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Abstract  16 

Invasive Alien Species are a major threat to global biodiversity due to the tremendous ecological 17 

and economic damage they cause in forestry, agriculture, wetlands, and pastoral resources. 18 

Understanding the spatial pattern of invasive species and disentangling the biophysical drivers of 19 

invasion at forest stand level is essential for managing forest ecosystems and the wider 20 

landscape. However, forest-level and species-specific information on Invasive Alien Plant 21 

Species (IAPS) abundance and their spatial extent is largely lacking. In this context we analysed 22 
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the cover of one of the world’s worst invasive plants, Chromolaena odorata, in Sal (Shorea 23 

robusta) forest in central Nepal. Vegetation was sampled in four community-managed forests 24 

using 0.01 ha square quadrats, covering forest edge to the interior. C. odorata cover, floral 25 

richness, tree density, forest canopy cover, shrub cover, tree basal area and disturbances were 26 

measured in each plot. We also explored forest and IAPS management practices in Community 27 

Forests. C. odorata cover was negatively correlated with forest canopy cover, distance to the 28 

road, angle of slope, and shrub cover. Tree canopy cover had the largest effect on C. odorata 29 

cover. No pattern of C. odorata cover was seen along native species richness gradients. In 30 

conclusion, forest canopy cover is the overriding biotic covariate suppressing C. odorata cover 31 

in Sal forests.  32 

Key words: Biotic resistance, canopy cover, disturbance, forest management, invasive alien 33 

species34 
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 35 

Introduction 36 

Invasive alien species of plants and animals are an important driver of global environmental 37 

change and a major threat to biodiversity loss (Vitousek et al. 1997, Bellard et al. 2016, IPBES 38 

2019). They have already caused tremendous economic losses in agriculture, forestry, pasture 39 

and fisheries across different geographical scales (Diagne et al. 2021). These threats are ever-40 

growing due to development of transportation networks, and increased mobility of people and 41 

commodities (Simberloff et al. 2013, Sardain et al. 2019). Invasive alien species compete with 42 

native biota, alter and homogenize forest composition, change ecosystem functions, compromise 43 

ecosystem services, and reduce native species diversity (Bellingham et al. 2018). They also 44 

degrade habitat quality for wildlife (Murphy et al. 2013), and potentially impact across all types 45 

of ecosystems as well as individual species. Nevertheless, impacts are contingent on the traits of 46 

the invading species and the types of ecosystem exposed to the invasion (Martin et al. 2009, 47 

Pyšek et al. 2012, Liebhold et al. 2017).  48 

Distribution and abundance of Invasive Alien Plant Species (IAPS) varies across spatial scales 49 

(Foxcroft et al. 2009). At larger geographical scales, the impact of IAPS is the result of an 50 

interplay between of social, ecological and economic variables, including national gross 51 

domestic production (GDP) and population density (Liu et al. 2005, Hulme 2009, Niemiec et al. 52 

2018, Sardain et al. 2019). Road networks and mobility of people not only transport IAPS 53 

propagules from one place to another, but also create locally disturbed areas which are suitable 54 

for propagule establishment (González-Moreno et al. 2014, Fuentes-Lillo et al. 2021). These 55 

factors are fundamental to the early stage of invasion. However, further augmentation of IAPS at 56 
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the local scale is determined by local environmental factors including habitat disturbance, 57 

species invasiveness, habitat invasibility and propagule pressure (Stohlgren et al. 2006). Newly 58 

arrived propagules have to pass climatic, edaphic and biological filters for successful invasion 59 

(Davis 2009).  60 

Resident ecological communities naturally tend to resist the establishment and spread of 61 

incoming species, a phenomenon explained as ‘biotic resistance hypothesis’ (Levine et al. 2004, 62 

Nunez-Mir et al. 2017). This hypothesis predicts that species-rich communities have a lower 63 

vulnerability to invasion at the local scale (Levine et al. 2004). Analysis of native and invasive 64 

plant species richness has found a negative relationship across communities and ecoregions in 65 

continental United Sates (Beaury et al. 2020). However, the diversity resistance hypothesis is not 66 

always supported by empirical studies (Byun & Lee 2018, Smith & Côté 2019). Rather there are 67 

instances of congruence of higher native diversity and higher invasion, particularly at larger 68 

spatial scales (Stohlgren et al. 2006). Similarly, it is also found that the native-invasive plant 69 

species richness relationship is contingent to human disturbance, which mediates the relationship 70 

