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ABSTRACT

(One-value) graph magma algebras are algebras having a basis 8 =
VU {1} such that, for all u,v € V, uv € {u,0}. Such bases induce graphs
and, conversely, certain types of graphs induce graph magma algebras.
The equivalence relation on graphs that induce isomorphic magma alge-
bras is fully characterized for the class of associative graphs having only
finitely many non-null connected components. In the process, the ring-the-
oretic structure of the magma algebras induced by those graphs is given
as it is shown that they are precisely those graph magma algebras that are
semiperfect as rings. A complete description of the semiperfect rings that
arise in this fashion, in ring theoretic and linear algebra terms, is also
given. In particular, the precise number of isomorphism classes of one-
value magma algebras of dimension n is shown to be >_,_, p(j) where, for
any i € Z*, p(i) is the number of partitions of i. While it is unknown

whether uncountable dimensional algebras always have amenable bases, it
is shown here that graph magma algebras do.
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1. Introduction and preliminaries

The use of the expression the isomorphism problem in our title aims to be akin to its use in the
classic question in the theory of group algebras whether, given a field F and two groups G and K,
if the group algebras F[G] and F[K] are isomorphic, it is necessary for G and K to be isomorphic.
Following the way that studied in [8], in which certain simple directed graphs induce algebraic
structures on their sets of vertices and how these structures induce algebras over arbitrary fields
[4], in this paper we aim to characterize when two graphs induce isomorphic algebras. Our best
result to that avail accomplishes the goal for the semiperfect case. Interestingly, the answer does
not depend on the choice of the field F.

The following definition stems back to [8] but we use a slightly different terminology, inspired
by the common use of the expression magma to denote a set with a binary operation when no
other properties are explicitly assumed, (e.g. [6, 12], etc.) Other expressions that appear in the lit-
erature for magma are binar and groupoid. The term magma was used by Serre in [19] and also
appears in Bourbaki’s [5].

Definition 1. Given an arbitrary set V, let G be a simple directed graph G = (V,E). Note that,
when we say that G is simple, we mean that, for u,v € V, there is at most one edge connecting u
to v, and it is, therefore, possible to identify E with a subset of V x V. Consider, in addition, a
symbol 0 ¢ V and an operation on S= VU {0} via the rule uv = u if (4,v) € E and uv=0,
otherwise. We say that 0 is the annihilator element of S. We will denote this structure the graph
magma M(G) induced by G.
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As mentioned above, graph magmas were originally introduced in [8], where they were
denoted graph algebras. The emphasis in [8], translated to our terminology, was to characterize
the class of directed graphs with graph magmas isomorphic to syntactic semigroups of languages.
Among other results, [8] offers a characterization of graphs such that M(G) is a semigroup (i.e.
those whose operation is associative). We state that characterization in Theorem 2. It is reason-
able to refer to such graphs, in this context, as associative graphs. Most of the time, unless other-
wise clear from the context, our interest here lies solely on associative graphs.

We reserve the expression algebra for an alternative use. Our graph magma algebras are the
contracted semigroup algebras induced by associative graphs which we define next. The definition
of such algebras depends on the notion of a semigroup algebra. Semigroup algebras are normally
defined in a completely analogous fashion to group algebras. In our context, in order to guaran-
tee that the obtained algebra has an identity element, by the semigroup algebra F[S] of a semi-
group S, we always actually mean the semigroup algebra of the monoid obtained by attaching an
identity e to the semigroup S. Any possible awkwardness derived from the possibility of attaching
an identity to a semigroup that already has one is completely absent in our context because the
semigroups we are interested in are monoids only in the most trivial of cases (M(G) is a monoid
only when G = ({u},{(u,u)})). Consequently, we will always add an identity to M(G).

It could be conceivable, perhaps, to create graph-magma algebras that are not associative or
lack an identity element. However, we are not pursuing that avenue at this time because our
motivation to study them, is to facilitate answering questions about amenable bases over associa-
tive algebras with one of infinite dimension as mentioned below. At present time, the study of
amenability has been focused solely on associative algebras with identity.

Definition 2.

1. For a field F and a monoid S with an annihilator element 0 € S (i.e. an element such that
0x = 0 = x0 for all x € S) the contracted semigroup algebra over F induced by S is the quo-
tient of the semigroup algebra F[S] modulo the ideal consisting of the scalar multiples of the
annihilator 0 € S.

2. Given a field F and an associative graph G, the contracted semigroup algebra induced by
M(G), denoted A(G), is denoted the F- graph magma algebra induced by G.

The interested reader is encouraged to consult [7, 17], or [18], for more information about
contracted semigroup algebras.

Recently, interest in graph-magma algebras grew in the context of the study of amenable bases
for infinite dimensional algebras. Amenable bases are those that permit a natural extension of the
A-module structure of 4F® (induced by the identification of the vector spaces pA and rF®) to
the vector space FZ. A basis B is amenable if, for all r € A, the infinite column-finite matrix
[l-]g> that represents the F-linear map left multiplication by r, is also row-finite. For any F-algebra
A (F a field), the multiplication in A is determined by the multiplication of elements of any basis
B. It is therefore easy to see that, in order to determine that 8B is amenable, it suffices to check
that the condition is satisfied for the elements r of any basis, in particular those of 5.

With this motivation, in order to stimulate our ability to fabricate manageable examples in
response to questions about amenability and related notions, it makes sense to look at algebras
having bases over which the operation is as simple as possible. Notice, looking at the equivalent
definition of graph-magma algebras given in Definition 3, that these algebras are indeed exem-
plary of the requirement sought.

The countably infinite dimensions have taken priority in the study of amenability because
such algebras are guaranteed, by a theorem in [1], to have amenable bases. On the other hand, in
that setting, and also in ours, we are interested in arbitrary infinite dimensions. To emphasize the
potential impact of our results, we close the paper with Theorem 8, showing that all graph
magma algebras have amenable bases.
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An additionally extensive discussion of amenability of bases would be out of the scope of this paper;
the interested reader can find more information in [1, 3, 4, 13, 14], and [15], among other references.
It suffices to note that graph magma algebras have been a fertile source of examples to answer ques-
tions regarding amenability and simplicity of bases. For instance, they have been used in [4] and in
[14], to show examples of algebras without simple or projective bases and are actively being used in
other ongoing projects such as the consideration of symmetry of the amenability condition.

In a possibly unusual deviation from what is customary, for a graph G = (V,E), we will use |G|
to denote |V|. The reason for this is that many times V and E are not be explicitly mentioned and,
in any case, the contribution of G to the elements of an algebra consists precisely of the elements of
V. We are confident that the readers will easily become comfortable with this unorthodox practice.

