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a b s t r a c t

The importance of computer aided decision making is continuously increasing. In the ICU,

medical decision support services gather and process medical data of patients and present

results and suggestions to the medical staff. The medical decision support services can

monitor for example blood pressure, creatinine levels or the usage of antibiotics. If certain

levels are crossed, they raise alerts so that the medical staff can take appropriate actions

if required. This significantly reduces the amount of data needing to be processed by the

medical staff.

To handle the large amount of data that is generated by the ICU on a daily basis, a platform

for routing and processing this data is necessary. In this paper we propose a platform based

on JAIN SLEE and an Enterprise Service Bus. The platform takes care of the routing of the

data to the appropriate services and allows to easily deploy and manage services. In this

paper, we present the design details and the evaluation results. Furthermore, it is shown

that the platform is capable of routing and processing all the events generated by the ICU

within strict time constraints.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

A computerized Intensive Care Unit (ICU) is an extremely data-
intensive environment, resulting in enormous databases. It is
generally assumed that every patient generates around 16,000
different data values on a daily base, coming from monitoring
devices, laboratory values and manually entered data values
by the medical staff. However, processing this large amount of
data exceeds human intellectual capabilities [1]. Not only the
amount of data, but also the heterogeneity calls for automated
data processing in the ICU.

Information technology can facilitate the abstraction of
relevant information and can support the physician through
software services for medical decision support. A software

∗ Corresponding authors. Tel.: +32 933 14900; fax: +32 933 14899.
E-mail addresses: bruno.vandenbossche@intec.ugent.be (B. Van Den Bossche), sofie.vanhoecke@intec.ugent.be (S. Van Hoecke).

component qualifies as a service when its business logic
is protocol-independent, location-agnostic and contains no
state so that the service cannot remember information or keep
state from one invocation to another. They do not contain pre-
sentation logic, so they may be reused or composed across
diverse applications.

Within the ICU of Ghent University Hospital, several imple-
mented medical support services already exist. The RIFLE
service will detect kidney dysfunction based on the RIFLE
criteria [2]. These RIFLE criteria are an attempt to define
Acute Renal Failure (ARF) for critical patients and classify the
patient’s status according to severity of ARF: Normal, Risk,
Injury, Failure, Loss, and End Stage Kidney Disease. The RIFLE
service considers the parameters serum creatinine and urine
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Fig. 1 – Typical flow of data in the ICU with input from monitoring devices, data inserted by staff members or test results
which, after processing, result in various output formats such as e-mail, sms or data for bedside monitors.

output where the worst status of these two parameters is
taken as the general RIFLE status. Another medical support
service implemented in the ICU of the Ghent University Hos-
pital is the SIRS service identifying patients with Systematic
Inflammatory Response Syndrome (SIRS) [3] at an early stage,
who have risk of progress to severe forms such as sepsis,
severe sepsis and septic shock. SIRS is an inflammatory state
of the whole body without proven source of infection. SIRS is
manifested by the occurrence of two or more SIRS criteria in
the patient’s laboratory results and monitored data, in a period
of 24 h. The SOFA service will calculate daily the Sequen-
tial Organ Failure Assessment (SOFA) score [4] for all patients
staying in the ICU. This score is used to determine organ dys-
function and organ failure of critically ill patients and mainly
used as an outcome prediction for the patient during the stay
at the intensive care unit.

It is expected that in future ICU information systems,
hundreds of medical support services will be active simulta-
neously in order to optimize the care of critically ill patients.
However, providing a large number of medical support ser-
vices requires a platform for efficiently routing the medical
data to the appropriate services. When new data from mon-
itors or laboratory, captured in the medical HIS databases, is
abstracted as events, a stream of events must be routed to the
medical support services for processing this medical decision
data.

Fig. 1 presents the general setting within the ICU. New data
from laboratories or bedside monitors, or data added by the
medical staff directly in the medical database, will result in
firing an event to the platform, activating interested medical
support services for processing these data. The results of the
medical support services can be delivered directly to the physi-
cian’s smartphone or PDA, presented on the patient’s bedside
terminal or sent by email. For example, a new creatinine value

from the laboratory or urine output measurement entered in
the ICU Hospital Information System, will result in activat-
ing the RIFLE medical support service. If the new values do
not impact the patient’s RIFLE score, the score is presented
on the bedside terminal. If however the RIFLE status changes
and potential risk increases, an alarm message is sent to the
physician’s PDA or smart phone.

Not every physician will or may receive however all the
outputs from the different medical support services, only the
head of the ICU department can. In order for a nephrologist to
receive the outputs of the RIFLE service (a service for detect-
ing kidney dysfunction) the result messages only need to be
delivered to the interested physicians, requiring routing of the
messages. It would be outside the scope of this paper to review
in depth the delivery of service responses and the therefore
required message routing, but the authors plan to elaborate
on this topic in future publications. In ref. [5] the authors
presented an architecture for easy distribution of the medi-
cal support services along multiple workstations to execute
them simultaneously using Grid technology. This was done
by providing run time compilation of medical support service
code and service migration. Complementary to that research,
this paper focuses on the efficient routing of events from the
laboratory or monitors to the medical support services. Fig. 2
shows a schematic example of events which are sent to all
the interested medical support services. This way, for exam-
ple, when a new creatinine value is available, an event is fired
and both the RIFLE service and SOFA service receive the new
medical data value, while a new billiburine value will result in
an event, only received by the SOFA service.

The use of medical support services and computerized sys-
tems in the ICU has been gaining momentum and optimally
using and visualizing data has been an important research
topic in the recent years [6]. Going from information systems
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Fig. 2 – Schematic example of the possible event routing of
data to medical services.

to assist in the management the medication of patients [7] to
the evaluation and development of improved user interfaces
for the medical staff [8]. These topics are not the focus of this
paper, but it aims to provide a back end software architecture
which is suitable for the routing and aggregating of medical
data which can be integrated with these solutions.