(Fuentes-Lillo et al. 2021).  71 

The main mechanism behind biotic resistance is competition (Nunez-Mir et al. 2017). 72 

Competition for key resources - for example, light, water and nutrients, and space between 73 

incoming species and the recipient community - may be the main mode of the interactions. The 74 

attributes of resident communities that curtail the availability of key resources required for 75 

incoming species may vary across resident communities and incoming species. Nevertheless, 76 

higher species richness of a native community does not necessarily make the community more 77 

competitive and invasion resistant (Levine 2000, Fridley et al. 2007). Besides species richness, 78 

other attributes of communities, for example, density, crowding and biomass, potentially make 79 
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communities more competitive and resistant to invasion (Kennedy et al. 2002, Luo et al. 2018, 80 

MacLaren et al. 2019). In forest stands, native species richness, tree density, canopy cover and 81 

the shrub/sapling layer are important community attributes for invasion resistance (Gómez et al. 82 

2019). Indeed, these attributes determine the availability of empty niches for successful 83 

invasions. Forest stand attributes, therefore, may be relatively more important than other local 84 

factors for invasion success on the forest floor by limiting the amount of light reaching the 85 

surface of the ground (Charbonneau & Fahrig 2004, Fajardo & Gundale 2018, Bustamante et al. 86 

2019). Shrub/saplings and ground vegetation layers potentially reinforce the impacts of canopy 87 

cover by preventing intercepted light falling on the ground. Nevertheless, the impact of canopy 88 

may also be dependent on the nature of invading species, as many shade tolerant invasive species 89 

are favored in dense and undisturbed forest (Martin et al. 2009).  90 

Distribution patterns generated from coarse scale spatial data, and models based on climatic 91 

suitability, may not depict the local scale distribution and abundance of IAPS. Some areas of 92 

forests, for example canopy gaps and forest margins, provide more conducive environments than 93 

forest interiors for invasion success (Driscoll et al. 2016, Arellano-Cataldo & Smith-Ramírez 94 

2016, Khaniya & Shrestha 2020). Therefore, understanding the drivers of local scale patterns of 95 

IAPS abundance is crucial for their management at the site (forest stand) level (Foxcroft et al. 96 

2009). However, how abundance of invasive alien plant species are correlated with stand 97 

attributes, and how native species richness is related to IAPS richness for specific forest types, is 98 

not well understood.  99 

In this context we assessed the abundance of the invasive plant species Chromolaena 100 

odorata (L.) R.M.King & H.Rob. in Sal (Shorea robusta Gaertn.) forest. Sal forest is a major 101 

forest type in the tropical and subtropical parts of the Indian subcontinent and has been widely 102 
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invaded by C. odorata. The few studies that have analysed invasive species in forests have 103 

shown a positive correlation between forest disturbances and light intensity (Joshi et al. 2006) 104 

and lower species richness in invaded plots compared to non-invaded plots (Thapa et al. 2016, 105 

Bhatta et al. 2020). Nevertheless, this inference was either drawn from studies conducted on 106 

large-sized plot (Joshi et al. 2006) or from a small sample size (Thapa et al. 2016), and these 107 

studies did not analyse the relationship between stand attributes and invasive species abundance. 108 

Therefore, this study sets out to analyse how forest stand attributes, including local disturbance, 109 

influence C. odorata coverage in Sal forest using small-sized plots across a canopy cover 110 

gradient. We also test the hypothesis that native species rich plots are more resistant to invasion. 111 

 112 

Methodology 113 

Study area 114 

This study was conducted in four community-managed forests (Community Forests) of central 115 

Nepal; two in each of Makawanpur and Nawalparasi districts. All the sampled forests were 116 

similar in terms of geography, climate, vegetation and management regime; however, the forests 117 

in Nawalparasi were more fragmented than in Makawanpur (Figure 1). Community Forests are 118 

the forest categories that are managed by local users formed into legally recognised 119 

organizations. Nepal has exemplary success in the sustainable management of forest commons 120 

through its Community Forestry program, with over 22,000 Community Forest User Groups 121 