An alternative (graph-less) perspective on graph magma algebras is that they are algebras hav-
ing a basis 8=V U {1} such that, for all u,v € V, uv € {u,0}. A similar notion is obtained by
considering the so-called two-value magma algebras where the requirement is that there exists a
basis B such that, for all u,v € B, uv € {u,v}. In light of the similarity between these two types
of so-called graph magma-algebras, sometimes one refers to our graph magma-algebras as one-
value magma-algebras to emphasize the contrast. Both, one-valued and two-valued magmas,
appear in [11] where it is shown that the families of associative operations of both kinds are sub-
monoids of the magma monoid considered in [10]. Two-value magmas also appear in [9] where
they are referred to as groupoids with the orientation property.

In summary, the definition of our main object of study can equivalently be phrased in the
following way:

Definition 3. Let G = (V,E) be a simple directed graph and F be a field. A = A[G] is a (one-
value) graph magma algebra if it has 8 = V U {1} as a basis and, for u,v € V,

u if(u,v) €G
uy =
0 otherwise

Notice that, in spite of the similar sounding names, graph-magma algebras do not seem to be
related in any way to, say, path algebras or other related concepts such as Leavitt Path Algebras,
etc. In the various types of path algebras, the edges of the graph are elements of the algebra; in
graph-magma algebras, it is the vertices of the graph that contribute elements for the algebra
while the role of the edges is to encode their arithmetic.

It should not be much concern that one does not seem to easily find graph-magma algebras in
nature. The introduction of graph-magma algebras, as explained above, has been rather utilitarian
with the purpose to answer specific questions about amenable bases. We can list next, nonethe-
less, a handful of graph-magma algebras that appear as algebras of matrices. The nomenclature
bases of vertices should be intuitive enough to get ahead of ourselves and use it here. However,
any doubts that may arise can be resolved by simply looking ahead at the formal terminology
introduced in Definitions 4 and 6.

Example 1. The following algebras of matrices are graph-magma algebras:
1. The algebra A = (g ?) = T,(F) of upper-triangular two-by-two matrices is a graph-magma

algebra with basis of vertices V = {e1s,ex} and basis B = {1} UV = {l,epp,en}. A is iso-
morphic to A[N; & Kj].

oo
oS M

F
2. The subalgebra A = < o) of T;(F) is a graph-magma algebra with basis of vertices
F

V ={en, en,e3,633}. Its basis is B={1}UV ={l,ep,exn,e2,€33}. A is isomorphic
to A[(Nl D Kl)U(Nl D Kl)}
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In general, for all n € Z*, the subalgebra

F F F F
0 F O 0
A=]0 0 F 0
0 0 F

of T,(F) is a graph-magma algebra with basis of vertices
V= {e,—,i+1|1 <i<n-— 1} U {e,-,-|2 <i< I’l}.

A is isomorphic to A[(N; @ K;)"], where (N; @ K;)" denotes a graph with n connected
components each isomorphic to N; @ K;.

An analogous, infinite dimensional example would be an algebra of @ x w square matrices
whose nonzero entries appear only on entries of the first row (finitely many) and on the
main diagonal in such a way that the sequence {a;;} is eventually constant. A typical element
of A is of the form

ayy dpp as Ain 0 0
0 an 0 0

A is a graph-magma algebra with basis of vertices V = {ey ;41]i > 1} U {es|i > 2} and edges
E= {(el,i+1,ei+1,i+1)|i > 1}. A = A[G] and G denotes a graph with a countably infinite num-
ber of connected components each isomorphic to N; & K.

F 0
The algebra A = ( FF
magma algebra with basis of vertices V = {e;1, €11} and basis B= {1} UV = {1,ey1,e11}. A
is isomorphic to A[N; & Ki].
The subalgebra

) = L,(F) of lower-triangular two-by-two matrices is a graph-

F 00
A=U|F a o
aEFFOa

of L;(F) is a graph-magma algebra with basis of vertices V = {e)}, es1, 3 }. Its basis is B =
{1} UV ={1,e11,€21,€3 }. A is isomorphic to A[N, & K;].
In general, for all n € Z*, the subalgebra

F 0 0 .. O

A=L]J F a 0 .. 0
acF

F 0 .. .. a

of L,(F) is a graph-magma algebra with basis of vertices V = {e;1|]1 <i<mn}. A is iso-
morphic to A[N,_; & K.

The infinite dimensional version of the last example is an algebra of X @ square matrices
whose nonzero entries appear only finitely many entries of the first column and as a constant
element (except for the a;, value.) A typical element of A is of the form
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an 0 0
ary a 0 0
asy 0 a
an 0 a 0
a 0o ..
a 0

A is a graph-magma algebra with basis of vertices V = {e;|i > 1} and edges E =
{(ei-en)li > 1}. A = A[G], where G =N, & K.

With Theorem 7, we manage to reach our goal and characterize all isobraic graphs (that is,
those giving rise to isomorphic one-value magma algebras) that have finitely many non-null con-
nected components. Instrumental in the characterization is the realization that the one-value
magma algebras for such graphs are precisely the ones that are semiperfect rings. We expect that
this realization, in fact, will be a valuable byproduct of our project, since it provides user-friendly
strategies to cook up examples of semiprimary basic rings.

We also anticipate that the very concrete constructions of finite dimensional algebras offered
in Proposition 7 to facilitate ongoing efforts by several researchers to classify finite rings (c.f. [16,
20], etc.). Example 7 illustrates how the result, using finite fields, provides large collections of
pairwise non-isomorphic rings with a given finite cardinality.

A standard reference for semiperfect and basic rings is Chapter 27 of [2]. In particular, one
can get what is needed here, by going over Theorem 27.6 and Proposition 27.10 of [2]. The next
few paragraphs are our attempt to keep things self-contained as we highlight those aspects that
will be needed for our narrative. The basic facts about semiprimary rings that will be needed here
are the subject of Exercise 9, in Section 15 of [2], where the definition of a semiprimary ring first
appears in that book.

A ring R is semiperfect if every finitely generated R-module has a projective cover. It is known
that a semiperfect ring R has a decomposition as a sum of indecomposable projective left mod-
ules R = Re; @ ... @ Re,, where 1 =e¢; + ---+¢,, and, the ¢/s are orthogonal idempotents. Every
indecomposable projective appears (up to isomorphism) in the family {Re;] i = 1...n}. If one
chooses (renumbering as needed) a subset {Re;| i = 1...k} of {Re;| i = 1...n} including only one
copy of each indecomposable projective left R-module, then e = e; + - - - + ¢ is said to be a basic
idempotent. A subring eRe of R, where e is a basic idempotent is said to be a basic subring. It can
be shown that any two basic subrings of a semiperfect ring are isomorphic. A semiperfect ring R
is said to be basic if it equals its basic subring. A ring R, with Jacobson radical J(R) = J is said to
be semiprimary if R/] is semisimple and J is nilpotent. It is known that semiprimary rings are
semiperfect (as they are, in fact, right and left perfect).

