,

✓ = 0.1, (e6) M = 0.7n(n� 1)/2, ✓ = 0.15.

• Compare BM and BTI in terms of:

1. The posterior expected mean squared error

As(x,x
⇤) =

n
X

i=1

n
X

k=1

P (xi = k|x⇤i = i, data)(k � i)2, x,x⇤ 2 Pn

In order to compare the two procedures we translate the score vectors esti-

mated through BTI (µ, µ1, ...,µN) into rankings. We do so by simply or-

dering the scores, leading to the rank vectors, r(µ), r(µ1), ..., r(µN). Then,
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for BTI we compute As(r(µ),⇢⇤)), As(r(µ1),R⇤1),..., As(r(µN),R⇤N), while for

BM As(⇢,⇢⇤), As(R1,R
⇤
1), ...,As(RN ,R

⇤
N).

2. The posterior l1 distance between the estimated ⇢ and the true value of the

consensus ⇢⇤, D(⇢,⇢⇤) =
Pn

i=1 |⇢i � ⇢⇤i |, and the average posterior distance

between the estimated R1, ...,RN and true value of the individual rankings

R

⇤
1, ...,R

⇤
N ,

1
N

PN
j=1 D(Rj,R

⇤
j ) =

Pn
i=1 |Rji �R⇤ji|

The results are summarized in the four tables below, where we compare BM and BTI

in the di↵erent settings as above.

✓
BM

A(⇢,⇢⇤)
BTI

A(r(µ),⇢⇤)
BM

As(Rj ,R⇤
j )

BTI
As(r(µj),R⇤

j )
0.05 1.82 4.24 20.6 37.45

M = 0.5n(n� 1)/2 0.1 2.86 4.75 31.36 49.08
0.15 3.33 7.79 42.69 51.53

Table 3.C.3: Results from the comparison in terms of loss. As(Rj ,R⇤j ) and As(r(µj),R⇤j ) are
averages over the N = 50 users.

✓
BM

D(⇢,⇢⇤)
BTI

D(r(µ),⇢⇤))
BM

D(Rj ,R⇤
j )

BTI
D(r(µj),R⇤

j )
0.05 1.81 3.76 9.29 14.16

M = 0.5n(n� 1)/2 0.1 2.69 3.82 12.24 15.79
0.15 3.12 5.74 14.87 16.43

Table 3.C.4: Results from the comparison in terms of posterior distance. D(Rj ,R⇤j ) and

D(r(µj),R⇤j ) are sample averages.

✓
BM

A(⇢,⇢⇤)
BTI

A(r(µ),⇢⇤)
BM

As(Rj ,R⇤
j )

BTI
As(r(µj),R⇤

j )
0.05 0.65 5.72 15.34 29.17

M = 0.7n(n� 1)/2 0.1 0.58 5.34 24.18 39.81
0.15 1.75 8.59 35.98 52.28

Table 3.C.5: Results from the comparison in terms of loss. As(Rj ,R⇤j ) and As(r(µj),R⇤j ) are
sample averages.

In all the cases considered, BM outperforms the BTI model, and often with a large

margin. In itself, the order of the outcomes is not surprising since the data were simulated

by the BM model. For both methods, larger M and smaller ✓ increase the precision of

the estimates. Next, we perform a comparison based on data simulated with the BTI.
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✓
BM

D(⇢,⇢⇤)
BTI

D(r(µ),⇢⇤)
BM

D(Rj ,R⇤
j )

BTI
D(r(µj),R⇤

j )
0.05 0.58 4.29 7.29 12.13

M = 0.7n(n� 1)/2 0.1 0.55 3.75 10.06 14.65
0.15 1.29 5.15 13 16.53

Table 3.C.6: Results from the comparison in terms of posterior distance. D(Rj ,R⇤j ) and

D(r(µj),R⇤j ) are sample averages.

Comparison: data generated from BTI

We then perform a second experiment:

• Simulate 3 datasets with BTI.

– Fix n = 10, N = 50.

– Fix µ

⇤ = E(µ|data), i.e. equal to the posterior mean of µ from experiment

(e1) of the previous section;

– Fix a⇤µ = 0.8, 1, 1.2;

– Sample µ

⇤
1, ...,µ

⇤
N ⇠ Gamma(a⇤µ, a

⇤
µ/µ

⇤);

– Set number of pairwise comparisons per user equal to the ones in experiment

(e1);

– Simulate the pair comparison data from the BTI.

• Compare BM and BTI with the same measures as before.

aµ
BM

A(⇢, r(µ⇤))
BTI

A(r(µ), r(µ⇤))
BM

As(Rj , r(µ⇤
j ))

BTI
As(r(µj), r(µ⇤

j ))
0.8 17.52 15.9 54.02 54.74

M = 0.5n(n� 1)/2 1 7.1 6.23 47.98 56.68
1.2 8.63 10.52 49.76 53.46

Table 3.C.7: Results from the comparison in terms of loss. As(Rj , r(µ⇤j )) and As(r(µj), r(µ⇤j ))
are sample averages.

aµ
BM

D(⇢, r(µ⇤))
BTI

D(r(µ), r(µ⇤))
BM

D(Rj , r(µ⇤
j ))

BTI
D(r(µj), r(µ⇤

j ))
0.8 9.44 8.9 17.12 18.01

M = 0.5n(n� 1)/2 1 6.11 5.3 16.2 17.2
1.2 5.79 7.11 16.62 17.47

Table 3.C.8: Results from the comparison in terms of posterior distance. D(Rj , r(µ⇤j )) and

D(r(µj), r(µ⇤j )) are sample averages.
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We see from the tables that BTI performs almost always better in terms of the esti-

mation of the global consensus parameter, while BM does always better in terms of the

individual rankings.

We want to point out that the data simulated in this manner have much more mistakes

(as measured with the estimated ✓ parameter of the BM model) with respect to the data

we consider in our paper. This explains the much worse results of the two methods in

this section.

It is worth pointing out that data simulated from the BTI model usually have many

more orderings in the pairwise preferences ‘switched around’ than would be the case in a

BM model.

Possible future applications of the BTI

A typical application of the BT model is the analysis of sport data, where teams/players

repeatedly compete with each other. BT is used by the World Chess Federation to rank

players (see the ELO system, Elo, 1978). A benchmark dataset used to illustrate the

potentiality of the BT model is typically the NASCAR (Hunter 2004, Caron and Doucet

2012), which collects the results of the stock car racing in the US. BT is usually applied

to one season’s results, thus leading to a final ranking of the drivers (or cars). We could

apply the BTI model to this dataset, where each year of the NASCAR data is considered

as a user, with an individual ranking µj (the ranking of that year), and a global ranking

µ (across years) that can be inferred.

Comments

We developed the model proposed by the anonymous referee, and showed its suitability

for data in the form of repeated pairwise comparisons performed by each user. We also

compared the performance of the BTI with our proposed method on data where each user

only performs a limited number of comparisons without repetitions, so that not all pairs

of items are compared by each assessor. With this kind of data, it is not satisfied the

strong connection condition (Ford 1957), which guarantees the existence and uniqueness

of the MLE of the BTI parameters (see also Section 1.2).

In contrast, the model introduced in this Chapter is specifically designed for the de-

scription and analysis of heterogeneous data arising from di↵erent users performing a

limited number of pairwise comparisons. The results from such comparisons are assumed
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to be mostly consistent with their individual preference profiles, each such profile forming

a linear ordering. On the other hand, the model allows for the possibility of occasional

mistakes, in which the preference ordering in a pairwise comparison is reversed, and this

can ruin their logical transitivity. In our musicology application (Chapter 4), considering

the users individually is important, as di↵erent users may well disagree (on what their

latent complete rankings of the sounds would have been, had they been reported, in a

di↵erently designed experiment, in full), but each of them can be expected to be internally

consistent with the requirement of transitivity. The small/moderate amount of inconsis-

tencies in such individual assessments is then in our case covered by either the binomial

or the logistic model.

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



137

Chapter 4

An application to Electroacoustic

music data

This chapter is devoted to the motivating application of this thesis. We consider data com-

ing from an experiment where people were asked to hear a series of two di↵erent abstract

sounds, and to tell which one was perceived as more human. The data consist of pairwise

preferences, and show many non-transitive patterns. The cohort of listeners who took part

in the experiment had varying backgrounds, ranging from musicologists to university stu-

dents. Therefore, we expected listeners to cluster into groups, sharing di↵erent opinions

about the degree of human causation behind the sounds. It appeared then natural to ap-

ply to these data the Bayesian Mallows model for non-transitive pairwise comparisons of

Chapter 3. In particular, we apply the mixture model of Section 3.1.5, in order to account

for the heterogeneity of the cohort. In addition to the grouping of the listeners around

the shared consensus rankings, our method enables to study the association between the

individual listeners’ rankings and their own musical experience and background. The re-

sults are interesting for composers and sound designers, whose aim is to understand how

human performance expression can be communicated through audio, leading to computer

generated sounds appearing more life-like.

This chapter contains joint work with Natasha Barrett, Valeria Vitelli, Elja Arjas, and

Arnoldo Frigessi and is based on Crispino et al. (2017) and Barrett and Crispino (2017).
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Outline

Some sections of this chapter are mainly written by Natasha Barrett, and are thus very

specialized in their language. Indeed, they will appear in a musicology journal. We de-

cided to report here the whole work for completeness and for the interested reader. The

introduction of this thesis reports a self-contained summary of the motivations behind this

study, along with a short explanation of the method and the test procedure. The reader

not interested in the details can skip Sections 4.1-4.3, and jump directly to Section 4.4,

that is the main statistical contribution of this chapter.

We start, in Sections 4.1 and 4.2, by introducing the music problem and the related

work. In Section 4.3 we explain the technical details regarding the way sounds were gener-

ated, as well as the test procedure of the experiment, which was completely designed by the

authors. In Section 4.4 we present the results we obtained by applying the mixture model

of Section 3.1.5 on the data at hand. We conclude in Section 4.5 with a short discussion

of the relevance of this study and future developments.