(CFUGs) formed and registered (Niraula et al. 2013, Pandey & Pokhrel 2021).  122 

All four forests in this study are located in the foot-hills of the Siwalik (Churiya) range. The 123 

Siwalik range is geologically young, forming an east-west band of unconsolidated hills that runs 124 
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parallel to the south of the main Himalayan ranges. Two forests (Sunachuri and Manakamana) 125 

faced southwest, while other two (Janakalyan and Ghumauri) faced south. Sampled forests 126 

contained some slopes and some flat land, with maximum slope of 40 degrees.  127 

The sampled forests are located between 200-550 m elevation. The climate is subtropical and 128 

monsoonal, with hot and humid summers, and cool dry winters. Average annual rainfall is 2,200 129 

mm (recorded between 1971–2010) of which 80% falls during the monsoon (June to August), 130 

with an average annual temperature of 24.6°C recorded between 2000-2010 (CBS 2011). The 131 

forests in all four sites are dominated by Sal (Shorea robusta). Sal is a member of 132 

Dipterocarpaceae, a tropical family mainly distributed in the Indo-Malayan region. It forms 133 

extensive mono-dominant or mixed forests in the southern part of the Himalayas and in the 134 

tropical to subtropical areas of the Indian subcontinent (Gautam & Devoe 2006). Sal is a robust, 135 

gregarious, semi-deciduous tree species, and an important high-value timber species extensively 136 

used in construction and furnishing. Dillenia pentagyna Roxb., Buchanania latifolia Roxb. and 137 

Mallotus philippensis (Lam.) Müll. Arg. are the main sub-canopy species in Sal forests. 138 

Clerodendrum viscosum Vent. is the most common native species of the shrub layer (Wesche & 139 

Karsten 1997). 140 

Focal invasive species 141 

Chromolaena odorata (Common called Siam weed, Nepali name Seto Banmara ‘white forest 142 

killer’, family Asteraceae), is among the 100 worst invasive alien species in the world (Lowe et 143 

al. 2000). It now occurs in more than 100 countries in Asia, Oceania, Africa and America, and 144 

has been reported as a problematic invasive weed in more than 35 countries 145 

(https://www.cabi.org/isc/datasheet/23248#todistribution). It is a light-demanding species, 146 
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flourishing in disturbed forests, roadsides, fallow and abandoned lands. Its biological and 147 

morphological attributes (such as long tap root, production of large quantities of wind dispersed 148 

seeds, and relatively high specific leaf area) are shared by other IAPS, giving it a competitive 149 

advantage over native species (Joshi et al. 2006, Pyšek & Richardson 2008, Malahlela et al. 150 

2015, Rindyastuti et al. 2021). C. odorata can grow to three meters in height and forms a dense 151 

layer above the ground (Figure 2). This plant has already severely invaded the lowland districts 152 

of central and eastern Nepal at elevations below 1000 m and is now spreading into the western 153 

lowlands (Tiwari et al. 2005).  154 

Vegetation sampling 155 

Vegetation sampling was conducted in November and December 2018. All the forests sampled 156 

were linked to a disturbance source, i.e. roads or human settlement. We sampled the vegetation 157 

along a belt transect from the disturbance source into the forest interior. In each forest two 158 

transects were made. Before laying out the plot, the length of transect and number of plots were 159 

identified. The distance between plots was between 100-200 m, depending on forest size, and in 160 

each forest 28 to 30 plots were sampled.  161 

Vegetation data were collected for plots of 10 × 10 m. Each plot was divided into four subplots 162 

of 5 × 5 m. Diameter at Breast Height (DBH) of all tree individuals greater than 5 cm DBH were 163 

measured within the plots. DBH was used to calculate the Basal Area (Area= πr2) of trees in the 164 

plot; Basal area of individual trees was summed up to get plot level Basal Area. Canopy cover 165 

above the plot was measured using a spherical densitometer, with four readings taken at each 166 

plot following the standard protocol (Lemmon 1956).  167 
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Chromolaena odorata cover was estimated from the center of each subplot. The cover of 168 

subplots was combined to estimate cover for the 100 m2 plot. The same method was used to 169 

estimate shrub and herb cover.  170 

In each plot, two quadrats of 1 m2 were sampled randomly to record species richness. All 171 

herbaceous plants, shrubs and tree seedlings were recorded in each quadrat.  172 

In each plot, ground disturbance (grazing, tree/saplings lopping and trampling) was recorded on 173 

a scale of 0 to 3, where 0 represents absence of disturbance and 3 being severely disturbed. Plots 174 

lying between these two extremes were scored 1 and 2. Distance of the plot from the nearest road 175 

was measured using Google Earth Pro.  176 

To evaluate how community forest user groups are managing  Chromolaena odorata in the study 177 

sites, we interviewed community forest user group leaders (n=8, Chairman and Secretary in each 178 