Our use of module theoretic terminology is pretty standard and in agreement, for example,
with [2]. In particular, every left module has a submodule, its socle, that consists of the sum of
all of its simple submodules. A ring has two socles, a left socle and a right socle depending on
whether it is being considered as a left or a right module over itself. Our use of the word module,
for the most part, will refer to left modules unless otherwise explicitly stated. When dealing with
an F-algebra A and related left A-modules, the use of the word dimension will always mean
dimension as an F-vector space.

The following theorem highlights two facts that are essential to the understanding of
Section 4.

Theorem 1. (From Theorem 27.6, and Proposition 27.10, of [2])
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For a ring R,

1. R is semiperfect if and only if R has a complete orthogonal set e,...e, of idempotents with
each e;Re; a local ring.

2. As every complete set of orthogonal idempotents contains a basic set, it is important to recog-
nize that e, ...ey is a basic set of primitive idempotents if and only if Rey/Jey, ..., Ren/Jen is
an irredundant set of representatives of the simple left R-modules.

2. Sets and bases of vertices of an algebra

As usual, two simple graphs G; = (V1, E;) and G, = (V3, E,) are isomorphic if there exists a one-
to-one correspondence ¢ between the sets V; and V, such that, for u,v € V;, u is incident to v
in Gy if and only if ¢(u) is incident to ¢(v) in G,.

Theorem 2 identifies those graphs that yield associative operations in terms of their connected
components. To facilitate its statement, we start by identifying, in the next definition, the suitable
connected components.

Definition 4. The following graphs will henceforth be referred to as the connected associative graphs.
They will be denoted, respectively, according to the indicated notation. For k,p € {cc} U Z*,

1. K, denotes the complete graph on p vertices (every vertex is incident to every other vertex),
. Nj denotes the null graph on a single vertex (one vertex, no edges), and
3. Ny @K, denotes the direct sum of N and K,, (in addition to the edges of K,, every vertex of
Ny is incident to every vertex of K,. For a graph of this type, we say that the elements of Nj
are the source vertices and the elements of K|, are the target vertices.

Remark 1.

1. For any set X of generating vertices for an algebra A and disjoint subsets U, V C X, we write
UUYV to denote the full subgraph that has UU V as vertice, when UV = VU = 0. In other
words, if there are no edges connecting the vertices of U with those of V in either direction.

2. Consistently with the above notation, we use Lix N; = Ni to denote a null graph on k verti-
ces. Such a graph is referred to as a set of k disconnected vertices. Similarly, K£m> is called a
set of m disconnected loops.

3. For the third type of connected associative graph in the above definition, if we ease the
restriction that k be positive and allow k=0 as an option, instead, then the family contains
the first one (i.e. Ny © K, = K,). This flexibility can come in handy and should be used
at will.

The following Theorem, originally from [8], specifies the graphs in which we are interested in
this project.

Theorem 2. For any directed graph G = (V,E), the following conditions are equivalent:

1. The graph magma M(G) is associative.

2. Forall (x,y) € Eand z €V, then (x,z) € E if and only if (y,z) € E.

3. Each connected component of G is isomorphic to one of the, so called, connected associative
graphs of Definition 4 (i.e. either N;, K,,, or Ny @ K,).

We assume for the remainder of the article that all graphs are associative.
Corollary 1. For any directed graph G = (V,E), the following conditions are equivalent:

1. The graph magma of G is associative and commutative.
2. Each connected component of G is isomorphic to either N; or to K;.
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Proof. All other connected components, as per part 3 of Theorem 2, yield elements that do
not commute.

Example 2. The following are some examples of commutative graph magma algebras. Corollary 1
will be expanded in Proposition 8 and we will see that these examples are archetypes of commu-
tative graph magma algebras.

1. B ap

<x*>

2. &EB F, and

<x2,y%5 xy>
Flxilic]]

3. <xixjli, jeI> ®F".

Remark 2. When thinking of a vertex v in an associative graph G as elements of the algebra
A[G], it is clear that v is either nilpotent (when (v,v) € E) or idempotent (when (v,v) € E.) We
refer to the elements from a connected component of the form N, @ K, as source nilpotents and
target idempotents to differentiate them, respectively, from the nilpotent elements coming from
copies of N; or idempotent elements coming from copies of Kj.

Definition 5. We say that two graphs G and H are isobraic if and only if they give rise to iso-
morphic graph algebras A[G] and A[H]|. This equivalence relation is expressed by G ~ H and the
equivalence class of a graph G is denoted by [G].

The study of the relation of isobraicity will be significantly simplified if we embrace a slightly
different, yet equivalent, approach to the subject of one-value magma algebras; we lay down the
foundation for this alternative perspective next.

Definition 6. Let A be an algebra and V be a subset of A.

1. We say that V is a set of vertices if for every u,v € V, uv € {u,0},

2. A set of vertices V is said to be a spanning set of vertices if 1 ¢ <V >, and V U {1} spans A
as a vector space.

3. A spanning set of vertices V is a base of vertices if 8 = {1}V is a basis for A.

4. If Vis a base of vertices, the graph G = (V,E) where (u,v) € E if and only if uv = u, is
called the graph induced by the base of vertices. Note that the graph G induces an algebra iso-
morphic to A.

5. If two bases of vertices induce isomorphic graphs, then we say that the bases of vertices
themselves are isomorphic (as graphs.)

Remark 3. The expressions spanning set of vertices and base of vertices are misnomers in the
sense that a set of vertices V of either kind is not really a spanning set of A; one must add the
element 1 to V to obtain a spanning set or a basis.

The following facts about bases of vertices are immediate from the definition.

Proposition 1.

1. A is a one-value graph magma algebra if and only if A has a base of vertices.

2. The elements of a base of vertices are either idempotent or nilpotent. Nilpotent elements are
either isolated vertices or source elements in a direct sum (a connected associative graph of
type 3 in Definition 4). Idempotent elements are isolated loops or target vertices of a
direct sum.

3. Every base of vertices is a spanning set of vertices.

4. Since every spanning set contains a basis, an algebra A is a graph magma algebra if and only
if it has a spanning set of vertices.
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The significance of the clearer perspective gained by looking at bases of vertices is highlighted
in the following statements.

Proposition 2. Let G and H be two graphs, then

1. Two graphs G and H are isobraic if and only if one can find a basis of vertices in A[G]| whose
induced graph is isomorphic to H.

2. G and H are isobraic if and only if an algebra A has two bases of vertices Vg and Vi which
induce graphs isomorphic, respectively, to G and H.

