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Abstract
In [5] (see also [4]), a technique was given for calculating the in-

tersection sizes of combinatorial substructures associated with regular
partitions of distance-regular graphs. This technique was based on the
orthogonality of the eigenvectors which correspond to distinct eigen-
values of the (symmetric) adjacency matrix. In the present paper,
we give a more general method for calculating intersection sizes of
combinatorial structures. The proof of this method is based on the
solution of a linear system of equations which is obtained by means
of double countings. We also give a new class of regular partitions
of generalized hexagons and determine under which conditions ovoids
and subhexagons of order (s′, t′) of a generalized hexagon of order s
intersect in a constant number of points. If the automorphism group
of the generalized hexagon is sufficiently large, then this is the case if
and only if s = s′t′. We derive a similar result for the intersection of
distance-2-ovoids and suboctagons of generalized octagons.

Keywords: left-regular partition, right-regular partition, generalized polygon,
distance-j-ovoid, ovoid, subpolygon
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1 Sets with left-regular and right-regular par-

titions

Let X be a nonempty finite set and let R ⊆ X ×X be a relation on X.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55884689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A partition P = {X1, X2, . . . , Xk} of X is called right-regular with respect
to R if there exist constants rij (1 ≤ i, j ≤ k) such that for every x ∈ Xi,
there are precisely rij elements y ∈ Xj such that (x, y) ∈ R. The (k × k)-th
matrix whose (i, j)-th entry (i.e. the entry in row i ∈ {1, . . . , k} and column
j ∈ {1, . . . , k}) is equal to rij is denoted by RP . Let Er

P denote the multiset
whose elements are the complex eigenvalues of RP , the multiplicity of an
element λ of Er

P being equal to the algebraic multiplicity of λ regarded as
eigenvalue of RP .

A partition P = {X1, X2, . . . , Xk} is called left-regular with respect to R
if there exist constants lij (1 ≤ i, j ≤ k) such that for every y ∈ Xi, there
are precisely lij elements x ∈ Xj such that (x, y) ∈ R. The (k× k)-th matrix
whose (i, j)-th entry (1 ≤ i, j ≤ k) is equal to lij is denoted by LP . Let El

P
denote the multiset whose elements are the complex eigenvalues of LP , the
multiplicity of an element λ of El

P being equal to the algebraic multiplicity
of λ regarded as eigenvalue of LP .

Notice that a partition P of X is left-regular (right-regular) with respect
to R if and only if P is right-regular (left-regular) with respect to the inverse
R−1 := {(y, x) | (x, y) ∈ R} of R. A partition P which is right-regular (or
equivalently left regular) with respect to a symmetric relation R will be
called regular with respect to R. In this case, the matrix RP = LP will also
be denoted by MP .

Given two finite multisets M = {λ1, . . . , λk} and M ′ = {λ′
1, . . . , λ

′
k′}

whose elements are complex numbers, we denote by O(M, M ′) the multiplic-
ity of 0 as an element of the multiset {λi − λ′

j | 1 ≤ i ≤ k, 1 ≤ j ≤ k′}.

In Section 3 we will prove the following theorem.

Theorem 1.1 Let X be a nonempty finite set and let R ⊆ X × X be a
relation on X. Let P = {X1, X2, . . . , Xk} be a partition of X which is right-
regular with respect to R and let rij (1 ≤ i, j ≤ k) denote the corresponding
coefficients. Let P ′ = {X ′

1, X
′
2, . . . , X

′
k′} be a partition of X which is left-

regular with respect to R and let lij (1 ≤ i, j ≤ k′) denote the corresponding
coefficients. Then the following holds:

(1) O(Er
P , El

P ′) ≥ 1;
(2) If O(Er

P , El
P ′) = 1, then there exist numbers ηij, 1 ≤ i ≤ k and

1 ≤ j ≤ k′, only depending on the numbers rmn (1 ≤ m, n ≤ k) and lmn

(1 ≤ m,n ≤ k′) such that |Xi ∩X ′
j| = ηij · |X|.

(3) Suppose the following: (i) R is symmetric; (ii) there exists a µ ∈
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N \ {0} such that for any x ∈ X, there are precisely µ elements y ∈ X for

which (x, y) ∈ R; (iii) O(Er
P , El

P ′) = 1. Then |Xi ∩ Xj′| =
|Xi|·|Xj′ |

|X| for any

(i, j) ∈ {1, . . . , k} × {1, . . . , k′}.

An alternative proof of Theorem 1.1(3) is implicitly contained in [5] (Lemma
3.3) in the case the matrices MP and MP ′ are diagonizable. (The restriction in
[5, Lemma 3.3] to regular partitions associated with distance-regular graphs is
not essential; the proof given there also works for arbitrary regular partitions
P and P ′ for which MP and MP ′ are diagonizable.) Lemma 3.3 of [5] was
used in that paper to determine the intersection sizes of various combinatorial
substructures of generalized polygons.