4.1 Introduction

Music and motion are undoubtedly connected. Not only does music makes us move, but

musical parameters have been shown to simulate listeners’ imagined images of motion.

Investigations into how listeners associate changes in sound with physical space and their

bodies suggest a variety of connections. Simple connections include how temporal fea-

tures (e.g. tempo or attack rate) are associated with speed or velocity, and how changes

in pitch are associated with spatial ascent and descent. Studies also reveal more complex

connections, where changes in one domain may stimulate changes in one or more di↵erent

domains, for example that a crescendo, rather than a pitch rise, may stimulate upwards

gestures (Eitan and Granot 2006). Such studies imply that the theory of embodied cog-

nition is a central consideration. Embodied cognition is the theory of mentally re-coding

sound into multi-modal gestural images involving a re-enactment of whatever we perceive

(Godøy 2006). Developing the discussion, Leman (2012), suggests that the body is a

mediator between our environment and our personal experience, through which we accu-

mulate a repertoire of gestures and gesture/action consequences. Directly relevant to our

acousmatic musical discourse, Godøy (2010) clarifies embodied cognition, proposing that

it involves ‘our capacity for having internal images of the world, as somehow originating
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in, but not necessarily truthfully reflecting external experience, because bits and pieces

from lived experience may be recombined in novel and/or fictional ways’. This process

described by Godøy is aligned with the approach that some composers take when creating

sounds and musical structures.

It is with this background that we can discuss the impact of 3-D sound spatialization

on listeners’ understanding of human agency, and further, how a sounding spatial repre-

sentation of the non-sounding physical movement that lies behind the causation of the

sound, can carry this information. Although composers and musicologists have at length

discussed spatial information in a musical context, as far as we are aware, this study is

the first to test for the influence of sound spatialization on how listeners may hear human

agency.

4.2 Background studies

An understanding of the cross-model interactions in the perception of spatial sound can

inform our own study. The ways in which human movement may relate to the organiza-

tion of sound can be informed by ‘sound tracing’ experiments (Godøy et al. 2006) where

subjects use their bodies to spatially describe what they hear. When considering the

whole body, a study by Pedersen and Alsop (2012) showed that many sound stimuli were

associated with an expected bodily response and a consistent interpretation of agency in

the sound. For example, ‘floating’ sounds would stimulate ‘floating’ bodily movements.

However, for some stimuli, agency in the participant was reversed. For example a ‘punch-

ing’ sound, rather than simulating a punch action, instead stimulated the response of

being punched.

In a study by Marentakis and McAdams (2013) the authors conducted a number

of tests to ascertain whether a performer’s own gestures assisted in the identification

of motion trajectories, and whether some trajectories are easier to identify that others.

They also investigated the e↵ect of congruent and incongruent audio-visual information.

Although a detailed and relevant study in relation to our own work, their choice of spa-

tialization method casts a question of the results. The authors chose to use Vector Base

Amplitude Panning, VBAP, (Pulkki et al. 2001) to spatialize a variety of trajectories over

eight loudspeakers. VBAP is a panning method, which is suitable for simple trajectories,

but without the addition of advanced processing, it is not possible to render perceptually
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clear trajectories other than panning at the perimeter of the loudspeaker array. Further,

use of just eight loudspeakers o↵ers a low angular resolution, far lower than that of our

auditory perception1 as well as being insu�cient to capture the changes in spatial mo-

tion tested for. Although not possible to draw conclusions from their study concerning

listening alone, in their experiments involving bimodal feedback (an interaction between

sound and sight), congruent information was seen to improve performance. If we assume

that the listeners were not able to clearly hear the di↵erences between auditory spatial

features, the added visual stimuli appear to have convinced them to hear information that

was absent.

In another study concerning how auditory-visual cues e↵ect spatial sound streaming

(or the segregation of sound in space), Shestopalova et al. (2015) showed that movement-

congruent visual cues did not necessarily strengthen the e↵ects of spatial separation. They

also conclude that the congruency between auditory and visual stimuli may use mental

resources that could have been utilized for more accurate auditory processing, supporting

models of modality-specific competition for perceptual awareness.

More generally, we find studies that asses the e↵ect of bi-modality on the subjective

experience of the music. Although many studies demonstrate that we primarily use visual

information when making judgements about music performance, for example Tsay (2013),

cross-modal interactions may involve a more complex network of connections that we may

have initially assumed. Vines et al. (2006) demonstrated three contrasting scenarios: an

independence of information transmitted through the visual and auditory domains; that

an experience of tension (emotion) and phrasing (structure) could be enhanced by bimodal

cues; and that the addition of visual information can dampen the intensity of emotional

response.

In our own work, we can we can summarize that, (a) visual information should be

removed if listeners are to successfully engage in the challenging task of spatial listening,

(b) that an accurate and robust spatialization method is required when creating the test

stimuli, and (c) we can anticipate a relationship between agency in the sound and listen-

ers’ understanding, but that the mapping between the two may not appear immediately

straight forward.

1In the horizontal plane, our spatial discrimination has been tested to occupy a range of between
0.75-10 degrees depending on the source angle in relation to the listening direction (Blauert 1997).
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4.3 Aim and method

The aim of this experiment was to investigate the role of sound spatialization in listeners’

mental representation of human agency when they hear non-visual sound. Listeners’ lin-

guistic descriptions of what they hear are notoriously inconsistent, despite often meaning

the same. The test we designed was therefore intended to avoid the need for a descriptive

language.

We considered allowing listeners to allocate each sound a score, indicating how strongly

each evoked human agency in relation to the other sounds. However, we already knew

(i) that listeners would span a large range of spatial audio skills, (ii) that the tests would

be challenging, and (iii) that it would be ideal to ascertain the degree of certainty in the

results and to detect any self-contradictions. For these reasons, we decided to custom

design a pairwise test, which is often the preferred experiment when di↵erences between

items are small (David 1963).

In particular we chose the following setting,

- n = 12 test stimuli were paired into all possible n(n� 1)/2 = 66 combinations.

- N = 46 listeners spanning a broad range of ages (21-65 years) and musical abilities,

were presented with Tj = 30 pairs of sounds (which is 45% of the total number

of possible pairs out of 12 stimuli). This choice was motivated by the fact that

evaluating all possible 66 pairs of sounds could have exceeded the listeners’ attention

span.

- The pairs were chosen randomly and independently for each user.

- The order in which the sounds were played was randomized.

When designing the experiment, it was necessary to find a balance between n the

number of test stimuli, Tj the number of pairs of stimuli that each listener j needed

to evaluate, and N the number of participants that could be obtained from the local

environment. Ideally, the list of test stimuli would have consisted of the three spatial

variations, each sonified with all permutations of pitch and volume-2 variation. This

would however have resulted in four more stimuli (for a total of n = 16), with a knock-on

e↵ect of almost doubling the number of pairs, which would have been n(n� 1)/2 = 120.

Moreover, in such a case also the di�culty of the test would have increased, since the

di↵erences between the stimuli would have been smaller and more di�cult to hear. We
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then opted for 12 stimuli, and fixed the number of pairs that each listener evaluated at

30, manly because we believed that 30 is a reasonable trade-o↵ between the amount of

information we needed to obtain meaningful results, and the length of the test which had

to be kept short enough so as not to generate confusion in the listeners. With di↵erent

settings, the number of participants would have to be increased significantly.

4.3.1 Creating the test stimuli

The test stimuli were designed considering spatialization method, sound source and mo-

tion source for the spatial trajectory, each of which are connected in some way. For

example, sine-tones are spatially vague regardless of precision in spatialization method,

while a clearly recognizable source, such as that of running footsteps on gravel, will carry

extra information biasing listeners’ spatial interpretation. The following sections explain

theses three sides of the test stimuli.

Spatialization method

To synthesize the spatial movement, we use a method called higher-order ambisonics,

HOA, (Daniel and Moreau 2004), which is a way of synthesizing 3-D sound over a loud-

speaker array. HOA involves a two-step process of spatially encoding the information

irrespective of the loudspeaker array, and then applying the appropriate decoder for the

array to be used. This approach creates an accurate projection of spatial information,

especially for a centrally located listener. We applied a 6th order 3-D spatial encoding,

decoded over the 47-loudspeaker 3-D array at the motion capture lab at the Department

for Musicology, University of Oslo (Figure 4.1).

The decoder used was the Max-rE dual-band energy preserving decoder with a cross

over frequency set to 400 Hz (Zotter et al. 2012). This method had been tested in

a previous project and was found to be the best option for the available loudspeaker

system (Barrett 2016). Although near-field coded higher-order ambisonics (Favrot and

Buchholz 2012) can in theory recreate the sensation of changes in proximity resulting

from variations in the curvature of the approaching wave-front, based on the author’s

previous experience this method is unsatisfactory in a practical application, which requires

the use of regularization functions, found to have an impact on the reproduced sound

field, explained briefly in Carpentier et al. (2017). Instead, variations in proximity were

projected via three sets of perceptual cues: (a) by changing the relative weight of the
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(a) 47-loudspeaker 3-D array at
the motion capture lab at the
Department for Musicology, Uni-
versity of Oslo.

(b) 47-loudspeaker 3-D array
modelled from the side, rotated
45 degrees, visualised in IR-
CAM’s spat.viewer (part of the
Spat package, IRCAM 2017).

(c) Speaker layout from
above.

Figure 4.1: Details of the motion capture lab at the Department for Musicology, University of
Oslo.

spherical harmonic components: when close-up, the sound is heard as larger and more

enveloping, when further away it is heard more as a point source, (b) by changing the

gain of the source in relation to distance, and (c) by changing the high frequency content

of the source in relation to distance. All three modulations correlate with our perceptual

understanding of proximity variations in the real-world. The Doppler e↵ect (which is a

pitch shift resulting from a sound moving at speed in relation to the listening position) was

not used. In our everyday experience, motorized vehicles are the most common source of

Doppler shifts, which would add an inappropriate layer of connotation to the test sounds.

Reverberation was also avoided so as to not risk the addition of inappropriate source

implications.

