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Application-specific hardware accelerators can significantly improve a system’s performance. In a
Java-based system, we then have to consider a hybrid architecture that consists of a Java Virtual
Machine running on a general-purpose processor connected to the hardware accelerator. In such a
hybrid architecture, data communication between the accelerator and the general-purpose proces-
sor can incur a significant cost, which may even annihilate the original performance improvement
of adding the accelerator. A careful layout of the data in the memory structure is therefore of major
importance to maintain the acceleration performance benefits.

This article addresses the reduction of the communication cost in a distributed shared memory
consisting of the main memory of the processor and the accelerator’s local memory, which are
unified in the Java heap. Since memory access times are highly nonuniform, a suitable allocation
of objects in either main memory or the accelerator’s local memory can significantly reduce the
communication cost. We propose several techniques for finding the optimal location for each Java
object’s data, either statically through profiling or dynamically at runtime. We show how we can
reduce communication cost by up to 86% for the SPECjvm and DaCapo benchmarks. We also show
that the best strategy is application dependent and also depends on the relative cost of remote
versus local accesses. For a relative cost higher than 10, a self-learning dynamic approach often
results in the best performance.
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1. INTRODUCTION

Hardware accelerators or other application-specific coprocessors are used to
improve the performance of computationally intensive programs. Significant
speedups have been obtained for several application domains: multime-
dia [Vassiliadis et al. 2004; Eeckhaut et al. 2007; Lysecky et al. 2006],
bio-informatics [Maddimsetty et al. 2006; Faes et al. 2006], and many other
applications where small computational kernels with a sufficient amount of
internal parallelism are used.

The first attempts for hardware/software codesign [Ernst et al. 1993; Gupta
and De Micheli 1993] originate from software written in machine code lan-
guages (C and C++) or variants thereof. More recently, the same methodology
has also been applied to Java programs [Helaihel and Olukotun 1997]. Two
main directions can be identified in this domain: (i) acceleration of the Java
Virtual Machine (JVM) itself and (ii) acceleration of specific methods of Java
programs.

In this article, we concentrate on the latter approach because it uses the
hardware only for those specific functions where a significant speedup can be
obtained, as has been shown in several hardware implementations [Hakkennes
and Vassiliadis 2001; Eeckhaut et al. 2007]. Less hardware-friendly methods
are left in software. This approach leads to a hardware accelerated JVM which
is described in Section 2 and contrasts to the first approach where often a
significant amount of hardware resources need to be allocated for functionality
such as scheduling or memory management . . .

A remaining advantage of accelerating the JVM as a whole is its complete
transparency to the programmer. In the second approach, the programmer usu-
ally has to manage the communication and synchronization between the hard-
ware accelerator and software methods. However, the JVM can be extended
to manage this communication thereby again providing transparency. In this
article, we use the adapted JVM of Faes et al. [2004] which can even, if the
hardware accelerator is reconfigurable, move functionality dynamically from
the general-purpose processor to the accelerator. Hardware execution is now
an additional optimization step in the just-in-time compiler, where the hard-
ware configuration can be loaded from a library [Borg et al. 2006] or could even
be generated on-the-fly [Beck and Carro 2005; Lysecky et al. 2006].

For performance reasons both the main processor and the accelerator have
their own local memory which are unified through Java’s shared-memory
model [Faes et al. 2007]. Our transparent hardware accelerated JVM man-
ages memory accesses to all objects independent of their physical location. The
location of the objects now has an important impact on the overall system per-
formance. Since the accelerator is usually connected through a relatively slow
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Fig. 1. Hybrid hardware platform consisting of a general-purpose host processor and an
application-specific hardware accelerator.

communication medium, remote memory accesses are expensive and should
thus be avoided as much as possible.

The placement of objects in the distributed Java heap is now an important
task of the JVM. It should allocate objects in the memory region closest to the
most prolific user of the data. This way, data private to a thread is always in
local memory thus minimizing extraneous communication overhead. Solving
this data placement problem is the main contribution of this article.