The remainder of this paper is structured as follows: Sec-
tion 2 details the functionality a medical decision support
platform needs to offer. An overview of the current state of
the art and available technologies is given in Section 3. In Sec-
tions 4 and 5, a detailed description of the Architecture of the
proposed platform and the implementation is given, followed
by a thorough performance evaluation of the platform in Sec-
tion 6. A general discussion is provided in Section 7 and gives
an overview of the current research in the field, related work
and possible alternative approaches for building medical deci-
sion support service platforms. Finally, we highlight the main
conclusions of this work in Section 8.

2. Functional requirements

It is generally accepted that within the near future, Intensive
Care Unit computerization including advanced real time and
bed-side decision support capabilities, will become essential
to guarantee the quality of care for every ICU patient. The
ICU of Ghent University is the second largest ICU in Belgium
and currently holds 56 computerized beds. It is expected that
in future ICU information systems, tens or even hundreds
of medical support services will be active simultaneously in
order to optimize the care of critical ill patients [9]. Scalability
of the platform is thus required to handle the message rout-
ing for hundreds of simultaneous medical decision support
services. The platform should also be generic in order to be
independent of the implementation language of these medical
support services.

The RIFLE service is a typical medical support service which
will be running for each patient and will calculate potential
risk for kidney failure based on serum creatinine and urine
output as variables. Whenever new creatinine or urine data
is available, RIFLE results should be instantly delivered to the
physicians. Transparent data routing of new laboratory results
or monitor data in the HIS database is thus a requirement.

Currently the RIFLE service is running for the 56 com-
puterized patients and generates at most 678 triggers a day,

resulting in an average of 12 triggers per patient, ranging from
patients with 4 triggers per day to patients with 27 triggers per
day. Other medical support services can however have higher
trigger frequency. The SOFA service is for example only trig-
gered once a day for a new billirubine value, but every 5 min
a new blood pressure value triggers the SOFA service. Consid-
ering all the SOFA parameters, the SOFA service generates on
average 465 triggers per patient per day. The SIRS service even
exceeds this and generates around 3000 triggers per patient
per day. Since every patient generates on average 16,000 dif-
ferent data values on a daily base, each of these data values
can become a potential trigger in the future when more medi-
cal support services are deployed in the platform, resulting in
at most 16,000 triggers per patient per day. Next year, the ICU
of Ghent University will migrate two more units to the plat-
form, bringing the total to 94 beds in the computerized ICU or
a maximum average of 17 triggers per second for an ICU of 94
patients and 16,000 triggers per patient per day. These triggers
can be seen as an event that might be useful to one or more
medical support services for processing this medical decision
data. The tons of events obviously require a platform that is
scalable and has good performance. The platform also has to
meet the stringent requirements imposed by an ICU. The rout-
ing overhead imposed by the platform must be small enough
to be negligible compared to the execution time of the medical
support services since delays in trigger delivery will result in
delays in treatment actions, which can, especially in critical
care medicine, have important negative impacts on outcome.

Within the platform, triggers need to be able to activate
one or more medical support services. The results from these
services are not sent back to the initiators, but forwarded to
the subscribers. As a consequence traditional request brokers
cannot fulfill the requirements and a new platform is designed
and presented in this manuscript.

3. State of the art

Currently only 10% to 15% of Intensive Care Units are comput-
erized [10]. The Intensive Care Unit of the Ghent University
has started computerizing their department in 2003 in order
to result in a paperless ICU by capturing and storing all data
from monitors, ventilators and pumps in databases. Com-
munication among devices and the HIS database is done by
proprietary communication over RS-232, but a standard such
as ISO/IEEE 11073 [11] or HL7 [12] can also be used. Up till
now, the status of available clinical decision-support systems
continues to change and implementations are making strides
[13–15]. However they are not providing any means to effi-
ciently integrate developed algorithms, scores and tools for
medical decision support [15–18]. Also the addition of new
medical decision rules and alerts within these systems is slow
and difficult and they use the same medical decision rules
for all patients [15], resulting in limitations for physicians to
interact with the electronic alerting systems. To the authors’
knowledge, a medical support platform able to handle the
large amount of data generated by the ICU and overcoming
the shortcomings of current solutions, has not been reported
upon yet and is the subject of this manuscript.
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A number of currently available technologies have been
considered to serve as a starting point for implementing a
medical support platform. One of these technologies is JavaEE,
a component based technology targeted to business applica-
tions which offers a container for applications to be deployed
and run in. The main function of the container is the life cycle
management of the deployed applications, i.e. starting and
stopping the application or application components. Further-
more, a number of so called non-functionals are delegated to
the container instead of the actual application. These non-
functionals include logging, authentication, management of
external resources, etc.

The application container hosts JavaEE applications com-
posed of Enterprise Java Beans (EJBs). There are three type
of EJBs: Session Beans which contain the business logic,
Entity Beans which represent data and Message-Driven Beans
which allow for asynchronous communication. Additionally a
web-container is provided which enables the hosting of HTTP-
based services.

The typical way of communicating with a JavaEE Applica-
tion server is through synchronous method calls and the same
goes for the inter component communication. Clients can
interact directly with application components using a JavaEE
application client which performs Remote Method Invoca-
tions. For asynchronous communication the Java Message
Service (JMS) [19] can be used in combination with Message-
Driven Beans (MDB). JMS allows to configure communication
channels called queues (one-to-one communication) or topics
(one-to-many communication), MDBs consume and process
the incoming messages on those channels. However, the
capabilities of the JMS system are somewhat limited as the
queues and topics are statically configured at deploy-time
and no other efficient routing mechanisms are available in
the framework. This makes JMS suitable for implementing
asynchronous business flows as shown in ref. [20], but less
suitable for low latency event processing. Performance evalu-
ation results of JMS queues [21] show that the average latency
introduced by JMS varies between 29 and 139 ms for transac-
tional messaging and message sizes of 1 KB excluding network
latencies. We do not consider these timings to be strict enough
as a trigger might result in several events which would signif-
icantly increase the response time of the medical services.

Another competing technology is Web services. In view of
the broad support for Web services and common XML-based
standards, Web services are a promising concept for the inte-
gration of heterogeneous software components. By means of
this technology, applications can easily be distributed and
expose well-defined functionality as a Web service, which con-
sumes and produces XML-messages over HTTP. Based on the
exchange of structured text messages, the interaction makes
abstraction of the underlying technologies.