Example 3. Consider the graph magma algebra A over a field of characteristic 2 induced by the
graph G consisting of two isolated vertices {v;,v,} and two isolated loops at w; and w,. Then
V* = {v; +v2,v2, 1 + wi, w; + wy } is a base of vertices for A. Notice that V* induces a graph iso-
morphic to G; Lemma 1 shows that this is not an accident.

We conclude this section using Proposition 2 and the characterization of commutative one-
value magma algebras from Corollary 1 to prove that, in the commutative case, two graphs are
isobraic if and only if they are isomorphic as graphs.

Lemma 1. Given two commutative graph algebras A[G| and A[H], A[G] ~ A[H] if and only if the
graphs G and H are isomorphic.

Proof. One direction is obvious; the isomorphism of the graphs G and H extends naturally to an
isomorphism of the corresponding magma algebras.

Conversely, if a commutative algebra A that has bases of vertices inducing graphs G and H, by
Corollary 1, they both must be of the form NkI_IKfm). The Lemma will be proven if we show that
the values of k and m are the same for both algebras. We will show, in fact, that any set of nilpo-
tents has to be contained in the subspace spanned by the nilpotent elements of either one of the
two bases. It then follows that, in particular, the nilpotent elements in each basis must be a basis
for the subspace of A consisting of all nilpotent elements and therefore both sets must have the
same cardinality.

To that effect, let {v;}* | and {w;}}_, be the nilpotent and idempotent elements of a basis V
of vertices for A respectively. Let V* be another basis of vertices for A. Let n be a nilpotent elem-

ent in A[G], n can be expressed as

k m
ot 3 am 3
i=1 =1

If one evaluates the expression, n? = 0, one obtains
ay =0, 200B; + 1 =0, ...y 2008, + 7, =0,

and, therefore, f; = ... = f,, = 0. In particular, this forces the nilpotent elements of V* to be

contained in the subspace generated by {v,-}le. Consequently, V* has at most k nilpotent ele-
ments. One can then repeat the argument but reversing the roles of V* and V and conclude that
both bases have the same number of nilpotent elements.

In the finite dimensional setting, this suffices to see that the number of idempotent elements
in the two bases must also be the same, which would conclude our proof. For the infinite case,
however, further analysis is needed. First, a word of caution: notice, in contrast, looking at
Example 3, that it is not necessarily the case that the set of idempotents is generated by the idem-
potent elements in either basis. So our proof will have to follow a slightly different path.
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Let {v;} and {w;} be the nilpotent and idempotent elements of a basis of vertices for A
respectively. Let x be an idempotent element in A[G], x can be expressed as

k m
o + E oV + g ﬁjwj.
i=1 =1

As we evaluate x> = x, we obtain:
2 2 2
Oy = Olg, 2000001 = 01y ..oy 2000k = 0> 2000fy + BT = P15 wos 2008, + B, = Bon-

The first equation forces o € {0,1}. In both cases we get oy = ... = o = 0 and

200fy + 1 = Bro wor 2008 + By = B

So, idempotents must be of the form

m
oy + Z ﬁJW]
i=1

and, in particular, the idempotent elements in V* must be contained in the subspace generated
by {1} U {w;}.,. However, the space spanned by V* does not contain 1 (by definition of basis
of vertices) and, therefore, that space must be a proper subspace of <{1}Li{w;};", >. That forces

the cardinality of the set of idempotent elements in V* to be at most m. Repeating the above
argument with the roles of V and V* reversed yields the claimed equality.

3. Isobraic graphs for non-commutative graph magma algebras: the isobraicity class
of a connected graph

As a motivation, we start out with a couple of examples to illustrate that, when m > 2, the iso-
braicity class of K, is not simply its isomorphism class.

Example 4.

1. For m=2 the class [K;] also contains N; @ K;. We use the labels of the vertices in the original
complete graph to refer to the elements of the second basis of vertices. The edges serve to indi-
cate the relations among the vertices; checking that the relations hold is straightforward.

)

131 h—1h

U

153 151

() ()

2. For m=3 the class [Kj] also contains N} @ K, and N, @ K;. We label the various bases of
vertices in terms of the vertices in the original complete graph. The edges serve to indicate
the relations among those vertices. Checking that the relations hold is straightforward.
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The examples illustrate clearly the pattern to be followed in the proof of our next result.
Notice that K; and N; are connected graphs with one vertex each which are not isobraic, which
explains the need for the hypothesis requiring more than one vertex.

Proposition 3. Any two connected graphs with more than one vertex are isobraic when they have
the same number of vertices.

Proof. 1t suffices to show that, when m > 2, the complete graph K, is isobraic to every graph of
the form N @® K, whenever k+p=m with p > 1. Notice that k, m, and p may be infinite (pos-
sibly uncountable.) To that effect, let V be the basis of vertices for A(K,,) consisting of the verti-
ces of K, and let KUP be a partition of V such that |[K| = k and |P| = p. Fix an element v € P
and let W = {w — v|w € K}. The set WLP is a basis of vertices isomorphic to Ny & K.

Proposition 4. If two graphs G and H are, respectively, of the forms

|_| G,‘ and I_l H,‘,

iel iel
and, for all i € I, G; and H; are pairwise isobraic connected associative graphs, then G is isobraic
to H.

Proof. Consider A[G] and then, following the patterns established in the proof of Proposition 3,
find inside each subspace of the form < G; > a linearly independent set of vertices V; that spans
< G; >, and whose graph is isomorphic to H;. The (necessarily disjoint) union of the V;, i € I,
is the desired basis of vertices.

We aim next to show that a connected graph cannot be isobraic to a disconnected one, which
will complete our characterization of the isobraicity class of K, for all m (finite or infinite, pos-
sibly uncountable.) We will need to consider quotients of various graph magma algebras, there-
fore the following Lemma is a welcome result.

Lemma 2. Every quotient A/l of a graph magma algebra A with 1# A is itself a graph
magma algebra.

Proof. Let A be a graph magma algebra with basis of vertices V and let I be an ideal of A. Then
A/I has a spanning set of vertices V = {x + I|x € V}. Consequently, by virtue or Proposition 1,
A/I is a graph magma algebra.

Lemma 3. For any basis of vertices V. = GUH of a graph magma algebra A, (G), the subspace of A
spanned by G, is an ideal of A.
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Proof. Straightforward calculations show that this is indeed the case.

Theorem 3.
1. A graph of the form N,UG is not isobraic to any graph having only idempotent vertices.
2. If m<p then N, UG is not isobraic to N, LI G* where G is generated by idempotents.

Proof.