The object placement problem cannot be solved by a static analysis alone, as it
can only estimate which data are private to a method conservatively. Moreover,
shared data can be accessed asymmetrically by the different system compo-
nents. The ratio in accesses among components is often data dependent and
thus hard to estimate at compile-time. Finally, when functionality is dynami-
cally migrated between the general-purpose processor and the hardware accel-
erator, a runtime approach can no longer be avoided.

We propose several techniques for communication-aware memory manage-
ment in Section 3. For each Java object, the optimal memory location is
determined based on the usage pattern of this object. Two strategies are dis-
tinguished: a profiling-based approach and a self-learning strategy. In the first
approach all read and write memory accesses are counted during a distinct
profiling phase. In subsequent executions, data will immediately be allocated
at the optimized locations calculated based on the gathered statistics. The self-
learning approach tries to estimate the usage patterns for each object based on
measured patterns for previously allocated objects. These two techniques are
compared to a baseline algorithm which does not take communication cost into
account and a static technique for local memory allocation that tries to reduce
communication overhead without actually measuring data access patterns. Our
data placement strategies lead to a reduction of the remote memory accesses
by up to 86% (49% on average) for the SPECjvm and DaCapo benchmarks
(Section 4).

2. HARDWARE ACCELERATED JAVA VIRTUAL MACHINE

2.1 Host PC and Hardware Accelerator

In this work, we use the classical concept of an accelerator as a coprocessor:
The hardware platform is a hybrid architecture, consisting of a general-purpose
host processor and an application-specific hardware accelerator (Figure 1). The
accelerator executes a small but computationally intensive part of the Java
application, while the host processor executes the remainder of the application
(generally the more control-dominated parts).
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Fig. 2. The Java Virtual Machine hides the complexity of the underlying hybrid architecture from
the application.

In our hybrid architecture, the processor and the accelerator both have
their own local memory. However, the connection between the two compo-
nents is realized by means of a relatively slow bus such as PCI, HyperTrans-
port, . . . Therefore, the use of our approach is limited to algorithms with a high
computation to communication ratio. For this class of applications a significant
speedup is obtained by exploiting the massive parallelism available on FPGAs
or ASICs [Panainte et al. 2007].

2.2 JVM as Hardware Abstraction Layer

We want to hide the complexity of managing the control flow and the commu-
nication between the accelerator and the host processor from the programmer.
Also, if the hardware accelerator is reconfigurable, functionality can be moved
dynamically from the host processor to the accelerator by loading the appropri-
ate configuration from a library or even by generating a hardware implemen-
tation of the Java code on-the-fly. This is possible when we consider the JVM to
be an abstraction for the underlying hardware (Figure 2). In Faes et al. [2004],
we have proposed a system where the JVM intercepts method calls for which
a hardware equivalent is available and delegates execution to the appropriate
accelerator. It also enables the accelerator to access objects on the Java heap
which is distributed between both main memory and the accelerator’s local
memory.

In this concept, the hardware is an integral part of the JVM but is invisible to
the Java application. Therefore, we need to properly define an equivalence be-
tween the hardware component and software concepts in the Java language. In
our approach, hardware accelerators encapsulate the functional behavior of the
bytecode in the corresponding Java method. The accelerator thus is stateless.
At each invocation, both the parameters of the function and the corresponding
state (the corresponding class for static methods, an object reference for virtual
methods) need to be transferred to the hardware component. The JVM uses
the same approach: Software objects encapsulate both state and function but
at runtime state and function are separated. Static class information and Java
bytecode are stored on a per-class basis and instance information (state) on a
per-object basis. This equivalence between the hardware accelerator and Java
methods is described in detail in Borg et al. [2006].

