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Although intended for the “average layman”, both in terms of readability and 
contents, the current patient information still contains many scientific terms. 
Different studies have concluded that the use of scientific terminology is one of 
the factors, which greatly influences the readability of this patient information. 
The present study deals with the problem of automatic term recognition of 
overly scientific terminology as a first step towards the replacement of the 
recognized scientific terms by their popular counterpart. In order to do so, we 
experimented with two approaches, a dictionary-based approach and a learning-
based approach, which is trained on a rich feature vector. The research was 
conducted on a bilingual corpus of English and Dutch EPARs (European Public 
Assessment Report). Our results show that we can extract scientific terms with a 
high accuracy (>80%, 10% below human performance) for both languages. 
Furthermore, we show that a lexicon-independent approach, which solely relies 
on orthographical and morphological information is the most powerful predictor 
of the scientific character of a given term. 
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1. Introduction 
In a continuously communicating society, there is a growing need for clear, 
unambiguous communication from public and commercial organizations. This is 
not only reflected in the increasing number of publications devoted to the (lack 
of) clarity of government communication (Kimble 2006), and of technical 
(Zahedi et al. 2001) and medical texts (Rudd et al. 2003), but it has also led to 
several social and legislative initiatives, such as the European Directive 
(2001/83/EC) on the readability of the patient information leaflets (PILs) and 
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the concrete elaboration of templates with standard expressions1. However, 
despite the increased scientific and legislative interest in the topic, surveys on 
PILs (Nink and Schroder 2005, Pandermaat 2008) have shown that respondents 
often feel distressed by reading the information, or even consider it as fully 
incomprehensible. This article deals with the automatic identification of one of 
these sources of distress, namely the use of scientific terminology in patient 
information. Although intended for the “average layman”2, both in terms of 
readability and contents, the current patient information still contains many 
scientific terms. This might be due to the fact that the public patient information 
is an adaptation or intergeneric translation (Zethsen 2004) of the scientific 
leaflet, which is written in expert language with expert terminology. 
 
Our study can be categorized as research into automatic term recognition (ATR), 
and more specifically as ATR in the biomedical domain. However, whereas most 
of the work on biomedical ATR focuses on the detection of biomedical terms 
versus non-terms (Krauthammer and Nenadic 2004, Jacquemin 2001), the 
present study goes one step further by also distinguishing between different 
types of terms. This differentiation is crucial because we wish to replace all 
scientific terms (e.g. epistaxis) by their popular counterpart in a next phase (e.g. 
nosebleed). The main aim of this operation is to improve the readability of the 
patient information. The first step towards the automatic replacement of all 
scientific terms by a valid popular alternative, is the accurate selection of 
scientific terminology. In order to do so, we experimented with two approaches, 
a dictionary-based approach and a learning-based approach, which is trained on 
a rich feature vector. The research was conducted on a bilingual corpus of 
English and Dutch EPARs (European Public Assessment Report). Our results 
show that we can accurately extract scientific terms (F-score: >80%, 10% below 
human performance) for both languages. Furthermore, we will show that a 
lexicon-independent approach, which solely relies on orthographical and 
morphological information is the most powerful predictor of the scientific 
character of a given term. Our results are restricted to biomedical popular 
science documents, namely EPAR documents. Given the ultimate goal of this 
term extraction procedure, viz. the replacement of a scientific term by its 
popular counterpart, we did not experiment on biomedical scientific documents. 
 
The remainder of this paper is structured as follows. Section 2 motivates the 
present study and gives an overview of related work on medical terminology and 
automatic term recognition. Section 3 presents an overview of the English and 
Dutch corpora being used and discusses the annotation guidelines and the inter-
annotator agreement. In Section 4 and 5, we describe the two different 
approaches, which were taken, viz. lexicon-based versus learning-based term 
extraction, followed by the experimental setup. Section 6 provides a thorough 
overview of the feature construction for the learning-based experiments, reports 
on the results and discusses the main findings of the manual error analysis. 
Section 7 ends with some concluding remarks and directions for future research.  

                                                        
1 Other notable initiatives are the “Plain Language” campaign in the UK, the Bill Clinton 
Memorandum (http://www.plainlanguage.gov) in the US, the “Klare Taal” and “Duidelijke Taal” 
campaigns in the Netherlands, etc. 
2 As stated in the EMEA report EMEA/126757/2005, 2.0 



 

2. Background and related work 
The ability of patients to understand medical information has already been 
studied extensively. In the domain of oral patient-doctor communication for 
example, Lerner et al. (2000) conducted a study to determine the emergency 
department patients' understanding of common medical terms used by health 
care providers. They asked a balanced group of 249 patients to determine for six 
pairs of terms whether they had the same meaning or not. Based on the 
observation that the mean number of correct responses was 2.8 out of 6, they 
concluded that medical terminology is often poorly understood. Some examples: 
the percentages of patients that did not recognize analogous terms was 79% for 
bleeding versus hemorrhage, 78% for broken versus fractured bone, 74% for 
heart attack versus myocardial infarction. The authors found that especially 
young, urban, poorly educated patients had a poor understanding of medical 
terminology. DiFlorio (1991) came to a similar conclusion in a study on the 
understanding of terms related to the care of newborn babies. In studies with 
diabetic patients Aufseesser et al. (1995) show similar low understanding. 
 
If we focus on written patient information, similar conclusions have been drawn: 
despite the legislative efforts, patients still have difficulty understanding the 
information. In 2005, a survey of the scientific institute of the German AOK 
(Allgemeine Ortskrankenkassen), Nink and Schroder (2005) revealed that, 
whereas the majority of the respondents read the leaflet and consider it as an 
important source of information, one third of the respondents still feels 
distressed by reading the leaflet. 28% even admit not having taken the drug 
because of the package insert; 20% consider it as fully incomprehensible. Similar 
conclusions were drawn for Dutch by Pandermaat (2008). Both studies conclude 
that the use of scientific terminology is one of the factors which greatly 
influences the readability of this patient information.  
 