2 On the intersection sizes of distance-j-ovoids

and subpolygons of generalized polygons

2.1 Definitions

Let n ≥ 2 and s, t ≥ 1. A generalized 2n-gon of order (s, t) is a partial linear
space Γ = (X,L, I), I ⊆ X × L, which satisfies the following properties:

(GP1) For every point x and every line L, there exists a unique point on
L nearest to x.

(GP2) The maximal distance between two points of Γ is equal to n.
(GP3) If x and y are two points at distance i ∈ {1, . . . , n− 1} from each

other, then y is collinear with a unique point which lies at distance i−1 from
x.

(GP4) Every line is incident with precisely s + 1 points and every point
is incident with precisely t + 1 lines.

In (GP1), (GP2) and (GP3), distances d(·, ·) are measured in the collinearity
graph of Γ. If x ∈ X and i ∈ N, then Γi(x) denotes the set of points of Γ at
distance i from x. Two points x and y of Γ are called opposite if d(x, y) = n. If
s = t, then Γ is also called a generalized 2n-gon of order s. Properties (GP1)
and (GP2) imply that Γ is a so-called near 2n-gon ([1]). The generalized
polygons considered in this paper are either generalized hexagons (n = 3)
and generalized octagons (n = 4). A generalized hexagon of order (s, t)
contains (s + 1)((st)2 + st + 1) points and (t + 1)((st)2 + st + 1) lines. A
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generalized octagon of order (s, t) contains (s+1)((st)3+(st)2+st+1) points
and (t + 1)((st)3 + (st)2 + st + 1) lines.

Suppose X ′ ⊆ X and L′ ⊆ L such that Γ′ = (X ′,L′, I′) is a generalized
2n-gon of order (s′, t′), where s′, t′ ∈ N \ {0} and I′ := I∩ (X ′×L′). Then Γ′

is called a sub-2n-gon of order (s′, t′) of Γ. The sub-2n-gon Γ′ is called proper
if (s′, t′) 6= (s, t), full if s′ = s, and ideal if t′ = t. Notice that the distance
between two points x and y of Γ′ in (the collinearity graph of) Γ′ coincides
with the distance between x and y in Γ.

Let j ∈ {2, . . . , n}. A distance-j-ovoid of Γ is a set X ′ of points satisfying
(DO1) d(x, y) ≥ j for every two distinct points x and y of X ′;
(DO2) for every point a of Γ, there exists a point x of X ′ such that

d(a, x) ≤ j
2
;

(DO3) for every line L of Γ, there exists a point x of X ′ such that d(L, x) ≤
j−1
2

.
If X ′ is a distance-j-ovoid of Γ with j odd, then for every point a of Γ, there
exists a unique point x ∈ X ′ such that d(a, x) ≤ j−1

2
. If X ′ is a distance-

j-ovoid of Γ with j even, then for every line L of Γ, there exists a unique
point x ∈ X ′ such that d(L, x) ≤ j−2

2
. A distance-n-ovoid of Γ is also called

an ovoid of Γ. A set X ′ of points of Γ is a distance-2-ovoid if every line of Γ
intersects X ′ in a unique point.

We will now discuss some known restrictions on the parameters of finite
generalized hexagons and generalized octagons. If Γ is a generalized hexagon
of order (s, t) with s, t ≥ 2, then st is a perfect square by Feit & Higman

[6] and s
1
3 ≤ t ≤ s3 by Haemers & Roos [7]. If Γ′ is a proper subhexagon

of order (s′, t′) of a generalized hexagon of order (s, t), then st ≥ s′2t′2 by
Thas [11]. If O is an ovoid of a generalized hexagon of order (s, t), then
s = t by Offer [9] and the ovoid O contains precisely s3 + 1 points. If Γ
is a generalized octagon of order (s, t) with s, t ≥ 2, then 2st is a perfect

square by Feit & Higman [6] and s
1
2 ≤ t ≤ s2 by Higman [8]. Restrictions on

the orders of suboctagons of generalized octagons were derived in Yanushka
[14] and Thas [12]. Restrictions on the parameters of generalized polygons
admitting certain distance-j-ovoids were derived in Offer & Van Maldeghem
[10], see also De Bruyn [2] for a discussion in the context of general regular
near polygons.
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2.2 A class of regular partitions of generalized hexagons

A regular partition of a finite point-line geometry S is a partition of the
point-set of S which is regular with respect to the adjacency relation of the
collinearity graph of S.

Consider now a generalized hexagon Γ = (X,L, I) of order (s, t) having
a proper subhexagon Γ′ = (X ′,L′, I′) of order (s′, t′) such that st = s′2t′2.
Consider the following subsets of X:

• X1 = X ′;
• X2 consists of those points of X \X1 which are contained on a line of

L′;
• X3 consists of those points of X \ (X1 ∪X2) which are collinear with a

(necessarily unique) point of X ′;
• X4 consists of those points of X which are not collinear with a point of

X ′.