Method calls for which a hardware equivalent is available are intercepted
by the JVM. The execution of the current thread is delegated to the accel-
erator unless the accelerator is not available (it may be in use by another
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Fig. 3. Threads executed on the host processor can start the hardware accelerator which can
perform a callback to the host when necessary, for example, for file input/output or for throwing
exceptions.

thread), in which case the Java version of this method continues on the host
processor.

The communication between the host processor and the hardware accelerator
is based on remote calls. Figure 3 shows two of these calls. The first remote call,
represented by a solid line, is initiated by the thread executed on the host and
starts the accelerator method. The parameters of the method are passed by
reference. The host processor suspends execution of the current thread while
the hardware accelerator is busy. Meanwhile, the host can continue executing
other threads. When functionality called by this accelerated method has no
hardware equivalent or is simply impossible to implement in hardware, the
accelerator can rely on the host processor to execute this specific functionality
via a callback mechanism. This is typically used for file input/output or for
throwing exceptions. Such a callback is depicted in Figure 3 as a dotted line.

2.3 Shared-Memory Model

Our hybrid architecture uses a shared-memory model, which allows both the
host processor and the accelerator to access all objects. The Java heap is dis-
tributed between main memory and the accelerator’s local memory. The garbage
collector is extended to account for objects and references in both memories,
including those held by the accelerator [Faes et al. 2005]. Whether new ob-
jects are placed in main memory or in the accelerator’s local memory should
depend on the access patterns. This is exactly the focus of our algorithm for
communication-aware data placement which is described in Section 3. Although
object-oriented languages like Java strongly emphasize the connection between
the object’s data and its functionality (methods), in our approach the decisions
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on data and method placement are treated separately. Indeed, a single object
class may have some methods implemented on the accelerator while others are
executed by the host processor.

We assume that, if the processor caches its accesses to main memory, coher-
ence is maintained when the accelerator writes to an object in main memory,
for instance, using a coherent HyperTransport bus. During our communication
measurements we assumed that no caching of remote accesses is performed;
by the accelerator to main memory or by the host processor to the accelera-
tor’s local memory. Since FPGAs have no local cache, this is usually the case on
our target platform. On implementations that do support remote caching, we
overestimate the communication by an amount proportional to the hit rate of
remote accesses in the cache. Still, optimizing the object placement will reduce
the communication overhead and may reduce cache requirements for remote
addresses.

In this article, we focus on the (optimal) allocation of objects to main memory
or the accelerator’s memory. We do not consider the possibility of moving ob-
jects from one memory to the other as this introduces an additional overhead.
Additionally most objects do not live long enough to warrant relocation.

3. STRATEGIES FOR DATA PLACEMENT

As a general rule, objects should be placed close to the component (host pro-
cessor or hardware accelerator) that references them most. This way, a large
fraction of memory accesses will be local, minimizing communication and its
associated cost. Finding the optimal placement at runtime is infeasible for two
reasons. First, we don’t know the future usage pattern of newly created objects,
so we have to base our decision on other information such as profiles, previous
usage of other objects, . . . Second, there are too many objects to keep track of
these statistics on a per-object basis. Therefore, we take the placement decision
clustered per creation site. This is the line in the source code where the objects
are created.

Objects created at the same creation site are expected to have a similar
usage pattern. Therefore, we can allocate them in the same memory, and have
a performance close to that of optimally allocating each object individually.
Moreover, we can use measured access patterns of previous objects with the
same creation site to determine the optimal allocation site for new objects.
These previous access patterns can be measured either on-the-fly, using runtime
instrumentation, or during a separate profiling phase.

In most cases, one creation site allocates objects of the same type and with
very similar usage patterns. Some specific software patterns break this general
rule. For example, in class factories a single creation site creates objects of
different types which are used in very different ways and in different contexts.
However, as will be evident in Section 4, for the objects causing most of the
remote accesses the connection between the creation site and the usage patterns
turns out to be strong.