The present study deals with the problem of automatic recognition of overly 
scientific terminology as a first step towards the replacement of the recognized 
scientific terms by their popular counterparts. Automatic term recognition (ATR) 
is crucial in many domains of (computational) linguistics, including automatic 
translation, text indexing, the automatic construction and enhancement of lexical 
knowledge bases, etc. In the research on automatic term extraction, two different 
directions have mainly been taken. On the one hand, the linguistic-based or rule-
based approaches, as proposed by Dagan and Church (1994), Ananiadou (1994), 
Fukuda et al. (1998) and others, make use of hand-coded rules and look for 
specific (mostly language-specific) linguistic structures that match a number of 
predefined syntactic patterns. On the other hand, the statistical corpus-based 
approaches extract terms using measures of “unithood” and/or “termhood” to 
detect candidate terms. Unithood indicates the collocation strength of the units 
of a term and has been measured by metrics such as mutual information and log-
likelihood (Cohen 1995, Fahmi et al. 2007), whereas termhood refers to the 
association strength of a given term to a domain concept (Medelyan and Witten 
2006, Park et al. 2002) (see Section 6 for a thorough description of both 
measures). Along the same corpus-based line, different machine learning 



approaches have been proposed using learning techniques such as Hidden 
Markov Models (Collier et al. 2000) or Support Vector Machines (Kazama et al. 
2002), and meta-learning methods such as boosting (Vivaldi et al. 2001), etc. on 
feature sets encoding lexical, part-of-speech, orthographic and other possibly 
relevant information. Hybrid approaches combining both linguistic and 
statistical information have also emerged, e.g. Maynard and Ananiadou (1999), 
Frantzi and Ananiadou (1999). For a more detailed overview of the field, we 
refer to Hirshman et al. (2002) and Ananiadou and McNaught (2006). Our 
approach falls within the category of machine learning approaches, but it differs 
from the previous described approaches in the specificity of the task, the 
richness of the feature vector (as shown in Section 6) and the choice of the MBL 
learning algorithm (which has shown to be quite robust in case of highly skewed 
data sets).  
 

3. Corpus construction 
For both English and Dutch, we collected a parallel corpus of 317 EPAR 
summaries for the public3. EPAR stands for “European Public Assessment 
Report”; it is a text which is prepared at the end of every centralized evaluation 
process to provide a summary of the grounds for the opinion in favor of a 
marketing authorization as taken by the Committee for Human Medicinal 
Products. The European Medicines Agency, EMEA, makes these EPARs available 
to the public after deletion of commercially confidential information. Although 
the EPAR abstracts were originally intended to provide information 
understandable to the general public, they are often considered as too technical4.  

3.1. Annotation guidelines 
For this study, 20 summaries of each language were manually annotated 
(English: 16,263 tokens; Dutch: 15,938 tokens) by two linguists, who annotated 
the corpora in parallel and who received free text as input. Their annotation was 
not restricted to certain morphosyntactic categories. This implies that adjectives, 
nouns, adverbs, noun phrases, etc. all could receive a label. An overview of the 
most important morphosyntactic categories that were annotated can be found in 
Table 1. As annotation environment, Callisto (http://callisto.mitre.org) was used. 
The main focus in the annotations was to label the scientific terms, which are 
candidates for replacement by a popular counterpart. The annotators had to 
differentiate between 4 labels: 

 NamedEntity: named entities such as Zostavax, Committee for Medicinal 
Products for Human Use and D06BB10. The named entities were 
annotated since they often have the same characteristics as scientific 
terms, whereas they are not candidates for replacement.  

 Scient(ific): scientific terms such as neuralgia, akathisia, gastro-intestinal. 
 Amb(iguous): medical terms of which it is assumed that they are widely 

known and used, e.g. AIDS, antibiotics. 
 Pop(ular)_Var(iant): popular variants of scientific terms which are used 

in the texts. e.g. People who may be hypersensitive (allergic) to... or 

                                                        
3 The EPAR summaries and the annotations will be made publicly available through 
http://veto.hogent.be/lt3 
4 http://www.emea.europa.eu/pdfs/human/euleg/12675705en.pdf 



compared the medicine to a placebo (a dummy vaccine). The terms allergic 
and dummy vaccine are labeled as Pop_Var, whereas hypersensitive and 
placebo receive a Scient label.  

 
 
Table 1. Overview of the main morphosyntactic categories that received a label 
by the annotators 
 

Morphosyntactic categories English Dutch 
Nouns 2846 1449 
Adjectives 669 385 
Verbs 173 101 
Conjunctions 78 21 
Numerals 50 37 
Determiners 45 37 
Pronouns 16 6 
Prepositions 63 97 

 
 
The motivation for the different annotations of the medical terms, i.e. Scient, 
Amb and Pop_Var is the following. Given the objective that the EPARs should be 
readable by the average layman, the linguists who labeled the data, were asked 
to give an intuitive label. The objective was to categorize the clear-cut medical 
slang into the Scient category. The terms of which the annotators judged that 
they were commonly used by many people, were annotated as Amb(iguous). 
Finally, the Pop_Var label is mainly relevant in a second experimental phase (not 
reported in this article) in which the scientific terms have to be replaced by their 
popular counterpart. All terms, which were not annotated by the annotators will 
receive a Pop(ular) tag for the classification experiments (see for example Table 
4). 
 

3.2. Agreement 
The annotation agreement between the two annotators was measured by means 
of the kappa statistic (Carletta 1996). Table 2 gives an overview of the inter-
annotator agreement on the different categories and shows similar tendencies 
for both languages. On both the English and the Dutch data, an agreement score 
of 0.91 and a kappa score of 0.85 was obtained. Given its ambiguous nature, 
there is an expected large disagreement on the Amb category. In order to allow 
for comparison with the results of the classification experiments, we calculated 
the precision, recall and their weighted F-score for the scientific category by 
taking the annotation of one annotator as gold standard and the annotation of 
the other annotator as system output (and vice versa). This led to an F-score of 
92.1% for English and 91.8% for Dutch. 
 