Motion sources

To ‘hear’ human agency, we need to somehow ‘hear’ human movement. Normally we

hear the result of human movement, and not the movement itself. Therefore, to create

the test sounds, it is first necessary to capture movement, or describe it, as spatial data.

Human motion archetypes are those with which we are most familiar in terms of our own

bodies, and serve as a natural starting point. These archetypes are actions produced by,

to name few examples, a swing of the arm, swaying the head and torso, turning, throwing,

catching, hitting, the drumming of fingers, punching, stroking, jumping or running. We

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



144

can refine these movements and consider motion archetypes that commonly stimulate

objects of sound production, including classical musical instruments. These archetypes

will include hit, scrape, push, pull, blow, and a variety of smaller and larger motoric

variations on these themes. For the motion source of our experiment, the articulation

of a music instrument was appropriate: the sound-causation is underpinned by logical

Newtonian laws combined with biomechanics, while the spatial domain is constrained

within a volume suitable for study.

Motion capture

In a recording session, di↵erent performers executed various motion archetypes on their

instruments: a cellist played a variety of bowed articulations; a percussionist articulated

a cymbal with his hands, and for a non-musical contrast, one person threw a tennis

ball. 3-D motion data from these performances was captured using the Qualisys optical

motion-capture system and eight Oqus 300 cameras. Passive markers were placed at

critical locations over the performers bodies, and motion data was recorded at a rate

of 250 Hz with a spatial resolution of less than a mm. The camera system tracks the

location of each marker, recording a dataset of 3-D coordinates at intervals of 4 ms. The

temporal and spatial resolution was important so as to capture micro activity. Although

we may not see micro movements when watching another person, these movements are

understood in our own bodies, and can further be made audible when sonifying data that

has captured these movements. After assessing all recordings, a cellist bowing a single

down-bow action over a ‘double-stop’ was chosen as the motion archetype, using only the

one marker located on the lower side of the right hand. Listeners would not be expected

to identify the origins of this action in terms of a cellist or a cello. Rather, the action

embodied ‘push’ (with some friction resistance), changes of direction, changes of speed,

a ‘throw’ as the bow leaves the strings, as well as creating a human motion archetype

embodying small micro-movements.

Sonification: listening to the data

The data was sonified so that the spatial trajectory could be heard. Sonification is a pro-

cess where data is mapped to sound, and for our data, parameter mapping sonification is

the appropriate method, described in chapter 15 of The Sonification Handbook (Hermann

et al. 2011), using the software Cheddar (Barrett 2016).
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It was necessary to make appropriate decisions regarding how the parameters of the

data should have mapped to sound parameters, as well as exploring scaling ranges that

most clearly revealed the qualities in the data. Cheddar provides a framework designed to

draw on the perceptual aspects of our spatial hearing, as well as allow scope for interesting

sounding results.

The sonification was designed to create sounds that were unrecognizable as to their

acoustic source, so as to avoid listeners attaching human causation by way of identifying

non-spatial information. For example, when hearing a recognizable musical instrument,

most listeners intuitively connect this with a human performance. With these considera-

tions, the following mapping of data to sound was used:

- Each data point triggered a sound grain. The sound grains were initially identical,

and chosen from a spectrally rich source.

- 3-D spatial-data points were mapped to 3-D grain location in a 6th order 3-D am-

bisonics synthesis. The dimensions of the motion source, which traversed a volume

of 0.5m x 0.4m x 0.3m, were scaled up to occupy the width of the listening space,

resulting in a sonification occupying a volume of 5 x 4 x 3 meters projected over the

loudspeaker of size 8 x 5 x 3 meters (see Figure 4.1). By scaling in this way, smaller

spatial motions in the source were more likely to be audible in the sonification.

Further, it imposed a more dynamic result, intending to enhance listeners’ sense

of embodiment (discussed in Section 4.1), and in keeping with the way composers

perform spatial ideas in their music.

- Velocity of motion was also mapped to grain duration, where higher velocity data

values resulted in longer grains. As the data rate was constant, higher velocities

would therefore result in a denser grain overlap and subsequent timbral changes, as

well as a volume increase.

- Velocity of motion was mapped to the volume of each grain using the decibel scale,

so that a doubling in data values resulted in a doubling of perceptual volume. This

added an extra volume variation to the result of increased grain overlap, and will

hereby be termed volume-2.

- Vertical movement was mapped to pitch, which has been shown to enhance our

intuitive awareness of height, as well as relevant to the way in which the shape of

our ears and head filters sound from di↵erent directions.
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- A fixed attack and decay envelop of 5 ms was added to each grain. Maintaining this

short attack and decay envelop regardless of grain size ensured a textural quality

conducive to spatial identification.

- The timeline of the data was mapped to the timeline of the sonification.

A number of studies (e.g. Bigand and Parncutt 1999, Krumhansl 1996) show that

many structural features of music contribute to the experience of tension, such as loudness

dynamics, note density and harmonic relations. The mapping of motion velocity to grain

volume and grain duration results in changes of timbre and loudness, leading to changes

in perceived tension which may enhance associations with human agency. In the first

sonification, the ranges of each of these parameters were scaled to most clearly enhance

features in the data. Likewise, larger scaling ranges were more likely to make audible

the micro variations in spatial data based on aural evaluation. 11 more sonifications

were made from the one dataset. Each version either suppressed features of the original

movement captured in the data, reduced the scaling ranges of the sonification, or both

(see Table 1 for a description).

In ambisonics, it is necessary to specify the view point from which the spatial synthesis

is calculated. We can think of this as the location of a ‘virtual’ listener inside the data,

which will then also be the perspective of a real listener. For all but two test stimuli, the

sonifications were made for the real listener located in the centre of the motion mean.

One of these two stimuli (S3) was reduced to mono, while the other (S2) was spatialised

with the virtual listener on the edge of the spatial domain, as if the motion occurred in

front. In all but two cases (S11 and S12), time was treated as the original tempo (one

data point triggering a sound grain every 4 ms), where the duration of each sonification

was 5 seconds.

Based on the assumption that larger sonification ranges enhance spatial information

in the data, S1 should be ranked at the top, while S10 should be ranked at the bottom.

We can also speculate that as the added pitch variation serves to enhance vertical motion,

yet is not a true part of the 3-D sonification, S7 may be evaluated similarly to S1.

4.3.2 Test procedure

A pilot listening session was carried out on two listeners who were not participating in

the final experiment: one experienced in electroacoustic music and one inexperienced.
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Both listeners were aware of the aims of the project, were asked to assess whether the

sonifications made audible the intended information, whether the proposed questions were

clear, and whether the total duration of the test and number of test stimuli was realistic.

Based on listener feedback a number of changes were made:

- Sonification mapping ranges were optimized in pitch and volume-2 scaling so as to

be sure that the qualities of test stimuli S1 were clearly audible.

- The original text asked the listener to identify ‘human agency’. This term was

discussed as too specialized, and instead replaced with the phrase ‘human physical

action’.

The 46 listeners completed the test, but one participant was turned down after reporting

known hearing loss. The tests were carried out in a darkened black box room. Each

listener was located at the centre of the space, which is the most accurate 3-D spatial

listening point.

Listeners were presented with the following statement: “This test investigates the

role of sound spatialization in how we may associate sound that we hear, with human

physical action.” They were then told that they would be presented with 30 pairs of

short sounds, and for each pair, they should choose the one that, “most evokes a feeling

of human causation or human physical origins”. They were asked to judge the sound as

they experience it in relation to their own body, this being to avoid the listener trying to

ascertain a possible real source, which in the pilot was shown to be a rationalization that

halted the intuitive process. Listeners were also informed that the sounds were made by

sonification (with a brief explanation), that this process results in the sounds appearing

abstract and could be experienced as somewhat strange. The test began with a training

session, during which the listeners were asked to familiarize themselves with these strange

qualities.

When the test began, the test number was displayed on a computer screen, listeners

noted their answers on a chart, and were requested to always make a choice even if they

found it di�cult to decide. They were also allowed to repeat a test pair, but only in

sequence and not at the end of the experiment. At the end, they were asked to complete

two questionnaires that probed their background musical and spatial-audio experience.

One questionnaire resulted in a musical sophistication index score (MSI) and the other

rated spatial-audio awareness (SAA). The MSI used was the Ollen Musical Sophistication
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Index (OMSI), which is an online survey that tests the validity of 29 indicators of musical

sophistication used in published music research literature (Ollen 2006). The SAA, or spa-

tial audio awareness index consisted of five questions as indicators of how aware listeners

were of spatial audio regardless of musical background. Such a test does not already exist

in the literature and was custom designed for the experiment.

The spoken introduction and training session lasted 4 minutes, the test lasted 16

minutes, and the questionnaires took on average a total of 5 minutes.

4.4 Results

We analyzed the data with the mixture model explained in Chapter 3, Section 3.1.5, with

footrule distance. With n = 12 sounds we could use the exact the partition function. In

the Dirichlet prior for ⌘, we set the hyperparameter � = 20, which favors high-entropy

distributions, thus reflecting our inability to express precise prior knowledge. In the Beta

prior for ✓, we set the hyperparameters at 1 = 2 = 1, i.e. the uniform distribution on

the interval [0, 0.5), and the hyperparameters of the prior for ↵ at � = 1 and � = 1/10,

as discussed in Chapter 2, Section 2.1.4. We run the MCMC sampler for 106 iterations,

after a burn-in of 2 · 105.
Separate analyses were performed for C 2 {1, . . . , 7}. In order to choose an appropriate

number of clusters, we plot in Figure 4.1 two quantities: on the left, the within-cluster

sum of footrule distances between the individual rankings and the consensus ranking of

that cluster,
PC

c=1

P

j:z
j

=c dF (Rj,⇢c); on the right, the within-cluster indicator of mis-

fit to the data,
PC

c=1

P

j:z
j

=c

PT
j

t=1 g(Bjt,⇢c). Both these measures were already used in

Chapter 2. There appears to be an elbow at C = 3, to guide us in the choice of the

number of clusters. We decided on C = 3, also motivated by the relatively small sample

size of the experiment (N = 46).