In this article, we compare several algorithms for communication-aware ob-
ject placement: a baseline algorithm, optimal placement, local allocation, and
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self-learning allocation. These algorithms differ in implementation complex-
ity, whether the allocation site is adaptive or fixed, and whether it is based on
runtime or profile information.

3.1 Baseline Algorithm

A first approach is our baseline algorithm in which all objects are allocated
in main memory as most methods are executed on the processor. This algo-
rithm takes no account of the hybrid nature of our architecture. All memory
accesses performed by the accelerator will be remote accesses. Therefore, the
communication cost will be high, although for some benchmarks (Section 4)
the difference is acceptable. Implementation complexity is very low since es-
sentially no decision has to be made. The runtime overhead of this strategy is
zero.

3.2 Optimal Placement

Based on the joint usage pattern for all objects with the same creation site and
measured during a complete run of an application, the optimal memory alloca-
tion per creation site can be determined. Although this strategy is not “really
optimal” because it does not consider each object individually, we consider it as
an “optimal” implementation within the given constraints and use it to compare
all other strategies with.

This strategy needs a separate profiling phase for gathering the global data
usage patterns per creation site [Bertels et al. 2008]. We measured the profile
for a specific run of the application. Alternatively, usage patterns can be accu-
mulated during several profiling runs. The optimal placement strategy incurs
no runtime overhead since the allocation decision for each creation site is fixed.

3.3 Local Allocation

Many objects are allocated on the stack or have a very short lifetime. They
are therefore often used almost exclusively by the method which created them.
This observation leads to the local allocation strategy, which allocates all ob-
jects in memory closest to the component that creates them. The information
needed to implement this strategy is easily available at runtime and therefore
implementation of local allocation is straightforward and incurs no runtime
overhead. Moreover, no separate profiling phase is needed.

3.4 Self-Learning Allocation

In self-learning allocation, the virtual machine decides at runtime where to
allocate objects based on the usage patterns of previous objects. This is particu-
larly useful in the dynamic environment of a hardware accelerated JVM, which
decides at runtime whether to execute functionality on the general-purpose pro-
cessor or on specific hardware accelerators.

The JVM continuously counts all memory accesses from both the main pro-
cessor and the accelerators to each object in both memories. This can, for
instance, be done through (sampled) instrumentation or hardware assisted pro-
filing. Each creation site has its own set of counters, one for the processor and
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Table I. Basic Properties of Data Placement Strategies

Strategy Decision Usage Patterns Adaptive Runtime Overhead
baseline compile time no no no
optimal allocation compile time yes no no
local allocation runtime no yes no
self-learning runtime yes yes yes

one for the accelerator, each aggregating the number of accesses to objects cre-
ated at this site. At each point in time, comparing the two counters will tell
us which system component accesses these objects the most up to now. New
objects created at this creation site will be allocated in the memory correspond-
ing to the component with the highest number of accesses. At the end of the
program the counters will reach the value obtained during the profiling for
optimal placement (Section 3.2). The allocation decision for new objects in the
self-learning algorithm will therefore converge towards the decision as in the
optimal placement. This convergence usually happens very quickly, as shown in
Section 4, and therefore this strategy still results in a strongly reduced remote
access ratio.

4. EXPERIMENTAL RESULTS

For the evaluation of the techniques for data placement, we use the
SPECjvm [Standard Performance Evaluation Corporation 2008, 1998] and
DaCapo benchmark suites [Blackburn et al. 2006]. We excluded the duplicates
in the SPECjvm98 and SPECjvm2008 suites, retaining the most recent version.
Benchmarks sunflow and crypto.signverify were also excluded because they
create less than 100 objects.

In an initial profiling run, we determine for each benchmark the ten hottest
methods, namely those accounting for the largest execution time. For all our ex-
periments, we assume that a hardware equivalent for each of these ten hottest
methods is available. The simulated hybrid architecture will dynamically de-
cide whether to execute each method on the processor or on the accelerator.
For ten hardware-accelerated methods this leads to 210 possibilities for parti-
tioning the functionality. In our experiments, we used only 10 of these 1024
possible partitionings, and each of these delegates n methods to the hardware
accelerator, where n ranges from 1 to 10. For each of these 10 partitionings, we
evaluated each allocation strategy.