 
 
 



Table 2. Contingency table representing the inter-rater agreement for English 
and Dutch 
 

English Scient Amb NamedEntity Pop_Var Total 
Scient 1609 240 9 10 1868 
Amb 13 123 0 2 138 
NamedEntity 2 0 923 0 925 
Pop_Var 2 7 0 191 200 
Total 1626 370 932 203 3131 

 

Dutch Scient Amb NamedEntity Pop_Var Total 
Scient 1192 114 4 1 1311 
Amb 66 69 1 1 186 
NamedEntity 21 0 858 0 879 
Pop_Var 7 3 0 132 142 
Total 1286 186 863 134 2469 

 
 
For the experiments, the 2 annotated versions of the EPAR summaries were 
merged using the following hierarchy: Scient > Amb > Pop_Var > NamedEntity. 
For example, if one annotator decided in favor of a “Scient” tag, whereas the 
second annotator chose the “Amb” tag, the “Scient” tag was kept in the unified 
data set.  
 

4. Lexicon-based baseline 
For the detection of the medical terms, we experimented both with a lexicon-
based and a learning-based approach. Given its simplicity, we considered the 
dictionary-based system our baseline system. 
 

4.1. English lexicons 
For the lexicon-based approach, we collected a number of external lexicons, 
starting with the MeSH5 for English. Additionally, we used the Specialist Lexicon6 
from the UMLS, a lexicon which covers both the English general language and 
concepts from the field of biomedicine and which was originally designed to 
support the SPECIALIST Natural Language Processing System and to generate 
indexes to the Metathesaurus. To further expand our lexicon, we also added data 
from Merriam-Webster's Medical Dictionary7. The combined English sources 
resulted in a lexicon containing 602,873 general and scientific terms. In order to 
filter out general vocabulary terms we intersected our combined lexicon with the 
Celex lexical database (Baayen et al. 1993), which resulted in a lexicon of 
573,754 unique scientific terms (single word terms: 58%; multi word terms: 
42%). 

                                                        
5 http://www.nlm.nih.gov/mesh 
6 http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/web/release/index.html 
7 http://medical.merriam-webster.com/medical/ 

 

http://www.nlm.nih.gov/mesh
http://lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lexicon/current/web/release/index.html
http://medical.merriam-webster.com/medical/


4.2. Dutch lexicons 
In order to build a lexicon for Dutch, a larger number of sources was needed. For 
the Dutch version of the MeSH, we relied on a termbase as described by 
Buysschaert (2006). This translation project focuses mainly on chapters C and E 
(Diseases and Analytical, Diagnostic and Therapeutic Techniques and Equipment 
respectively). In addition, we used Dutch lexicons such as Taalvlinder8, Elseviers 
Medische Encyclopedie9, the Wikipedia page Gezondheid van A tot Z10 and the 
Dutch entries from the Medical Dictionary for Regulatory Activities, MedDRA11. 
We furthermore extracted terminological information from online sources such 
as: 

 Patients' associations e.g.: CMP Vlaanderen12 & Dystrofie13 
 Online dictionaries e.g.: Maranje14 
 Specific websites e.g.: DokterDokter.nl15  

These sources resulted in a lexicon of 264,778 Dutch terms. Intersecting this 
lexicon with Celex resulted in a list containing 257,674 scientific terms for Dutch 
(single word terms: 42%; multi word terms: 42%). 
 

4.3. Experimental setup and results 
This external lexical information was the basis for three matching strategies, the 
results of which are displayed in Table 3. Three measures were used throughout 
this paper to evaluate the results: Precision, Recall and F-score (Jurafsky and 
Martin 2009). 
 

 
First, we matched every single word in the EPARs with the English and Dutch 
lexicons, which resulted in a rather low recall score, i.e. 22.4% for English and 
27.3% for Dutch. In a second step, we experimented with multiword terms and 
matched every n-gram (up to five) with our lexicon. This multiword term 
matching, however, was not able to detect new compounds. If, for instance, the 
terms lever (En: liver) and aandoening (En: disease) occurred in the lexicon as 
separate entries, but leveraandoening (En: liver disease) did not, the term was 
lost. This led to a third approach which aims at the detection of new compounds, 
i.e. fuzzy matching. This fuzzy matching approach matches any entry in our 

                                                        
8 http://www.ochrid.dds.nl/pages/lijsten/MedAlg.htm 
9 The encyclopaedia can be found at http:/www.kiesbeter.nl/medischeinformatie 
10 http://nl.wikipedia.org/wiki/Gezondheid_van_A_tot_Z 
11 http://www.meddramsso.com 
12 http://www.cmp-vlaanderen.be/content/0311_medwdb.php 
13 http://www.dystrofie.be/termen.html 
14 http://www.medisch.maranje.nl/ 
15 http://www.dokterdokter.nl/medisch/begrippen/list/char/A 
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lexicon combined with another entry. Given the previous example, if both lever 
and aandoening occur in the lexicon, leveraandoening will be a fuzzy match. The 
results of our lexicon coverage can be found in Table 3.  
 
Table 3. Coverage of the English and Dutch lexicons 
  

English Precision Recall F-score 
Single 78.94 22.39 34.88 
Single & Multi 73.43 37.27 49.44 
Single, Multi & Fuzzy 47.11 49.02 48.05 
    
Dutch Precision Recall F-score 
Single 67.71 27.28 38.89 
Single & Multi 51.92 34.08 41.15 
Single, Multi & Fuzzy 49.18 37.76 42.72 

  
 
As expected, lexicon-based term extraction leads to high precision scores at the 
cost of our recall scores. Table 3 shows a clear difference between the single-
word precision scores for both languages, which can be explained through 
manual analysis of the results. Even though the Dutch lexicon was intersected 
with Celex in order to filter out the non-scientific words, certain “popular” terms 
still occur in the lexicon (e.g.: patient, productie, risico's). The Dutch lexicon has a 
5% higher recall score for the single-word search, which indicates that the 
entries in this lexicon are more representative of the language used in the EPARs. 
When we combine the single-word search with the multiword search, precision 
drops both for English and for Dutch. An explanation can be found in the fact that 
both lexicons contain multiwords without a scientific character. Using the fuzzy-
match approach, higher recall scores were obtained. Precision, however, went 
down for both languages, which was to be expected given the “fuzzy” character 
of this approach.  
 