Table 4.1 shows the results for C = 3: the maximum a posteriori (MAP) estimates

for ⌘ and ↵, together with their 95% HPD intervals, are shown at the top of the table.

The table also shows the estimated cluster-specific consensus lists of sounds, estimated

by the CP procedure. We observe the di↵erences in the three consensus lists. S1, the

stimulus with the most dynamic spatial motion, is on top in cluster 3, but at the bottom in

cluster 1; S8, the test stimulus that has maximum spatial details but no volume nor pitch

change, is on top in cluster 1, but second to the last in clusters 2 and 3. Finally, S5, the
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Figure 4.1: Acousmatic data. Boxplots of the within-cluster sum of footrule distances between
the individual rankings and the consensus ranking of that cluster (left), and of the within-cluster
indicator of mis-fit to the data (right), for di↵erent choices of C.

stimulus that contains the least movement variation where pitch and volume are naturally

suppressed, is ranked third and first in clusters 1 and 2, but towards the bottom of the

list in cluster 3. Figure 4.2 shows the heatplot of the posterior marginal probabilities, for

each sound, of being ranked as the k-th highest, k = 1, ..., 12. On the x-axis the sounds

are ordered according to the CP consensus orderings of Table 4.1. Each cell represents,

through colors, the probability that the corresponding sound (on the x-axis) has the rank

reported on the y-axis.

Cluster 1 Cluster 2 Cluster 3
↵1 = 2.66 (1.14,4.96) ↵2 = 5.16 (3.15,9.29) ↵3 =5.32 (3.61,7.66)
⌘1=0.31 (0.21,0.41) ⌘2=0.33 (0.22,0.43) ⌘3=0.37 (0.27,0.48)

S8 S5 S1
S10 S4 S7
S5 S12 S11
S9 S2 S2
S6 S11 S4
S4 S3 S12
S7 S6 S6
S11 S1 S3
S12 S7 S5
S2 S9 S9
S3 S8 S8
S1 S10 S10

Table 4.1: Acousmatic data. Sounds are ordered according to the CP consensus ordering,
obtained from the posterior distribution of ⇢c, c = 1, 2, 3.
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Figure 4.2: Acousmatic data. Posterior consensus ranking of the three clusters.

The explanation of the clusters’ assignments is as follows:

Cluster 1 (C1)

Top-3 stimuli: S8, S10 and S5.

Bottom-3 stimuli: S2, S3 and S1.

Listeners in C1 found variation in volume or pitch as a negative or distracting feature,

while space as an important feature. They rated S8 at the top, a test stimulus that

contains all spatial movements but with pitch and volume variations removed. Also, S10,

S5 and S9, which were ranked next, lack volume and pitch details. The bottom-4 stimuli,

on the other hand, contain maximum pitch and volume variation. S1 is the same as S8

but with pitch and volume variations present. Also S3, being mono-sound, forms a strong

contrast to the top ranked S8 that has maximum spatial movement.

Cluster 2 (C2)

Top-3 stimuli: S5, S4, and S12.

Bottom-3 stimuli: S9, S8, S10.

In C2 listeners prioritized pitch and volume variations above spatial variation, and pre-

ferred low spatial variation (slower, or more relaxed movements). This is sustained by the

top-3 sounds, which feature a low amount of spatial variation, but also correlated pitch

and volume, and the bottom-3 sounds which are the same as the top-3 but lack corre-

lated pitch and volume variation. In particular, S5 contains the least movement variation

where pitch and volume are suppressed. S4 and S12, although both similar to S1 (which

is ranked lower), are each less dynamic in their own way: S12 is played half speed and S4

reflects the global but not smaller movement details. S9 and S10 are the same as S5 and

S4, but lack pitch and volume variations, and S8 also lacks pitch and volume variation.
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Cluster 3 (C3)

Top-3 stimuli: S1, S7 and S11.

Bottom-3 stimuli: S9, S8 and S10.

C3 consists of listeners who, in their evaluation of the test stimuli, appear to include

all spatial cues that adhere to our everyday perception of spatial motion: they prioritize

high levels of spatial detail above all other features, and their perception of these details

is enhanced by correlated pitch and volume variations. The stimuli with most dynamic

spatial motion, enhanced by spatially correlated pitch and volume variations, are in the

top-3, while stimuli with the least of these features are in the bottom-3. In particular, S1

is the optimized full spatial representation of the source data, S7 is the same as S1 but

with pitch variation removed, while S11 is the same as S1 played 30% slower. S9 and S8

contain significant spatial variation but lack both pitch and volume variations, while S10

contains the least of all information.

We investigate the stability of the clustering in Figure 4.3, that shows the heatplot of

the posterior probabilities, for all the listeners (shown on the x-axis), for being assigned

to each of the C = 3 clusters identified in Table 4.1. Most of the probabilities are

concentrated on some particular value of c among the three possibilities, indicating a

reasonably precise behavior in the cluster assignments.

Listener ID

3 7 10 21 28 29 30 34 35 36 43 5 6 8 11 12 19 20 23 26 31 32 33 41 42 46 1 2 4 9 13 14 15 16 17 18 22 24 25 27 37 38 39 40 44 45

ρ1

ρ2

ρ3

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Acousmatic data. Heatplot, for all the listeners (on the x-axis), of the posterior
probabilities of being assigned to each of the three clusters (on the y-axis).

We then computed, fixing these cluster assignments, the marginal posterior probability

that each sound is among the top-4 in ⇢1:3 and in Rj, j = 1, ..., 46, respectively. The

results are shown in Figure 4.4, which is the analog of Figures 2.15, 3.1 and 3.2.

Each heatplot refers to a cluster, C1 (left), C2 (center) and C3 (right), and represents
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Figure 4.4: Acousmatic data. Heatplot of the marginal posterior probabilities for all the stimuli
(y-axis) of being ranked among the top-4 for cluster 1 (left), 2 (center) and 3 (right).

the marginal posterior probabilities for each sound (y-axis) being ranked among the top-4

in the consensus of that cluster (first column), and in the individual rankings of listeners

in that cluster (remaining columns, users on the x-axis). As Figure 4.4 shows, there is

considerable variation in the estimated rankings of the sounds between individual listeners

even when they are included in the same cluster. For example, looking at Figure 4.4 left,

we see that S8, S10, and S5 have high (> 0.8) posterior probability of being ranked among

the top-4 stimuli in the consensus ranking (column 1). However, looking at the estimates

for the listeners in C1, we see that the variation is very high: for example, listener 30

(column labelled 30) has a very high posterior probability of ranking S3 and S6 among

the top-4 stimuli. This aspect is important for what concerns individual estimates.

Here we investigate whether there is any relationship between between listeners’ mu-

sical background and the test results. In particular, we inspect the relationship between

the posterior probability of placing some given stimuli in the top (bottom) ranks and

the musical sophistication index (MSI), or the spatial audio awareness index (SAA). Fig-

ure 4.5 shows the relationship between listeners’ SAA and the probability of S1 (left),

S7 (middle), and S1 and S7 jointly (right) being ranked in the top-4 in the individual

ranking of the listeners. Recall that S1 was the original sound, while S7 was identical to

S1, but without pitch variation. The plot suggests that spatial listening is a skill that is

enhanced through training.

In Figure 4.6 we display the relationship between listeners’ MSI and the probability of

S8 (left), S10 (middle), and S8 and S10 jointly (right), being ranked among the bottom-4

stimuli.
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Figure 4.5: Acousmatic data. Boxplot of the posterior probabilities for sounds S1 (left), S7
(middle), S1 and S7 jointly (right), of being ranked among the top-4 in the individual ranking
Rj , stratified by the SAA index. The horizontal red line is the threshold in the case of random
assignment. The scale of SAA goes from 0 to 3, where 3 is an indicator of awareness of spatial
dimension of sounds.
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Figure 4.6: Acousmatic data. Boxplot of the posterior probabilities for sounds S8 (left), S10
(middle), S8 and S10 jointly (right), of being ranked among the bottom-4 in the individual
ranking Rj , stratified by the MSI index. The horizontal red line is the threshold in the case of
random assignment.

Listeners with a score greater than 500 were classified as musically more sophisticated,

and those with a score less than 500 as less sophisticated2. Both S8 and S10 suppress pitch

and volume variations, which are expected to enhance the implication of human causation.

These two stimuli are more likely to be ranked among the bottom-4 by listeners with high

MSI. This indicates that musically sophisticated listeners, find pitch and volume variations

as important qualities for a stimulus to sound human.

The experiment was di�cult as expected: 80% of the listeners reported non-transitivities

2As suggested in http://marcs-survey.uws.edu.au/OMSI/omsi.php.
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in their pair comparisons and only 9 out of 46 listeners were able to stay consistent with

themselves. The remaining 37 listeners produced many non-transitivities. Figure 4.7 is

the heatplot representing the aggregated matrix of cycle co-memberships: each cell repre-

sents the probability that the corresponding sounds on the x-axis and on the y-axis are in

a same non-transitive pattern (here called cycle), and thus the probability that they are

confused by the listeners. This plot helps in understanding the extent to which a sound

is more easily confused with another. For example, S10 and S12, which are are very dif-

ferent (see Table 1), appear in the same cycle a small number of times (blue cell), while

S8 and S9 (which both lack pitch and volume variation, and have very similar spatial

information) appear in the same cycle a large number of times (burgundy cell).

Figure 4.7: Heatplot representing the cycle co-memberships of the sounds in the non-transitive
patterns of the data.