Web services support both synchronous and asynchronous
communication between the client application and the actual
service. Asynchronous message passing may improve system
usage and avoid delays on the client side, while waiting for
the Web service results, but is however more difficult to code
and can introduces several problems. As an example, the call-
ing process does not wait for delivery of the message, and
thus never hears about possible errors. In order to discover
the completion of the called function, the application will

either have to create a polling mechanism, event trigger, or
callback method in order to be later notified of the opera-
tion. Consequently, the event-oriented platform using Web
service technology must not only do event routing, but also
implement event subscription. Different event types can be
specified as message part from a single Web service operation,
or can be mapped each on different Web service operations.
In both approaches however, any changes to the events or
new events added to platform require modification of the Web
services.

The Web services architecture now supports this through
a lightweight eventing protocol. WS-Eventing is an exist-
ing specification that became a W3C Submission in March
2006 and that allows Web services to subscribe to or accept
subscriptions for event notification messages [22]. This spec-
ification defines a protocol for one Web service to register
interest with another Web service in receiving messages about
events, events being SOAP messages. The subscriber may
manage the subscription by interacting with a Web service
designated by the event source. There are many mechanisms
by which event sources may deliver events to event sinks.
This specification provides an extensible way for subscribers
to identify the delivery mechanism they prefer.

4. Platform description

As already stated, medical decision data is constantly being
generated in the ICU. The generation of every new data value
generates an event that might be useful to one or more medical
support services for processing this medical decision data. In
this section we propose a software platform which enables and
simplifies the automated decision making in the ICU. First we
give an overview of the capabilities such a platform is expected
to offer. Next the actual platform is discussed in detail.

The Intensive Care Unit of the Ghent University captures
and stores all data from monitors, ventilators and pumps in
HIS databases by using proprietary RS-232 communication
among devices and the HIS database. Capturing new data in
the HIS needs to result in generating one or more events. Pro-
cessing the medical decision data is twofold, first the data
needs to be received and routed toward its destination, i.e. the
medical decision making service, next the actual processing
needs to be done by the service.

Fig. 3 presents the proposed platform to be used in the
context of routing and processing of medical decision data.
It consists of two main parts: a bus-like communication plat-
form (labeled Message Platform) and an application platform
which can host and execute the medical services (labeled Ser-
vice Container).

One of the key features of the platform is that it sup-
ports event-based services. As already detailed in Section 2
there is no direct request-response type pattern in process-
ing the data. When a device or monitor inputs data in the
HIS database, an event is generated in the platform. After a
data message has been inserted in the system it will be eval-
uated, processed by a medical service, and maybe grouped or
related to other data, resulting in a new event to be pushed to
an output device such as the PDA of a physician. The device
or monitor however does not expect a response. The output
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Fig. 3 – Global architecture of the platform consisting of a Message Platform which is responsible for routing and
transforming input and output data and a Service Container which hosts all services and event processing services and is
responsible for the inter-service routing of messages.

of one service might also be used as input for an other ser-
vice which allows to chain and combine multiple services into
one meta-service. Similarly can a data message inserted into
the system be used as input for a number of (independent or
parallel) services.

The typical message flow in the system is as follows: A
monitoring device (or an interactive interface for the ICU staff
for that matter) generates new data in the HIS database, result-
ing in an event (see Fig. 3 part A) pushed into the message
platform. The transformation component of the message plat-
form translates the data into a usable format, the routing
component redirects it to the application server. Additional
intermediate components such as a logging service can be
invoked as well. In the application server the message is pro-
vided automatically to all service components which require
this type of data as input (see Fig. 3, part B). The services pro-
cesses the data and generate new events or output data. This
data can in turn be fed to other services or could be sent to out-
put devices. These include bed side monitors, terminals in the
ICU or mobile devices of physicians or ICU staff (see Fig. 3, part
C). Routing of the output messages is handled by the routing
component in the message platform.

It might not be desirable to forward messages toward any
output devices, for example not every staff member should be
able to see all patient data. Going into detail of these additional
requirements is out of scope for this work, but solutions such
as rule based filtering can easily be implemented on top of this
platform by inserting an extra routing component inside the
message platform. The platform supports the deployment of
additional components which can be used to check for each
message if the required authorization for each recipient or
sender are available.

In the current platform the ICU gathers data from the
devices and stores the information in a database. A prototype,
where updates in the database are used as a trigger to gen-

erate the events in the platform, has been implemented and
is currently being evaluated by the Department of Intensive
Care of the Ghent University Hospital. If however the monitor-
ing devices are capable of generating events and transferring
them over the network, these events can be pushed directly
into the platform. Another approach would be to make use
of auxiliary devices deployed next to the monitoring devices
which can take on the task of transforming monitoring data
into suitable events that can be transferred over the network. It
might even be relevant to insert data from other non-medical
devices into the system (for example the room temperature,
the amount of light in a room, etc.). As a consequence, any
platform to be used in the context of an ICU should be exten-
sible to simplify adding new devices and possibly translate
incoming data into a format already known by the system.

5. Implementation details

Based on the stated requirements for the proposed platform
we evaluated currently available technologies capable of han-
dling a large amount of events. Next the technologies should
as well be capable of interfacing with a large number of dif-
ferent devices and specific protocols. We will first discuss two
enabling technologies, followed by a more detailed explana-
tion of how they are used in the implementation.

5.1. ESB overview

An Enterprise Service Bus (ESB) is an architectural pattern
which defines a communication infrastructure between ser-
vices. Providing an exact description of an ESB proves quite
difficult as definitions vary from source to source. However,
most definitions do agree on the most important characteris-
tics.
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An ESB is based on standards and acts as a messaging
system or messaging backbone between different services.
Instead of letting services communicate directly with each
other, they interact with the ESB which automatically routes
all messages to their destination and if necessary translates
them to a format the destination endpoint understands. It is
essential that the ESB supports a wide variety of protocols and
offers the facilities to easily translate messages from one pro-
tocol to another. This allows to remove any coupling between
calling a service, the message protocol used and the required
message format. The main role of the ESB is to serve as a com-
munication bus accepting a variety of input message formats
and capable of transforming these messages to different out-
put formats and thus providing a transparant communication
interface.