In Section 4, we prove that {X1, X2, X3, X4} determines a regular partition
of Γ. More precisely, the following holds.

(I) Suppose s = s′ and t 6= t′. Then X2 = X4 = ∅ and P := {X1, X3} is a
regular partition of Γ. In this case,

MP =

[
s(t′ + 1) s(t− t′)

1 s− 1 + st

]
and the eigenvalues of MP are equal to s(t + 1) and s− 1 +

√
st.

(II) Suppose t = t′ and s 6= s′. Then X3 = ∅ and P := {X1, X2, X4} is a
regular partition of Γ. In this case

MP =

 s′(t + 1) (t + 1)(s− s′) 0
s′ + 1 s− s′ − 1 st

0 t + 1 (t + 1)(s− 1)


and the eigenvalues of MP are equal to −(t + 1), s(t + 1) and s− 1 +

√
st.

(III) Suppose s 6= s′ and t 6= t′. Then P := {X1, X2, X3, X4} is a regular
partition of Γ. In this case

MP =


s′(t′ + 1) (t′ + 1)(s− s′) (t− t′)s 0

s′ + 1 s− s′ − 1 0 st
1 0 s− 1 + ts′ t(s− s′)
0 t′ + 1 (t− t′)(s′ + 1) (t′ + 1)(s− 1) + (t− t′)(s− s′ − 1)
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and the eigenvalues of MP are equal to −(t + 1), s(t + 1) and s − 1 +
√

st
(multiplicity 2).

2.3 On the intersection of ovoids and subhexagons of
generalized hexagons

Suppose Γ is a generalized hexagon of order s admitting an ovoid O. By [4,
Chapter 6], every full subhexagon of Γ intersects O in precisely s + 1 points
and every ideal subhexagon of Γ intersects O in precisely 2 points. (A very
special case of this result was also contained in [3, Lemma 2.4].) These two
results are special cases of the following more general result:

Theorem 2.1 Let Γ = (X,L, I) be a generalized hexagon of order s admit-
ting an ovoid O and a subhexagon Γ′ = (X ′,L′, I′) of order (s′, t′). If s = s′t′,
then O intersects Γ′ in precisely s′ + 1 points.

Proof. By Section 2.2, there is a regular partition P associated with the
subhexagon Γ′ of Γ. In section 2.2, we also listed the eigenvalues corre-
sponding to the partition P . With the ovoid O, there is associated another
regular partition P ′ := {O,X \O} of Γ. The eigenvalues associated with P ′

are −1 and s2 + s. Now, Theorem 1.1(3) applies and we can conclude that

|X ′ ∩O| = |X′|·|O|
|X| = (s′+1)(s′2t′2+s′t′+1)·(s3+1)

(s+1)(s4+s2+1)
= s′ + 1. �

Example. The split-Cayley hexagon H(q2) ([13]) of order q2 has sub-
hexagons isomorphic to H(q). Every ovoid of H(q2) intersects each such
subhexagon in precisely q + 1 points.

One can ask whether it is possible to prove the converse statement of Theorem
2.1:

(∗) If O intersects Γ′ in precisely s′ + 1 points, then s = s′t′.

One intuitively feels that statements of the form (∗) will be hard to prove (if
not impossible). But one might be more successful if one assumes that (∗)
not only holds for one subhexagon Γ′ (for given O) but for every member of a
sufficiently large class of subhexagons. Similarly, one might expect to be more
successful if one assumes that (∗) holds for every member of a sufficiently
large class of ovoids O for a given subhexagon Γ′ of order (s′, t′). In Section
5, we will prove the following theorems.
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Theorem 2.2 Let Γ be a generalized hexagon of order s. Let O be an ovoid
of Γ and let F be a nonempty family of proper subhexagons of order (s′, t′)
of Γ. Suppose (i) the number of elements of F through a given point of Γ is
a constant and (ii) the number of elements of F through two given opposite
points of Γ is a constant. Then the following are equivalent:

(1) s = s′t′;
(2) every element of F intersects O in a constant number of points.

Theorem 2.3 Let Γ be a generalized hexagon of order s. Let Γ′ be a proper
subhexagon of order (s′, t′) of Γ and let F be a nonempty family of ovoids of
Γ. Suppose (i) the number of elements of F through a given point of Γ is
a constant and (ii) the number of elements of F through two given opposite
points of Γ is a constant. Then the following are equivalent:

(1) s = s′t′;
(2) every element of F intersects Γ′ in a constant number of points.

Theorems 2.2 and 2.3 are especially interesting in the case the generalized
hexagon under consideration admits a group which is transitive on the set of
points and the set of unordered pairs of opposite points. In this case, we can
take for F any nonempty union of isomorphism classes of proper subhexagons
of order (s′, t′) (Theorem 2.2) or ovoids (Theorem 2.3) of Γ.

