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Abstract

African mole-rats (Bathyergidae, Rodentia) of the (eu)social genus Fukomys are one of the most speciose mammal genera endemic to
Sub-Saharan Africa. Fukomys distributed in the Zambezian phytochorion is characterized by extreme chromosomal variation (2n = 40–
78). We inferred a molecular phylogeny of Zambezian Fukomys to resolve the interrelationships and the evolutionary history of the
known chromosomal races. We sequenced the entire cytochrome b gene (1140 bp) for a total of 66 specimens representing 18 karyotyp-
ical races from Zambia. An additional 31 sequences were retrieved from GenBank including data on all other chromosomal races. The
haplotypes belonging to a small chromosomal race from Salujinga cluster with the Fukomys mechowii (Giant mole-rat) haplotypes. Dif-
ferential degrees of chromosomal variation are observed among the major mole-rat clades, which is most pertinent when comparing the
central Zambezian Fukomys micklemi and the northern Zambezian Fukomys whytei clades. The karyotypically hyper-diverse (12 known
chromosomal races) Fukomys micklemi clade shows low levels of cytochrome b sequence divergence. Within the F. whytei clade we find a
more conservative pattern of chromosomal diversification (three known chromosomal races) while the levels of sequence divergence are
much higher then in the F. micklemi clade. Our results suggest that chromosomal changes may drive phyletic divergence and, eventually,
speciation. The observed cladogenetic events during the Plio-Pleistocene within the F. mechowii, F. whytei, F. damarensis and F. micklemi

clades appear to coincide with climatically mediated speciation bursts in other savannah dwelling mammals, including hominids. Based
on the molecular data presented, combined with morphological and chromosomal data, the taxonomic implication seems to be that
Fukomys may contain several (undescribed) cryptic species.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. A recently described genus of social mole-rats

Fukomys (Rodentia: Bathyergidae—African mole-rats)
represents one of the most speciose rodent genera. The
genus encompasses several species of subterranean rodents
that are endemic to Sub-Sahara Africa. It is the most
1055-7903/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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derived lineage within the Bathyergidae comprising several
social and at least one eusocial species (Fukomys damaren-

sis). The varying degree of sociality is negatively correlated
with precipitation, which subsequently influences the distri-
bution of geophytes, the animals’ staple food (Jarvis et al.,
1994). The causes of social evolution in bathyergids, how-
ever, are still debated (Bennett and Faulkes, 2000; Burda
et al., 2000). While Fukomys has been vilified for damaging
crops, it is an important food resource for humans in many
parts of its geographic range. Recently, several research
groups have succeeded in maintaining and breeding the
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animals in captivity, which will facilitate research in many
different aspects of the biology of these mammals, includ-
ing genetics, chromosomal evolution, evolution of social-
ity, ethology, biogeography, morphology, ecophysiology
and sensory biology (e.g. Jarvis and Bennett, 1993; Bruck-
mann and Burda, 1997; Jarvis et al., 1998; Spinks et al.,
2000a,b; Faulkes and Bennett, 2001; Nemec et al., 2001;
Faulkes et al., 2004; Van Daele et al., 2004; Janse Van
Rensburg et al., 2004; Scantlebury et al., 2006; Dammann
and Burda, 2006). Furthermore, Fukomys is the subject
of an increasing number of studies that investigate the
mole-rats’ behaviour and ecology (e.g. Hazell et al., 2000;
Greeff and Bennett, 2000; Burland et al., 2002, 2004; Bar-
nett et al., 2003; Ganem and Bennett, 2004). It may be
expected that, in addition to the confamiliar naked mole-
rat (Heterocephalus glaber), this group of African mole-rats
will be of particular interest for gerontological research,
taking into account longevity quotients similar to those
of humans (Buffenstein, 2005; Dammann and Burda,
2006) combined with the differential levels of chromosomal
and mitochondrial DNA sequence divergence, which is
emphasized by the sequences available to date (Faulkes
et al., 1997, 2004; Ingram et al., 2004; this paper).

1.2. Phylogenetic analyses, chromosomal diversification and

classification

Given the fact that Bathyergidae are one of the best
studied rodent groups in Africa, the systematics and phy-
logeny of this family have been addressed by other studies
(reviewed in Van Daele et al., 2007). Fukomys is the most
recently recognised member of the six genera that consti-
tute the Bathyergidae. Fukomys (synonym Coetomys

nomen invalidus; Kock et al., 2006) forms a northern clade
within a phylogroup (Cryptomys sensu lato) that further
contains the reciprocally monophyletic Cryptomys sensu

stricto clade of southern Africa. Two recent phylogenetic
analyses using nuclear and mitochondrial DNA sequences,
combined with data on chromosomal variation, unambigu-
ously support the taxonomic division of Cryptomys and
Fukomys, although these data do not resolve the relation-
ships within Fukomys (Faulkes et al., 2004; Ingram et al.,
2004). To date no less than 12 Fukomys species are
accepted as valid. In a taxonomic revision Honeycutt
et al. (1991) retained 6 species: Fukomys bocagei (De Win-
ton, 1897), F. damarensis (Ogilby, 1838), F. foxi (Thomas,
1911), Fukomys mechowii (Peters, 1881), F. ochraceocinere-
us (Heuglin, 1864), and F. zechi (Matschie, 1900). Subse-
quent allozyme and karyological studies (Aguilar, 1993;
Macholán et al., 1998; Filippucci et al., 1994; Burda
et al., 1999; Chitaukali et al., 2001; Van Daele et al.,
2004; Burda et al., 2005) demonstrated the specific status
of Fukomys amatus (Wroughton, 1907), Fukomys anselli

(Burda et al., 1999), Fukomys darlingi (Thomas, 1895),
Fukomys kafuensis (Burda et al., 1999), F. micklemi
(Chubb, 1909) and F. whytei (Thomas, 1897). Fukomys

mole-rats are a complex of morphologically very similar
species that can not be readily diagnosed due to the low
resolution of the known morphological markers.