Community Forest) and one local knowledgeable person as indicated by the Community Forest 179 

chairman (n=4, one in each Community Forest). Similarly, we also interviewed community 180 

forest user group leaders (Chairman or Secretary) in 15 other community forest user groups in 181 

other parts of the country (Tanahu, Chitwan, Gorkha, Sindhuli and Jhapa district) which had Sal 182 

forest with C. odorata invasion. Some informal discussions with local people were also 183 

conducted for each community forest visited in public areas where people gather, to explore the 184 

general understanding of invasive species and their management.  185 

 186 

Data analysis 187 
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For data analysis, rather than comparing individual forest we pooled plot data together and 188 

analysed plot level data. Ground disturbance was calculated combining three variables i.e. 189 

grazing, lopping and trampling, using Principal Component Analysis (PCA). PCA first axis score 190 

was used to represent ground disturbance complex. The predictor variables were checked for 191 

collinearity and only one of the collinear variables was selected for further analysis. 192 

Chromolaena odorata cover was the response variable. We used Zero Inflated Beta regression to 193 

evaluate impact of forest attributes on C. odorata cover as the  response variable is a proportion 194 

and contains many zeros (Bürkner 2017). Zero Inflated Beta regression is suitable when response 195 

variable is vegetation cover and consists of proportion data between zero and one (Keim et al. 196 

2017). C. odorata cover was modelled against each covariate individually and significant 197 

covariates were chosen. A full model was run with C. odorata cover as response and with all the 198 

non-collinear independent variables (canopy cover, shrub cover, native richness, herb cover, 199 

disturbance complex and distance) as predictors. Predictor variables that did not explain any 200 

variation in the model were subsequently dropped in the final model. Forest types (four 201 

community forests) were included as the random variable in the model. The final model included 202 

canopy cover, shrub cover, distance and slope as predictor variables. The R package BRMS 203 

(Bayesian Regression Model using ‘Stan’) (Bürkner 2017) was used for the regression analysis. 204 

The R2 for each model was calculated using add_criterion function of BRMS (Bürkner 2017). 205 

Each predictor variable was centered and scaled by subtracting its mean and dividing by its 206 

standard deviation prior to regression analysis so as to facilitate model convergence as well as to 207 

make relative effect size of predictor variables directly comparable (Muscarella et al. 2020).  208 

We compared the differences in i) C. odorata cover among canopy cover classes, and ii) native 209 

species richness between invaded and non-invaded plots.  Canopy cover was categorized as low, 210 
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medium and high. Values below the 1st quartile were considered low and those above 3rd 211 

quartile were considered high. Values lying around the median were considered as medium. C. 212 

odorata cover among canopy cover class was visualized in box plots and compared using 213 

Kruskal Wallis test.  214 

All analyses were performed in R version 3.5.3 (R Core Team 2019). 215 

Results  216 

Shorea robusta was the most dominant canopy forming tree species in all the community forests 217 

studied. A total of 120 native plant species were recorded from those four forests. Native species 218 

richness ranged from one to 20 species per plot with a mean of 11.41±3.48. In addition to 219 

Chromolaena odorata, six other invasive species, namely Spermacoce alata Aubl., 220 

Mesosphaerum suaveolens (L.) Kuntze,  Ageratum conyzoides L., Mimosa pudica L.,  Senna 221 

tora (L.) Roxb. and Mikania micrantha Kunth) were also recorded. C. odorata was present in 222 