2.4 On the intersection of distance-2-ovoids and sub-
octagons of generalized octagons

Suppose Γ is a generalized octagon of order (s, t) admitting a distance-2-
ovoid X. If Γ′ is a suboctagon of order (s′, t′) with s = s′, then Γ′ ∩X is a
distance-2-ovoid of Γ′ and hence contains precisely (s′t′)3 + (s′t′)2 + s′t′ + 1
points (cf. Lemma 6.1). If s 6= s′, then it is not at all obvious what the size
of the intersection Γ′ ∩X is. We will prove the following theorems.

Theorem 2.4 Let Γ be a generalized octagon of order (s, t). Suppose Γ
admits a suboctagon Γ′ of order (s′, t′) with s′ 6= s and a nonempty family F
of distance-2-ovoids satisfying the property that the number of elements of F
through two points x and y at distance i ∈ {0, 2, 3, 4} from each other only
depends on i and not on x and y. Then s ≥ s′t′ with equality if and only if
Γ′ intersects every element of F in a constant number of points. Moreover,
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if s = s′t′ then Γ′ intersects every element of F in precisely (s′ + 1)(s2 + 1)
points.

Theorem 2.5 Let Γ be a generalized octagon of order (s, t). Suppose Γ
admits a distance-2-ovoid X and a nonempty family F of suboctagons of
order (s′, t′), s′ 6= s, satisfying the property that the number of elements of F
through two points x and y of Γ at distance i ∈ {0, 2, 3, 4} from each other
only depends on i and not on x and y. Then s ≥ s′t′ with equality if and only
if X intersects every element of F in a constant number of points. Moreover,
if s = s′t′ then X intersects every element of F in precisely (s′ + 1)(s2 + 1)
points.

Corollary 2.6 Let Γ be a generalized octagon of order (s, t) whose automor-
phism group acts transitively on the set of points of Γ and the set of unordered
pairs of points at distance i from each other, i = 2, 3, 4. Let X be a distance-
2-ovoid of Γ and Γ′ be a suboctagon of order (s′, t′) of Γ with s′t′ = s. Then
|X ∩ Γ′| = (s′ + 1)(s2 + 1).

Proof. If s = s′, then |X ∩Γ′| = (s′t′)3 +(s′t′)2 + s′t′ +1 = s3 + s2 + s+1 =
(s+1)(s2+1) = (s′+1)(s2+1). So, suppose s 6= s′. Let F denote the orbit of
X under the automorphism group of Γ. Then the conditions of Theorem 2.4
are fulfilled. Hence, Γ′ intersects each element of F in precisely (s′+1)(s2+1)
points. In particular, |X ∩ Γ′| = (s′ + 1)(s2 + 1). �

3 Proof of Theorem 1.1

3.1 A property of eigenvalues of matrices

Let n and m be strictly positive integers, let K be a field and let K denote
the algebraic closure of K.

With every (m×m)-matrix M over K, there is associated an (nm×nm)-

matrix M̃ . If we regard M̃ as an (m×m)-matrix with blocks of size n× n,

then the (i, j)-th entry (1 ≤ i, j ≤ m) of M̃ is equal to mij · In. Here, mij

denotes the (i, j)-th entry of M and In denotes the (n× n)-identity matrix.

Notice that Ĩm = Inm and M̃1 ·M2 = M̃1 · M̃2 for any two (m×m)-matrices

over K. Hence, if M is an invertible (m×m)-matrix over K, then M̃ is also

an invertible matrix and M̃−1 = M̃−1.
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With every (n× n)-matrix N over K, there is associated an (nm× nm)-
matrix N ′. If we regard N ′ as an (m×m)-matrix with blocks of size n× n,
then the (i, j)-th entry (1 ≤ i, j ≤ m) of N ′ is equal to N if i = j and equal
to 0 otherwise.

The following property clearly holds: if M is an (m×m)-matrix over K
and N is an (n× n)-matrix over K, then M̃ commutes with N ′.

Now, let A, respectively B, denote an (n×n)-matrix, respectively an (m×m)-

matrix, with entries contained in K. We define [[A, B]] := A′ − B̃. Let
E1 ⊆ K, E2 ⊆ K, respectively E3 ⊆ K, denote the multiset of size n, m,
respectively nm, whose elements are the eigenvalues of A, B, respectively
[[A, B]] (taking into account their respective algebraic multiplicities).

Lemma 3.1 E3 = {λ1 − λ2 |λ1 ∈ E1, λ2 ∈ E2}.