However, variation in diploid number in this clade is
known to be among the highest among mammals, as
opposed to the karyotypically conserved sisterclade Cryp-

tomys sensu stricto (Burda, 2001). Furthermore, Van Daele
et al. (2004) recently described 9 new chromosomal races
within the Zambezian clade (i.e. the mechowi (sic) group
of Ingram et al., 2004), illustrating that south-central Zam-
bia forms a ‘‘hotspot of karyotypical diversity’’. The evolu-
tionary mechanisms behind chromosomal diversity within
Fukomys remain poorly understood. The mainly allopatric
distribution of the known chromosomal races that occur
throughout the Zambezian phytochorion is consistent with
a scenario of vicariance events, driven by major geomor-
phological reconfigurations in the Zambezian area (Van
Daele et al., 2004; Cotterill, 2003). The observed absence
of morphological differentiation accompanied with a high
level of chromosomal diversity underpins the need for a
systematic revision of these mammals, as well as a molecu-
lar phylogeographic approach to infer the evolutionary his-
tories and interrelationships of these putative taxa and
their populations.

Using mitochondrial cytochrome b (cyt b) sequences
we aim to clarify the interrelationships and evolutionary
history of the known chromosomal races. The combina-
tion of molecular and chromosomal data allows further
exploration of the role of chromosomal evolution in
the speciation of these small mammals. Are we to expect
equal levels of genetic divergence between chromosomal
races within different clades, as might be anticipated in
view of the comparable range of diploid numbers in
e.g. northern and southern Zambezian lineages? This
study provides the most comprehensive sampling of this
taxon so far, by increasing the number of studied chro-
mosomal races and extending the sampling area in com-
parison with earlier studies. The choice of the
mitochondrial cytochrome b locus was based on the facts
that 1. due to its higher mutation rate compared with
most nuclear DNA, it is known to be useful for the
inference of relationships among closely related mammal
species and populations, and 2. previously published
sequences could be included in our analyses.

2. Materials and methods

2.1. Sampling strategy: topotypical approach

Specimens of Fukomys were sampled throughout their
distribution in Zambia and Malawi between 1987 and
2002 (Fig. 1). All specimens collected at type localities
are tentatively given the corresponding species name. How-
ever, species names are not provided for any of the other
specimens due to the low resolution of the diagnostic mor-
phological characters. The samples comprise the topotypes
of all chromosomal races (underlined) that hitherto have
been described as well as specimens collected from a



Fig. 1. Sampling localities in Zambia and neighbouring countries.

144 P.A.A.G. Van Daele et al. / Molecular Phylogenetics and Evolution 45 (2007) 142–157
number of type localities (marked with *). Thus, our pres-
ent data set includes data from all described species and
chromosomal races in the genus (see above). From the total
of 97 samples, sequence data of 66 samples are previously
unpublished. This includes data from 27 new localities
(Table 1).
2.2. DNA isolation, PCR amplification and nucleotide

sequencing

PriortoDNAextraction,tissue(liver)waspreservedineither
70%ethanol(UniversityofDuisburg-Essencollection)or95%
ethanol (Ghent University collection) and stored at�20 �C.



Table 1
Specimens sequenced with their respective clade, geographic location and GenBank Accession Numbers

Clade N Location and country Lat (S) Lon (E) GenBank No.

mechowii 1 Chiundaponde, Zambia* 12�140 30�350 EF043451
mechowii 1 Chibale, Zambia 13�350 30�050 EF043452
mechowii 1 Mbombo-Lumene NP (near Kinshasa), DRC 04�220 15�270 AF012231
mechowii 1 Chingola, Zambia 12�310 27�510 AF012230
mechowii 3 Salujinga, Zambia 10�580 24�050 EF043453–EF043455
bocagei 1 Lubango, Angola 14�560 13�270 AF012229
whytei 5 Kasanka, Zambia 12�080 29�470 EF043456– EF043460
whytei 1 Kambi, Zambia 11�300 29�340 EF043461
whytei 1 Kane, Zambia 10�330 28�590 EF043462
whytei 1 n. Kakululu River, Zambia 10�380 29�040 EF043463
whytei 1 Chief Tungati Local Forest, Zambia 10�270 30�000 EF043464
whytei 1 Kama, Zambia 12�240 30�210 EF043465
whytei 2 Chinsobwe, Zambia 13�230 30�210 EF043466– EF043467
whytei 1 Chibale, Zambia* 13�350 30�050 EF043468
whytei 1 Mushangashi, Zambia 12�280 30�230 EF043469
whytei 2 South of Lake Chiwakawaka, Zambia 12�320 30�370 EF043470–EF043471
whytei 1 Ndeba1, Zambia 12�260 30�390 EF043472
whytei 1 Ndeba2, Zambia 12�280 30�380 EF043473
whytei 1 Kasama, Zambia* 10�160 31�000 EF043474
whytei 2 Lufubu, Zambia* 09�150 30�530 EF043475–EF043476
whytei 1 Karonga, Malawi* 09�560 33�560 EF043477
whytei 3 Mbala, Zambia 09�500 31�240 AY425860–AY425862
whytei 1 Suma, Tanzania 09�100 33�400 AY425859
whytei 1 Mzuzu, Malawi 11�270 34�030 AY425863
darlingi 1 Goromonzi, Zimbabwe 17�520 31�300 AF012232
damarensis 2 Simungoma, Zambia 22�490 38�570 EF043478–EF043479
damarensis 2 Sioma Ngwezi N.P., Zambia 31�330 19�360 EF043480–EF043481
damarensis 1 Maun, Botswana 19�590 23�210 AF012221
damarensis 4 Okavango, Botswana 19�320 23�110 AF012220–AF12224
damarensis 1 Bulawayo, Zimbabwe 20�090 28�380 AY425857
damarensis 3 Dorbabis, Namibia 22�580 17�410 AF012225
damarensis 1 Rundu, Namibia 17�480 19�320 AY425858
damarensis 3 Hotazel, South Africa 27�170 23�000 AY425853–AY425855
micklemi 1 Chinyingi, Zambia 13�230 23�000 EF043482
micklemi 2 Mayau, Zambia 12�440 24�200 EF043483–EF043484
micklemi 2 Watopa, South of Kabompo River, Zambia 14�000 23�470 EF043485–EF043486
micklemi 1 Namwala N, Zambia 15�400 26�250 EF043487
micklemi 1 Namwala S, Zambia NA NA EF043488
micklemi 1 Munali1, Zambia 15�570 28�070 EF043489
micklemi 1 Munali2, Zambia 15�580 28�080 EF043490
micklemi 1 Moono, Zambia 15�080 26�570 EF043491
micklemi 1 Kaindu, Zambia 14�290 26�540 EF043492
micklemi 1 Lusaka, Zambia* 15�190 28�270 AF012233
micklemi 2 Kataba, Zambia* 15�230 23�230 EF043493–EF043494
micklemi 1 Senanga, Zambia 15�580 23�200 EF043495
micklemi 1 Luampa, Zambia 22�460 24�560 EF043496
micklemi 1 Mazabuka, Zambia 16�120 27�250 EF043497
micklemi 1 Monze, Zambia 16�040 27�320 EF043498
micklemi 1 Lochinvar, Zambia* 16�060 27�180 EF043499
micklemi 2 Dongo, Zambia 16�380 26�270 EF043500–EF043501
micklemi 1 Kalomo, Zambia 16�580 26�360 AF012234
micklemi 2 Kavumba, Zambia 17�350 25�210 EF043502–EF043503
micklemi 2 Kalamba near Sekute, Zambia 17�380 25�410 EF043504–EF043505
micklemi 1 Sekute, Zambia 17�380 25�410 EF043506
micklemi 1 Libala near Sekute, Zambia 17�380 25�410 EF043507
micklemi 1 Kabala near Sekute, Zambia 17�380 25�410 EF043508
micklemi 1 Ndrevu, Zambia 17�380 25�410 EF043509
micklemi 1 Livingstone, Zambia 17�540 25�530 EF043510
micklemi 1 Itezhi-Itezhi, Zambia* 15�510 26�030 EF043516
micklemi 3 Mikata, Zambia NA NA EF043511–EF043512
micklemi 3 Kajunika lila, Zambia NA NA EF043513–EF043515
C. nimrodi 1 Hillside, Bulawayo, Zimbabwe 20�090 28�380 AF012237
C. hottentotus 1 Steinkopf, South Africa 29�170 17�450 AF12240