4.5 Discussion

The results of the analysis clearly reveal that spatial listening is a skill that is enhanced

through experience and personal interest. Also, di↵erent groups of listeners latch on to

di↵erent types of information in their experience of human agency. Yet, the identification

of three clusters, as well as the uncertainty for each ranking, indicates that answering the

question as to whether sound spatialization can suggest human agency is far from straight
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forward. If we were to assume that human agency is projected by sound spatialization

mimicking physical actions, and enhanced by volume and pitch modulation, S1 would

optimally capture human agency through sound spatialization and S10 would fail in this

respect. This trend is strongly identified for cluster 1 only (although cluster 2 also ranks

S10 last). However, common to cluster 2 and 3 - which together account for 35 out of the

46 listeners - is a preference for the original, complete spatial movement. From the rank of

S2 we can make assumptions as to the e↵ect of spatial scaling on listeners’ choices: in S2

indeed the spatial activity occupies a small spatial zone in front of the listener, more akin

to the original source space. For all listeners, S2 occupies an uncertain middle ranking,

where the reduction in distance traversed may serve to blur a listener’s judgement.

The preference of cluster 2 for slower movements may point out that these listeners

find the large and fast variations in pitch and volume-2 distracting, which can indicate

that a future study would benefit from smaller variations in the sonification scaling range.

Also, the results from clusters 1 and 3 suggest that pitch variation as an enhancement of

verticality is an unnecessary addition, which may have served to make the tests trickier

or the results less consistent. A further study may therefore choose to remove this aspect

of the sonification.
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Chapter 5

The Bayesian Mallows model with

Cayley distance

In this chapter, we provide the specialization of the Bayesian Mallows model of Chapter

2 when the metric on the space of permutations is the Cayley distance.

We start in Section 5.1 by presenting the definition and properties of the Cayley dis-

tance. In Section 5.2, we give the main equations and properties of the Mallows model

with Cayley distance, and outline a strategy to make Bayesian inference on this model

(Section 5.2.1), also investigating some choices for the prior density over the consensus

ranking. We then outline the adaptation of the MCMC of Chapter 2 for this case (in

Section 5.2.2), where we introduce a new symmetric proposal for the consensus parameter

of the MMC, which is particularly suited for this model.

This chapter is ongoing work.

5.1 The Cayley distance and its properties

As already mentioned in Section 1.1.3, the Cayley distance dC(⇢,�) between two permu-

tations ⇢,� 2 Pn counts the minimum number of swaps required to convert ⇢ into �. It

is right-invariant (see definition 1 in Section 1.1.3), from which it follows that

dC(⇢⇢
�1,�⇢�1) = dC(1n,�⇢

�1) := dC(�⇢
�1), (5.1)

where 1n = (1, 2, ..., n) is the identity permutation.

The Cayley distance, contrarily to most of the other distances considered in this

thesis, is also left-invariant (and thus bi-invariant), meaning that it does not change
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if renumbering the ranks. This property is somewhat counterintuitive when dealing with

human preferences: the preferred item (ranked 1st), is di↵erent from the least preferred

one (ranked nth), say, which implies that the distance between them is large. The previous

reasoning does not hold for Cayley distance, which indeed is a measure of pure disorder,

rather than being a spatial distance like footrule or Spearman (Marden 1995). For this

reason the Cayley distance is not used with preference data, but rather in applications

concerning cryptography, genomics, or random number generators.

The bi-invariance property of the Cayley distance is intimately connected with the

notion of cycles in a permutation.

Definition 4. Cycle of a permutation ⇢. A cycle in a permutation ⇢ is an ordered

set {i1, ..., ik} ✓ {1, ..., n} such that ⇢(i1) = i2, ⇢(i2) = i3, ..., ⇢(ik) = i1.

A way of representing a permutation is indeed through the cyclic notation, in which it is

factorized into the set of disjoint cycles. For example, the permutation ⇢ = (6, 3, 2, 1, 4, 5)

has cyclic decomposition (1 4 5 6)(2 3). Notice here the di↵erence in notation: the elements

of a permutation are separated by commas, while the elements of cycles are not.

It can be proven the following identity, that holds for each permutation ⇢ 2 Pn

dC(1n,⇢) := dC(⇢) := n� C(⇢), (5.2)

where C(⇢) is the number of cycles of ⇢. In other words, the number of swaps to con-

vert a given ranking, ⇢, into the identity permutation 1n - which is exactly the definition

of Cayley distance between ⇢ and 1n - equals the length of the ranking minus its number

of cycles. Every permutation uniquely decomposes into the product of disjoint cycles,

but a cyclic decomposition may correspond to many permutations. All permutations that

have the same disjoint cycle decomposition form a conjugacy class.

Given ⇢,� 2 Pn, it holds

dC(⇢,�) = dC(1n,�⇢
�1) = n� C(⇢��1). (5.3)

An important property of the Cayley distance dC(⇢) is that it can be decomposed into

a sum of n � 1 independent terms Xi, dC(⇢) =
Pn�1

i=1 Xi(⇢), where Xi(⇢) = 0 if i is the

largest item in its cycle in ⇢, Xi(⇢) = 1 otherwise (Feller 1968).
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5.2 The Mallows model with Cayley distance

In this chapter we express the scale parameter of eq. (1.6) as ✓ = ↵/n, for simplifying

the notation, thus leading to the following form of the Mallows density,

P (R | ✓,⇢) := 1

Z(✓)
exp [�✓d(R,⇢)] . (5.4)

The Mallows model with Cayley distance, henceforth referred to as MMC, has the

appealing property that the partition function has a closed form, due to Fligner and

Verducci (1986):

Z(✓) =
X

R2P
n

e�✓dC(R,⇢) =
n�1
Y

i=1

�

1 + ie�✓
�

(5.5)

Remark 3. Notice that 5.5, can equivalently be written as Z(✓) = e�✓(n�1)(1 + e✓)n�1,

where (x)n =
Qn

i=1(x+ i� 1) denotes the Pochhammer symbol.

Proof.
Qn�1

i=1

�

1 + ie�✓
�

= e�✓(n�1)
Qn�1

i=1 (e
✓ + i) := e�✓(n�1)(1 + e✓)n�1.

The density of a ranking R 2 Pn in the MMC can then be written as follows,

P (R | ✓,⇢) = e�✓[n�C(R⇢�1)]

e�✓(n�1)(1 + e✓)n�1
=

e�✓[1�C(R⇢�1)]

(1 + e✓)n�1
. (5.6)

Given a sample R1, . . . ,RN |✓,⇢ i.i.d⇠ MC(✓,⇢), where MC is the density in eq. (5.6),

the likelihood is simply

P (R1, ...,RN | ✓,⇢) = e�✓
P

N

j=1 dC(R
j

,⇢)

Z (✓)N
=

e�✓[N�
P

N

j=1 C(R
j

⇢�1)]

[(1 + e✓)n�1]N
. (5.7)

In Figure 5.1 we boxplot the Cayley distance samples R1, ...,RN | ✓,⇢ i.i.d⇠ MC(⇢, ✓) as

a function of ✓, for di↵erent values of n, as stated in the titles.

Maximum likelihood estimation of the MMC is studied in Irurozki et al. (2016b), where

the authors propose an exact algorithm based on a branch and bound search in order

to estimate the MLE, which is the solution to the following combinatorial optimization

problem,

⇢MLE = argmax
⇢2P

n

N
X

j=1

C(Rj⇢
�1).
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Figure 5.1: The Cayley distance of a sample R1, ...,RN ⇠ MC(⇢, ✓) as a function of ✓, for
di↵erent values of n.

As the authors claim, this optimization problem is commonly believed to be NP-complete,

also if its computational complexity classification is still an open issue.

5.2.1 Bayesian Learning of the MMC

With Cayley distance, and a prior density ⇡(·, ·) on the MMC parameters ⇢ and ✓, the

posterior distribution is given by

⇡ (⇢, ✓|R1, . . . ,RN) / ⇡ (⇢, ✓) e�✓[N�
P

N

j=1 C(R
j

⇢�1)]

[(1 + e✓)n�1]N
. (5.8)

We briefly discuss two natural strategies to elicit the prior distribution.

The first road is to assume prior independence among the two parameters, as we

did in Chapters 2 and 3. For ✓, one possibility is to choose the exponential density, as

suggested in Section 2.1.1. An informative prior for ⇢, as mentioned in Section 2.1.1,

could be the Mallows family, that is ⇡(⇢) = ⇡(⇢ | ✓0,⇢0) / exp [�✓0d(⇢,⇢0)], where ✓0

and ⇢0 are fixed hyperparameters. If one is able to provide a prior central permutation

⇢0, with uncertainty around it, controlled by the hyperparameter ✓0, then a natural prior

for ⇢ would be a Mallows density with Cayley distance. Such prior distribution assigns
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equal probability to all permutations with the same Cayley distance to ⇢0, that is, to

all permutations ⇢ such that ⇢⇢�10 has the same number of cycles. Given a permutation

⇢ 2 Pn, the possible number of cycles is C(⇢) 2 {0, ..., n� 1}. So, this strategy amounts

to set a n possible values to the prior. Linked to this idea, is the interesting proposal of

Gupta and Damien (2002), who suggest to elicit a prior which is constant on conjugacy

classes, this being is equivalent to assign a priori equal probability to all permutations

with the same cyclic structure. Our proposal reduces to the one of Gupta and Damien

(2002), if the density assumed on each conjugacy class is the MMC.

A second possibility is to model, through the joint prior, the possible dependency of

the two parameters. A proposal is the following hierarchical scheme:

R1, ...,RN |✓,⇢ i.i.d⇠ M(✓,⇢)

⇢|✓,⇢0 ⇠M(✓,⇢0)

✓|N 00, D00 ⇠ exp{�✓N 00D00 �N 00 lnZ(✓)}

The posterior of eq. (5.8), would in this special case be given by,

⇡(⇢,✓|R1, . . . ,RN) / ⇡(✓)⇡(⇢|✓)P (R1, ...,RN |✓,⇢) =

=
exp

n

�✓
h

N 00D
0
0 + dC(⇢,⇢0) +

PN
j=1 dC (Rj,⇢)

io

[Z (✓)]N
0
0+N+1

=

=
exp

n

�✓
h

N 00(D
0
0 � n� 1)�N � 1� C(⇢0⇢

�1)�PN
j=1 C (Rj⇢

�1)
io

(1 + e✓)
N 00+N+1
n�1

.