Proof. Let Q be an invertible (m×m)-matrix over K such that Q−1BQ is
an upper triangular matrix (e.g. the Jordan normal form of B). If λi, i ∈
{1, . . . ,m}, denotes the (i, i)-th entry of Q−1BQ, then E2 = {λ1, λ2, . . . , λm}.
We have

Q̃−1[[A, B]]Q̃ = Q̃−1(A′ − B̃)Q̃

= Q̃−1A′Q̃− Q̃−1B̃Q̃

= A′ − Q̃−1BQ.

If we regard Q̃−1[[A, B]]Q̃ as an (m × m)-matrix with blocks of size n × n,

then the (i, j)-th entry of Q̃−1[[A, B]]Q̃ is equal to On if j < i and equal to
A − λiIn if i = j. (Here, On denotes the (n × n)-zero matrix.) Hence, the

eigenvalues of Q̃−1[[A, B]]Q̃, i.e. the eigenvalues of [[A, B]], are the elements
of the form λ − λi, where λ is an eigenvalue of A and i ∈ {1, . . . ,m}. This
proves the lemma. �

3.2 Proof of Theorem 1.1

We continue with the notations introduced in the statement of Theorem 1.1.
Fix an i ∈ {1, . . . , k′} and a j ∈ {1, . . . , k}. We count in two different

ways the number N of all ordered pairs (x, y) ∈ R ∩ (X ′
i × Xj). Since for

each x ∈ X ′
i ∩ Xf (f ∈ {1, . . . , k}), there are precisely rfj elements y ∈ Xj
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such that (x, y) ∈ R, we have

N =
k∑

f=1

rfj · |Xf ∩X ′
i|. (1)

On the other hand, for each y ∈ X ′
f ∩ Xj (f ∈ {1, . . . , k′}), there are lfi

elements x ∈ X ′
i such that (x, y) ∈ R. Hence, we also have

N =
k′∑

f=1

lfi · |Xj ∩X ′
f |. (2)

From (1) and (2), we obtain

E(i, j) :
k∑

f=1

rfj · |Xf ∩X ′
i|+

k′∑
f=1

(−lfi) · |Xj ∩X ′
f | = 0. (3)

Since equation E(i, j) holds for any (i, j) ∈ {1, . . . , k′} × {1, . . . , k}, we ob-
tain a linear homogeneous system with kk′ equations and kk′ unknows. We
consider the following ordering of these equations and unknowns: E(i, j) ≺
E(i′, j′) if and only if either i < i′ or (i = i′ and j < j′); |Xi∩X ′

j| ≺ |Xi′∩X ′
j′|

if and only if either j < j′ or (j = j′ and i < i′). The matrix of the linear
system (3) with respect to these orderings is equal to [[RT

P , LT
P ′ ]]. By Lemma

3.1 and the fact that RP and RT
P (respectively LP ′ and LT

P ′) have the same
eigenvalues with the same algebraic multiplicities, the rank of [[RT

P , LT
P ′ ]] is

equal to kk′ if O(Er
P , El

P ′) = 0 and equal to kk′ − 1 if O(Er
P , El

P ′) = 1.
If O(Er

P , El
P ′) = 0, then we would have that |Xi ∩ X ′

j| = 0 for any
{i, j} ∈ {1, . . . , k}×{1, . . . , k′}. This would contradict the fact that |X| > 0.
Hence, O(Er

P , El
P ′) ≥ 1. If O(Er

P , El
P ′) = 1, then the solution of system (3)

depends on 1 parameter λ. So, for any (i, j) ∈ {1, . . . , k} × {1, . . . , k′},
|Xi ∩ X ′

j| is equal to λ · η′
ij, where η′

ij only depends on the entries of the
matrices RP and LP ′ . Since |X| =

∑
m,n |Xm ∩X ′

n| > 0, we necessarily have∑
m,n η′

mn 6= 0. Clearly, we have |Xi ∩X ′
j| = ηij · |X| where ηij :=

η′
ij∑

m,n η′
mn

.

Finally, suppose that: (i) R is symmetric; (ii) there exists a µ ∈ N \ {0}
such that for any x ∈ X, there are µ elements y ∈ X for which (x, y) ∈ R;
(iii) O(Er

P , El
P ′) = 1. By the above discussion, we know that the system (3)

in combination with the equation
∑

i,j |Xi ∩X ′
j| = |X| has a unique solution

for the unknowns |Xi∩X ′
j|. So, it suffices to show that all these equations are
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satisfied if we put |Xi ∩X ′
j| equal to

|Xi|·|X′
j |

|X| , (i, j) ∈ {1, . . . , k}× {1, . . . , k′}.
We have ∑

i,j

|Xi| · |X ′
j|

|X|
=

∑
i |Xi| ·

∑
j |X ′

j|
|X|

=
|X| · |X|
|X|

= |X|.

For any (i, j) ∈ {1, . . . , k′} × {1, . . . , k}, we now calculate

Ωij :=
k∑

f=1

rfj
|Xf | · |X ′

i|
|X|

+
k′∑

f=1

(−lfi)
|Xj| · |X ′

f |
|X|

.