4.1 Comparison of Remote Access Ratios

Our first experiment is a global comparison of all four strategies for data place-
ment over all benchmarks. We run the benchmark and instrument all memory
accesses. Based on this measurement we then calculate the number of remote
and local memory accesses during the complete run of the benchmark. In this
experiment, all 10 hottest methods are assumed to be running on the hardware
accelerator.

This means that in the baseline approach, where all objects are allocated
in main memory, all memory accesses from hardware accelerated methods are
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remote accesses. Once some objects are allocated in hardware memory, accesses
to these objects from the accelerator will no longer be remote while in contrast
accesses by the processor are now remote. For the optimal allocation, it is ev-
ident that the total number of remote accesses is always smaller than in the
baseline approach. For the other strategies, this cannot be guaranteed although
in most cases a significant reduction is obtained.

Figure 4 shows the remote access ratio for all four allocation strategies on
the SPECjvm and DaCapo benchmarks. In this experiment we placed all ten
hottest methods in hardware. Four classes of applications can be distinguished.

For applications in class I, II, and III, we can see the expected results: Opti-
mal data placement performs best, baseline performs worst. Self-learning and
local allocation are between the two extremes. Self-learning performs better
than local allocation for applications in class II, local allocation is better than
self-learning in class III. In class I, both have similar behavior.

The outlier, 209db, is in class IV: In this application lots of objects are cre-
ated by the accelerators, while they are heavily used by the main processor.
Specifically, the method Database.set index() creates arrays (of type Entry[])
for indexing the database. These objects are heavily used by methods executed
on the host processor, but they are never used by the hardware accelerator.
Therefore local allocation performs very badly. The baseline approach is very
efficient by allocating all objects, including these Entry[] objects, in main mem-
ory. The self-learning and optimal strategies perform even slightly better be-
cause these approaches benefit from a few other objects which are used only
internally in a hardware accelerated method, for example, the StringBuffer in
ValidityCheckOutputStream.strip(int, InputStream).

4.2 Self-Learning: How Fast Can it Learn?

In a second experiment we measured the convergence of the self-learning allo-
cation strategy. This strategy places objects where they were referenced most
in the past. After a sufficient length of time, this algorithm converges to the
final allocation site.

For each creation site in each benchmark, we count how many objects were
created before the algorithm has converged. This number defines the pace of
convergence of each creation site. For a representative selection of benchmarks
this convergence is shown in Figure 5. On the horizontal axis, we have clustered
the creation sites according to their pace of convergence. The bars on the vertical
axis show how many objects were created by each cluster of creation sites, as a
relative fraction of all objects in the application. This indicates the importance
of each cluster. Figure 5 also shows a cumulative curve for the relative fraction
of objects.

For example, in benchmark 209db the optimal allocation site for almost all
objects was main memory, including for those objects created by the accelera-
tor. Since the self-learning algorithm defaults to main memory, all objects are
allocated correctly from the start of the program. In Figure 5 this is shown as
a bar of 99.96% at zero: For almost all creation sites zero objects are allocated
incorrectly. For this reason 209db was also an outlier in Figure 4.
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Fig. 4. Remote access ratio comparison of four allocation strategies for all benchmarks assuming
the ten hottest methods are executed by hardware accelerators.