5. Learning-based term extraction 
As an alternative to the lexicon-based approach, we experimented with a 
machine learning based approach to term extraction, which not only exploits 
lexical information, but also takes into account a rich feature vector 
incorporating lexical, morphological and statistical information, local-context, 
etc. 

5.1. Memory-based learning 
Given the skewedness of the data sets (e.g. English: 2216 scientific tokens in a 
data set of 16,263 tokens), we experimented with a memory-based learning 
approach, which in earlier experiments has shown to be quite robust to this data 
set skewedness (Daelemans et al. 2003a). The approach is based on the memory-
based reasoning (Stanfill and Waltz 1986) and case-based reasoning schemes 
(Riesbeck and Schank 1989, Kolodner 1993), which state that performance in 
real-world tasks is based on remembering past events rather than creating rules 
or generalizations. MBL keeps all training data in memory and at classification 



time, a previously unseen test example is presented to the system and its 
similarity to all examples in memory is computed using a similarity metric. The 
class of the most similar example(s) is then used as a prediction for the test 
instance. This strategy is often referred to as “lazy” (Aha 1997) learning. This 
storage of all training instances in memory during learning without abstracting 
and without eliminating noise or exceptions is the distinguishing feature of 
memory-based learning (MBL) in contrast with minimal-description-length-
driven or “eager” ML algorithms (e.g. decision trees, rules and decision lists). 
Rule induction, which can be described as an eager learning approach, 
compresses the training material by extracting a limited number of rules.  
 
For our experiments, we used the memory-based learning algorithms        
implemented in TIMBL (Daelemans et al. 2002), which is a fast, decision-tree-
based implementation of k-nearest neighbour classification. An MBL system 
consists of two components: a memory-based learning component and a 
similarity-based performance component. During learning, the learning 
component adds new training instances to the memory without any abstraction 
or restructuring. During classification, the classification of the most similar 
instance in memory is taken as classification for the new test instance. In other 
words, given a set of instances or data points in memory: (x1, y1), (x2, y2), (x3, y3) … 
(xn, yn), the task at classification time is to find the closest xi for a new data point 
xq. In order to do so, the following components are crucial: (i) a distance metric 
which looks at the number of matching and mismatching feature values in two 
instances, (ii) the number of nearest neighbours to look at and (iii) a strategy of 
how to extrapolate from the nearest neighbours.                                 
 

 A distance metric: When presenting a new instance for classification to 
the MBL learner, the learner looks in its memory in order to find all 
instances whose input attributes are similar to the newly presented test 
instance. In order to do that, we have to define what is meant by similar. 
In other words, we need to define a distance metric that defines how far xq 

and xi are. In order to measure this distance, we calculate the number of 
matching and mismatching features in two instances (for a description of 
the feature construction, we refer to Section 6). The distance between xq 

and xi is simply the sum of the differences or distance  between the n 
features: 
 

 
where: 

 
 
 



This means that all features are considered equally important. This is the 
approach taken in the IB1 algorithm from Aha et al. (1991). However, IB1 
does not solve the problem of modeling the difference in relevance of the 
various features. In most cases some features will be more informative for 
the prediction of the class label than others. Therefore, some type of 
feature weighting is required in which features, which contribute most to 
a correct classification are given a higher weight than less informative 
features. For our experiments, we used the default feature weighting 
method in TIMBL, gain ratio weighting, which is a normalized version of 
the information gain (Quinlan, 1993) weighting method. The information 
gain of a feature i is calculated as follows. Assume we have C, the set of 

class labels and Vi, the set of feature values for feature i. With this 
information, we can calculate the database information entropy. The 
probabilities are estimated from the relative frequencies in the training 
set. 
 
The information gain of feature i is then measured by calculating the 
difference in entropy between the situations with and without the 
information about the values of the feature: 
 

 
Gain ratio, is a normalized version of information gain. It is information 
gain divided by split info si(i), the entropy of the feature values. This is 
just the entropy of the database restricted to a single feature.  
 
 
 

 
 

 
 
 

 The nearest neighbours: The nearest neighbours are the instances in 
memory, which are near to the test item to be classified and the 
classification of these nearest neighbours is used as classification for the 
new test instance. The number of nearest neighbours is expressed by k. In 
the original k-nearest neighbours algorithm (Cover and Hart, 1967), the k 
closest training examples are taken and the test instance receives the 
classification of the most common category among these nearest 
neighbours. In case of continuous feature vectors, Euclidean distance is 
used to calculate the similarity of two instances. In this case, it rarely 
happens that two nearest neighbours have the same distance. In case of 
discrete and symbolic features, however, for which the distance between 



two values is 0 if they are the same and 1 if different (the above described 
overlap measure), this occurs regularly. Therefore, in the TIMBL 
implementation of IB1, k refers to the number of nearest distances. For 
our experiments we used the default k=1 value. This means that the 
instances with the nearest distance to the test instance are used for 
classification. In case of multiple instances at the same distance, TIMBL 
selects the classification with the highest frequency in the class 
distribution of the k-nearest distances set.  

 
 A model of how to extrapolate from the nearest neighbours: in our 

experiments, we used the default method in TIMBL for deciding which will 
be the class of a new test item: majority voting. This means that all 
nearest neighbours receive equal weight and that the most frequent class 
in the nearest neighbour set is taken as classification for the new test 
item.  

 

5.2. Experimental setup 
The general setup for the experiments is the following. All experiments are 
performed using k-fold cross-validation (Weiss and Kulikowski 1991) on the 
data set. This means that the full data set is split into k subsets. Iteratively, each                        
partition is used as the hold-out test set while the remaining k-1/k balance of the 
data is used for training. For the experiments, k was set to twenty (equaling the 
total number of annotated EPARs) and the partitions were made at the 
document level.  
 