Counting pairs (x, y) ∈ R∩(Xf×Xj), we find |Xf | ·rfj = |Xj| ·rjf . (Here, we
used the symmetry of R.) Similarly, counting pairs (x, y) ∈ R ∩ (X ′

i ×X ′
f ),

we find |X ′
f | · lfi = |X ′

i| · lif . So, the expression for Ωij becomes:

k∑
f=1

|Xj| · |X ′
i|

|X|
rjf +

k′∑
f=1

|Xj| · |X ′
i|

|X|
(−lif ).

Now, µ =
∑k

f=1 rjf =
∑k′

f=1 lif and hence Ωij = 0. This finishes the proof of
Theorem 1.1.

4 A class of regular partitions of generalized

hexagons

Let Γ′ = (X ′,L′, I′) be a subhexagon of order (s′, t′) of a generalized hexagon
Γ = (X,L, I) of order (s, t). We divide the point- and line-set of Γ into 4
subsets.

Points of X belonging to X ′ are called points of Type I. Lines of L belonging
to L′ are called lines of Type I. Points of X \X ′ which belong to a line of L′

are called points of Type II. Lines of L \ L′ which contain a point of X ′ are
called lines of Type II. The following claims are readily verified if one takes
into account the axioms that define the generalized polygons:

(a) If x is a point of Type II, then x is contained in a unique line of L′ and
no line through x has type II.
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(b) If L is a line of Type II, then L contains a unique point of X ′ and no
point of L has type II.

Every point of L \X ′, where L is a line of Type II is called a point of Type
III. Every line of L \L′ containing a point of Type II is called a line of Type
III. The following claims are again readily verified:

(c) Every point of Type III is incident with 0 lines of Type I, a unique line
of Type II and 0 lines of Type III.

(d) Every line of Type III contains 0 points of Type I, a unique point of
Type II and 0 points of Type III.

A point of X is said to be of Type IV if it is not of Type I, II or III. A line
of L is said to be of Type IV if it is not of Type I, II or III. Obviously, we
have:

(e) Every point of Type IV is incident with only lines of Type III or IV.

(f) Every line of Type IV is incident with only points of Type III or IV.

Making use of properties (a)–(f), we can easily count the total number of
points and lines of each type. The number of points of Type I, II, III,
respectively IV, is equal to N1 := (s′ + 1)(s′2t′2 + s′t′ + 1), N2 := (t′ +
1)(s′2t′2 + s′t′ +1)(s− s′), N3 := s(t− t′)(s′ +1)(s′2t′2 + s′t′ +1), respectively
N4 := (s + 1)(s2t2 + st + 1) − N1 − N2 − N3. The number of lines of Type
I, II, III, respectively IV, is equal to M1 := (t′ + 1)(s′2t′2 + s′t′ + 1), M2 :=
(s′ + 1)(s′2t′2 + s′t′ + 1)(t − t′), M3 := t(s − s′)(t′ + 1)(s′2t′2 + s′t′ + 1),
respectively M4 := (t + 1)(s2t2 + st + 1)−M1 −M2 −M3.

In [11], J. A. Thas proved that st ≥ s′2t′2.

Lemma 4.1 If st = s′2t′2, then
(g) every point of Type IV is contained in precisely t′ + 1 lines of Type

III and t− t′ lines of Type IV,
(h) every line of Type IV contains precisely s′ + 1 points of Type III and

s− s′ points of Type IV.
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Proof. We only need to prove claim (g). Claim (h) is the dual statement of
claim (g). We distinguish two cases.

If s = s′ (and st = s′2t′2), then one can calculate that N4 = 0. Hence,
claim (g) trivially holds in this case. (The fact that in this case there are no
points of Type IV was already remarked in [11, p. 116, first paragraph].)

If s 6= s′, then by the final remark of [11], for every point x of Type IV
there are t′ +1 lines of Type I which contain a unique point x′ collinear with
x. The point x′ is necessarily of Type II and the line xx′ is necessarily of
type III. The claim follows. �

From statements (a)–(h), it now readily follows that the points of Type I, II,
III and IV determine a regular partition of Γ. Moreover, the parameters of
this regular partition are as claimed in Section 2.2.

5 The intersection of ovoids and subhexagons

of generalized hexagons

Proof of Theorem 2.2

Let Γ be a generalized hexagon of order s. Let O be an ovoid of Γ and let
F be a family of µ ≥ 1 proper subhexagons of order (s′, t′) of Γ such that (i)
every point of Γ is contained in precisely δ1 elements of F and (ii) every two
opposite points of Γ are contained in precisely δ2 elements of F . If s = s′t′,
then by Theorem 2.1, O intersects every element of F in a constant number
of points.