60% of the plots with cover ranging from 0 to 95%. 223 

Relationship between stand attributes and C. odorata cover 224 

Chromolaena odorata cover was negatively correlated with canopy cover, shrub cover, basal 225 

area and tree density. The strongest correlation was with forest canopy cover (r=-0.59) followed 226 

by basal area and tree density (Supplementary Table 1). Forest canopy cover was positively 227 

correlated with basal areas and tree density. Native species richness had a weak negative 228 

correlation with C. odorata cover. Native species richness had weak correlations with the 229 

measured stand attributes (Supplementary Table 1). Similarly, native species richness was not 230 

different between invaded and non-invaded plots (mean richness in invaded=11.58 and non-231 

invaded=11.18), nevertheless the spread was higher in invaded plots (Supplementary Figure 1).  232 

https://en.wikipedia.org/wiki/Carl_Linnaeus
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Environmental covariates affecting C. odorata cover 233 

Regression models containing canopy cover, distance from a road, shrub cover and slope had the 234 

highest mean r2 value. C. odorata cover declined linearly along the canopy cover gradient 235 

(Figure 3). Similarly, C. odorata cover declined linearly away from a road, with increasing shrub 236 

cover and slope (Supplementary Figures 2, 3 and 4). Canopy cover had the largest effect size on 237 

C. odorata cover, -0.53 (CI: -0.79, -0.28) while it has relatively lower error for the regression 238 

estimates (Table 2). Distance from a road had the second largest effect on C. odorata cover i.e. -239 

0.29 (-0.56, -0.02). Slope and shrub cover had relatively smaller effects (Table 2). Canopy cover, 240 

the most important stand attribute affecting C. odorata cover, in turn increased with increasing 241 

distance from the nearest road (Figure 4).  242 

Chromolaena odorata cover did not show any trends with native species richness, herb cover 243 

and ground disturbance complex.  244 

Chromolaena odorata cover was different among the canopy cover classes (Figure 5). Its cover 245 

was highest (mean±SE, 34.03±5.22) in forests with low canopy cover, and lowest (4.08±1.74) 246 

when canopy cover was higher. Its mean cover was 12.98±3.13 when canopy cover was 247 

moderate. The Kruskal Wallis test showed that C. odorata cover was different between the 248 

canopy cover classes (H,2=18.806, p<0.001) 249 

Invasive species in forest management 250 

We recorded that community forest user groups are organizing regular bush clearing (jhadi safai) 251 

of understory plants in their forests. However, these activities generally occur in forested areas 252 

and rarely occur in open parts invaded by Chromolaena odorata. Community forest user groups 253 
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did not have any specific programs targeting C. odorata or other invasive plants, and their forest 254 

management plans did not recognize invasive species as a problem. 255 

Discussion 256 

The results demonstrate that forest stand attributes and other environmental variables affect the 257 

cover of Chromoleana odorata in the Sal forests of Nepal. We discuss how attributes of Sal 258 

forests determine the cover of invasive species and highlight practical relevance of these findings 259 

to the management of community and other fragmented or otherwise disturbed forests. 260 

Canopy cover is the overriding covariate affecting C. odorata cover 261 

We have demonstrated that canopy cover, shrub cover, slope, and distance from a road all have 262 

some effect on Chromolaena odorata cover in Sal forest. C. odorata cover declines gradually 263 

away from the roadside which is probably due to high propagule pressure along roads. Roadsides 264 

in turn have lower canopy cover and more open areas, and are important driver of invasion from 265 

local to the regional level (Flory & Clay 2006, Follak et al. 2018). Roads bring propagules as 266 

well as create disturbances and open spaces (vacant niches), which consequently favour invasion. 267 

Roads provide corridors for invasive species, connecting them with suitable habitats, therefore, 268 

roadsides and forest edges often have high density of invasive species (Benedetti & Morelli 269 

2017, Follak et al. 2018).  270 

Accessible parts of Sal forests are subjected to anthropogenic disturbances involving lopping 271 

trees, cutting saplings, and trampling of the ground during firewood and fodder collection 272 

(Sharma et al. 2016). Anthropogenic disturbance has been shown to be an important variable 273 

affecting invasive species in ecosystems including forests (Fuentes-Lillo et al. 2021, Mungi et al. 274 