(continued on next page)
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Table 1 (continued)

Clade N Location and country Lat (S) Lon (E) GenBank No.

C. pretoriae 1 Pretoria, South Africa 25�470 28�130 AF12235
C. mahali 1 Patryshoek, Pretoria, South Africa 25�400 28�020 AY524870
C. natalensis 1 Kokstad, South Africa 31�320 29�380 AF12236
B. suillus 1 Rondawel, South Africa 30�470 17�530 AY425913
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Genomic DNA was isolated by proteinase-K digestion fol-
lowedbyextractionoverQiagenDNAEasyspincolumns(Hil-
den, Germany) according to the manufacturers’ instructions.
PCR amplification of the complete cyt b (1140 base pairs) was
carried out using primers (L14723 and H15915) and reaction
conditionsdescribedpreviouslyforAfricanmole-rats(Faulkes
etal.,1997).Sequencingwascarriedoutinbothdirectionsusing
the PCR primers to obtain partially overlapping strands.
Sequencing reactions were performed on an ABI 377
automatedsequencerusingBigDyeTerminatorv3.1chemistry
(Applied Biosystems, Foster City, CA). All new sequences
(including voucher references) have been deposited in NCBI
withAccessionNos.EF043451–EF043516(Table1).
2.3. Sequence and phylogenetic analyses

Previously published cytochrome b sequences from
Fukomys specimens from the Zambezian area (Faulkes
et al., 2004) were obtained from NCBI and included in
the analyses (although many are partial cyt b sequences;
Table 1). The compiled sequences were subsequently
aligned using ClustalW (Thompson et al., 1994) in MEGA
v3.0 (Kumar et al., 2004). Based on previous studies (Faul-
kes et al., 2004; Ingram et al., 2004), other bathyergids, five
Cryptomys species and Bathyergus suillus (Table 1) (Faul-
kes et al., 2004) were included as outgroup taxa. Calcula-
tion of genetic distances and both maximum parsimony
(MP) analysis and two probabilistic approaches, maximum
likelihood (ML) and Bayesian analyses, were performed on
the complete dataset. Both for reasons of clarity and to
limit computing time, we used a subset of representative
haplotypes in the final analyses. Datasets were examined
for substitution saturation (transversions and transitions
separately) plotting matrices of patristic against adjusted
character distances calculated by PAUP* v4.0b11. For
ML and Bayesian analysis we included C. nimrodi as the
only outgroup taxon. Prior to ML and Bayesian analyses
Akaike information criterion (AIC) tests of different mod-
els of evolution were performed with Modeltest v3.07
(Posada and Crandall, 1998). MP and ML analyses were
performed using PAUP* v4.0b11 (Swofford, 2002). For
the MP analyses we used the heuristic search option with
characters having an equal weight. In a second round of
MP analyses characters were then weighted a posteriori
(Farris, 1969) according to their rescaled consistency index
(RC; Farris, 1989). Under these MP criteria bootstrap pro-
portions (BP) were calculated, using 1000 pseudoreplicates,
random addition of taxa and TBR branch swapping with
the steepest descent option not in effect. For ML analyses
we employed the heuristic search option with TBR branch
swapping, where starting trees were obtained via random
stepwise addition. Robustness of the ML tree was deter-
mined in a bootstrap analysis using the stepwise addition
option and the heuristic search option with 500 pseudore-
plicates (Felsenstein, 1985). Bayesian posterior probabili-
ties (PP) were estimated using MrBayes v3.01 (Ronquist
and Huelsenbeck, 2003). The analyses were initiated with
random starting trees and were run for 1 · 106 generations,
sampling every 100th generation. Likelihood values were
checked graphically to see if stationarity had been reached.
Four separate independent searches were run, each consist-
ing of three heated chains and one cold chain. The burn-in
value was set at 500. Thus the first 500 trees (50,000 gener-
ations) were discarded in the approximation of posterior
probabilities. The trees of the various runs were combined,
producing a 50% majority rule consensus tree. All trees
were visualised with Treeview 1.6.6 (Page, 1996).
2.4. Estimation of divergence time