6. Feature construction 
For the learning experiments, we used a supervised learning approach which is 
trained on a feature vector set incorporating lexical, morphological and 
statistical information, local-context, etc. which can contribute to the correct 
detection of scientific terms. We built a feature vector for each token (the so-
called “focus word”) in the corpus. This implies that -even for the training data- 
we did not use any a-priori information on the annotated class labels nor on the 
part-of-speech, etc. of the words in the corpus. The same feature construction 
procedure was used both for the training and test data. In a classification 
approach, such as the one we are using for the term extraction experiments, a 
classifier is trained on a given training corpus and is then applied to the test data, 
for which it will assign a class to each test instance using the knowledge it 
inferred from the training data. Having a class distribution in the test data which 
closely resembles the training data, set class distribution is of utmost importance 
for classifier performance.  
 
For example, the training sentence “The active substance of Abilify is aripiprazole, 
a quinolinone derivative”, will be converted to the instances (one for each token) 
represented in Table 4.  
 
 
 



 
Table 4. Tokens for which a feature vector is constructed, followed by their 
classification 
 

Focus token Class 
The Pop 
active Scient 
substance Scient 
of Pop 
Abilify NamedEntity 
is Pop 
aripiprazole Scient 
, Pop 
a Pop 
quinolinone Scient 
derivative Scient 
. Pop 

 
The multi word units (MWU) in the learning experiments can be identified by 
merging feature vectors containing similar classifications: two or more 
consecutive words, which are classified as “Scient” can be considered a MWU.  
 

6.1. Local context 
We included word-form, lemma and part-of-speech information of three words 
to the left and three words to the right of the focus word. In order to obtain this 
information, the two corpora were preprocessed by means of a shallow parser 
(as shown in the example sentence below). The following preprocessing steps 
were taken both for English and for Dutch. Tokenization was performed by a 
rule-based system using regular expressions. Part-of-speech tagging and text 
chunking for English was performed by the memory-based tagger MBT 
(Daelemans et al. 1996, Daelemans et al. 2003), which was trained on text from 
the Wall Street Journal corpus in the Penn Treebank, the Brown corpus (Kucera 
and Francis 1967) and the Air Travel Information System (ATIS) corpus 
(Hemphill et al. 1990). During text chunking syntactically related words were 
combined into non-overlapping phrases (represented by square brackets in the 
example below). Although the chunker provided different types of phrases, we 
were mainly interested in the NP chunks. These NP chunks are base NPs which 
contain a head, optionally preceded by premodifiers, such as determiners and  
adjectives. Postmodifiers are not part of the noun phrase. Part-of-speech tagging 
and text chunking for Dutch was again performed by the memory-based tagger 
MBT, this time trained on the Spoken Dutch Corpus (CGN)16.  
 
 [The\DT\The active\JJ\active substance\NN\substance]  
of\IN\of [Abilify\NNP\Abilify] is\VBZ\be [aripiprazole\JJ\aripiprazole] ,\,\, 
[a\DT\a quinolinone\JJ\quinolinone derivative\NN\derivative] .\.\. 
 

                                                        
16 More information on this corpus can be found at http://lands.let.ru.nl/cgn/ 



 

6.2. Lexical information 
We used the external lexicons to build lexical, binary features using three 
approaches: single-word matches, multi-word matches and fuzzy-word matches. 
These approaches and the contents of the lexicons we used are discussed in 
detail in Section 4.3. In the learning experiments, the matches are just 
incorporated as features, which implies that a single word match binary feature 
value of “1” does not necessarily lead to a scientific classification of a given focus 
word.  
 
As an alternative to integrating dictionary-based lexical information, quite some 
research has been done in order to detect words that are specific to a corpus 
based on corpus comparison. Consequently, a wide range of different techniques 
have been developed in information retrieval as well as in the field of 
computational terminology (e.g. Salton 1989, Dunning 1993). Salton (1989) tried 
to determine the weight of a word (in a collection of documents) by calculating 
TF-IDF scores, whereas other researchers, among others Dunning (1993), 
Rayson and Garside (2000) and Ferreira da Silva et al. (1999), have explored the 
use of the Log-Likelihood measure to discover keywords which differentiate 
between corpora. Next to that, techniques of Mutual Information (Church and 
Hanks 1990) and hypergeometric distribution (Lafon 1980, Lebart and Salem 
1994) were explored to find lexicon-specific terms. 
 
In order to add corpus-specific lexical information to our feature set, we applied 
two types of statistical filters on the data (Kageura and Umino 1996): 

1. Filters that measure the Termhood (Drouin, 2006) or “degree to which a 
linguistic unit is related to domain-specific context”: TF-IDF and Log-
Likelihood filters (Section 6.3.) 

2. Filters that measure the Unithood or “degree of strength or stability of 
syntagmatic combinations or collocations”: Mutual Expectation measure 
(Section 6.4.) 

 

6.3. Termhood 

 TF-IDF (term frequency inverse document frequency) is widely used in 
Information Retrieval to isolate useful keywords in document collections. 
TF-IDF (Salton 1989) combines two hypotheses: a search term is of more 
value when it occurs in few documents (IDF) and distinctive terms have a 
high frequency in a given document (TF). As we also need to pin-point 
distinctive keywords (scientific terms in our case), we calculated TF-IDF 
for all terms in the full EPAR corpus. To calculate the IDF, we enlarged the 
EPAR corpus with all written and spoken documents of the BNC17 corpus 
for English and the TNC18 for Dutch. Calculating TF-IDF on the EPAR 
terms should enable us to extract lexicon-specific scientific terms that 
have much lower frequencies in balanced reference corpora such as the 
BNC or the TNC.  

                                                        
17 http://www.natcorp.ox.ac.uk/ 
18 http://www.vf.utwente.nl/~druid/TwNC/TwNC-main.html 



Given a document collection D, a word w, and an individual document d in 
D, 

 
 
where fw,d equals the number of times w appears in d, |D| is the size of the 
corpus and fw,D equals the number of documents in which w appears in D 
(Berger et al. 2000). 
 