(5.9)

This means that the joint posterior for the pair (⇢, ✓) is as if one had (N 00 + N + 1)

observations, of which:

- N 00 have average Cayley distance from ⇢ given by D00;

- N are the sampled observations, R1, . . . ,RN ;

- 1 is ⇢0, which is the hyperparameter of the prior density over ⇢.

Thanks to this prior it is possible to elicit two quantities at the same time: by means

of the hyperparameters N 00 and D00, one can provide information about the conjugacy class

which is a priori thought more likely; through the hyperparameter ⇢0, one can give weight

to a specific central permutation, that may or may not belong to the same conjugacy class

of the previous point.
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5.2.2 Algorithm for the MMC

A simple adaptation of the random walk Metropolis-Hastings algorithm for full rankings

of Chapter 2 enables us to sample from the posterior density (5.8). We here treat the

case of prior independence among ✓ and ⇢. The calculations can be easily extended to

the case of dependency (that is, to the posterior of eq. (5.9)).

As in Algorithm 1, we iterate between two steps. We first update ⇢, by sampling ⇢0

from the following customized proposal.

Definition 5. Cayely proposal. Denote the current version of the consensus ranking by

⇢

m. Let L⇤ 2 {1, .., n}. Sample uniformly an integer l from U{1, 2, ..., L⇤}. The pro-

posal ⇢0 is sampled uniformly between the permutations at Cayley distance l from ⇢

m:

⇢

0 ⇠ U({� 2 Pn : dC(�,⇢m) = l}).

The parameter L⇤ is the maximum allowed Cayley distance of the proposal from the

current value of ⇢, and is used for tuning the acceptance probability in the M-H step.

The process of simulating ⇢0 uniformly between the permutations at Cayley distance

l from ⇢

m is performed in two stages:

i. Pick, uniformly at random, a permutation � at Cayley distance l from the identity

permutation 1n (function available in the the PerMallows R package);

ii. Set ⇢0 = �⇢

m, since l = dC(�,1n) = dC(�⇢m,⇢m), by bi-invariance of Cayley

distance.

The number of permutations � at Cayley distance l from ⇢

m equals the number of

permutations �, s.t. �(⇢m)�1 has (n � l) cycles (see eq. (5.3)), which is given by the

unsigned Stirling numbers of the first kind (OEIS sequence A094638 Sloane 2017). As a

consequence, the transition probability of the Cayley proposal is symmetric, and given by

q(⇢0 ! ⇢

m) = q(⇢m ! ⇢

0) =
L⇤
X

l=1

P (L = l)P (⇢0 ! ⇢

m|L = l)1(dC(⇢0,⇢m) = l) =

=
1

L⇤

L⇤
X

l=1

1

S
(n�l)
n

1(dC(⇢0,⇢m) = l).
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The proposed value is then accepted with probability ⌘ = min{1, a⇢}, where:

ln a⇢ =� ✓
N
X

j=1

[dC(Rj,⇢
0)� dC(Rj,⇢

m)]� ✓0 [dC(⇢0,⇢
0)� dC(⇢0,⇢

m)] =

=� ✓
N
X

j=1

⇥

C(⇢m
R

�1
j )� C(⇢0R�1j )

⇤� ✓0
⇥

C(⇢m(⇢0)
�1)� C(⇢0(⇢0)

�1)
⇤

.

(5.10)

We then update ✓ by sampling ✓0 from a log-normal density, lnN (ln ✓m, �2
✓), and accepting

it with probability ⌘ = min{1, a✓}, where

ln a✓ = ln(✓0/✓m)� (✓0 � ✓m)
"

�+N �
N
X

j=1

C(⇢R�1j )

#

�N ln
(e✓
0
+ 1)n�1

(e✓m + 1)n�1
. (5.11)

Algorithm 13: Random walk MH for the MMC
input : R1, . . . ,RN , �, ⇢0, ✓0, �✓ , L, Z(✓), M , L

⇤

output: Posterior distributions of ⇢ and ✓

Initialization: randomly generate ⇢0 and ✓0

for m 1 to M do

Update ⇢:

sample ⇢0 form the Cayley proposal with parameter L

⇤ and centered in ⇢m

compute: ratio equation (5.10) with ✓  ✓

m

sample: u ⇠ U(0, 1)
if u < ratio then

⇢m+1  ⇢0

else
⇢m+1  ⇢m

end

Update ✓:

sample: ✓0 ⇠ lnN (ln(✓m),�2
✓)

compute: ratio equation (5.11) with ⇢ ⇢m

sample: u ⇠ U(0, 1)
if u < ratio then

✓

m+1  ✓

0

else
✓

m+1  ✓

m

end

end

To save time, after the acceptance step for ⇢, we store the value of
PN

j=1 C(⇢R�1j ),

corresponding to the accepted ⇢, which is then used in the step for ✓. The algorithm

computational time depends strongly on n and N : the computation of Cayley distance

between n-dimensional permutations, requires increasing time in n (see Figure 5.2), and

the larger N is, the larger is the number of times such distance must be calculated.
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Figure 5.2: Boxplot of the time to compute the number of cycles in a permutation (i.e. the
Cayley distance), stratified by the length of the permutation.

5.3 Ongoing work and discussion

We are currently working on applications of the model proposed in this chapter, and

exploring its connections with some areas of Bayesian non-parametrics.

For example, a construction that gives rise to the MMC is the Chinese restaurant process,

explained in a nutshell below. Imagine a restaurant containing n tables. People arrive

at the restaurant and choose a table according to the following scheme: The first person

seats at table 1. The second one seats to the right of the first person or at table 2 with

probabilities e✓/(1+ e✓) and 1/(1+ e✓) respectively. The (i+1)-st person chooses to seat

at an empty table with probability 1/(ie✓ + 1), and to the right of one of the previous

people, i, randomly and with equal probability ie✓/(ie✓ + 1). The final arrangement of

the tables is a permutation expressed in cyclic notation.

A second interesting application of the MMC is that the partition given by the cycles in

the Mallows model with Cayley distance arises in mathematical population genetics as

the Ewens sampling formula (Aldous 1985, Gnedin and Gorin 2016).

Exploring inferential aspects of uses of the MMC in these areas is an envisaged devel-

opment of the work outlined in this chapter.
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Chapter 6

Preliminary results on the conjugate

prior elicitation problem

In this chapter we discuss a model extension that we are working on, and give some

preliminary results. The extension regards the prior elicitation problem. In particular, we

are working on defining the conjugate prior for the parameters of the Mallows model in

case of Spearman distance. In Section 6.1, we show that the Mallows model with Spearman

distance has su�cient statistics, and in Section 6.2 we outline the first results regarding

a conjugate prior for its consensus parameter.

6.1 Su�cient statistic and MLE

As in Chapter 5, let us parametrize the Mallows model (1.6) in the scale parameter

✓ = ↵/n, so that, in the case of Spearman distance, it specifies the probability density of

a ranking R 2 Pn as

P (R|✓,⇢) = 1

Z(✓)
exp

"

�✓
n
X

i=1

(Ri � ⇢i)2
#

/ exp

"

�✓
n
X

i=1

⇥

R2
i + ⇢2i � 2⇢iRji

⇤

#

=

=exp

"

�✓n(n+ 1)(2n+ 1)/3 + 2✓
n
X

i=1

Ri⇢i

#

/ exp

"

2✓
n
X

i=1

Ri⇢i

#

.

(6.1)

Let us assume that the parameter ✓ is known. In this chapter we only focus on the

inference about ⇢.

Given a sample R1, ...,RN |⇢ i.i.d⇠ MS(✓,⇢), where MS(·, ·) is the density defined in (6.1),
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the likelihood is then

P (R1, ...,RN |⇢) / exp

"

�✓
N
X

j=1

n
X

i=1

(⇢i �Rji)
2

#

/ exp

 

2✓N
n
X

i=1

⇢iR̄i

!

, (6.2)

where R̄i =
1
N

PN
j=1 Rji, i = 1, ..., n, is the sample average of the i�th rank.

The previous calculation shows that the su�cient statistic for ⇢ = (⇢1, . . . , ⇢n), is given

by R̄ =
�

R̄1, . . . , R̄n

�

, and the MLE is the solution to the following maximization

argmax
⇢2P

n

n
X

i=1

⇢iR̄i .

Denote by Y (R̄) = (Y1(R̄), · · · , Yn(R̄)) 2 Pn the rank vector of R̄, that is, Yi(R̄) =

Yi =
Pn

h=1 1(R̄h  R̄i), i = 1, ..., n. The following proposition shows that ⇢MLE =

argmax⇢2P
n

Pn
i=1 ⇢iR̄i = Y (R̄).

Proposition 6. Let R1, ...,RN |⇢ i.i.d⇠ MS(✓,⇢), and define the vector of sample ranks

as R̄ = (R̄1, ..., R̄n), where R̄i = 1
N

PN
j=1 Rji. Assume R̄i 6= R̄j, for each i 6= j, and

denote by Y (R̄) = (Y1(R̄), · · · , Yn(R̄)) 2 Pn the rank vector of R̄, defined as above.

Then ⇢MLE = Y (R̄).

Proof. The following two identities hold by right-invariance (Section 1.1.3, Definition 1):

n
X

i=1

⇢iR̄i =
n
X

i=1

i(R̄ � ⇢�1)i (6.3)

n
X

i=1

⇢iYi(R̄) =
n
X

i=1

i(Y (R̄) � ⇢�1)i =
n
X

i=1

iYi(R̄ � ⇢�1) (6.4)

Eq. (6.3) implies that ⇢̂1 = argmax⇢2P
n

Pn
i=1 i(R̄ � ⇢�1)i is such that (R̄ � ⇢̂�11 )1 

(R̄ � ⇢̂�11 )2  · · ·  (R̄ � ⇢̂�11 )n (by Lemma 2 in Hüllermeier et al. (2008)).

By (6.4), it follows that ⇢̂2 = argmax⇢2P
n

Pn
i=1 iYi(R̄�⇢�1), is such that Yi(R̄� ⇢̂�12 ) = i,

for each i = 1, ..., n.