Phylogenetic dating was applied to genetic distances
inferred from a ML tree. A likelihood ratio test (Felsen-
stein, 1981), as well as Tajima’s relative rate tests (RRT;
Tajima, 1993), indicated that the cytochrome b dataset
departs slightly from true clocklike evolution. To identify
significant differences in substitution rate between lin-
eages we used the two-cluster test of the LINTRE pack-
age (Takezaki et al., 1995) Substitution rate varies
among lineages (see below). Therefore, we applied two
different methods which relax the stringency of the
molecular clock assumption to estimate time of diver-
gence: (1) a semiparametric rate smoothing method,
using the penalised likelihood smoothing (PLS)
approach; and (2) a non-parametric rate smoothing
(NPRS) method. Both were implemented in R8s version
1.7 (Sanderson, 1997, 2003). For the penalised likelihood
smoothing approach, an optimal (=lowest) smoothing
value was determined by a cross-validation procedure
(Sanderson, 2004). Following the recommendations of
the author of that application, we trimmed the original
ML phylogeny, retaining only unique haplotypes
(N = 29). There are only a few reliable calibration points
to estimate divergence time in the derived lineages of the
Bathyergidae (for a review of fossil data, see Faulkes
et al., 2004). Following Ingram et al. (2004), who esti-
mated the divergence of Cryptomys and Fukomys
between approximately 10 and 11 Mya, using NPRS on
a combined data set of the mitochrondrial 12s ribosomal
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RNA and the nuclear transthyretin (TTR) gene, we used
10 and 11 Mya as calibration points in our analyses.

3. Results

3.1. Relationships between major clades

Maximum parsimony analysis recovered three trees of
equal length (1068 steps). Out of 1140 sites which were
examined, 695 were constant, 320 were parsimony infor-
mative and 125 were uninformative. MP analysis after
reweighting characters with their rescaled consistency
index (RI) resulted in 256 characters not retaining a
character weight of one and recovering three trees (con-
sistency index = 0.495 retention index = 0.799 rescaled
consistency index = 0.396 homoplasy index = 0.505).
Fig. 2 shows the consensus tree based on the reweighted
character set. Initial analysis (not shown) demonstrated
that the inclusion of previously published sequences did
not affect the overall topology compared with previously
published phylogenies (Ingram et al., 2004; Faulkes
et al., 2004). The major phylogroups that were also
recovered in previous studies (op. cit.) formed well-sup-
ported monophyletic groups: F. bocagei/mechowii clade,
F. whytei clade, F. darlingi clade, F. damarensis clade
and F. micklemi clade. According to the AIC tests of
model evolution, the TIM model corrected for invariable
sites and among-site rate variation using the discrete
gamma distribution was found to best fit the data. A
manual selection procedure (Swofford and Sullivan,
2003) resulted in GTR+I+C as the best choice. Both
models produced ML trees with the same topology.
The inferred ML tree (Fig. 3) differs slightly from the
MP tree, the ML tree being two steps longer than the
single most parsimonious tree (TL = 1070 vs. 1068,
respectively). The only difference between the MP and
ML trees concerns the placement of F. bocagei, while it
forms a monophyletic group with the F. mechowii clade
in the MP tree, it is basal to all other major clades in
the ML tree. Note that in all analyses the enigmatic F.

cf. whytei haplotype from Mzuzu forms a divergent,
basal lineage to the F. whytei clade (BP = 72,
PP = 0.97). The Bayesian analysis yields the same topol-
ogy as the ML tree and generated high posterior proba-
bilities for all the major phylogroups (Fig. 3).

3.2. Relationships within major phylogroups

In comparison with previous studies, the clades for
which the sampling range was extended provide a detailed
phylogeographic picture for the various groups. In each
case similar topologies were recovered in all analyses.

3.2.1. Fukomys mechowii clade (Fig. 4)

In all analyses two reciprocal monophyletic subclades
were recovered. MP analysis, however, gave strong support
for both subclades as opposed to both probabilistic analy-
ses, which provide only weak support for the monophyly of
the Salujinga/Kinshasa subclade (BP = 66; PP = 0.72). The
other subclade consists of all F. mechowii haplotypes,
including the haplotype from near the type locality of
Georychus mellandi (Thomas, 1906).

3.2.2. Fukomys whytei clade (Fig. 5)
Six subclades can be distinguished within the whytei

clade (making abstraction of the F. cf. whytei haplotype
from Mzuzu, Malawi (MZU)—see above). A first diver-
gence contains the Western Bangweulu subclade (WBA),
which forms a strongly supported monophyletic group
with the F. amatus subclade. Both subclades are strongly
supported in all analyses and are characterised by long
branches leading to the subclades relative to branch lengths
observed within the subclades. The monophyly of a second
divergent lineage is weakly supported (BP = 67;
BP = 0.76). It comprises, on the one hand, a well supported
clade containing the Kasama (KAS), Eastern Bangweulu
(EBA) and Lufubu (LUF) subclades. On the other hand,
there is a basal clade with the topotypical F. whytei haplo-
type (Karonga) and the Mbala haplotype. Results from the
initial analyses (not shown) indicate that this clade also
contains the Tanzanian haplotype (Suma; excluded from
later analyses because the obtained sequence was shorter).

3.2.3. Fukomys damarensis clade (Fig. 3)

The divergence pattern within the group of the eusocial
Damaraland mole-rat is shallow. In all analyses the two
Southwest Zambian haplotypes cluster with the geograph-
ically proximate haplotypes. The Simungoma haplotype
from North of the Zambezi River is sister to this subclade.
This is the first time a member of the F. damarensis clade
has been discovered north of the Zambezi River. Interest-
ingly, F. damarensis are morphologically very similar to
the mole-rats of the F. micklemi clade, to which they are
closely related.