This means that an ESB implementation itself is not
standardized but offers a messaging infrastructure based on
standardized protocols. As a result, there are major differences
in the feature sets of available ESBs as vendors try to differen-
tiate from each other. A functional overview of commercial
ESBs is presented in [23,24] evaluates the performance of four
both commercial and non-commercial ESB implementations.

5.2. JAIN SLEE overview

JAIN SLEE is the specification of a component-based container
for high-throughput asynchronous event processing and is
part of the JAIN initiative (Java APIs for Integrated Networks)
[25]. The JAIN initiative defines a set of Java technology APIs
that enable the rapid development of Java based communi-
cations products and services. The JAIN APIs are currently
mostly used to implement telecom related applications, but
there are no reasons to not employ it in different contexts.
SLEE stands for Service Logic Execution Environment and is
a well-known concept in the telecommunications industry. It
encompasses a framework that allows to rapidly develop and
create complex services. Next, it allows a straightforward com-
position of basic services into more complex services without
an additional development effort.

The JAIN SLEE container is comparable to the JavaEE con-
tainer [26] and thus has much the same advantages such
as the life cycle management and provisioning of the non-
functionals. There are some important differences however.
Instead of EJBs the components are called Service Building
Blocks (SBB) and the internal communication is completely
event-oriented and asynchronous. And it is exactly this event-
oriented nature of JAIN SLEE that is useful to handle the large
amount of events generated in the ICU. Instead of implement-
ing certain interfaces, SBBs define the types of events they can
consume and produce in a deployment descriptor. When an
event is generated it will automatically be routed to all com-
ponents which are capable of consuming this type of event.
After consuming an event, an SBB may generate a new event
which again will be routed automatically to the right consum-
ing components. The main role of the JAIN SLEE platform is to
automatically route events between different deployed medi-
cal services. The advantage of using JAIN SLEE is that this logic
is performed entirely by the application container and requires
no additional work from the service developer. Deploying
new medical services will integrate them automatically in the

event flow. This significantly reduces the management over-
head for the platform.

There is no standard protocol to communicate with the
JAIN SLEE container but any protocol can be supported by
plugging a Resource Adapter (RA) into the container. This RA
then translates incoming messages to Events understandable
by the container and vice versa. Furthermore, it will assign
all related events to a Session, called an Activity Context.
This means that events which are part of a logical event-
flow (e.g. coming from a single patient) can make use of
each others context-information. This approach was chosen
by the developers of the JAIN SLEE specification to allow JAIN
SLEE to be an extensible and protocol agnostic application
container.

5.3. Platform implementation details

As explained in Section 4, the main platform components are:
message transformation, message routing and the actual ser-
vice components. Additional components such as logging can
be integrated in the platform as well. The same applies to
JAIN SLEE Resource Adapters to support additional protocols
or communication with custom external systems. Of these
components, message routing and logging are services offered
by both the ESB and JAIN SLEE and can be used as is. In case
of the ESB the routing logic is managed by an XML-descriptor
which statically connects different transformers to input and
output channels. For JAIN SLEE, the routing is performed fully
automatic based on the type of input events and output events
in the XML-descriptors of the services.

Plate 1 gives an example description file of a typical SBB
implementation which has one type of input events and one
type of output events.

The message transformation, service components and
RAs all have a different implementation complexity. Message
Transformation converts messages from one message type to
another. The implementation requires one transform() method
containing the translation logic. The transformation includes
the conversion from one data format to another and tagging
each message with a patient ID which allows the JAIN SLEE
to logically work with input from patients instead of from
devices. An in memory data store is maintained which links
devices to patients and vice versa. The overal complexity of
the transformers is low.

The implementation of the JAIN SLEE service components
requires an onEvent() method for each event-type the service
wishes to receive. The implementation complexity is largely
determined by the complexity of the medical service. RAs are
the most complex components of the architecure. The RA han-
dles all incoming and outgoing messages of the JAIN SLEE
platform and needs to be designed with great care to prevent
becoming the bottleneck of the application. Low level interac-
tion with the JAIN SLEE application server is required and thus
a very good knowledge of the platform is a must. The Resource
Adapter reads incoming messages and converts them into
events suitable for processing in the JAIN SLEE Application
Server and maintains the patient-oriented sessions, called
Activity Contexts. The implemented service consists an SBB
which uses the Activity Context to store session information
and updates this information on every event. Using these ses-
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Plate 1 – XML-configuration example of a JAIN SLEE SBB which implements a service and defines the type of events this
component takes for input and produces for output.

sions allows to store state information on a patient base. A
typical medical service does not maintain state (i.e. subse-
quent invocations do not share data). However, it is relevant to
maintain state information on a per patient basis. For example
in case of the RIFLE service different parameters are moni-
tored, and it is beneficial to maintain the last measured value
of each parameter. On each update of such a parameter, the
service can be executed and the necessary parameters values
are available through an in memory per patient session object.
This allows a much more efficient execution compared to a

service that needs first needs to fetch all relevant data from
an external data store.

Although the RA is the most complex component, there are
only a limited amount of resource adapters required, usually
even only one, namely the RA responsible for the communi-
cation between the ESB and the JAIN SLEE container. Message
transformation to a unified event type can be taken care of
by the ESB. Additional RAs might be required to interact with
other external systems unrelated to the medical monitor-
ing data, for example a database for information storing or
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event logging. However, these type of RAs are typically already
made available by the JAIN SLEE vendors. For all components
IDE-tools to aid with the implementation and creation of the
necessary descriptors and configuration files are available.

For communication between the ESB and the JAIN SLEE
platform UDP was chosen in favor of TCP because of the
lower overhead and its simplicity. As UDP is a connection-
less and unreliable protocol the loss of messages has to be
taken into account and a simple retransmission protocol is
implemented. However, as the framework is to be deployed in
a closed network with limitid or no packet loss the overhead
of the retransmissions will be minimal. TCP could be used in
the implementation as well, but would result in a decrease in
performance.