1. We will show that any idempotent element in A[N; Ll G| belongs to the subspace generated
by GU {1} and, therefore, no set of idempotents can be a spanning set for A[N; L G]. Let u
be the unique vertex of N, and let ¢? = e € A[N; UG], then e= o+ fu+x, where x €<
G > . It follows that ¢ = o + 20fu + y, where y €< G >. As e = €%, it follows that o €
{0,1}. Since 2aff = f, either option for o implies that =0, confirming our claim

2. Suppose A[X] = A[Y], where X and Y are bases of vertices which are isomorphic as graphs,
respectively, to N, LIG and N, G*. Write X = Ny LIGx and Y = NyUGjy in such a way
that Ny ~ N,,, Ny ~ N,, Gx ~ G and G} ~ G".

It follows then that
AlX] _ AlY]

(Nx) (Nx)

As mentioned in Lemma 2, the resulting quotient is also a graph magma algebra. Now, the
left hand side expression yields a basis of vertices of

{g +(Nx)| g € GxU{1}},

with only idempotent vertices. On the other hand, the right hand side yields the spanning set
of vertices

S:{ﬂ+<Nx>| QENyLJG;U{l}}

for 8\[]—}3. Because m < p, at least one of the elements a + (N,,) with a € N, is non-zero. That

implies that (S) contains a basis of vertices 8 of the form N; LI H, which is a contradiction
to the first part of the Theorem.

Remember, as pointed out in the introduction, that when dealing with an F-algebra A and related
left A-modules, the use of the word dimension will always mean dimension as an F-vector space.

Lemma 4. If G = K,,, UK,,,... UKy, such that m; > 2, for all j € {1,...,k}, and A = A[G], then

the codimension of Soc(A) (i.e. the dimension of SD;?M) equals k.

Proof. For 1 <j <k, label the vertices of Ky, as Bj = {Vj1, ..., Vj n;}. Notice that B = {1} UJ’.‘:1 B;
is a basis for A. Consider, for each value of j, the alternative basis C; = {vji} U {vjp — vj1,vjs —

Vi2s s Viym; — Vim,_, } for the span of B; It follows that C = {1} U]’le C;j is another basis for A.
Each C; is the union of {v;;} US;, where S; = {vj, — vj1,vj3 — vja, coos Vi — Vj,m,-,l}) is a basis for
the socle of the span of B;. It is straightforward to confirm that
A=Al—=(vi+va+- 4+ vn) DAL DAV D ... D Avyy
and
soclA) =A(l—(vii+va+ 4+ v)B<S >D <S> BB < S >.
Consequently,
A AV11 AVk1
SocA~ <S> T <S>
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Corollary 2. If Ky, UKy, ... UKy, is isobraic to K, UK,,...UK,, and all m; and n; are bigger than
or equal to 2, then k=1

Proof. By Lemma 4, the socle of an algebra A with bases of vertices isomorphic, respectively, to
Ky, UKy, ... UKy, and to K, UK, ... UK, would have codimension k+1 =1+ 1.

4. Graphs with finitely many non-null connected components

Notice that, unlike in the previous sections where we consistently referred to A[G] as A, to
emphasize its algebra structure, in this section we will favor the use of R = A[G] so that the trans-
lation from our references in [2], where the results are always about a ring R, is easier.
Remember that a one sided ideal I of a ring R is nilpotent if I¥ = 0 for some k. The smallest such
value of k is called the nilpotency of L

Our main results will follow after a series of preliminar results:

Lemma 5. If V. C A =R is a basis of vertices, whose graph G consists of connected components of
the form N,, K;, and N, ® Ky, and v,w € V (with p possibly (countably or uncountably) infin-
ite), then:

1. If v and w are nilpotent (i.e. coming from a copy of N; or a source vertex from a copy of
N, ® Ky), then Rv=_Fv and Rw=Fw are subspaces of R of dimension 1, and consequently,
simple left modules. Furthermore, the left modules Rv and Rw are isomorphic and the left
ideals Rv and Rw are nilpotent with nilpotency 2.

2. If v is a source in a component of the form N, ® K, and w is its target, then
Rv C Rw =< N, ® K| >, the subspace of R having the p + 1 elements of N, ® K, as a basis.

3. If v, w are isolated idempotent vertices (i.e. they come from two distinct connected components
of the form K;) then Rv=Fv and Rw= Fw are non-isomorphic projective simple left modules
of dimension 1.

4. If wis an idempotent then wRw is a local ring.

5. If v and w are distinct target idempotents then Rv/Jv and Rw/Jw are non-isomorphic simple
left modules of dimension 1.

Proof.

L. Q typical element of R is of the form r = o+ {a F—linearcombinationofverticesfrom }G.
Therefore, rv = av and rw = aw, which confirms our claims.

2. As vw =, Rv C Rw, confirming the first claim and the inclusion < N, ® K; > C Rw.
For the converse, observe that, since a typical element r of R equals

o+ {a F-linear combination of vertices from N, ® K}

+{a F-linear combination of vertices from the other connected components of G},

it necessarily follows that rw = aw + aF-linear combination of vertices from N, ® K.

3. A typical element of R is of the form r=a+ fv+ yw+ aF-linear combination of the
remaining vertices from G. Therefore, rv = («+ f)v and rw = («+ y)w, which confirms
our claims.

4. We saw above that when w is idempotent then Rw = Fw (if w € K;) or Rw =< N, D K; > .
In either case, wRw = FwF, a field, proving our claim.
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For any idempotent target z and ring element r € R, as

reatnet 3w
{teV|tz=t}

+ {a F-linear combination of vertices from the other connected components of G},

then
rz=(x+7y,)z+ Z Vet
{teV|tz=t}

It follows that r(z 4 Jz) = («+7,)(z + Jz). If ¢ : Rv/Jv — Rw/Jw were an isomorphism with
o(v+Jv)=pw+Jw then, for r = v, r(v+Jv) =v+Jv yet ro(v+Jv) = r(fw+Jw) = 0.
Therefore, Rv/Jv and Rw/Jw are not isomorphic.

Proposition 5. If the graph G is of the form N;U(K)" LU(N,, @ Ki)U...U (Np, @ Ky), where t
may be zero, finite, or (countably or uncountably) infinite, m is finite (possibly zero), k is finite
(possibly zero) and each p; is non-zero but possibly (countably or uncountably) infinite, then

1.

R = A[G] is the direct sum of m + k+ 1 mutually non-isomorphic indecomposable projective
left modules Re @ Re; @ ...Rey, ® Rvy @ ... ® Ry, where {ey,...e,; are the vertices in the m
isolated connected components of the form K, and {vi, ..., v} are the k target vertices in the
components of the form N, ® Ky, and e is given by e =1 — (ey + -+~ +ey) — (vi + -+ + %).
There is a simple left module S such that Soc(Re) ~ SV, and, for each i=1,..k,
Soc(Rv;) == S, So, the left socle of R is isomorphic to SUTP1TP) ¢ Re; @ ...Rep.

Proof.

1.