3.2.4. Fukomys micklemi clade (Fig. 6)
This sister group to the F. damarensis clade is also

characterised by relatively short branches. In all analyses
we recovered a subtree with three main lineages,
although their interrelationships remain unresolved: 1.
the Watopa (WAT) subclade, which is sister to all other
taxa in the clade; 2. the Chinyingi (CHI) subclade from
West of the Zambezi River; and 3. a major radiation
that includes all chromosomal races from South Central
Zambia. In turn, this South Central Zambian subclade
contains three monophyletic lineages including, respec-
tively, topotypical F. kafuensis (Itezhi-Itezhi), F. anselli

(Lusaka) and. F. micklemi (Kataba). Although the mono-
phyly of the Kataba and Itezhi-Itezhi groups is well sup-
ported, the interrelationships among the members of
these karyotypically hyper-diverse groups remain partly
unresolved. The bootstrap support for the Lusaka group,
containing all haplotypes of animals with 2n = 68, is
weak (BP = 63; PP = 0.64). In the MP analysis the



Fig. 2. Maximum parsimony estimate of the Zambezian Fukomys phylogeny based on cytochrome b gene sequences: 50% majority rule consensus tree
using the heuristic search option (tree length = 1068, consistency index = 0.495, rescaled consistency index = 0.396). For all branches values above the
branches refer to bootstrap proportions after weighting sites with their rescaled consistency index. Major clades: BO, F. bocagei clade; ME, F. mechowii
clade;, WH, F. whytei clade; DR, F. darlingi clade; DM, F. damarensis clade; MI, F. micklemi clade.
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Fig. 3. Maximum likelihood estimate of the Fukomys phylogeny based on cytochrome b gene sequences. The ML analysis using a TIM+I+C model of
sequence evolution (R = 1.0000 30.3522 1.5304 1.5304 17.4605; Pinvar = 0.5192 gamma shape parameter = 2.1328) generated a tree with �lnL = 7774.03
and tree length = 1070. Values above the branches indicate ML bootstrap proportions (1000 replicates), while values under the branches refer Bayesian
posterior probabilities. The scale bar represents the number of substitutions per site. Major clades: BO, F. bocagei; ME, F. mechowii clade; WH, F. whytei

clade; DR, F. darlingi clade; DM, F. damarensis clade; MI, F. micklemi clade.

Fig. 4. ML subtree of F. mechowii clade (cf. Fig. 3).
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haplotypes of the Lusaka group are paraphyletic (Moono
and Kaindu haplotypes vs. Munali and Lusaka haplotypes).
3.3. Intra- and interspecific sequence differences

Both uncorrected and TIM+I+C corrected distances are
listed in Table 2. Average corrected (TIM+I+C) pairwise
sequence differences between outgroup and ingroup taxa
ranged from 21.5 to 28.4% (mean = 26.3%). The average
corrected pairwise distances among and within the ingroup
taxa (subclades) were 9.6 % (Range: 1.7–15.5) and 1.0%
(Range: 0.3–2.5), respectively. The highest distances are
found between the F. bocagei clade (basal lineage in the
ML phylogeny) and the other clades (range: 12.8–15.5%)



Fig. 5. ML subtree of F. whytei clade (cf. Fig. 3).
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with a maximum between the Mzuzu and F. bocagei

haplotypes. The lowest distances are observed among the
subclades of the F. micklemi clade (Range: 1.7–3.6), with
particularly low values between the F. anselli subclade
and F. micklemi subclades (1.7%) and between the F. mick-

lemi and F. kafuensis subclades (1.8%). The highest
TIM+I+C corrected distances within the F. micklemi clade
were found between the Chinyingi and Watopa subclades
on the one hand and all remaining clades on the other hand
(respective ranges: 2.5–4.1 and 2.8–4.7). A remarkably low
level of genetic divergence is found within the chromosom-
ally hyper-diverse F. micklemi subclade. The average
TIM+I+C corrected distance within this phylogroup is
0.6%, with an interhaplotype range of 0.1 to 1.6%, exclud-
ing the Kalomo haplotype, which appears to be consider-
ably more dissimilar from the other haplotypes (range
1.6–3.0%). Within the F. whytei clade, the Mzuzu haplo-
type is an outlier with TIM+I+C corrected distances that
differ on average 8.4% from all other haplotypes in this
subclade. The two Zambian haplotypes show genetic diver-
gence levels that are similarly low as in other haplotypes of
this clade. Among major clades average corrected
TIM+I+C distances correlate well with geographic dis-
tance, while within there is no apparent trend in any of
the major clades.

3.4. Estimates of divergence times

For this analysis we used a subset of the data. Graphical
saturation analysis indicates a linear relationship up to 20%
p-distance, while beyond that level slight substitution satu-
ration occurred in transition substitutions only. These val-
ues correspond to comparisons with outgroups. Therefore,
both substitution types were used to calculate estimates of
divergence times (Table 3 and Fig. 7). The value of the PL
models’ optimal smoothing value was set to 1, illustrating a
poor fit to a molecular clock and allowing for considerable
rate heterogeneity across branches. Significant departures
from rate constancy were observed in comparisons between
the major lineages (Table 4) Using the calibration of 10–
11 Mya for the divergence of Fukomys and Cryptomys we
were able to estimate key cladogenetic events. The obtained
results suggest that all major clades radiated during the
Pleistocene. A northern Zambezian lineage (containing
the F. whytei clade) evolved into separate subclades from
the Late Pliocene on (Fig. 7, node E). In contrast, two



Fig. 6. ML subtree of F. micklemi clade (cf. Fig. 3).
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southern Zambezian lineages—the F. damarensis clade and
the F. micklemi clade—constitute more recent radiations
dating back to the middle Pleistocene. The chromosomal
radiation within the F. micklemi subclade is dated at
0.56–1.2 Mya (Fig. 7, nodes L and M).

4. Discussion

4.1. Phylogenetic relationships

Within Zambezian Fukomys our cytochrome b analyses
recovered the same overall topology as in previous molec-
ular sequence studies (Ingram et al., 2004; Faulkes et al.,
2004). At the base of the Zambezian Fukomys trees the
exact position of the F. bocagei clade remains unclear. To
address this problem, denser sampling in the presumably
exclusively Angolan distribution range of F. bocagei clade
will be necessary. Earlier studies showed that small mole-
rats (i.e. representatives from the F. whytei, F. darlingi, F.
damarensis and F. micklemi clades), do not constitute a
monophyletic assemblage of haplotypes (op. cit.). For
example, the Salujinga haplotypes cluster within the F.

mechowii clade, implying that the representatives of this
small race are closely related to the giant mole-rats (F.

mechowii clade), a finding that is supported by the similar-
ity of their karyotypes (Van Daele et al., 2004). This chro-
mosomal race is congruent in external morphology with
the robust mole-rats from the geographically close Watopa
phylogroup (a group within the derived F. micklemi clade).
In view of the poor support in the ML for the monophyly
of the Salujinga and Kinshasa haplotypes, the latter pre-
sumably forms a separate divergent lineage. The F. mech-

owii clade encompasses robust to giant forms, which are
uniformly brown in colour (Fig. 3). The monophyly of
the whytei clade is not well supported. In spite of our
extended sampling in the Zambian distribution range of
the F. whytei clade, the affinities of the Mzuzu haplotype
remain unclear (cf. low bootstrap values), though it
appears to have a basal position in relation to the different
F. whytei subclades. All these subclades form well sup-
ported monophyletic groups that are genetically well differ-
entiated (3.1–5.8%). This finding may be a result of