5.4. Scalability and distributed execution

The scalability as such may not be the main problem in the
context of an ICU as the number of events will be significantly
lower than the event count in telecom operator grade services
where technologies as JAIN SLEE were initially developed for.
However, the robustness of the platform should be of the same
high quality. Hence a distributed execution of the platform
can help in obtaining this goal. First of all, both the available
ESBs as JAIN SLEE implementations are developed with a dis-
tributed execution in mind. The platforms can be deployed
over multiple server-nodes with fail-over capabilities, i.e. if
one node fails, other nodes will handle the requests to these
nodes and recover the ongoing transactions using a session
replication mechanism. Due to the combination of the ESB and
JAIN SLEE platform it is also possible to deploy these platforms
on different systems where the ESB could function as a load
balancer between JAIN SLEE nodes. Using the built in capabili-
ties of both platforms and using the ESB as a load balancer, it is
possible to offer a robust platform with fail-over mechanisms.

6. Platform evaluation details

To evaluate the platform we investigated the behavior and per-
formance of both the subcomponents of the architecture and
the platform as a whole. First we present an overview of the
test setup and the obtained results of the performance evalu-
ation of the individual components, followed by a discussion
and comparison of the results of the integrated platform.

6.1. Test setup

All tests were performed on a AMD athlon XP1600+ with 256MB
of memory and an installation of Debian GNU/Linux with ker-
nel 2.6. The server is connected to the load-generator using
a 100 Mbit switched network. This modest hardware platform
was chosen explicitly to demonstrate the low system require-
ments of the platform. This proves it is possible to host the
hardware very close to the actual ICU instead of a specialized
hosting facility in the hospital which simplifies the implemen-
tation and integration in the ICU. For example this makes it
possible to deploy a server running the platform in a nursing
station where it benefits of all facilities of the ICU department
such as guaranteed power supplies.

Fig. 4 – The typical input scenario used in the performance
evaluation.

To simulate clients and collect time measurements the load
testing tool Apache JMeter [27] was used. JMeter is a free Open
Source extensible load generator which allows to simulate a
large amount of clients and gather time measurements. It fea-
tures dynamic display of statistics about running tests such
as the event rate and the round rip delay and allows to save
these results in a csv or xml file for offline processing. The sys-
tem under test was running a single-node JAIN SLEE provided
by OpenCloud (RhinoSDK) [28] and an instance of the Mule
ESB [29] executed on top of the Sun JDK 1.5. A typical sce-
nario as shown in in Fig. 4 replicates the behavior of a device
inputting data in the system. First an INIT message is sent,
next the actual data is inserted and processed by the system.
After processing the acknowledgment with output data is sent
back and finally the input-session is terminated with an END
message. Each message is acknowledged by the service, and
the response time is the time measured from the INIT mes-
saged until the acknowledgment to the END message. This
means that for every data value inserted in the system, three
events are sent. For measurement purposes the initial event
and output result of a service invocation are routed through
the same workstation as this allows us to perform accurate
time measurements on the same clock. In real world deploy-
ments the initiating device and output device are likely to be
different. The INIT messages are generated using a uniform
distribution and all following messages are sent immediately
after the acknowledgment of the previous message.

6.2. Platform performance tuning

The technologies in this paper are all Java based and an impor-
tant feature of Java is the use of a garbage collector. Java
includes automatic memory management (garbage collection)
as a part of the Java runtime. This means that very common
errors made by developers related to memory management
cannot occur. One of the side effects of the garbage collection
is that the application execution can be paused, at unpre-
dictable times, to allow for garbage collection. These pauses
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Fig. 5 – Without tuning the garbage collection pauses the
JVM completely when garbage collection occurs with
pauses regularly of over 500 ms. With tuning the average
pause is higher, but the garbage collection behavior is
much more stable and predictable and partially occurs
without pausing the JVM.

are highly undesirable when dealing with low latency and crit-
ical services. However, by setting specific parameters of the
Java Virtual Machine it is possible to prevent long pauses intro-
duced by the garbage collector, although at the cost of a small
performance penalty. With appropriate tuning, these pauses
can be minimized and thus the obtained results significantly
improved. The result of tuning the JVM is shown in Fig. 5
which is a 20 min snapshot of a test run once with tuning and
once without tuning. Without the tuning, the time spent in
garbage collection is lower in the majority of the garbage col-
lector invocations, but at regular intervals a very long garbage
collection takes places which pauses the application execu-
tion. With tuning the time spent in garbage collection is on
average longer, but the result is much more predictable and
no long pauses occur. It should also be noted that the tuned
garbage collection times are the accumulated times of the par-
allel and concurrent collectors which are partially executed
concurrently with the application without pausing the appli-
cation execution. In contrary to the untuned garbage collector
which always pauses the application execution.

The set of tuning options used for all platforms is shown
in Table 1. Detailed results of JVM tuning were previously
reported on in ref. [30]. The memory managed by the virtual
machine is divided into multiple generations (Young, Tenured

Table 1 – Virtual Machine Tuning options for low latency
behavior

-Xm×128m (1)
-XX:NewSize=32m (2)
-XX:MaxNewSize=32m (3)

-XX:MaxTenuringThreshold=0 (4)
-XX:SurvivorRatio=128 (5)

-XX:+UseParNewGC (6)
-XX:+UseConcMarkSweepGC (7)
-XX:+CMSIncrementalMode (8)
-XX:+CMSIncrementalPacing (9)
-XX:CMSIncrementalDutyCycleMin=0 (10)
-XX:CMSIncrementalDutyCycle=10 (11)

and Perm), depending on the age of the objects. As objects
live longer they are moved into the next generation after a
certain amount of time or a number of garbage collections.
By specifying the sizes of the generations (1–3) and limiting
the amount of time before an object is promoted to the next
generation (4–5), we can achieve that objects lasting for the
duration of a whole session to move to the Tenured generation
very fast. This is beneficial as the older generations do not
need to be garbage collected as often since the the majority of
objects die very young. The garbage collector itself can also be
tuned (6–11) to use multiple threads and to work concurrently
with the application execution for as long as possible. Using a
concurrent garbage collector significantly reduces the length
of the pauses that stop the application execution. Tuning of
the JVM allows to limit the time the execution of the virtual
machine needs to be paused completely for garbage collection
and makes the garbage collection more predictable. An in
depth discussion of the JVM tuning options can be found in
ref. [31].