A typical element of R is a linear combination of 1 and the elements of the given basis. A
different basis may be obtained by replacing 1 with e (as in the statement.) By conditions 2
and 3 in the previous Lemma, the space spanned by any of the connected components may
be rewritten as Rv where v is the only idempotent vertex in that component. Consequently,
the decomposition R = Re & Re; & ...Re,, @ Rv; & ... @ Rvy does indeed hold. By condition 4
in Lemma 5, each direct summand, except possibly the first one, is indecomposable, as
claimed. It only rests to show that Re is indeed indecomposable; to that effect, we show that
its endomorphism ring, eRe, is local. To show that, in fact, eRe is a field (isomorphic to F),
we consider an arbitrary element r = [xe + a linear combination of the vertices in G] in R,
then er = re = ere = ae.

If the graph G has no nilpotent elements, then every Rv is simple, as is S = Re. In that case, the
result holds as R = Soc(R) = S!+0++0) @ Re; @ ...Re,,. Otherwise, if there is at least one nilpo-
tent element, v, denote S = Rv. From conditions 1 and 2 in Lemma 5, and because of the linear
independence of the nilpotent elements in each connected component that has them, for an
idempotent vertex w, if Rw is not simple then Soc(Rw) has one vector-space summand per nilpo-
tent vertex in the basis, so the result follows by a dimension considerations.

The following Theorem characterizes one-value magma algebras with finitely many non-null

connected components in ring-theoretic terms.

Theorem 4. Let R = A[G] be a one-value magma-algebra generated by the graph G. Then the fol-
lowing are equivalent:

1.
2.

G has only finitely many non-null connected components,
R is a semiperfect ring, and
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3. R has only finitely many simple left modules up to isomorphism.

Proof. In light of the characterization of semiperfect rings in Theorem 1, the implication 1 = 2
follows from condition 1 in Proposition 5. The implication 2 = 3 is a well-known fact about
semiperfect rings. In fact, for a semiperfect ring R = Re; & ... ® Re;, the set of quotients
{Re;/ ]ei}le contains every simple left module up to isomorphism. One can prove 3 = 1 by mim-
icking the proof of condition 5 in Lemma 5.

Example 5. Case 4 in Example 1 is not semiperfect because it has infinitely many non-iso-
morphic simple right modules, namely, for i > 2,

Si = {row-sequences that are zero everywhere except possibly in the i-th entry}.

Our next Theorem characterizes precisely which semiperfect algebras can occur as one-value
magma algebras.

Theorem 5. Let R be an algebra over the field F. Then, the following two conditions are equivalent:

1. There exists a graph G with finitely many non-null connected components such that R = A[G],
the one-value magma algebra induced by G, and

2. R is a basic semiprimary ring with indecomposable decomposition R = Rey © Re; & ... © Re,y,
where, for each i =0, ..., m, d; denotes dimRe;, and S; denotes the simple module %, such that
@ =0,
(b) foralli=0,..,m,dimS; =1,
(c) foralli=1,..,m, efe; =0, while eg]Jey = Jey, and,
(d) foralli=1,...,m, if Re; # Je; # 0, then Je; = Soc(Re;) = [So] V.

Proof. For the implication 1 =-2, you may assume, without loss of generality, that G =
N U (Ky)" LU (Np, & Ky)U...U (Np, @ K;), where t may be zero, finite, or (countbaly or uncount-
ably) infinite, m must be finite (possibly zero), k is finite (possibly zero) and each p; is non-zero
but possibly (countably or uncountably) infinite. As in Proposition 5, and Theorem 4, R is semi-
perfect and has a unique decomposition as a direct sum of indecomposable projectives R =
Rey ® Re; & ... @ Re,,. In order to assert that J> = 0, it suffices to show that each (]e,-)2 =0.

For the reverse implication, 2 = 1, the case when each Re; is simple corresponds to a graph
with m copies of K;, when some Re; is not simple, one can distinguish Re, as the one projective
indecomposable whose top is isomorphic to the simples in the socle of Re;. Consider then the set
V consisting of the idempotents {ej,...,e,} and the union of all bases for the subspaces Je;, j =
1,...,m. Straightforward calculations and dimension considerations confirm that V is indeed a
basis of vertices.

5. Further results, examples, and applications

Next, we include a couple of additional results together with some corresponding examples. First,
in Proposition 6, we describe the right indecomposable decomposition of a semiperfect one-value
magma algebra R = A[G]. Our intention in doing so is to point out that the right decomposition
of R is not as descriptive of G as its left decomposition is. Then, in Proposition 7, we determine
how many pairwise non-isomorphic one-value magma algebras of a given finite dimension exist.

Proposition 6. Let R be the semiperfect one-value magma algebra over the field F, induced by a
graph G with finitely many non-null connected components. Then R is a direct sum of simple right
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modules with dimension 1 plus, possibly, one additional indecomposable projective right module eR
with essential homogeneous socle and such that, if S = #IZR)’ then dim(S) = 1 and every simple

submodule of Soc(eR) is isomorphic to S.

Proof. Let V = {ey,...,em} LU{X1,..X,—m} where the e; are idempotent and the x; are nilpotent.
Then, R=Re® Re; & ... H Re,;, as in the previous theorems. We prove first that for i€
{1,...m}, eR is a simple right ideal of dimension 1. This follows because a typical element of R
is of the form r=a+ fe; + a linear combination of the other vertices from V. Therefore,
eir = (o + B)e; €< e; >, the subspace of A generated by e;. Hence, ;R =< ¢; > .

Furthermore, if 1 < i # j < m, then ¢R is not isomorphic to e;R. Otherwise, say ¢ : ¢,R — ¢;R
is said isomorphism and ¢(e;R) = yej, for some 0# y € F. Then ¢(e;) = o(e) = (p(ei))ei =
veje; = 0, a contradiction.

Next, we must show that, for every nilpotent vertex x, xR C eR. To that effect, remember that
e=1—e —..— ey and therefore ex = x € eR. In fact, since xR is nilpotent, then xR C e].

The fact that xR is simple and congruent to eR/e], can be appreciated by comparing the effect of
multiplying x with an arbitrary element r € R and the effect of the same multiplication on e 4 ¢] €
eR/e]J. Consider an arbitrary r = o + f§;e; + a linear combination of the vertices from V, then
xr = ax. Likewise, (e+ eJ)r = ((e+ e])(a+ Bie; + a linear combination of the nilpotent vertices
from V), because e is orthogonal to e; for i = 1,...m. But, since the nilpotent vertices are con-
tained in e, (e + ef)r = a(e + €J).

These results imply that all right ideals of the form vR, v a nilpotent vertex, are of dimension 1, as
follows. Since they are all isomorphic, dimxR =k, is shared by all nilpotent vertices and k =
dim(eR/e]), as well. Since e] contains {x1,...,X,—n}, then < x; > ®...® < x,_,, >C ¢J. It follows
that dim(eR) > (n — m)k and, therefore, n + 1 = dim(R) > k(n — m) + m. That implies that k=1
and, because < x; > ©..® < xXp—_y >=x1RD ...  x,_,R, confirms the statement of the theorem.