Table 2
Mean cytochrome b distances between sequences (%)a

Clade MECHOWII clade BOC WHYTEI clade DAM DAR MICKLEMI clade CRY BAT

Subclade F. mec KIN SAL F. boc WBA F. ama EBA KAS LUF F. why MZU F. dam F. dar CHI WAT KAF ANS F. mick

n/N 4/4 1/1 2/3 1/1 6/9 3/4 5/5 1/1 2/2 3/5 1/1 16/17 1/1 1/1 4/4 18/23 4/5 4/4 5/5 1/1

F. mec 2.4 5.3 4.6 10.5 11.5 11.1 11.3 10.9 10.9 12.3 12.4 13.2 11.8 13.0 13.0 13.3 13.4 13.2 28.4 25.0
KIN 4.9 NA 4.8 12.4 12.4 11.6 11.8 12.3 12.5 13.4 12.7 14.5 13.0 13.7 13.8 14.2 14.6 14.6 27.0 24.8
SAL 4.3 4.5 <0.1 10.8 11.5 12.4 11.7 11.7 11.8 12.9 12.3 13.5 11.1 11.8 13.0 12.9 13.0 12.5 28.1 26.4
F. boc 9.0 10.4 9.2 NA 13.1 12.8 13.6 12.8 12.9 12.8 15.5 13.2 15.1 13.5 13.2 14.5 13.4 13.8 24.5 24.7
WBA 9.6 10.3 9.6 10.9 1.4 5.0 5.1 4.6 4.9 5.8 8.0 10.1 8.9 9.5 9.7 9.7 9.5 9.4 27.2 24.2
F. ama 9.4 9.7 10.2 10.7 4.6 0.3 5.6 4.3 5.2 5.5 8.9 9.6 9.5 9.2 9.0 10.5 9.9 10.0 25.6 23.7
EBA 9.4 9.8 9.8 11.2 4.7 5.0 0.3 3.1 3.8 5.0 9.0 9.8 9.2 9.8 9.8 9.8 10.1 10.1 26.1 22.4
KAS 9.2 10.2 9.8 10.7 4.2 4.0 3.0 NA 3.4 4.5 8.5 8.8 8.8 8.7 9.1 9.8 9.4 9.3 24.8 21.6
LUF 9.3 10.4 9.9 10.8 4.5 4.7 3.5 3.1 0.7 4.4 7.2 8.7 8.3 9.5 9.6 10.1 10.0 9.8 25.2 21.5
F. why 10.2 11.0 10.6 10.7 5.3 5.0 4.6 4.2 4.1 1.5 9.1 8.7 8.9 9.3 9.5 10.4 9.8 9.8 26.0 22.4
MZU 10.2 10.5 10.1 12.4 7.0 7.7 7.7 7.4 6.4 7.8 NA 9.1 9.3 10.1 10.1 10.1 10.4 10.0 25.8 23.8
F. dam 10.8 11.7 11.0 10.9 8.6 8.3 8.5 7.7 7.6 7.6 7.9 1.3 8.0 6.6 6.5 7.0 6.4 6.8 24.7 22.3
F. dar 9.9 10.7 9.4 12.2 7.7 8.2 8.0 7.7 7.4 7.8 8.1 7.1 NA 7.9 8.3 7.9 7.9 8.0 27.1 22.9
CHI 10.5 11.1 9.8 11.1 8.1 7.9 8.4 7.6 8.2 8.1 8.6 5.9 7.0 NA 2.8 3.6 3.0 3.0 25.9 23.9
WAT 10.6 11.1 10.5 10.9 8.3 7.8 8.4 7.9 8.2 8.2 8.6 5.9 7.3 2.6 0.7 3.7 3.1 3.1 26.4 23.7
KAF 10.8 11.5 10.5 11.7 8.4 9.0 8.4 8.4 8.7 8.9 8.6 6.3 7.0 3.4 3.5 1.0 2.2 1.8 26.2 23.6
ANS 10.9 11.7 10.6 11.1 8.1 8.5 8.7 8.1 8.6 8.4 8.8 5.8 7.0 2.9 3.0 2.1 1.1 1.7 26.7 23.5
F. mick 10.7 11.7 10.3 11.3 8.1 8.6 8.7 8.0 8.4 8.4 8.5 6.1 7.1 2.8 3.0 1.8 1.6 0.6 27.0 23.8
CRY 19.0 18.5 19.0 17.6 18.6 17.8 18.2 17.6 17.8 18.1 18.1 17.4 18.4 17.9 18.2 18.0 18.2 18.3 9.7 24.6
BAT 17.6 17.6 18.2 17.6 17.4 17.3 16.7 16.1 16.1 16.5 17.2 16.5 16.9 17.1 17.1 17.0 16.9 17.1 17.4 NA

a Below diagonal TIM+I+C corrected distances, above diagonal uncorrected p distances, along diagonal within clade uncorrected p distances. The following taxa are included: F. mec, F. mechowii;
KIN, Kinshasa; BOC/F. boc, F. bocagei; WBA, western Bangweulu group; F. ama, F. amatus; EBA, eastern Bangweulu group; KAS, Kasama group; LUF, Lufubu group; F. why, F. whytei; MZU,
Mzuzu group; DAR/F.dar, F. darlingi; DAM/F. dam, F. damarensis; CHI, Chinyingi group; WAT, Watopa group; KAF, containing topotypical F. kafuensis clade (2n = 42–58); ANS, containing
topotypical Fukomys anselli (2n = 68); F. mick, F. micklemi (2n = 60); CRY, Cryptomys species.; BAT, Bathyergus suillus.
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Table 3
Estimated dates of divergence (Mya) for nodes in Fig. 7 using NPRS and
PLSa