6.3. Performance results

This section presents the obtained results of all performed
tests. The Mule ESB and Rhino JAIN SLEE were tested sep-
arately first and these results are shown in Fig. 6. The test
scenario in this case is a simplified case of the scenario shown
in Fig. 4 where there is only one system under test and 200
emulated devices submit updates to the system. For Mule the
minimal functionality of a medical service was implemented
to replicate the same behavior of the JAIN SLEE solution.
This additional test provides us with info about the maximal
throughput of each individual system. On the x-axis the sus-
tained event rate is plotted and on the y-axis the response
time. Additionally the average system load during the test run
is plotted as well. Each measured event rate was sustained for
1 min and preceded and terminated by a ramp-up period of
1 min, all measurements were executed sequentially this way
without restarting any of the applications.

We notice that the measured response times remain very
low during the test, even at the highest event rates for Mule
(Fig. 6(a)) contrary to a standalone JAIN SLEE application con-
tainer (Fig. 6(b)). The JAIN SLEE test clearly shows that the
platform performs significantly slower than the Mule ESB
regarding latency and the maximum throughput that can
be obtained. One of the main bottlenecks is the number of
simultaneous threads or simulated client devices. Each device
requires a new session to be set up whenever it inserts data
into the system. Additional results shown in Table 2 show
that with less simultaneous devices JAIN SLEE performs sig-
nificantly better. So, contrary to Mule, the behavior of the JAIN
SLEE application container is much more affected by the num-
ber of input-devices. This is to be expected as the session
model within JAIN SLEE is much more complicated and ver-
satile compared to the session model in Mule.

Combining both platforms results in lower latencies and
higher achievable event rates than is the case with a JAIN SLEE
only solution as shown in Table 2 and Fig. 7. As expected the
latencies are slightly higher than with Mule as the messages
have to pass through two separate application containers,
however they are lower than with a standalone JAIN SLEE.
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Table 2 – Performance results for a varying number of monitoring devices showing the obtained measurement results at
50% system load and the maximum obtained event rate

Platform Devices (#) Event rate (events/s) Average (ms) 95th (ms) 99th (ms) Maximum event rate (events/s)

Mule 10 325 5 10 19 550
JAIN SLEE 10 150 26 127 215 375
Combined 10 155 14 33 128 325

Mule 100 300 6 12 23 475
JAIN SLEE 100 145 31 197 314 250
Combined 100 155 15 37 158 295

Mule 200 275 9 15 30 450
JAIN SLEE 200 140 33 206 331 240
Combined 200 150 17 39 206 280

Increasing the number of simultaneous devices most significantly impacts JAIN SLEE as a stand alone platform, but does not have such a large
impact on the combined platform which offers the best functionality of all.

Fig. 6 – The obtained performance results for the different
scenarios. (a) Response times for the Mule ESB when 200
devices continuously submit data entries into the system at
different event rates. The response times remain low until
the maximum event rate is achieved. (b) Response times for
the Rhino JAIN SLEE implementation when 200 devices
continuously submit data entries into the system at
different event rates. The response times significantly
increases as the event rate increases.

Important to note is that the number of client devices has a
very limited influence on the measured latencies.

Overall the obtained results for the combined platform are
better than with JAIN SLEE as a stand alone solution. It is still
less performant than a pure Mule solution, but it does offer
far superior functionality for developing and implementing
complex services.

6.4. Platform overhead evaluation

To be able to illustrate the performance results of the devel-
oped platform, an equivalent implementation of the test
service was recreated as a standalone application. Comparing
the results of the standalone version of an equivalent service
to the results of the service deployed in the framework allows
us to determine the overhead imposed by the framework.

As to be expected is the performance of this imple-
mentation better than when using a framework for this

Fig. 7 – Response times for the combination of the Mule
ESB and Rhino JAIN SLEE implementation when 200
devices continuously submit data entries into the system at
different event rates. The performance and especially the
response times are significantly better than a standalone
JAIN SLEE implementation.
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Fig. 8 – Measured latency of multiple chained services. The
latency latency increases less than linearly for each
additional service as the overhead for accepting and
processing an external event is larger than for processing
internal events which are sent between the different
services.

straightforward test case. In the test with 200 simulated
clients, the maximum obtained event rate reached 1000 events
per second and the measured latency was on average 5 ms
which is more than 3 times with the combined platform
solution. This is however the special case of only one single
service. Additional tests include the case where multiple ser-
vices are deployed in parallel, i.e. multiple services use the
same input-events, or are chained after one another, i.e. ser-
vices use results from other services. The same tests were
performed for 1, 2, 3, 5 and 10 services chained after one
another and the obtained average response times are shown
in Fig. 8.

As expected the latency increases as the number of chained
services increases. However, the increment size is less than
the latency of one single service. This can be attributed to the
limited overhead that an additional service causes, the only
extra delay is caused by the time it takes to execute the service,
but the application container does not have to spend as much
time to set up sessions, parse the incoming messages, etc.
This initial overhead occurs for every message entering the
application container and activating a service to be executed.
Executing additional services once inside the application con-
tainer and in an existing session only adds a much smaller
overhead.

In the case of 10 services being chained, a event rate of
approximately 75 events per second can be obtained and
for 5 chained services this is approximately 150 events per
second. Although the achievable event rate halves as the
number of services doubles, the actual amount of events pro-
cessed in the application container remains the same. In the
case of standalone services the execution time increases lin-
early with the number of services. In the case of 10 chained
services the total execution time is 50 ms compared to the
30 ms if the services are deployed in the platform. For one

type of triggers, needed to be processed by one service, the
platform imposes an additional overhead. However, if out-
put of services needs to be chained together (i.e. the output
of one service functions as a trigger for another service) or
triggers are processed in parallel by multiple services, the
platform outperforms standalone implementations of these
services due to the efficient routing of events inside the plat-
form.