Now, notice that (R̄� ⇢̂�11 )1  (R̄� ⇢̂�11 )2  · · ·  (R̄� ⇢̂�11 )n if and only if Yi(R̄� ⇢̂�11 ) = i,

for each i = 1, ..., n. This proves that ⇢̂1 = ⇢̂2.
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6.2 The conjugate prior for ⇢ when ✓ is known

We here give a strategy to elicit a conjugate prior on the consensus parameter of the

Mallows model with Spearman distance. Notice that the likelihood of eq. (6.2) can be

written as

P (R1, ...,RN |⇢) / exp

"

�✓
N
X

j=1

n
X

i=1

(⇢i �Rij)
2)

#

/ exp

"

�✓N
n
X

i=1

(⇢i � R̄i)
2

#

.

It is worth pointing out here the notion of permutation polytope, which is intimately

connected to the vector of sample ranks R̄.

Definition 6. The permutation polytope for given n, ppn, is the convex hull of the

points ⇢ 2 Pn ⇢ Rn,

Then, the permutations ⇢ 2 Pn ⇢ Rn form the vertices of ppn, and lie on the same

(n� 1)-dimensional hyperplane Hn =
n

x 2 Rn
�

�

Pn
i=1 xi =

n(n+1)
2

o

.

Proposition 7. Let R1, ...,RN 2 Pn, and define the vector of sample ranks as R̄ =

(R̄1, ..., R̄n), where R̄i =
1
N

PN
j=1 Rji, for all i = 1, ..., n. Then R̄ 2 ppn.

Proof. The result follows directly from the following proposition by Rado (1952):

Proposition 8. (Rado 1952) Let us assume that x1 � x2 � · · · � xn. Then a point

(t1, · · · , tn) 2 Rn belongs to the permutohedron pp(x1, · · · , xn) if and only if
Pn

i=1 ti =
Pn

i=1 xi and, for any nonempty subset {i1, ..., ik} ⇢ {1, ..., n}, Pk
i=1 tik =

Pk
i=1 xi.

If we take (x1, x2, · · · , xn) = (n, n�1, ..., 1), and (t1, · · · , tn) = (R̄1, · · · , R̄n), it is easy

to show that (R̄1, · · · , R̄n) 2 pp(n, n� 1, · · · , 1) ⌘ ppn.

Keeping ✓ fixed, the conjugate prior for ⇢ 2 Pn is

⇡(⇢|⇢0, ✓0) =
1

Z⇤n(✓0,⇢0)
exp

"

�✓0
n
X

i=1

(⇢0i � ⇢i)2
#

/ exp

"

2✓0

n
X

i=1

⇢i⇢0i

#

, (6.5)

where ⇢0, the central parameter, belongs to the permutation polytope of order n, ppn.

What is appealing in this density, if compared with the Mallows model, is that its param-

eter space is regular, being given by ppn ⇥ R+.
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The posterior density for ⇢ is

⇡(⇢|R1, ...,RN) / exp

(

2(✓0 + ✓N)
n
X

i=1

⇢i



✓N

✓0 + ✓N
R̄i +

✓0
✓0 + ✓N

⇢0,i

�

)

, (6.6)

that is, the posterior has the same parametric form as the prior distribution. In par-

ticular, ⇢|R1, ...,RN ⇠ ⇡
⇣

✓N
✓0+✓N

R̄+ ✓0
✓0+✓N

⇢0, ✓0 + ✓N
⌘

, is the same parametric density

of the prior (6.5), with updated parameters:

⇢N =
✓N

✓0 + ✓N
R̄+

✓0
✓0 + ✓N

⇢0 2 ppn (6.7)

✓N = ✓0 + ✓N . (6.8)

The posterior consensus parameter is expressed as a weighted average of the prior

hyperparameter ⇢0 and the observed mean value, R̄, with weights proportional to the

spread parameters.

In the limiting cases, the posterior mean equals the prior mean or the observed value:

⇢N =

8

>

<

>

:

⇢0, if R̄ = ⇢0 or ✓0 !1
R̄, if R̄ = ⇢0 or ✓ !1

.

If ✓0 ! 1 the prior density is infinitely more precise than the data, and so the

posterior and prior distributions are identical and concentrated at the value ⇢0. The

other way around is true if ✓ !1, that is, the data are infinitely more precise than the

prior, and the posterior density is concentrated at the observed value R̄. Notice that, by

means of Proposition 6, the MAP of ⇢ is ⇢MAP = Y (⇢N).

Figure 6.1 shows the n = 3 polytope in two dimensions, obtained with the R package

ConsRank (D’Ambrosio et al. 2017). Rankings are represented by each vertex. The

Euclidean distance between any two vertices is proportional to the Spearman distance

between the two rankings corresponding to the two vertices (equality holds if the edges

have length
p
2). Permutation polytopes are a common way of displaying the frequencies

of a set of rankings, as they correspond to histograms for continuous data. In particular,

the idea (due to Thompson 1993) is to visualize ranking data by placing at each vertex of

the polytope a ball with radius proportional to the frequency of the ranking corresponding

to that vertex.

We use this tool to illustrate the e↵ects of the prior on ⇢ on inference. Since the
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Figure 6.1: The generic permutation polytope for n = 3 items.

permutation polytope is di�cult to visualize for high dimensions, we make an example

with n = 3.

We simulate N = 40 rankings from the Mallows with Spearman distance, with ✓ = 0.5

and ⇢ = (3, 2, 1), obtaining the vector of sample ranks R̄ = (2.25, 2.125, 1.625). We

then sample 1000 rankings from the posterior density of ⇢, having assumed the prior of

equation (6.5), with ⇢0 = (1, 2, 3), and varying ✓0 = 0, 10, 20, 30, 40, 50.

In Figure 6.2 we represent through permutation polytopes the posterior samples cor-

responding to the di↵erent values of the prior hyperparameter ✓0. The blue balls centered

at each vertex of the polytopes, have radius proportional to the frequency of rankings

corresponding to that vertex. As expected, the larger ✓0 is, the more concentrated the

posterior ranks are at ⇢0. When ✓0 = 0 (Figure 6.2 top left), the posterior is only driven

by R̄. Since the data were sampled from a Mallows density with very small spread pa-

rameter (✓ = 0.5) the frequencies of the rankings in this plot are not clearly concentrated

at the true generating consensus ⇢ = (3, 2, 1). Repeating the same analysis with ✓ = 1.5,

we obtain the vector of sample ranks R̄ = (2.675, 2.025, 1.3), and the posterior samples

represented in Figure 6.3, where is clear the impact of the sample concentration of the

rankings around the consensus ⇢ = (3, 2, 1), due to the larger value of ↵.

Notice that, when choosing the prior hyperparameter ⇢0 we are not forced to choose an

element of the space of permutations. This flexibility enables to elicit a central parameter

with uncertainty in some positions and not in others. For instance, we may be confident

that the consensus rank ⇢1 is equal to 1, but are uncertain about ⇢2 and ⇢3. This can be

expressed through the prior hyperparameter ⇢0 = (1, 2.5, 2.5) 2 pp3.
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Figure 6.2: The generic permutation polytope for n = 3 items. ✓ = 0.5.

Figure 6.3: The generic permutation polytope for n = 3 items. ✓ = 1.5.

The results outlined in this chapter are preliminary and have been derived in the last

weeks of work on this thesis. More work is necessary in order to apply the findings to

the general Bayesian Mallows model. However, we are confident that the idea of defining

a conjugate prior for the consensus parameter is an interesting line of research. We will

pursue the study of this topic, also exploring the possibility to elicit a joint conjugate

prior for the two parameters of the Mallows model.
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Discussion

After its first appearance in Mallows (1957), the Mallows model received much attention

in the literature on ranking data. It was originally developed for dealing with pairwise

comparisons, and it only considered two distances: Kendall and Spearman. Diaconis

(1988) developed the theory for a general class of distance-based models, thus extending

the Mallows model to any arbitrary right-invariant distance.

The principal advantage of the Mallows model, when compared with other statistical

approaches to ranking data, is its ability to capture the main features of the data with

only two parameters. However, many scholars believe that this feature does not allow

the model to be as flexible as a stage-wise model, for example the Plackett-Luce, whose

parameters are real-valued. We argue that the Mallows model is versatile in that it can

adapt to many di↵erent distance measures; this results into richer expressiveness than

many other probabilistic models on rankings. The choice of the appropriate distance

depends on the specific application. Some problems require a distance able to measure

only the disorder in the given domain, like Cayley, while others require a distance more

suited to learn preferences of a population, like Kendall or footrule. In other words,

the application field influences the most accurate distance to use: specific problems are

better modeled under a particular distance. However, the Mallows model has one main

shortcoming, namely that the computation of the normalizing constant is intractable.

This problem limited its use to some specific distances, such as the Kendall distance, for

which a closed form of the normalizing constant exists and is tractable.

One of the main contributions of this thesis is to show how to handle all the other

well-known right-invariant distances, so that the versatility of the Mallows model is

fully exploited. In particular, the implemented algorithm allows to use Kendall, Cay-

ley, footrule and Spearman distances, and it can be immediately generalized to any other

right-invariant distance (e.g. Hamming or Ulam). For Kendall and Cayley distances,

we exploit the well-known closed form of the normalization constant due to Fligner and
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Verducci (1986). For footrule (n < 51) and Spearman (n < 15), we provide the exact

form of the normalizing constant, while for larger values of n we develop a strategy to

approximate it. In particular, we propose an o↵-line importance sampling scheme, and

we largely document the quality and e�ciency of this approximation. The above strategy

is fully integrated into the developed Bayesian framework for the analysis of the Mallows

model (Chapter 2). Therefore, our framework makes possible the Bayesian learning of

the Mallows model for any right-invariant distance. As an illustrative example, we spe-

cialize our framework to the Cayley distance, which has many appealing properties and

connections with other statistical areas (Chapter 5). The possibility to perform Bayesian

analysis of the Mallows model with any right-invariant distance is a novel contribution

to the literature on ranking data, where the Mallows model was studied in the Bayesian

paradigm only in few specific cases (see for instance Meilǎ and Bao 2010).