The behavior of benchmark 227mtrt is more complicated. For 10% of all ob-
jects, the optimal allocation site is main memory, just as for benchmark 209db
this results in an 10% bar at zero in the histogram. For some creation sites, the
first object is placed in main memory but is subsequently accessed more by the
accelerator. Therefore the self-learning strategy allocates the second object in
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Fig. 5. On the horizontal axis, we have clustered the creation sites according to their pace of
convergence, defined as the number of objects created at this creation site before convergence. The
bars on the vertical axis show how many objects were created by each cluster of creation sites, as
a relative fraction of all objects in the application, indicating the importance of each cluster. Each
graph also contains a cumulative curve for the relative fraction of objects. For most benchmarks,
self-learning learns very fast for the most important creation sites.
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the accelerator’s local memory. If the accelerator stays responsible for the major
part of all accesses to these objects, then the self-learning strategy will place all
subsequent objects in the accelerator’s local memory, which is indeed the opti-
mal allocation site for objects from these creation sites. So only the first object
of each site was allocated incorrectly. For benchmark 227mtrt these creation
sites amount to 12% of all objects as visible in the bar at one in Figure 5. For
other creation sites, more than one object was allocated before accesses from
one component clearly outnumber accesses from the other component. Finally,
the last bar in the histogram shows that creation sites that never (or extremely
slowly) converge towards the optimal location amount to 17% of all objects in
227mtrt.

In general, we can conclude from Figure 5 that the self-learning algorithm
converges rather quickly. The fraction of objects allocated at creation sites which
never converge is never more than 20% (this maximum is reached for bench-
mark compress).

4.3 Self-Learning in Practice

The previous sections have shown that self-learning performs quite well for
most benchmarks. Through its dynamic and adaptive nature, this algorithm
can also be used in situations where the memory behavior of the application
is not known at compile-time. This is the case for applications which have
a data-dependent behavior or in applications where the decision whether to
execute functionality on the general-purpose processor or on a specific hard-
ware accelerator is taken at runtime. This last option includes the case where
hardware-accelerators are constructed on-the-fly as an extension of the tradi-
tional just-in-time compilation process.

The only drawback of the approach is the fact that this technique is expen-
sive. All memory accesses have to be profiled and for each access, the counters
for the relevant objects need to be updated. This increases the execution time
by a factor of ten or more. Clearly this is unacceptable when compared to a
possible performance improvement that is for most benchmarks more modest.

The cost of memory access profiling can be greatly reduced by using a sam-
pled approach. In this case, only a certain fraction of memory accesses is in-
strumented.

Since the patterns with the largest influence on performance are those with
the largest volume of communication, and as those patterns evolve rather
slowly, taking a small sample of these memory accesses should not signifi-
cantly change the behavior of the self-learning allocation strategy for most
of the benchmarks. This is evident from Figure 6. This figure shows the ratio
of remote memory accesses for a representative selection of benchmarks using
the self-learning allocator, comparing the fully instrumented version with five
levels of sampling ranging from 1/10 to 1/100,000. Each bar represents the av-
erage amount of remote accesses over 100 uniformly random samplings, where
error bars mark the maximum and minimum values.

For 209db, both the baseline and self-learning approaches perform close to
the optimum. Here, sampling barely influences this result. Benchmark serial
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Fig. 6. Ratio of remote memory accesses for a representative selection of benchmarks using the
self-learning strategy, comparing the fully instrumented version with five levels of sampling rang-
ing from 1/10 to 1/100,000. Sampling increases the remote access ratio but the final performance
is still tolerable.

belongs to class III where local allocation outperforms the self-learning ap-
proach. With a sampling ratio of up to 1/100 the self-learning strategy remains
competitive, smaller sampling ratios quickly decrease performance.

For benchmarks in class II (jython, luindex and hsqldb) the self-learning
strategy resulted in the lowest remote access ratio, close to the optimum. Un-
fortunately, the profiling overhead precluded actual performance improvement
in a realistic setting. However, a sampling ratio of up to 1/100,000 keeps the
self-learning allocator’s performance intact, but greatly reduces the profiling
overhead.