7. Discussion

ICU medicine is expensive and there is a shortage of inten-
sivists. The introduction of computerized decision support is
one of the most important adaptations to improve quality of
patient care for the near future. It is important that physicians
only receive alerts of patients they are responsible for and
not for all ICU patients so that every alert is meaningful. For
the RIFLE medical support service, receiving the RIFLE alarms
was not only accepted by the ICU-physicians of the Ghent
University hospital but even appreciated. Further research is
currently performed to investigate how much faster therapeu-
tic intervention is induced by real-time RIFLE alerts, and if
this faster intervention leads to better preservation of kidney
function and better patients’ outcome. As stated before, it is
expected that hundreds of medical support services will be
active simultaneously in order to optimize the care of crit-
ically ill patients. Delays in treatment actions, especially in
critical care medicine, can have important negative impacts
on outcome. By using our platform it is possible to move from
discovery of information to anticipation through delivering
support and alarm messages.

In our opinion, combining JAIN SLEE with an ESB is the
best choice for implementing decision support systems in the
ICU since the obtained results for the combined platform are
better than with JAIN SLEE as a stand alone solution. It is how-
ever less performant than the standalone ESB solution, but it
does offer far superior functionality for developing and imple-
menting complex services. However, the platform can be more
performant than custom developed stand alone services. As
soon as services are being triggered on the same input events
or are chained together, the response time is actually lower
for services deployed into the combined platform. Another
advantage of using currently available technologies is that
we can take advantage of already built in capabilities regard-
ing security. Additionally current research focusing on policy
enforcement can for service enabling platforms such as JAIN
SLEE and ESBs [32] could be added to the framework transpar-
ently. This enables the platform for example to add rules that
only allow a patients doctor to receive certain medical data,
or to automatically send alerts to his smartphone.

Alternative technologies such as J2EE and Web Services
were considered but these were currently found less suitable
to serve as base components for the medical support plat-
form. Within the event-oriented ICU platform, the routing of
events is crucial to the success of the platform and the lack
of an efficient and easy to use event model within JavaEE
hampers its usability. A third party or custom built event
mechanism can be plugged in to the JavaEE Application Server
using JavaEE Connector Architecture Resource Adapters (RA)
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[33,34]. This would enable JavaEE to replace JAIN SLEE in the
current architecture, but this also incurs a very high additional
and customized development cost with higher maintenance
costs as not only and additional RA is required but also the use
of non-standard service components. Because of this reason
JAIN SLEE was given preference as it offers superior routing
capabilities and the required functionality is available out of
the box. Yet the application server can still be extended using
RAs if required.

The use of Web services could be a viable option. Within the
event-oriented ICU platform, the event types can be mapped to
event sources where the Web services can subscribe to receive
these events. However, at the time of writing the available
support for WS-Eventing is still lacking. The necessary tooling
and support from vendors is currently lagging behind on the
support for other technologies. In the current architecture it
would be fairly simple to integrate Web service based services
as the ESB can translate SOAP-messages into other formats,
such as events suitable for processing by JAIN SLEE or it would
even be possible to replace the JAIN SLEE application server
with a Web services environment, maintaining the ESB to pro-
vide communication capabilities to non-Web service enabled
devices.

8. Conclusions

In this paper we presented a platform to enable the devel-
opment and deployment of computer aided medical decision
services. The goal of this platform is to offer a generic platform
on top of which complex services can be deployed to be used
for computer aided decision making in the ICU. Key features
are the support for event based applications, the extensibility
of the platform to support any type of medical or non-medical
input-device. In order to achieve this, a hybrid architecture
is designed which consists of an Enterprise Service Bus and
a JAIN SLEE container. Benefits of the ESB are that it is a
very suitable technology for routing messages and converting
them into other appropriate formats. The JAIN SLEE Con-
tainer is specifically developed to simplify the development
and deployment of event based services. Using the platform
it is very simple to translate the output of medical services to
messages suitable for a large variety of output devices such as
bed-side monitors, PDAs, DECT or mobile phones.

To validate the platform, a thorough performance eval-
uation was performed. The obtained results clearly show
that by using the hybrid architecture it is possible to sus-
tain and process a large stream of events and still guarantee
low response times. It is also shown that the platform out-
performs a combination of custom built stand alone services.
Using the hybrid architecture also simplifies the develop-
ment and deployment of new medical services as the majority
of required non-functional services (i.e. transaction manage-
ment, logging, life-cycle management) are already provided by
the application containers.

Summary points

What was already known:

• More and more medical support services will be used to
monitor and optimize the care of critically ill patients.

• Computer aided decision making is increasingly important
in the ICU and will soon become a necessity due to the vast
amounts of data to process.

• The lack of a generic versatile platform hampers the deploy-
ment and integration of multiple and diverse medical
services in the ICU.

What this study added:

• An evaluation of currently available technologies to deter-
mine the suitability for implementing a medical decision
support services enabling platform.

• An extensible software platform based on currently avail-
able technologies to simplify and optimize the deployment
and usage of event based medical decision support services.

• A thorough performance evaluation of the platform to vali-
date the performance of the proposed platform.

Conflict of interest

None declared.

Acknowledgments

Part of this work is supported by the COSARA-project:
“Computer-based Surveillance and Alerting of Nosocomial
Infections, Antimicrobial Resistance and Antibiotic Consump-
tion in the Intensive Care Unit”. Sofie Van Hoecke would like
to thank the IWT (Institute for the Promotion of Innovation
through Science and Technology in Flanders) for financial sup-
port through her Ph.D. grant. Filip De Turck acknowledges the
F.W.O.-V. (Fund for Scientific Research-Flanders) for their sup-
port through a postdoctoral fellowship.

r e f e r e n c e s

[1] A. Morris, R. Gardner, Computer applications, in: J. Hall, G.
Schmidt, L. Wood (Eds.), Principles of Critical Care,
McGraw-Hill, New York, 1992, pp. 500–514.

[2] E.A. Hoste, G. Clermont, A. Kersten, R. Venkataraman, D.C.
Angus, D. De Bacquer, J.A. Kellum, Clinical pulmonary
infection score (CPIS) dynamics in polytrauma patients with
ventilator-associated pneumonia, Crit. Care 10 (3) (2006) R73.