One of the well known advantages of the Bayesian approach is its ability to provide

posterior uncertainty related to any quantity of interest. Indeed, the availability of the

full posterior distribution of the parameters allows to obtain any summary of interest,

driven by the application at hand. This feature proved to be crucial when comparing our

model with existing competitors. In particular, we compared our results with some of

the works in the learning to rank (LETOR) field, whose aim is to find the ranking that

best describes the preferences expressed in the data. Our method is capable not only

to perform rank aggregation, but it also provides uncertainty quantification around the

estimated rankings.

Another advantage of Bayesian statistics is the possibility to include prior information

into the analysis. However, in this thesis we always used the uniform prior over the space

of permutations, because the main interest was in developing a general framework in the

simplest possible case. Nevertheless, we believe that studying the elicitation problem in

this context is very interesting and a promising avenue for future research. In Chapter

6 we move the first steps in this direction by providing some preliminary results on the

conjugate prior in the special case of the Mallows model with Spearman distance.

A second core contribution of this work is the development of a model to deal with non-

transitive patterns in individual pairwise preference data (Chapter 3). The literature on

inferential models for non-transitive pair comparisons is limited, and it mostly appears in

the machine learning community, under the name of feedback arc set problem (see Section

1.2.1), or of linear ordering problem. These works generally do not provide uncertainty
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quantifications to the derived point estimates. On the contrary, our method leads to a

probabilistic model of rankings. In this case it provides not only the posterior distribution

of the consensus ranking, but also of the individual rankings for each user, which can be

used for performing personalized recommendation, or to study the association between

individual preferences and user-related covariates.

It is easy to understand the relevance of this second contribution when dealing with

data showing many non-transitive patterns. Indeed, only in few cases it is possible for a

person to compare many items at the same time, to assign ranks to all of them, and thus

to produce a unique ranking. Often instead, when di↵erences between items are small,

or the number of items under comparison is large, it is di�cult for a person to provide a

full ranking. In such cases, the preferred method is to let the person repeatedly compare

the items in pairs, that is, to design a paired comparisons experiment (David 1963).

However, this method admits the possibility that the person contradicts herself. This is

very common, especially because this kind of experiment is chosen in situations where the

items under evaluation are rather similar, as already mentioned. Clearly, the presence of

non-transitive patterns makes impossible to readily identify the unique ranking describing

a person’s preferences. To our knowledge most of the existing statistical methods to

estimate individual rankings from pairwise comparison data do not specifically model

the non-transitivity characterizing the data. Instead we incorporate the non-transitive

patterns of the data directly into the developed Bayesian framework of Chapter 2, thus

enabling the statistician not to loose possibly relevant information.

The advantages discussed so far proved to be very important in the application to

sound data discussed in Chapter 4. The aim of the experiment was to investigate the

impact of 3-D sound spatialization on listeners’ understanding of human agency, when

they hear abstract sounds. Listeners’ linguistic descriptions of what they hear are notori-

ously inconsistent, despite often meaning the same. The experiment therefore had to be

designed to avoid the need for a descriptive language. We first considered allowing listen-

ers to allocate each sound a score, indicating how strongly each evoked human agency in

relation to the other sounds. However, since we already knew that listeners would span

a large range of spatial audio skills and that the tests would be challenging, the obvious

choice was to let them evaluate the sounds in pairs. We then opted for analyzing the

data at hand with the Bayesian Mallows model for non-transitive pair comparisons. As

expected, the collected data were very noisy and ambiguous, showing many non-transitive
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patterns. In this case, a model able to detect and correct these non-transitivities is more

appropriate. The results of the experiment showed three clusters of listeners, each sharing

di↵erent opinions about the degree of human causation behind sounds. This grouping in-

dicates that answering the question as to whether sound spatialization can suggest human

agency is far from straightforward. In addition to the grouping of the listeners around the

shared consensus rankings, we also studied the association between individual listeners’

rankings and their own musical experience or musical background. This enabled to evince

that spatial listening is a skill that is enhanced through experience and personal interest.

All methods presented have been implemented in R and C++. We are working on

the development of an R package, in order to make available the theory and algorithms

to the interested reader.

Future work

In addition to the line of research outlined in Chapter 6, we intend to extend the framework

of this thesis in the following directions.

First, we aim at studying the Generalized Mallows model (Fligner and Verducci 1986)

with Cayely distance in the Bayesian framework, and to investigate whether within our

framework it is feasible to handle the weighted Mallows model of Lee and Yu (2010).

Second, we plan to allow for the possibility to incorporate covariates into the model.

One direction in this regard is to let the probability of making mistakes depend on item-

specific covariates, as discussed in Section 3.1.3. Another possibility is to exploit user-

specific covariates to model the dependency between the users, direction that could be

crucial in the classification and prediction of new instances.

Third, we aim at generalizing the procedure to the non-parametric case, thus enabling

to automatically select the number of clusters. A first insight in this direction is to

simply put a prior on the number of clusters, and let the algorithm estimate its posterior

probability. The computational aspect of this method can be tackled by using the well-

known reversible jump approach (Green 1995, Richardson and Green 1997).

Finally, we aim at explicitly model the presence of ties and/or indi↵erence in the data.

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



175

Bibliography

Agresti, A. (1996), Categorical data analysis, New York: John Wiley and Sons. 22, 85

Ailon, N. (2012), ‘An active learning algorithm for ranking from pairwise preferences with

an almost optimal query complexity’, Journal of Machine Learning Research 13, 137–

164. 26

Aldous, D. J. (1985), Exchangeability and related topics, in ‘École d’Été de Probabilités
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Ali, A. and Meilă, M. (2012), ‘Experiments with Kemeny ranking: What works when?’,

Mathematical Social Sciences 64(1), 28–40. 27, 79

Alvo, M. and Yu, P. L. H. (2014), Statistical Methods for Ranking Data, Frontiers in

Probability and the Statistical Sciences, Springer, New York, NY, USA. 9, 13

Andrieu, C. and Roberts, G. O. (2009), ‘The pseudo-marginal approach for e�cient Monte

Carlo computations’, The Annals of Statistics 37(2), 697–725. 38

Asfaw, D., Vitelli, V., Sørensen, Ø., Arjas, E. and Frigessi, A. (2017), ‘Time-varying

rankings with the Bayesian Mallows model’, Stat 6(1), 14–30. 80

Barrett, N. (2016), ‘Interactive spatial sonification of multidimensional data for composi-

tion and auditory display’, Computer Music Journal . 142, 144

Barrett, N. and Crispino, M. (2017), ‘The Impact of 3-D Sound Spatialisation on Listeners’

Understanding of Human Agency in Acousmatic Music’, Submitted . 7, 137

Bartholdi, J. J., Tovey, C. A. and Trick, M. A. (1989a), ‘The computational di�culty of

manipulating an election’, Social Choice and Welfare 6(3), 227–241. 17, 27

Bartholdi, J., Tovey, C. and Trick, M. A. (1989b), ‘Voting schemes for which it can be

di�cult to tell who won the election’, Social Choice and Welfare 6(2), 157–165. 17, 27

Beaumont, M. A. (2003), ‘Estimation of population growth or decline in genetically mon-

itored populations’, Genetics 164(3), 1139–1160. 38

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



176

Bigand, E. and Parncutt, R. (1999), ‘Perceiving musical tension in long chord sequences’,

Psychological Research 62(4), 237–254. 146

Blauert, J. (1997), Spatial hearing: the psychophysics of human sound localization, MIT

press. 140

Bockenholt, U. (1988), ‘A logistic representation of multivariate paired-comparison mod-

els’, Journal of mathematical psychology 32(1), 44–63. 23
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Böckenholt, U. and Tsai, R.-C. (2001), ‘Individual di↵erences in paired comparison data’,

British Journal of Mathematical and Statistical Psychology 54(2), 265–277. 23

Bradley, R. A. and Terry, M. E. (1952), ‘Rank analysis of incomplete block designs: I.

The method of paired comparisons’, Biometrika 39(3/4), 324–345. 12, 13, 21, 22, 127

Brin, S. and Page, L. (1998), ‘The anatomy of a large-scale hypertextual web search

engine’, Computer networks and ISDN systems 30(1), 107–117. 73

Busse, L. M., Orbanz, P. and Buhmann, J. M. (2007), Cluster Analysis of Heterogeneous

Rank Data, in ‘Proceedings of the 24th International Conference on Machine Learning’,

ICML ’07, ACM, New York, NY, USA, pp. 113–120. 17, 19

Caron, F. and Doucet, A. (2012), ‘E�cient Bayesian inference for generalized Bradley–

Terry models’, Journal of Computational and Graphical Statistics 21(1), 174–196. 21,

22, 128, 135

Caron, F. and Teh, Y. W. (2012), Bayesian nonparametric models for ranked data, in

‘Advances in Neural Information Processing Systems’, pp. 1520–1528. 21, 79

Caron, F., Teh, Y. W. and Murphy, T. B. (2014), ‘Bayesian nonparametric Plackett-Luce

models for the analysis of preferences for college degree programmes’, The Annals of

Applied Statistics 8(2), 1145–1181. 21

Carpentier, T., Barrett, N., Gottfried, R. and Noisternig, M. (2017), ‘Holophonic sound in

IRCAM’s concert hall: Technological and aesthetic practices’, Computer Music Journal

. 142

Causeur, D. and Husson, F. (2005), ‘A 2-dimensional extension of the Bradley–

Terry model for paired comparisons’, Journal of statistical planning and inference

135(2), 245–259. 24

Tesi di dottorato "Bayesian learning of the Mallows ranking model"
di CRISPINO MARTA
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2018
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



177

Celeux, G., Forbes, F., Robert, C. P. and Titterington, D. M. (2006), ‘Deviance informa-

tion criteria for missing data models’, Bayesian Analysis 1(4), 651–674. 76

Celeux, G., Hurn, M. and Robert, C. (2000), ‘Computational and Inferential Di�culties

with Mixture Posterior Distribution’, Journal of the American Statistical Association

95(451), 957–970. 62
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