Conversely, suppose that O intersects every member of F in a constant
number of points. We will prove that s = s′t′. We will first express the
constants δ1 and δ2 in terms of µ, s, s′ and t′. Every subhexagon Γ′ of
order (s′, t′) of Γ contains (s′ + 1)(s′2t′2 + s′t′ + 1) points. The number of
points of Γ′ at distance 3 from a given point of Γ′ is equal to s′3t′2. From a
straightforward counting, we then have that

δ1 = µ
(s′ + 1)(s′2t′2 + s′t′ + 1)

(s + 1)(s4 + s2 + 1)
,

δ2 = µ
(s′ + 1)(s′2t′2 + s′t′ + 1)s′3t′2

(s + 1)(s4 + s2 + 1)s5
.
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Put α := |O ∩ Γ′|, where Γ′ is an arbitrary element of F . Counting pairs
(x, Γ′) with Γ′ ∈ F and x ∈ Γ′ ∩O yields

α =
|O| · δ1

µ

= (s3 + 1)
(s′ + 1)(s′2t′2 + s′t′ + 1)

(s + 1)(s4 + s2 + 1)

=
(s′ + 1)(s′2t′2 + s′t′ + 1)

s2 + s + 1
.

Counting triples (x, y, Γ′) with Γ′ ∈ F , x, y ∈ O ∩ Γ′ and x 6= y yields

µα(α− 1) = |O|(|O| − 1) · δ2

= (s3 + 1)s3 · µ(s′ + 1)(s′2t′2 + s′t′ + 1)s′3t′2

(s + 1)(s4 + s2 + 1)s5

= µ
(s′ + 1)(s′2t′2 + s′t′ + 1)s′3t′2

(s2 + s + 1)s2
.

Hence,

µ
(s′ + 1)(s′2t′2 + s′t′ + 1)

s2 + s + 1
· (s′ + 1)(s′2t′2 + s′t′ + 1)− (s2 + s + 1)

s2 + s + 1

= µ
(s′ + 1)(s′2t′2 + s′t′ + 1)s′3t′2

(s2 + s + 1)s2
,

s2(s′ + 1)(s′
2
t′

2
+ s′t′ + 1)− s2(s2 + s + 1) = (s2 + s + 1)s′

3
t′

2
,

(s− s′t′)
(
s2(s + s′t′) + s2 − s′(s + s′t′)− s′

2
t′s

)
= 0. (4)

Clearly,

s2(s+s′t′)+s2−s′(s+s′t′)−s′
2
t′s = (s2−s′s)+(s3−s′(s′t′))+ss′t′(s−s′) > 0

since s ≥ s′ and s ≥ s′t′ (Thas [11]). Hence, s = s′t′.

Proof of Theorem 2.3

Let Γ be a generalized hexagon of order s. Let Γ′ be a proper subhexagon
of order (s′, t′) of Γ and let F be a family of µ ≥ 1 ovoids of Γ such that (i)
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every point of Γ is contained in precisely δ1 elements of F and (ii) every two
opposite points of Γ are contained in precisely δ2 elements of F . If s = s′t′,
then by Theorem 2.1, Γ′ intersects every element of F in a constant number
of points.

Conversely, suppose that Γ′ intersects every member of F in a constant
number of points. We will prove that s = s′t′. From a straightforward
counting, we have

δ1 = µ
s3 + 1

(s + 1)(s4 + s2 + 1)
=

µ

s2 + s + 1
,

δ2 = µ
(s3 + 1)s3

(s + 1)(s4 + s2 + 1)s5
=

µ

(s2 + s + 1)s2
.

Put α := |O ∩ Γ′|, where O is an arbitrary element of F . With similar
counting as before, we have

α =
(s′ + 1)(s′2t′2 + s′t′ + 1)

s2 + s + 1
,

µα(α− 1) = µ
(s′ + 1)(s′2t′2 + s′t′ + 1)s′3t′2

(s2 + s + 1)s2
.

So, we obtain the same equations as in the proof of Theorem 2.2. Hence,
s = s′t′.

6 The intersection of distance-2-ovoids and

suboctagons in generalized octagons

We will only prove Theorem 2.4. Theorem 2.5 is proved in a completely
similar way and leads to the same equations as in the proof of Theorem 2.4
(similar situation as in the proofs of Theorems 2.2 and 2.3).