[3] P. Nystrom, The systemic inflammatory response syndrome:
definitions and aetiology, J. Antimicrob. Chemother. 41
(suppl. A) (1998) P1–P7.

[4] A.C.K.-B. Amara, F.M. Andrade, R. Moreno, A. Artigas, F.
Cantraine, J. Vincent, Use of the Sequential Organ Failure
Assessment score as a severity score, Intensive Care Med. 31
(2005) 243–249.

[5] F. De Turck, J. Decruyenaere, P. Thysebaert, S. Van Hoecke, B.
Volckaert, C. Danneels, K. Colpaert, G. De Moor, Design of a
flexible platform for execution of medical decision support
agents in the intensive care unit, Comput. Biol. Med. 37 (1)
(2007) 97–112.

[6] S. Charbonnier, On line extraction of temporal episodes
from icu high-frequency data: a visual support for signal
interpretation, Comput. Methods Programs Biomed. 78 (2)
(2005) 115–132.



Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 265–277 277

[7] K.A. Thursky, M. Mahemoff, User-centered design
techniques for a computerised antibiotic decision support
system in an intensive care unit, Int. J. Med. Inform. 76 (10)
(2007) 760–768.

[8] M. Bang, A. Larsson, E. Berglund, H. Eriksson, Distributed
user interfaces for clinical ubiquitous computing
applications, Int. J. Med. Inform. 74 (2005) 545–551.

[9] C. Hansom, B. Marshall, Artificial intelligence applications in
the intensive care unit, Crit. Care Med. 29 (2001) 427–435.

[10] M.M. Levy, Computers in the intensive care unit, J. Crit. Care
19 (4) (2004) 199–200.

[11] Health informatics, Point-of-care medical device
communication, http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=36341(online).

[12] HL7, Health Level Seven, http://www.hl7.org/ (online).
[13] M. Fieschi, J. Dufour, P. Staccini, J. Gourvernet, O. Bouhaddou,

Medical decision support systems: old dilemmas and new
paradigms? Methods Inforrm. Med. 42 (2003) 190–198.

[14] R.A. Greenes, Clinical Decision Support: The Road Ahead,
Academic Press, Inc., Orlando, FL, USA, 2006.

[15] H.-T. Chen, W.-C. Ma, D.-M. Liou, Design and
implementation of a real-time clinical alerting system for
intensive care unit, in: Proceedings of AMIA Symposium,
2002, pp. 131–135.

[16] K. Wakai, T. Kawamura, M. Endoh, M. Kojima, Y. Tomino, A.
Tamakoshi, Y. Ohno, Y. Inaba, H. Sakai, A scoring system to
predict renal outcome in IgA nephropathy: from a
nationwide prospective study, Nephrol. Dial. Transplant. 21
(10) (2006) 2800–2808.

[17] C. Adrie, A. Cariou, B. Mourvillier, I. Laurent, H. Dabbane, F.
Hantala, A. Rhaoui, M. Thuong, M. Monchi, Predicting
survival with good neurological recovery at hospital
admission after successful resuscitation of out-of-hospital
cardiac arrest: the OHCA score, Eur. Heart J. 27 (23) (2006)
2840–2845.

[18] J. Chen, J. Chung, K.L. Wong, T. Fan, C.O. Pun, Early detection
of pulmonary hypertension with heart sounds analysis pilot
study, Stud. Health Technol. Inform. 122 (2006) 112–116.

[19] Sun Microsystems, Java Message Service Specification
Version 1.1, http://java.sun.com/products/jms/, 2002.

[20] W.M. Tellis, K.P. Andriole, Integrating multiple clinical
information systems using the java message service
framework, J. Digital Imaging 17 (2) (2004) 80–86.

[21] S. Chen, P. Greenfield, Qos evaluation of JMS: an empirical
approach, System Sciences, 10 pp, in: Proceedings of the
37th Annual Hawaii International Conference, 5–8 January,
2004.

[22] WS-Eventing, http://www.w3.org/Submission/WS-Eventing/,
2004.

[23] L. Macvittie, Make way for the ESB, Network Comput. 17 (5)
(2006) 41–58.

[24] S. Desmet, B. Volckaert, S. Van Assche, D. Van Der Weken, B.
Dhoedt, F. De Turck, Throughput evaluation of different
enterprise service bus approaches, in: Proceedings of the
2007 International Conference on Software Engineering
Research in Practice (SERP’07), 2007.

[25] J. de Keijzer, D. Tait, R. Goedman, JAIN: A new approach to
services in communication networks, IEEE Commun. Mag.
38 (1) (2000) 94–99.

[26] Sun Microsystems, Java EE at a Glance,
http://java.sun.com/javaee/ (online).

[27] The Apache Jakarta Project, Apache jmeter,
http://jakarta.apache.org/jmeter/ (online).

[28] Open cloud, http://www.opencloud.com/.
[29] MuleSource Inc., Mule is the leading open source ESB and

integration platform, http://mule.mulesource.org/ (online).
[30] B. Van Den Bossche, F. De Turck, B. Dhoedt, P. Demeester,

Enabling Java-based VoIP backend platforms through JVM
performance tuning, in: Proceedings of the First IEEE
Workshop on VoIP Management and Security: VoIP MaSe
co-located with IEEE NOMS 2006, 2006, pp. 41–47.

[31] Sun Microsystems, Tuning garbage collection with the 5.0
java[tm] virtual machine,
http://java.sun.com/docs/hotspot/gc5.0/gc tuning 5.html,
2003 (online).

[32] K. Verlaenen, B. De Win, W. Joosen, Towards simplified
specification of policies in different domains, in: IEEE
Conference on Integrated Network Management, 2007, pp.
20–29.

[33] Sun Microsystems, J2EE Connector Architecture 1.5,
http://www.jcp.org/en/jsr/detail?id=112 (online).

[34] B. Van Den Bossche, F. De Turck, B. Dhoedt, P. Demeester, G.
Maas, J. Moreels, B. Van Vlerken, T. Pollet, Evaluation of
java-based middleware for service enabling platforms, in:
Proceedings of the Symposium on Internet Services and
Enabling Technologies (ISET), IEEE Globecom 2006, 2006.