The final set of benchmarks (228jack, antlr and 227mtrt), belonging to class
I, show a similar result. Up to a sampling ratio of 1/100,000 the change in per-
formance is minimal. Benchmark 227mtrt is a strange case in that performance
actually increases for sampling ratios up to 1/10,000. The self-learning strategy
is eluded when all objects allocated at a specific allocation site have different
usage patterns: Some of these objects are used more by the accelerator, others
are used more by the host processor, but their usage patterns are clustered
at the same allocation site. Therefore differences between these objects cannot
adequately be taken into account. As described in Section 3, this behavior some-
times results from specific coding styles, such as a class factory. However, in case
of 227mtrt, the problem is not caused by a class factory. Benchmark 227mtrt is
a raytracer. At several allocation sites, this application allocates Point objects
which are used by methods on both sides of the hardware/software boundary.
Which method uses which specific Point obviously depends more on the image
that is raytraced (data dependency) than it depends on the allocation site.

Overall we can conclude that a sampling ratio of 1/1,000 or even 1/10,000
does not significantly increase the remote access ratio. However, the profiling
overhead, which may amount to about 100 times the original execution time,
is now also reduced by a factor of 10,000, to just 1% of the execution time.
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This enables a practical implementation of the self-learning strategy, where
the performance gained by reducing the number of expensive remote accesses
greatly outweighs the remaining profiling overhead.

4.4 Impact on the Execution Time

From the previous sections it is clear that our object placement strategies dras-
tically reduce the number of remote accesses. We will now show that this also
leads to a significant reduction in execution time of the benchmarks.

Because the impact on the execution time depends on the relative cost of
remote memory accesses over local memory accesses, we plotted the execu-
tion time as a function of this relative cost. For one benchmark of each class in
Figure 4 we compare the execution time of the baseline approach, the local allo-
cation strategy, and two sampled implementations of the self-learning strategy
in Figure 7.

For serial, a benchmark of class III with 69% of nonlocal accesses in the
baseline approach, the solid line in the graphs shows that the execution time
increases with a factor of 2.85 when remote memory accesses are 10 times as
costly as local accesses. In an architecture where the relative cost of remote ac-
cesses is 100, the execution time even increases by a factor of 21, while with local
allocation (dotted line), the best strategy for serial, there is only an increase
of 18%. The self-learning strategy (dashed lines) leads to a similar reduction of
the remote accesses as local allocation but it incurs an overhead for runtime in-
strumentation of the program. In Figure 7, we assumed an overhead of a factor
of ten when all memory accesses are instrumented or a factor of two when 1 out
of 10 accesses is measured. The form of the curve of the self-learning strategy
with sampling ratio 1/10 is similar to that of local allocation, because of the
similar reduction of the number of remote accesses, but the instrumentation
overhead still makes the program two times slower. The instrumentation over-
head becomes negligible for 1/10,000 sampling, but then the resulting reduction
in remote accesses is worse, as explained in Section 4.3.

As in the previous experiments, benchmark 209db is again a special case:
The baseline approach performs best with an increase in execution time of
only a factor of three for the most extreme scenario where remote accesses cost
100 times more than local accesses. The local allocation leads to an increase
of a factor of 13 in this scenario. Self-learning reduces the fraction of remote
accesses to the same level as the baseline approach. Therefore the curve for the
1/10,000 sampled implementation of self-learning coincides with the baseline
approach. For a sampling ratio of 1/10 the instrumentation overhead can never
be recovered.

For benchmarks in class II, our self-learning strategy performs far better
than local allocation. luindex is an example of this class. Self-learning performs
best in reducing the fraction of remote memory accesses. With a sampling ratio
of 1/10,000 this results in a speedup from a relative cost of remote accesses
of 2 onwards. Instrumenting more memory accesses (sampling ratio of 1/10)
performs even better when the relative cost of remote accesses exceeds a factor
of 50.
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Fig. 7. Normalized execution time as a function of the relative cost of remote memory accesses
over local memory accesses.