2021). Counterintuitively, we found that ground disturbance had a very weak correlation with 275 
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Chromolaena odorata cover, and it did not improve the regression model, which indicates that 276 

ground disturbance is not a major factor governing the cover of C. odorata in forests in this 277 

study.  278 

Canopy cover showed a negative relationship with C. odorata cover in Sal forest. In the 279 

composite model containing disturbance, and distance to disturbance sources, forest stand level 280 

canopy cover was the overriding factor in determining C. odorata cover. C. odorata cover 281 

declined linearly with increasing canopy cover. In general, this negative relationship supports 282 

previous studies reporting C. odorata a light demanding preferring to grow in well-illuminated 283 

areas (Joshi et al. 2006). In addition, as C. odorata is an understory shrub it cannot compete with 284 

trees for light, consequently the canopy trees limit this crucial resource for C. odorata. Joshi et 285 

al. (2006) also found that seed production of C. odorata is suppressed with low light intensity. 286 

Similarly, lower light intensity also retards the germination of C. odorata seeds (Chauhan & 287 

Johnson 2008). Higher canopy cover implies lower level of light availability below the forest 288 

canopy. Many Invasive Alien Plant species prefer to grow in open areas in forests and forest 289 

ecotones (Mavimbela et al. 2018). Open areas in forests provide sites for regeneration and 290 

growth of IAPS and have higher proportion of IAPS density and coverage compared to closed-291 

canopy areas (Charbonneau & Fahrig 2004, Driscoll et al. 2016). Nevertheless, the impact of 292 

canopy density may also be dependent on the nature of invading species, as shade tolerant 293 

invasive species may be favoured where there is a dense canopy (Martin et al. 2009).  294 

Native species richness and C. odorata cover 295 

Conventional diversity resistance hypothesis asserts that sites with higher species richness have 296 

lower susceptibility to exotic invasions, mainly at local scale (Fridley et al. 2007). However, this 297 
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hypothesis is not always supported by empirical studies (Peng et al. 2019); some studies 298 

corroborate the hypothesis (Kennedy et al. 2002, Beaury et al. 2020) while others refute it (Wiser 299 

et al. 1998). Alternatively, it is also argued that native species may even facilitate invasion 300 

(Fischer et al. 2009). Our study in the Sal forests showed that Chromolaena odorata cover is not 301 

correlated with the higher levels of native biodiversity (species richness. Our results are contrary 302 

to those of a prior study (Thapa et al 2016) from similar forest from the region who reported non 303 

invaded plots to be richer than invaded plots, however, we differ in our sampling approach and 304 

richness of study system. Most of the published analysis of the effect of native richness on 305 

invasion comes from studies on grasslands (Kennedy et al. 2002, Peng et al. 2019) and diversity 306 

resistance experiments in forest systems are scarce. The main mechanism for invasion resistance 307 

is thought to be competition. It has been suggested that richness alone may not resists invasion 308 

rather there may be role of other factors co-varying with diversity which may contribute to the 309 

invasion resistance of communities. In our case, forest canopy cover appears to be a more 310 

important factor than species richness with respect to community competitiveness to invasion 311 

resistance.  312 

Management implication 313 

Chromolaena odorata is one of the world’s worst invasive alien plant species (Lowe et al. 2000). 314 

National policy documents categorize its impacts as ‘massive’ in Nepal and its distribution in the 315 

Himalayas is expected to expand with climate change (Shrestha & Shrestha 2019). This species, 316 

along with other invasive species, demand immediate action so that their expansion to new 317 

location can be curtailed. The existing biomass needs to be controlled so that ecological and 318 

biodiversity loss can be prevented.  319 
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The Community Forestry program in Nepal is exemplary in restoring degraded forests and has 320 

played a key role in increasing forest cover and averting deforestation in Nepal (Niraula et al. 321 

2013). Local people have also observed that C. odorata abundance is suppressed with forest 322 

protection and canopy closure (Personal communication). Although Community Forests do not 323 

have specific plans and activities to control C. odorata, it appears that they have unwittingly 324 

played an important role in controlling C. odorata in forests by protecting forest and increasing 325 

forest canopy. Control of invasive species through increased forest cover could be an 326 