NODE PLS 10&11 NPRS 10&11

CRY 10–11 10–11
A 3.8–4.18 5.45–6
B 1.41–1.55 2.98–3.28
C 3.33–3.66 4.88–5.37
D 2.15–2.37 3.19–3.51
E 1.84–2.02 2.75–3.02
F 1.28–1.41 1.92–2.11
G 1.01–1.11 1.47–1.61
H 1.11–1.22 1.7–1.88
I 1.7–1.87 2.58–2.84
J 1.3–1.43 2.04–2.25
K 0.35–0.39 0.77–0.84
L 0.61–0.67 1.09–1.2
M 0.56–0.62 1–1.1

a Dates obtained from non-parametric rate smoothing (NPRS) and
semiparametric rate smoothing (penalized likelihood smoothing: PLS).
The ages are in million years before present (Mya).
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accelerated cytochrome b sequence evolution rather than of
ancient divergences, since cladogenesis would have
occurred ca 1–2 Mya (see Table 4; similar results are
obtained with Tajima’s RRT—results not shown). All
forms in this clade are uniformly brownish rats, which lack
clear headspots (Fig. 3). The chromosomal F. micklemi
radiation is characterised by extremely low levels of cyto-
chrome b sequence divergence. The F. micklemi subtree
topology basically consists of a trichotomy with three mor-
phologically distinct groups. Firstly, there is the small,
fawn-grey race with only an indication of a white mark
on the head, collected at Chinyingi in the western Kasiji
Plains. Second, there is a cluster of robust, brownish
mole-rats from Watopa and Mayau, which are seemingly
similar in size and shape to the Salujinga specimens. A
third large cluster contains typical blesmoles (a misnomer
for Cryptomys and Fukomys in view of the variation in
external morphology) with clear headspots and brownish
to black pelage (Fig. 3). The observed pattern of divergence
appears to be congruent with several consecutive evolu-
tionary bursts, which seem to have started in Northwestern
Zambia (see below).
4.2. Taxonomic implications

Bathyergids exhibit considerable geographically struc-
tured morphological and genetical variation (Faulkes
et al., 2004; Van Daele et al., 2006). In the past this fact
triggered the description of many species and subspecies
of bathyergids. Although this is not the place to revive
the discussion about species concepts, it seems that the var-
ious species concepts can’t be neatly applied to bathyergids
and subterranean rodents in general (see e.g. Lessa, 2000).
We advocate that species limits should be established using
multiple sources of evidence which includes data from the
molecular, cytogenetical and organismal levels (as opposed
to e.g. Roberts, 1951). Traditional morphology based sys-
tematic studies of Fukomys (earlier synonym Cryptomys)
yield no clear results because of the lack of clear morpho-
logical differences between species. This problem is best
illustrated by Haymans’ struggle to classify the species of
both Fukomys and Cryptomys (in Ellerman et al., 1940).

The presently available information indicates that Fuko-

mys contains more species than the 12 that are currently
recognised. Within all major clades there are multiple
examples that provide support for the hypothesis that a
number of described chromosomal races represent valid
sibling species, of which several with limited parapatric dis-
tributions. Unpublished experiments attempting to cross-
breed different chromosomal races indicate that the
chromosomal races tested so far appear to have developed
both (ethological) premating and postmating mechanisms,
which isolate these (presumptive) species (P. Van Daele,
unpublished data; H. Burda personal comment). Within
the F. mechowii clade, at least the Salujinga lineage may
represent a so far undescribed species. These two potential
species not only differ in body size but also have different
skull shapes and a different karyotype (Van Daele et al.,
2004), and represent separate cyt b lineages. Chromosomal
data are missing for the ambiguous Kinshasa (DRC) hap-
lotype (originating from the Mbombo-Lumene National
Park—DRC), but the external morphological features of
the specimens of this population are typical F. mechowii

(R.K. Kisasa, personal comment). The large mole-rat spec-
imen from Chiundaponde (Zambia), collected in the vicin-
ity of the type-locality of Georychus mellandi (Thomas,
1906) resembles F. mechowii in all aspects studied so far
(external morphology, karyotype, cyt b) and should, there-
fore, be considered a synonym. Our data, combined with
geometric morphometrical data (skull shape and size,
Van Daele et al., 2006) reveal that the F. whytei clade con-
tains genetically well differentiated taxa that are morpho-
logically very similar. Therefore, the two currently
recognised species within the northern Zambezian F. whytei
clade, F. amatus and F. whytei may represent as many as 7
species (including Mzuzu). Species descriptions of these
Northern Zambian, Tanzanian and Malawian taxa will
have to await the analysis of topotypical material from
the geographically proximate C. h. occlusus (Allen and
Loveridge, 1951) described from Kigogo, Tanzania. Over-
all the F. whytei clade is characterised by a brown pelage
colour and the absence of clear headspots or the infrequent
occurrence of small headspots. Therefore, future studies
should take into account that many museum specimens
(typically from outside the distribution range of the F. why-

tei clade) that were assigned on morphological grounds to
F. amatus or F. whytei probably belong to taxa in the
parapatrically distributed F. micklemi clade. Within the
F. micklemi clade the taxonomical picture is muddled. F.

micklemi is the senior specific name available for represen-
tatives of that clade. Further systematic studies are
required to determine the specific status and the validity
of taxonomic assignment of F. anselli and F. kafuensis.



Fig. 7. Dated phylogenetic tree of Zambezian Fukomys obtained after semiparametric rate smoothing (penalized likelihood smoothing: PLS) in R8s.
Letters on the nodes refer to Table 3. The time scale shows ages in million years before present Mya. Mio, miocene; Plio, pliocene; Plei, pleistocene; Holo,
holocene; L, late; E, early; GLA, onset of northern glaciations; WAL, development of Walker circulation; MPR, mid pleistocene revolution.

Table 4
Results of a Two Cluster test showing significant heterogeneity between major clades

Cluster delta Z

A B

F. damarensis clade <F. micklemi 0.006243 5.08339**

F. darlingi clade <F. damarensis, F. micklemi clades 0.00725 2.685171**

F. whytei clade >F. darlingi, F. damarensis, F. micklemi clades 0.01785 9.395536**

** Values are significant at the 1% level.
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No topotypical material has been analysed for C. mol-

yneuxi, possibly a senior synonym of F. anselli. There is
only limited evidence that supports splitting F. micklemi

(the senior synonym) and F. kafuensis (Burda et al.,
1999). It should be stressed that the diagnostic value of
chromosomal markers for the separation and identification
of putative Fukomys species remains to be tested.