Theorem 6. The following conditions are equivalent for a graph G with N vertices such that R =
Al[G] is semiperfect:

R is right noetherian,

R is left noetherian,

R is right artinian,

R is left artinian,

R is finite dimensional, and
G has finitely many vertices.

A

Proof. The dimension of R is N+ 1. So R is finite dimensional if and only if G has finitely many
vertices. As we have seen, R is semiperfect if and only if it has finitely many, say m, non-null
components. A decomposition of R as a sum of projective indecomposable right or left modules
will consist of m+ 1 summands. Theorem 5 and Proposition 6 describe the lattices of left and
right ideals of the ring R in terms of simple left and right ideals. According to these descriptions,
considering that the only vertices that might produce principal ideals not in the socle are the
idempotent ones, the dimension of either socle of R is at least N — m — 1. Therefore, because m
is finite, the dimension of R is infinite if and only if either socle (both socles) is (are) infinite
dimensional. Since both the right and left socle are made up of simple modules of dimension 1,
infinite dimensional implies that the left and right socles of R are direct sums of infinitely many
simple modules, proving our claim.

To illustrate the previous results, we look at the left and right decompositions of the pertinent
instances listed in Example 1.
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Example 6. Numbering the various graph-magma algebras of matrices consistently with Example

1, we offer here, when appropriate, their left and right decompositions as direct sums of project-

ive indecomposables.

1. The left decomposition of R = (F F) is Re = (F 0), Re, = (0 F)

Its right decomposition is eR = (g g), eR=(, g)

F F F F 00 0 F 0

2. The left decomposition of R= (0o F o| is Re= (0 0 o), Reg= (0o F o), and Re, =
00 F 00 0 00 0

00 F F F
o o o|.Its right decomposition is eR = [ 0 o , €]
00 F 0 0

oo™
=
I
//
c oo
o o
c oo
~
V)
=]
[a W
o
N}
=
I
//
c oo
c oo
o o
N————

3. Forall n € Z*, the algebra

F F F F
0 F O 0
R = 0 0 F 0
0 0 F
F 0 0 0
00 0 .. 0
has left decomposition Re= |0 o o .. 0|, and, for 1 <i<n—1, Re; is all zero
00 o o 0
except possibly for the first and the i+1 columns. Its right decomposition is eR =
F F F .. F
00 0 .. 0
00 0 .. of, and, for 1<i<m—1, eR is all zero except possibly for the
00 .. . 0

(i+1,i+1) entry.
4. Proposition 6 does not apply to the fourth item in Example 1 because that ring is not semi-
perfect (see Example 5.)

5. The left decomposition of the basic algebra R = (i 2) consists of Re; = (? 8), and Re =

<g g) Its right decomposition is e;R = <§ 8)) and eR — (g g)

6. The left decomposition of the basic algebra

F 0 0
R:UF F a 0
““\F 0 a
F 0 0 0 0 0
consists of Re; = <F 0 o), and Re = (0 a o)|a € F}. Its right decomposition is e;R =
F oo 00 a
F 00 000
0 0o, andeR= Uyep|F a 0].
00 0 F 0 a
7. For all n € ZT, the left decomposition of the basic algebra
F 0 0 .. 0
rR=L]J F a 0 .. 0 c M,(F)

acF
F 0 .. .. a
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F 0 0 .. 0 00 0 . 0
consists of Rey = [ F 0 © = 0| and Re= 0 @ 0 - 015 F}. Its right decom-
F oo 0 0 0 o o a
F 0O 0 .. 0 00 0 0
position is e;R = 0 00 ,and eR= Ugep|f 2 ° 0
0 0 o o 0 F O w « a
8. The eighth item in Example 1 is the infinite analog of item 7 and exhibits similar decomposi-
igg“‘g“‘ 000 ..0.
. o 0 a0 ..0..
tions. Its left decomposition is Rey=| 4 " |, and Re=q | .. .. .. . . . |[[aEF}. Tts
000 .0 00 ... a ..
F OO .0.. 0000
. ces . 000 0 F a0 .. 0.
right decomposition is e;R = =Pl and eR=Ugep | o o e
T F O ... a

Note that this example is not Artinian or noetherian on either side, as explained in Theorem 6.

Another consequence of our characterization of semiperfect graph magma algebras in the previ-
ous section is a converse of Proposition 4 that holds for graphs with finitely many non-null con-
nected components.

Theorem 7. If G has a finite number of non-null connected components and G is isobraic to H then H
has a finite number of non-null connected components and there is a one-to-one correspondence
between the components of G and H in such a way that the corresponding components are isobraic.

Proof. For m € Z", and without loss of generality, in light of Propositions 3 and 4, let G =
NpU U, (Np, @ Ky). Likewise, let, H = Ngljer(Ng, @ Ky). Since R = A[G] is semiperfect, by
Theorem 1, then A[H] = R has only finitely many simple left modules, which implies that I is
finite, say |I| = k.

Proceeding as in the proof of Theorem 4, A[G] may be decomposed as a sum of m+ 1
indecomposable projective left modules Re ® Re, @ ... ® Re,, and A[H] as a sum of |I|+1
indecomposable projective left modules Rf ® Rf; @ ... ® Rfy. But the number of indecomposable
projective summands in a semiperfect module is invariant and, therefore, k=m. In fact, the
uniqueness (up to isomorphism) of such decompositions for semiperfect rings, implies that, upon
reordering, the projective indecomposable modules in the G-decomposition are isomorphic to the
corresponding ones in the H-decomposition.

When the radical J of R is zero, R is a direct sum of copies of the field F and therefore, as in
Proposition 8, for 1 <i < m, p; = 0. This, in turn, forces each q; also to be zero and therefore
the result follows.

When J # 0, Re (and Rf) are distinct in that Re/Je and Rf/]f embed in JR. So Re and Rf must
correspond to one another in the correspondence. For the remaining projective indecomposable
summands in the two decompositions of R, since we did not have a preconceived order for I at
the beginning of this narrative, for simplicity let us say that, for 1 <i < m, Re; = Rf;. But, as
seen in the proof of Theorem 4, Re; is induced by the i-th non-null connected component of G,
in such a way that the uniform dimension of the socle of Re; equals p; and, likewise, Rf; is
induced by the i-th non-null connected component of H, in such a way that the uniform dimen-
sion of Soc(Rf;) equals g;. Consequently, q; = p;. In light of Propositions 3 and 4, this suffices
now to arrive at the conclusion of our statement.