‘undocumented contribution’ of community forest user groups of Nepal. However, additional 327 

data are needed from different physiographic regions and socio-economic settings to evaluate 328 

this hypothesis.  329 

Our findings have immediate practical relevance in forest management. Community Forests are 330 

mostly small patches of forest interspersed with settlement and agriculture. These forest patches 331 

are subjected to disturbance associated with biomass extraction, grazing and forest silviculture, 332 

and many Community Forests are potentially vulnerable to invasion by Chromolaena odorata. 333 

Community Forests should consider enhancing forest canopy cover to suppress the growth of C. 334 

odorata (Khaniya & Shrestha 2020). Currently, Nepal has adopted intensive silvicultural 335 

practices in Sal forests. Tree felled and canopy opened areas are highly susceptible to invasion 336 

by C. odorata therefore such patches within forests should be monitored regularly to control this 337 

invasion.  338 

The results of this study showed that forest areas along roadsides have a higher cover of C. 339 

odorata. Intact forest margins along roads potentially buffer propagule dispersal towards forest 340 

interiors (Cadenasso & Pickett 2001). Therefore, increasing tree density and forest crown along 341 

roadsides could be a strategy to control the cover and control the spread of C. odorata in 342 
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fragmented forests. Forest managers should consider restoring degraded forests and increasing 343 

tree crown along roadsides and open areas so that invasive species can be suppressed while also 344 

gaining other forest ecosystem services.  345 

Conclusion 346 

Our study clearly indicated that forest canopy cover can resist the invasion of C. odorata in Sal 347 

forests. The resistance mechanism could be related to resource limitation, primarily light, to the 348 

invading species. Disturbance of the ground or undergrowth is probably not a primary driver 349 

facilitating invasion in forest when the invading species is light-demanding, as is C. odorata. Our 350 

results provide practical insights for the management of Sal forests and degraded areas to avert 351 

invasion by invasive species, and they may apply to other forest types and other light-demanding 352 

IAPS.  353 
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List of Tables and Figures 

Table 1: Information on the four sampled community forest 

Name of 
CF 

Area 
(ha) 

Elevation  Geographic 
location 

Forest type and 
dominant species 

Invasive species 

Pashupati  195 250-450 Siwalik/Chure 
foot hills  

Sal forest (Shorea 
robusta), with 
Terminalia alata, 
Adina cordifolia. 
Dominant shrubs: 
Clerodendrum 
viscosum, Pogostemon 
benghalensis. 

Chromolaena odorata 
dominant, with Mikenia 
micrantha, Parthenium 
hysterophorus, Spermacoce 

alata, Mesosphaerum 

suaveolens  

Sunachuri 266 250-350 
Janakalyan 182 200-300 

Ghumauri 207 250-540 

 

Table 2: Model summary of Bayesian regression analysis where C. odorata cover is response 

and other forest attributes are predictors. 

Variables Estimate Estimated error 95% confidence interval 

    Lower Upper 

Intercept -1.14 0.24 -1.63 -0.69 

Canopy cover -0.53 0.13 -0.79 -0.28 

Shrub cover -0.21 0.14 -0.48 0.06 

Slope -0.27 0.14 -0.54 -0.01 

Distance -0.29 0.14 -0.56 -0.02 

sd (Random effect of sites) 0.27 0.31 0.01 1.10 

 

 

 



 

 

 

 

 

Figure 1: Maps showing the study areas; a) Location of Nawalparasi and Makawanpur district in 

the physiographic regions of Nepal, b) land cover of Nawalparasi site, c) land cover of 

Makawanpur site 

 

 



 

 

 

 

Figure 2 Chromoleana morphology: a) an open area invaded by the species; b) flowerhead on 

stem; c) inflorescence detail; d) single flower head detail; e & f) leaf dorsal and ventral surface 

showing margin and venation. Pictures taken in Janakalyan community forest Nawalparasi. 

 

 



 

 

 

 

 

 

Figure 3: The relationship between C. odorata cover and canopy cover (%) showing the fitted 

line based on Bayesian regression analysis and its 95% confidence intervals around the fitted 

line. 



 

 

 

Figure 4: Relationship between canopy cover and distance to the nearest road along with the 

fitted linear regression line and its 95% confidence intervals around the fitted line 

 

 

Figure 5: Box and Whisker plot showing C. odorata cover in different canopy classes. The 

medians (horizontal line), whiskers (vertical line), and outliers (points) above the maximum 

value and interquartile range are indicated in the plot. 