We used these TF-IDF weighted terms to construct two separate features 
for our feature vector: one that takes into account the TF-IDF value itself 
and another one that defines the threshold to perform the intersection 
with the medical lexicon. In order to determine the TF-IDF threshold for 
scientific terms, we performed 20-fold cross-validation on the labeled 
EPAR corpus. First, we calculated the average TF-IDF value of terms that 
have been manually labeled as being scientific; in order to do so, we 
ignored the 5% highest and lowest values in all 20 training runs. This led 
to the selection of 1.05 as threshold, which was used to create a binary 
TF-IDF feature. This threshold value was also used to rebalance the highly 
skewed data set (as we will explain in the next section). We measured 
both the percentage of correctly labeled terms (scientific terms having a 
TF-IDF value above the threshold and popular terms having a TF-IDF 
value below the threshold) as well as precision and recall for the scientific 
terms. 

 
 As a second measure, we calculated Log-Likelihood. Both Daille (1995) 

and Kilgarriff (2001) have determined empirically that LL is an accurate 
measure to find the most “surprisingly” frequent words in a corpus that 
also corresponds fairly well to what humans might associate with 
distinctiveness of terms. We first produced a frequency list for each 
corpus and calculated the log-likelihood statistic for each word in the 
frequency lists. This is done by constructing a contingency table as is 
shown in Table 5, where c represents the number of words in the first 
corpus, while d corresponds to the number of words in the second corpus. 
The values a and b are called the observed values (O). 

 
Table 5. Contingency table to calculate Log-Likelihood 

 

 First Corpus Second Corpus Total 
Frequency of word a b a+b 

Frequency of other words c-a d-b c+d-a-b 
Total c c c+d 

 
In the formula below, N corresponds to the total number of words in the 
corpus, i corresponds to the single words, whereas the “observed values” 
Oi correspond to the real frequency of a single word i in the corpus. For 
each word i, the observed value Oi is used to calculate the expected value 
Ei according to the following formula:  
 



 
Applying this formula to our contingency table (with N1 = c and N2 = d)  
results in: 

 
We then used the resulting Expected values for the calculation of the Log- 
Likelihood: 
 

which equates to: 
 

 
The formula for the calculation of both the expected values (E) and the 
Log-Likelihood have been described in detail by Rayson and Garside 
(2000). Manual inspection of the Log-Likelihood figures confirmed our 
hypothesis that scientific terms in our EPARs usually get assigned high 
LL-values (combined with low BNC frequencies). The log-likelihood 
information was integrated as a binary feature. Terms with log-likelihood 
value above a predefined threshold and with BNC frequency below a 
predefined threshold were set to 1, the others were set to 0. Both 
thresholds were validated on the EPAR corpus using 20-fold cross-
validation. 

6.4. Unithood 
As a measure of unithood, we calculated the Mutual Expectation values for the 1- 
to 8-grams. Dias and Kaalep (2003) developed the Mutual Expectation (ME) 
Measure to test the cohesiveness between words in a multiword term, i.e. the 
group of words forming a multiword should occur together more frequently than 
expected by chance. In order to calculate the Mutual Expectation values, the n-
gram frequencies (up to 8-grams) are calculated based on the EPAR corpus and 
used to derive the Normalized Expectation (NE) values for all multiword terms, 
as specified by following formula:  

 
This Normalized Expectation expresses the cost, in terms of cohesiveness, of 
losing one component of the n-gram. In case the cohesiveness of the multiword is 
very high, the frequency of the n-gram minus one component is expected to be 
lower, and the resulting Normalized Expectation value will be high again. For 
example, if we compare the two bigrams “protease inhibitors” (ME: 9.3) and “the 
wart” (ME: 0.0001), it is already intuitively clear that the resulting unigram “the” 



when deleting the last word of the bigram (“wart”) will be much more frequent 
than the resulting unigram “protease”. As simple n-gram frequency appears to be 
a valid criterion for multiword term identification (Daille 1995), the final Mutual 
Expectation values are obtained by multiplying the Normalized Expectation and 
the relative frequency of the multiword. We calculated Mutual Expectation 
values for all English and Dutch multiword terms in our EPAR corpus and 
performed an additional filtering on the list of multiwords. We only included 
multiwords in case: 
 

1. one of the words of the multiword appeared in our scientific lexicon 
2. the multiword formed a valid syntactical chunk (noun phrase, 

prepositional phrase or a combination of both) 
3. the multiword contained at least one content (i.e non-grammatical) word 

 
We included the Mutual Expectation information as a binary feature: in case the 
value is higher than a predefined threshold (0.1 in our case) and the target word 
complies with the three conditions mentioned above, the feature is set to “yes”, 
otherwise the feature is set to “no”. In order to define the threshold, we 
calculated ME values for all multiwords occurring in our full EPAR corpus, 
applied the three filtering criteria and sorted the list according to descending ME 
values.  

6.5 Morphological information 
In addition to the features above, cognates may also be an indication of 
termhood. Other useful morphological features are Greek and Latin affixes. 
 

 Cognate information:  
Cognate matching has been successfully used to find correspondence 
points for the alignment of parallel texts (Kondrak 2003, Simard et al. 
1992 and Ribeiro et al. 2001) and to extract terms from bitexts (Alegria et 
al. 2006). In a linguistic context, cognates are words, which share the 
same origin and have similar orthography. In computational linguistics, 
however, cognates are defined as words, which have similar orthographic 
and identical semantic properties (Melamed 1999). Previous work on 
cognate detection has been focused both on orthographic evidence, such 
as the Levenshtein distance, Dice's coefficient, Longest Common 
Subsequence Ratio, and on semantic evidence (Mulloni et al. 2007). A 
combinatory method using both orthographic and semantic evidence has 
been discussed by Nakov et al. (2007) and Mitkov et al. (2007). Semantic 
evidence is particularly valuable for the detection of false cognates, 
especially from comparable corpora. However, the problem of false 
friends is negligible in this research: the use of word-aligned bitexts 
reduces the chance of finding false friends to a minimum. 
 