Let Γ be a generalized octagon of order (s, t). Then Γ contains (s+1)((st)3 +
(st)2 + st + 1) points and (t + 1)((st)3 + (st)2 + st + 1) lines. The number
of points at distance i ∈ {0, 1, 2, 3, 4} from a given point of Γ is equal to
Ni, where N0 := 1, N1 := s(t + 1), N2 := s2t(t + 1), N3 := s3t2(t + 1) and
N4 = s4t3. Let Γ′ be a suboctagon of order (s′, t′) of Γ with s 6= s′. Let F
be a family of µ ≥ 1 distance-2-ovoids of Γ such that every two points x and
y of Γ at distance i from each other are contained in precisely λi elements of
F . Here, λi is independent from the chosen points x and y.
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Lemma 6.1 Let O be a distance-2-ovoid of Γ and x a point of O. Then
|O| = (st)3 + (st)2 + st + 1, M0 := |Γ0(x) ∩ O| = 1, M1 := |Γ1(x) ∩ O| = 0,
M2 := |Γ2(x) ∩ O| = st(t + 1), M3 := |Γ3(x) ∩ O| = (s2 − s)t2(t + 1) and
M4 := |Γ4(x) ∩O| = s(s2 − s + 1)t3.

Proof. If we count in two different ways the number of pairs (x, L) with
x ∈ O and L a line of Γ through x, then we immediately find |O| = (st)3 +
(st)2 + st + 1.

Obviously, |Γ0(x) ∩ O| = 1 and |Γ1(x) ∩ O| = 0. Each of the s(t + 1)
points of Γ1(x) is collinear with precisely t points of O ∩ Γ2(x). Conversely,
every point of O ∩ Γ2(x) is collinear with a unique point of Γ1(x). It follows
that |O ∩ Γ2(x)| = st(t + 1).

We count in two different ways the number of pairs (x1, x2) with x1 ∈
Γ2(x) and x2 ∈ Γ3(x) ∩ O. Notice that if (x1, x2) is such a pair, then x1 ∈
Γ2(x) \ O. We have |Γ2(x) \ O| · t = |Γ3(x) ∩ O| · 1, i.e. |Γ3(x) ∩ O| =
(s2t(t + 1)− st(t + 1)) · t = (s2 − s)t2(t + 1).

Finally, we have |Γ4(x)∩O| = |O| −
∑3

i=0 |Γi(x)∩O| = s(s2− s + 1)t3. �

We now express λi, i ∈ {0, 1, 2, 3, 4}, in terms of µ, s and t. We have

λ0 = µ
(st)3 + (st)2 + st + 1

(s + 1)((st)3 + (st)2 + st + 1)
=

µ

s + 1
,

λ1 = 0,

λ2 = µ
((st)3 + (st)2 + st + 1) ·M2

(s + 1)((st)3 + (st)2 + st + 1) ·N2

=
µ

s(s + 1)
,

λ3 = µ
((st)3 + (st)2 + st + 1) ·M3

(s + 1)((st)3 + (st)2 + st + 1) ·N3

=
µ(s− 1)

s2(s + 1)
,

λ4 = µ
((st)3 + (st)2 + st + 1) ·M4

(s + 1)((st)3 + (st)2 + st + 1) ·N4

=
µ(s2 − s + 1)

(s + 1)s3
.

For every O ∈ F , put kO := |Γ′ ∩O|. Summing over all elements O of F , we
obtain ∑

1 = µ,∑
kO = (s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1) · µ

s + 1
,∑

kO(kO − 1) = (s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1) · s′2t′(t′ + 1)
µ

s(s + 1)
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+(s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1)s′
3
t′

2
(t′ + 1)

µ(s− 1)

s2(s + 1)

+(s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1)s′
4
t′

3µ(s2 − s + 1)

(s + 1)s3
.

Hence,∑
k2

O = µ(s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1) ·
(s′2t′(t′ + 1)

s(s + 1)

+
s′3t′2(t′ + 1)(s− 1)

s2(s + 1)
+

s′4t′3(s2 − s + 1)

(s + 1)s3
+

1

s + 1

)
.

From the Cauchy-Schwartz inequality (
∑

k2
O) · (

∑
1) ≥ (

∑
kO)2, we obtain

s′2t′(t′ + 1)

s(s + 1)
+

s′3t′2(t′ + 1)(s− 1)

s2(s + 1)
+

s′4t′3(s2 − s + 1)

(s + 1)s3
+

1

s + 1

≥ 1

(s + 1)2
· (s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1),

i.e.,

s2(s+1)s′
2
t′(t′+1)+s(s2−1)s′

3
t′

2
(t′+1)+(s+1)s′

4
t′

3
(s2−s+1)+s3(s+1)

≥ s3(s′+1)((s′t′)3+(s′t′)2+s′t′+1).

Bringing all terms to one side and factorizing gives

(s− s′)(s− s′t′)(s2 + s′
2
t′

2
) ≥ 0.

Since s > s′, we find
s ≥ s′t′.

By the reasoning above, we know that s = s′t′ if and only if Γ′ intersects
every element of F in a constant number of points. If s = s′t′, then this
constant number of points is equal to∑

kO∑
1

=
(s′ + 1)((s′t′)3 + (s′t′)2 + s′t′ + 1)

(s + 1)
= (s′ + 1)(s2 + 1).

This proves Theorem 2.4. As told before, the proof of Theorem 2.5 is com-
pletely similar.
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