The following Proposition calculates the number of graph magma algebras of any given finite
dimension up to isomorphism.
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Proposition 7. For an arbitrary n € Z*, there exist exactly N isomorphism classes of one-value
magma algebras of dimension n+ 1, where N =1+ ngnp(j)’ and, for any positive integer i, p(i)
denotes the number of partitions i.

Proof. Let j < nand i; < i, < ... < be a partition of j and consider the graph
k
G - (Nl)n7] U I_ll Kiﬂ
t=

The algebra R = A[G] has dimension 7 + 1 and any one-value magma algebra of dimension n + 1
can be obtained in this way, with the exception of the graph magma algebra generated by (N;)",
whose absence explains the need to add the 1 in the formula for N. The fact that no two parti-
tions yield the same algebra is a consequence of Theorem 6.

Next, we explore the meaning of Proposition 7 with one example.

Example 7. Let n =23, then the N = 1+ p(1) + p(2) + p(3) = 7 isomorphism classes of one-value
magma algebras of dimension n 4 1 = 4 are:

(1)  Having zero isolated copies of N, allows us to have p(3) = 3 choices for graphs with com-
plete connected components. Thus, we obtain the graphs,
(a)  Kj, yielding a basic ring R = Re @ Re;, where Re is simple and Soc(Re;) = (Re)z.
(b) K,UK;, yielding a basic ring R = Re © Re; @ Re,, where Re and Re, are simple and
Soc(Re;) = Re, and
(o) KyUKjUK;, where R being commutative and a sum of four pairwise non-iso-
morphic simple projective left modules R = Re @ Re; & Re, @ Res.
(2) Having one isolated copy of Nj, and, therefore, p(2) = 2 choices for graphs with complete
connected components, namely,
(a) N,UK,, yielding a basic ring R = Re @ Re;, where both Re and Re; have compos-
ition length 2, and Soc(Re) = Re/Je = Soc(Re;), and
(b) NiUK,UK;, yielding a basic ring R = Re ® Re; ® Re,, where Re has composition
length 2, Soc(Re) = (Re/Je) and Re; and Re, are simple.
(3) Having two copies of N; leaves only one possible graph N, LI K; and yields a basic ring R =
Re @ Re; with Soc(Re) = (Re/Je)* and Re, are both simple. Finally,
(4) the graph N; corresponds to the case where all vertices are isolated and to the basic ring R
with J = Soc(R) = (R/])’.
Our next proposition enhances the characterization of commutative graph magma algebras in
Corollary 1, in the case when the graph has finitely many non-null components. Remember that
a ring R is right duo if every right ideal is a left ideal.

Proposition 8. For a graph G with finitely many non-null components, the following conditions
about the magma algebra R = A[G] that it induces are equivalent:

1. R is commutative,
2. R is right duo, and
3. every simple right ideal of R is a left ideal.

Under any of the above equivalent conditions, A is of the form A = B @® C, where B is zero or a
quotient algebra
. F[X,|l S I]
o <xxlijel>’
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C is zero or a direct sum of copies of the field F. The case when B=0 corresponds to the graph
G=N, (with p arbitrary) and the case when C=0 corresponds to the graph G = (K;)" (with
finite m.)

Proof. The implications (1) implies (2) and (2) implies (3) are trivial. To show that (3) indeed implies
that R is commutative, consider R =Re ® Re; @ ... ® Re,, and R =eR @ e;R D ... D ey R, respect-
ively, the left and right decompositions corresponding to the semiperfect ring R = A[G] as per
Theorem 1 and Proposition 6. Then ¢R is a simple right ideal of dimension 1 for i = 1,...m. It fol-
lows that ¢;R is also a left ideal and, since its dimension is 1, it must be simple. But then Re; C ¢;R,
and, in fact for i = 1,...m, e;R = Re; is a simple left ideal of dimension 1. This implies that the non-
null connected components of G are all of the form K; and our result follows from Corollary 1.

Also by Corollary 1, a graph that induces a commutative algebra must be of the form G =
N, & (Ky)™. Let {n;li € I} = N,, (where |I| = p) and consider the algebra Flx;li € ] F& ...®F
(m copies of F). Let ¢ be the epimorphism obtained by sending the variables x; (i € I) to #,
each unit vector e; F™ to the idempotent element of the same name in (K;)", and extending
it algebraically due to the universal property of polynomials. The kernel of ¢ equals the subspace
< xixj|i,j € I >, yielding our claim.

A result similar to Proposition 8 holds on the opposite side. Notice, however, that the right-
handed version of condition (3) may not be included here.

Remark 4. For a graph G with finitely many non-null components, the magma algebra R = A[G]
that it induces A is commutative if and only if it is left duo.

Proof. Of course, it is trivial that (1) implies (2). To see that the converse holds, let R =
Re®Re; & ... B Re, and R =eR P ;RSP ... B ey R, respectively, be the left and right decomposi-
tions corresponding to the semiperfect ring R = A[G] as per Theorem 1 and Proposition 6. If A
is left duo then the left ideal Re is also a right ideal but then eR must be contained in Re. That
means that all nilpotent element of the basis of vertices are contained in eR. That, in turn, implies
that there are no nilpotent elements from the graph in any Re; for i = 1,...m. That means that
the non-null connected components of the inducing graph are isomorphic to N;, which, in light
of Corollary 1, concludes our proof.

We close with a contribution to the study of amenability of bases for graph-magma algebras.
While it is known that all countable dimensional algebras have at least one amenable basis (e.g.
[1]), our result shows that all graph magma algebras of any infinite dimension have amenable
algebras, regardless of the cardinality of V.

Theorem 8. For every simple associative graph G = (V, E), the graph magma algebra A[G] has an
amenable basis.

Proof. Say G = N,,, U U G;, where each G; is a non-null connected associative graph. Then, the
basis of vertices H obtained by replacing each non-null connected component G; of G with a set
of vertices of the type N, @ Ki, as granted by Theorem 3, yields a basis V; U {1} which can eas-
ily be seen to be amenable, as follows, by considering the left multiplication maps by elements of
B. As B= N, U Uicr (Ny, DKy), if b € B, one must consider the following cases:

1. If b€ N, ly(x) = b, if x=1, or 0, otherwise. Therefore, b is the only element of 8B used by
the outcomes of the elements of B and is only used once.

2. If b € N, then [,(x) # 0, only if x=1 or e;, the idempotent vertex in Nj, ® K for the i-th
connected component. In both cases, l,(x) = b. Therefore, b is the only element of B used
by the outcomes of the elements of B and is used exactly twice.
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3. Finally, if b = e; the idempotent vertex in N, @ K; for the i-th connected component, then
Iy(x) = b when x=1 or e; and is zero otherwise. Therefore, b is the only element of B used
by the outcomes of the elements of 8 and is used exactly twice.
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