We composed a list of cognates, which was incorporated into the system 
as a binary feature. Two sources were used for the compilation of this list: 
MeSH translations (Buysschaert 2006) and 20 English and Dutch EPARs. 
We split up all multiword terms in the English-Dutch MeSH list and 
extended this list with the resulting single-word terms. Subsequently, we 



calculated the Longest Common Subsequence Ratio (Hirschberg 1977) for 
each of these terms, which involves finding the longest subsequence 
common to the pair of sequences. We then filtered out those terms with a 
substring overlap of less than four characters. This resulted in a list of 
6,495 unique English and 5,646 unique Dutch cognate terms. The 
difference in number between English and Dutch can be explained by the 
fact that some English synonyms are translated by the same Dutch term.  
 
To further extend this list, we manually aligned 20 English and Dutch 
EPARs on the sentence level, and used the output to automatically align 
them on word level, using the Perl implementation of IBM Model One that 
is part of the Microsoft Bilingual Sentence Aligner (Moore 2002). The 
candidate terms were tokenized and a POS filtering provided us with a list 
containing mainly nouns and adjectives. Subsequently, the Longest 
Common Subsequence Ratio was calculated for each word pair and again 
only those terms with a substring overlap of more than four characters 
were taken into account. This way, 45 English and 54 Dutch cognates 
were added to the list. Finally, as already mentioned, this information was 
integrated as a binary feature.  

 
 Affix information: Medical terminology has the specificity to use 

abbreviations, acronyms and Latin terms (Surjan and Heja 2003). 
Affixation and (semi-)neoclassical compounding have proven to be 
extremely productive word formation techniques since the 16th century. 
Greek and -especially- Latin were the languages of science, leaving very 
distinct traces in present-day terminology. The use of these Greco-
Latinates has some advantages over the use of vernacular terms: they 
create terminological continuity and consequently increase the efficiency 
of medical communication. However, the overall comprehensibility of 
these Greco-Latinate forms to the general audience is low. Therefore, we 
incorporated Latin and Greek affixes as one of the criteria to detect 
scientific medical terms. A list of prefixes, suffixes and confixes compiled 
by Banay (1948) was completed during an experimental analysis of MeSH 
terms (Vanopstal and Van Wiele 2007). In this list, confixes which occur 
in initial position are considered as prefixes and confixes in final position 
as suffixes. From this list of affixes, four additional features were deduced: 
the presence of a prefix (e.g. condylar canal), the presence of a suffix (e.g. 
iritis), the presence of both prefix and suffix in one term (e.g. 
dyslipidaemia) and the presence of a confix in the centre of a term (e.g. 
antihistamines). 

 

6.6. Orthographic features and trigrams 
Two orthographic features were used as an indication of whether a given word is 
a scientific term or not. The first orthographic feature verifies whether a given 
word consists of or contains numeric symbols, a characteristic that may indicate 
that it is indeed a scientific term (e.g. b2-microglobulin). The second 
orthographic feature detects whether a given word contains multiple capital 
letters, which could indicate an abbreviation or an acronym (e.g. HIV). 



Furthermore, we included two trigram features, which represent the initial and 
final trigram of a given word. 
 

6.7. Term patterns 
A short analysis of the local contexts of terms labeled as scientific in the 
annotated EPAR corpus showed that several term patterns can be detected. 
Some phrases, denoted by Pearson (1996) as hinges, may signal the presence of 
a term, for example “is referred to as”, “denotes”, “is defined as”, “is called”, 
“known as” etc. In total, we gathered 14 left context-patterns for English and 4 
for Dutch for our experiments. We built a binary feature to verify whether a 
given focus word was preceded by one of these patterns or not.  
 

6.8. Contribution of the different types of information sources 
Table 6. 20-fold cross-validation results on the English EPAR data set with the 
complete feature vector. Contribution of the different types of feature 
information. 
 

 All classes Scientific class 
ENGLISH Accuracy Precision Recall F-score 

COMPLETE SYSTEM 
All features 92.36 85.59 77.75 81.48 

BASELINE SYSTEMS USING GROUPS OF FEATURES 
Local context 89.61 76.64 66.92 71.45 
Local cont. - focus 84.97 62.06 58.75 60.36 
TF-IDF, LL and ME 77.11 50.42 40.39 44.85 
Lexical 78.71 63.51 38.18 47.69 
TF-IDF + lexical 80.23 73.81 43.50 54.74 
Orthographic 88.21 81.24 63.72 71.42 
Morphological 78.97 71.89 36.46 48.38 
Orthographic and 
morphological 

88.78 84.34 67.33 74.88 

 
 
Table 7. 20-fold cross-validation results on the Dutch EPAR data set with the 
complete feature vector. Contribution of the different types of feature 
information. 
 

 All classes Scientific class 
DUTCH Accuracy Precision Recall F-score 

COMPLETE SYSTEM 
All features 93.92 86.01 76.48 80.97 

BASELINE SYSTEMS USING GROUPS OF FEATURES 
Local context 91.07 71.23 63.39 67.08 
Local cont. - focus 86.77 53.17 51.92 52.54 
TF-IDF, LL and ME 82.56 49.86 23.97 32.38 
Lexical 83.20 62.95 34.20 44.32 
TF-IDF + lexical 85.35 76.39 38.57 51.26 



Orthographic 91.07 82.55 64.10 72.17 
Morphological 84.37 81.59 34.07 48.07 
Orthographic and 
morphological 

90.95 80.58 65.67 72.36 

 
Tables 6 and 7 show an overview of the 20-fold cross-validation results of TiMBL 
on the English and Dutch EPAR data sets. The accuracy results are measured on 
the complete data set. The high accuracy scores (>90%) can partially be 
explained by the highly skewed class distribution in the data set. If the number of 
negative and positive instances is highly unbalanced, this will typically lead to a 
classifier, which has a low error rate for the majority class and a high error rate 
for the minority class. Since about 90% of the words in the EPAR corpus are non-
scientific terms, high precision scores can be obtained even without detecting 
any scientific term. The last three columns list the precision, recall and F-score 
on the scientific terms, our category of interest. Overall, we can observe an F-
score of 81% for the detection of scientific terms both in the English and the 
Dutch EPARs. Furthermore, we can observe that the precision scores are 
consistently higher than the recall scores for both languages.  
 