228jack is an example of class I where both self-learning and local allocation
lead to a similar reduction of remote memory accesses. In the baseline approach
the execution time increases with a factor of 18 for the most extreme scenario,
while the other approaches limit this increase to a factor of 13. Allocating the
objects in the appropriate memory thus leads to a performance increase of about
27%.

5. RELATED WORK

Several approaches have been proposed to extend a general-purpose processor
with application-specific hardware accelerators. Although the exploitation of
parallelism on the hardware accelerator is similar in those approaches, the way
the accelerator communicates to the host processor is quite different. In some
of these hybrid computing systems, the MOLEN processor [Vassiliadis et al.
2004] and the WARP processor [Lysecky et al. 2006], the host processor and
the accelerator are directly connected to a shared memory. This contrasts to our
approach and the approach described in Lattanzi et al. [2005] where the shared
memory is distributed and the cost of these accesses is highly nonuniform. In
such an architecture with nonuniform distributed memory, our strategies for
dynamic memory allocation are indispensable.

Lattanzi divides the memory in three parts: a dual-port memory accessible
by both components and two single-port memories which take the form of local
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memory for one of these components. Java objects that are used by both compo-
nents need to be allocated in the dual-port memory. In a dynamic environment
where functionality can float from the general-purpose processor to the acceler-
ator, this leads to a situation where all objects used by methods which are can-
didates for hardware acceleration need to be allocated in the dual-port memory,
even when these candidate methods are currently executed on the processor. In
the limit this requires the complete memory to be dual-port, annihilating the
benefits of using local memory.

The components in our hybrid architecture have access to both their own
local memory and, remotely, the local memory of the other component. We have
shown that local allocation and the self-learning strategy can significantly re-
duce the number of remote accesses and, consequently, the involved communica-
tion cost, also eliminating the dual-port memory needed in Lattanzi’s approach.

The strategies proposed in this article significantly reduce the communica-
tion cost in our hybrid architecture. These techniques prove their value in the
static case when partitioning of functionality between the processor and the
accelerator is fixed. They become indispensable when we move further to a
more dynamic hybrid architecture with a reconfigurable accelerator where the
JVM generates hardware on-the-fly. Runtime hardware generation for random
functions is not possible yet, but several approaches have proven successful
for fine-grain functionality. A practical implementation of this can be found in
the WARP processor [Lysecky et al. 2006], a new processing architecture that
consists of a microprocessor and an FPGA. The execution of a software binary
on the microprocessor is profiled in order to detect hot code fragments. For
these fine-grain, functional blocks, a hardware accelerator is generated on the
FPGA. A similar methodology has been applied for Java programs [Beck and
Carro 2005].

These approaches are too fine-grain to be directly incorporated in our hybrid
architecture, but the results thus far indicate that dynamic memory allocation
strategies for such an architecture will even gain importance in the future.

6. CONCLUSIONS

Although application-specific hardware accelerators can significantly improve
the performance of Java Virtual Machines, communication cost often limits the
speedup obtained in practice. In our hybrid architecture this cost is caused by
the nonuniformity of access times to the distributed heap memory, formed by
main memory and local memory of the accelerator.

We propose several techniques that can find the optimal location for each
Java object’s data and thereby reduce the communication by up to 86% for the
SPECjvm and DaCapo benchmarks. This leads to a reduction in execution time
of a factor of 1.64 on an architecture where remote memory accesses are 20
times slower than local accesses. In a first class of benchmarks, local alloca-
tion performs best and is moreover very efficient to implement, involving no
runtime overhead. For a second class of benchmarks, our self-learning algo-
rithm can further reduce communication by dynamically choosing allocation
sites based on runtime instrumentation of memory accesses. The overhead of
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this instrumentation can be kept acceptable through the use of sampling: A
sampling ratio of up to 1/10,000 can be applied while still significantly reduc-
ing the communication cost. The performance gained by reducing the number
of remote accesses greatly outweighs the remaining profiling overhead.
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