4.3. Biogeographical and temporal implications

The current distribution of the different phylogroups
correlates well with the geomorphological structuring and
vegetational division of the Zambezian area (Fig. 11 in
Van Daele et al., 2004; Fig 1). In spite of our efforts to col-
lect on the Zaire River/Zambezi River watershed in Zam-
bia, no haplotypes from the F. bocagei clade were
recorded. F. bocagei seems to be the earliest divergence in
the Zambezian mole-rats. This could be an indication of
a western origin of the Zambezian group. This is further
supported by both the coincidence of our divergence time
estimate and the geomorphological history of South-cen-
tral Africa. The F. mechowii clade is widespread along
the Zaire River/Zambezi River watershed and in the Gui-
neo-Congolean savannahs bordering the Guineo-Congole-
an forest. Based on our calibration of the molecular clock,
we estimate that the clade diverged at the end of the Plio-
cene when dispersion along the Zaire/Zambezi watershed
and across the Guineo-Congolean belt would have been
possible. (See Fig. 5 in Van Daele et al., 2007). If our
molecular clock is correct then the radiations within the
F. micklemi and F. damarensis clades are surprisingly
young, which implies that they are the result of rapid con-
secutive cladogenetic events since the early Pleistocene.
Elsewhere we explained the coincidence of the distribution
of chromosomal races with the geomorphological repat-
terning of the Zambezian area (Van Daele et al., 2004).
That historical model, based mainly on riversystem recon-
figurations, helps to explain the divergence between the
major phylogroups. We suggest that climatic fluctuations
may have played a substantial role in the diversification
within each phylogroup. Associated vegetation shifts, lead-
ing to spatial fragmentation of populations, would have
favoured the fixation of chromosomal rearrangements
(Wang and Lan, 2000; Rieseberg, 2001; Veyrunes et al.,
2005). Major steps in the evolution of Fukomys appear to
coincide with shifts to more arid, open habitat conditions
near 2.7–2.5, 1.9–1.7, and 0.95–0.7 Mya with alternating
climatic shifts that lead to humid conditions and habitat
fragmentation (see, respectively, Haug and Tiedemann,
1998; Ravelo et al., 2004; Berger and Jansen, 1994). The
chronogram (Fig. 7) reveals that the observed cladogenetic
events during the Plio-Pleistocene within the F. mechowii,
F. whytei, F. damarensis and F. micklemi clades appear to
coincide with climatically mediated speciation bursts in
other savannah dwelling mammals, including hominids
(Ducroz et al., 1998; Bobe and Behrensmeyer, 2004; Trauth
et al., 2005; Veyrunes et al., 2005).
4.4. Chromosomal radiations

Although we find several cytotypes within each major
clade for which several topotypes could be karyotyped,
we do not detect a clear pattern of chromosomal evolution.
It is remarkable that within the F. whytei, F. damarensis
and F. micklemi clades, we observed more chromosomal
races and subdivisions of chromosomal races in areas with
a particularly affected geomorphology, such as capture
elbows of the Zambezi, Kafue and Chambeshi rivers. Pos-
sibly the geomorphological disturbances in these areas have
fuelled cladogenesis in these mole-rats. The combination of
suitable alluvial grounds for the dispersal of mole-rats and
fluctuating water levels in these streams (correlated with
climatic shifts) may have resulted in the fragmentation of
mole-rat populations and their differentiation through allo-
patric and peripatric speciation. Similar events have been
suggested to have affected the speciation rates in small
antelopes (Cotterill, 2003). However, when we plot the
karyotypical data on the molecular phylogeny, a differen-
tial pattern of chromosomal evolution between the clades
emerges. This difference is most striking when we compare
the F. micklemi and F. whytei clades. The karyotypically
hyper-diverse F. micklemi clade shows low levels of cyto-
chrome b sequence divergence in agreement with the results
from more limited datasets of other genes (op. cit.). Within
the F. whytei clade we find a more conservative pattern of
chromosomal diversification, while the levels of sequence
divergence are much higher then in the F. micklemi clade.
There are different plausible explanations for this phenom-
enon. Firstly, structural chromosomal rearrangements may
play an important role in initiating species divergence
(White, 1978), while mutations in mitochondrial DNA
sequences will accumulate over longer periods of time. In
addition, it has been suggested that chromosomal rear-
rangements may have a disturbing influence on the func-
tioning of co-adapted genome complexes, leading to
subtle, non-lethal disturbance of developmental processes
(Graham, 1992). According to that scenario, directional
selection would optimize gene groups’ function and filter
out unfit chromosome combinations over time. It is tempt-
ing to suggest that the older F. whytei lineage may repre-
sent a more stable chromosomal state, and that in the
process a number of unfit diploid combinations have disap-
peared. In contrast, the more recent F. micklemi radiation
possibly represents a younger stage with a high number
of chromosomal rearrangements, of which many will be
selected against over a longer time span. Similar patterns
have been observed in other taxa (cf. Nevo et al., 2001
for Spalax; Veyrunes et al., 2005 for Nannomys; Castiglia
et al., 2006 for Arvicanthis).

Until karyotypical evolutionary trends are better under-
stood, it is premature to decide whether demographic, his-
torical or ecological models (see e.g. Patton, 1990; Nevo
et al., 1995; Nevo, 1999) are more suitable to explain the
observed differential evolutionary trends in different clades.
While we have discussed the (historical) geographic setting
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in which cladogenesis of Fukomys took place, we lack evi-
dence on demographic processes that have shaped the evo-
lutionary trajectories of these populations. Nor do we have
reliable evidence on the possible role of hybridisation in
raciation and speciation of mole-rats, as has been suggested
before (Harrison, 1993). This may be important in Fuko-
mys as evidenced by the odd diploid (2n = 45) race origi-
nating from the vicinity of Lochinvar, Zambia (Van
Daele et al., 2004). However, in order to understand the
evolutionary mechanisms that shape the chromosomal evo-
lution within each phylogroup, we will have to develop and
use differential staining techniques (cf. Deuve et al., 2006)
to map the observed chromosomal rearrangements, and
fathom their functional, genomic consequences. In addi-
tion, it is clear that more sequences, including other genes,
are required to obtain more detailed phylogeographical
patterns within each of the major clades.
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