Considering the contribution of the different feature types, some observations 
can be made. The combination of the orthographic and morphological features 
gave the best results concerning F-score both for English and for Dutch. It 
appears that the information about prefixes, suffixes, trigrams, capitalization and 
word-internal numbers highly influences our system. It is also remarkable how 
much the system benefits from the local context information, which includes 
word form, lemma and part-of-speech information. There is a significant 
difference between the results, which include the focus word and its additional 
information and the results which do not. The combination of TF-IDF, Log-
Likelihood and external lexical information results in high precision scores 
(respectively 73.8% and 76.4%), but rather low recall (43.5% and 38.6%), which 
was to be expected given the low coverage results of our lexicons. 
 
Table 8. Confusion matrix showing the number of words per error class for 
English and Dutch. Column labels are referring to manual annotation whereas 
row labels refer to system output. 
 

ENGLISH Scient Amb NamedEntity Pop_Var Popular Total 
Scient 1723 55 37 22 176 2013 
Amb 74 277 0 5 73 429 
NamedEntity 62 1 991 1 16 1071 
Pop_Var 47 8 1 113 85 254 
Popular 310 105 31 134 11916 12496 
Total 2216 446 1060 275 12266 16263 
DUTCH Scient Amb NamedEntity Pop_Var Popular Total 
Scient 1179 46 13 12 121 1371 
Amb 62 151 1 6 55 275 
NamedEntity 46 5 862 1 36 950 
Pop_Var 14 12 1 80 89 196 



Popular 238 69 48 93 12698 13146 
Total 1539 283 925 192 1299 15938 

  
 
The confusion matrix in Table 8 shows the number of entries per error class for 
English and for Dutch. Both languages seem to share “problem areas”, i.e. classes 
that have a higher entry number. The most problematic classes are the following: 
 

 Scientific terms being predicted as popular terms: this error class is 
the most problematic one, as our final goal is to develop a system which 
automatically replaces scientific terms by their popular counterparts.  

 
Analysis of the entries in this class has shown us the following: words are 
sometimes labeled correctly as scientific but received the popular label on 
other occasions (e.g. replacement insulin). When we looked in more detail 
at these examples, it appeared that the terms were not always given the 
same label by the annotators. It also seems that when the focus word 
appears at the beginning or the end of a sentence, and therefore lacks 
local context, the error rates go up. The coverage of our lexicon is also a 
factor in this error class as many terms do not occur in it, which means we 
will have to expand our lexicon. Detailed analysis showed that the 
occurrence of a product name in the local context to the left of the focus 
word has a negative influence for this particular class, i.e. scientific terms 
being labeled as popular. Another type of words that can be listed in this 
error class are those that are only rarely labeled as scientific (e.g. but, 
patients, the) and that appear in this error class when they are part of a 
multi-word term. On certain occasions (e.g. an inherited disease), the 
given focus word is detected as part of a larger multi-word term. 
However, the weight of this sole feature is often not substantial enough 
for the system to label the word as scientific. 
 

 Popular terms being predicted as scientific terms: after thorough 
manual analysis of the entries in this class some characteristics can be 
detected. It appears that, if the local context of the focus word contains a 
bracket, a colon, capital letters or numeric symbols, the focus word easily 
receives the scientific label. In this error class, scientific terms preceding 
or following the focus word and the inconsistent labeling by the 
annotators are also two of the main factors that cause the system to label 
the focus word erroneously. An examples of this error class is 
“ketoconazole or itrconazole” where the focus word or is preceded and 
followed by a scientific term. 
 

 Popular variants being predicted as popular words: this is an obvious 
error class, as popular variants are in fact popular words. The difference 
between these two classes lies in the fact that a popular word can only be 
a so-called popular variant if it occurs near a scientific term. However, our 
system is able to detect about 42% of the popular variants correctly, both 
for English and for Dutch. Therefore, it remains interesting to look at this 
error class in detail. One of the factors that seem to influence the system 



in a negative way is the absence of one of the brackets that normally 
appear in the popular variant's local context (e.g. asthenia (weakness)). 
These brackets may not appear in the local context for a number of 
reasons: the focus word is centered in a very large string of popular 
words (e.g. a definition), the focus word appears at the beginning of a 
larger string of popular variants and therefore misses the second bracket 
in the local context, no brackets are used etc. Finally, as popular variants 
are actually a subclass of the popular words, the focus word may have 
been annotated as “popular” on numerous occasions, whereas the 
“popular variant” label is only given under certain circumstances (i.e. if it 
appears near a scientific term). 

 

7. Concluding remarks 
In this paper, we investigated the use of a dictionary-based and a machine 
learning approach to scientific term detection in patient information. The 
learning approach not only exploits lexical information, but also takes into 
account a rich feature vector incorporating lexical, morphological and statistical 
information, local-context, etc. We showed an F-score of above 80% for the 
prediction of scientific terms in an English and a Dutch EPAR corpus. We expect 
these results to improve when increasing the size of the data set. 
As a next step, we plan to use genetic algorithms to obtain the optimal feature 
selection for our classification task. We plan to automatically replace the 
detected scientific terms by their popular counterparts. In case no popular 
counterpart is available, a definition will be proposed.  
We have made some preliminary experiments with the semi-automatic 
replacement of scientific terms by their popular counterpart/definition. In these 
experiments, the authors of patient leaflets used an authoring environment in 
which (1) all terms were categorized following the methodology described in 
this article and in which (2) an alternative (popular counterpart, definition) was 
proposed for the scientific terms. A preliminary readability test shows that this 
indeed leads to the improved readability of patient information.   
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