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Abstract

We propose a new learning model for finite strategic-form two-player games based on
fictitious play and Walley’s imprecise Dirichlet model (1996, J. Roy. Statistical Society
B 58, 3–57). This model allows the initial beliefs of the players about their opponent’s
strategy choice to be near-vacuous or imprecise instead of being precisely defined. A similar
generalization can be made as the one proposed by Fudenberg and Kreps (1993, Games Econ.
Behav. 5, 320–367) for fictitious play, where assumptions about immediate behavior are
replaced with assumptions about asymptotic behavior. We also obtain similar convergence
results for this generalization: if there is convergence, it will be to an equilibrium.
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1 Introduction

This paper describes a new approach to learning for finite strategic-form two-player
games in the setting of fictitious play. So, consider successive rounds of a game.
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Suppose we are in the t-th round, and that at this point, each player has certain
beliefs about which strategy his opponent will play in the next, (t +1)-th, round.

After each round of the game the players change their beliefs. Indeed, we assume
that each player can observe the strategy his opponent plays, which naturally leads to
the setting of so-called fictitious play [2,11]. After each round, this new information
affects the player’s beliefs about the strategy his opponent will play next. This
updating of beliefs is what we call learning about the opponent’s strategy choice.

In a Bayesian context, such beliefs are represented by a probability distribution
on the opponent’s strategies (a precise Dirichlet model or PDM), and learning is
implemented by updating with Bayes’s rule using a likelihood function relating ob-
servations to future strategies. The model we propose for representing and updating
these beliefs generalizes this Bayesian approach. It is based on Walley’s imprecise
Dirichlet model or IDM [13]. Using this generalization is justified by the fact that
sometimes the assumptions underlying the Bayesian approach are too strong. The
most visible difference is that the beliefs are summarized by a convex set of expected
mixed strategies, instead of only one.

Now, given such beliefs about his opponent’s next strategy choice, and the game’s
payoff function, which strategy should a player use in the next round to satisfy
some optimality criterion? In a Bayesian context, optimal strategies maximize a
player’s expected payoff. As optimality criteria, we propose two generalizations of
the concept of expectation maximization. The main consequence is that – in contrast
to the Bayesian context – two different optimal strategies may be incomparable.

If both players use a method of learning and of choosing optimal strategies during the
successive rounds of a game, will their behavior converge: Will the optimal strategies
they select converge to an equilibrium of the game? 2 Or, when convergence occurs,
will it be to an equilibrium? We investigate whether some interesting, existing
results [5] for players using a PDM-based learning model can be generalized to the
case where the players use our IDM-based learning model.

How is this paper organized? In Sec. 2 we describe its game-theoretic setting and
introduce basic game-theoretic concepts and notation. In Sec. 3, we look at how a
player can represent and update his beliefs about his opponent’s strategy. Both the
PDM-based Bayesian model and our IDM-based generalization are improvements of
the classical model of fictitious play [2,11]. In Sec. 4 we discuss the player’s options
for deciding on an optimal strategy. Most importantly, we investigate options that can
be used in conjunction with the PDM-based and IDM-based models. Our contribution
up until this point is mainly to show how well imprecise probability theory can be
allied with game theory. Then, in Sec. 5, before concluding, this alliance is used
to generalize results by Fudenberg and Kreps [5] about the convergence of play to
equilibria. All proofs are collected in the Appendix at the end.

2 In an equilibrium, no player can increase his payoff by unilaterally changing his strategy.
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2 Basic concepts and notation

We consider two-player games and use i as an index for a player and -i as an index
for his opponent. This allows for player-neutral notation and formulas.

Both players have a finite set Si = {1, . . . ,Ni} of Ni pure strategies si, each of
which labels a possibly complex description. When the choice of pure strategy is
determined through some form of randomization, the player uses a mixed strategy
σ i : Si→ [0,1]. We use σ i(si) to denote the chance that si is played when σ i is used.
(We use the word chance when talking about uncertainty due to randomization.
When discussing the uncertainty of a player, we use the word probability.) The
set of all mixed strategies Σ i forms a unit simplex in RNi

, where the vertices
correspond to the pure strategies and mixed strategies to the convex combinations
with weights σ i(si), i.e., ∑l σ i(l) = 1. All quantities that can be interpreted as a
mixed strategy are denoted with a lower case Greek letter. From now on, ‘strategy’
implicitly means ‘mixed strategy’, unless explicitly stated otherwise.

A strategy profile is a couple of two strategies, one for each player. The notation for
pure and mixed strategy profiles is defined and illustrated in Fig. 1.

1 2Σ
i

1

2

Σ
-i (2,2), a pure strategy profile s := (si,s-i) ∈ S := S

i×S
-i

((2
5
, 3

5
),(2

5
, 3

5
)),

a mixed strategy profile σ := (σ i,σ -i) ∈ Σ := Σ
i×Σ

-i

Fig. 1. The set Σ of strategy profiles for players with two pure strategies each and two of its
elements: one mixed, σ , and one pure, s.

Since we assume that the randomization mechanisms both players use are indepen-
dent, the chance that s is played when σ is used, is given by σ(s) := σ i(si)σ -i(s-i).

Each round of a game consists of a pure strategy being selected by the players. After
every round, each player receives a bounded payoff ui(s) expressed in some linear
utility [12]. When the players use mixed strategies, the expected payoff becomes

ui(σ) = ui(σ i,σ -i) := ∑s∈S σ(s)ui(s) = ∑(si,s-i)∈S σ i(si)σ -i(s-i)ui(si,s-i). (1)

During each round, the player chooses a strategy based on assumptions about his
expected payoff. With each of his own strategies σ i there corresponds an unknown
payoff uσ i which is a function relating his opponent’s (still unknown) strategy choice
σ -i to the corresponding (expected) payoff:

uσ i : Σ -i→ R : σ -i 7→ uσ i(σ -i) = ui(σ i,σ -i). (2)

Such an unknown payoff is a real random variable on Σ -i which we call a gam-
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ble [12]: choosing a strategy is like participating in a lottery. When choosing his
strategy, the player is unsure about the amount of utility he is going to win (or lose).

The game is played repeatedly, and during each round t the players observe the
pure strategy profile st := (si

t ,s
-i
t ) that is actually played in that round. The mixed

strategy profile that is played cannot be observed, i.e., the opponent’s mixed strategy
choice remains hidden. All the pure strategy profiles that were played up to and
during round t form the history after t rounds ht = (s1, . . . ,sk, . . . ,st). Given a history
ht , the pure strategy profile played during round t ′ ≤ t is ht(t ′). All the possible
histories after t rounds form the Cartesian product set H t := St . When considering
an unending number of rounds, we talk about an infinite history h∞ = (s1,s2, . . .),
which is an element of H ∞. The set of all possible histories is H :=

⋃
t H t .

Single player histories are also used. These are written down using superscripts as hi
t ,

or h-i
t for the opponent. This is done similarly for the other history concepts.

The opponent’s history h-i
t can be summarized by how many times the opponent

has played each of his pure strategies. This observed strategy count is formalized
with the function n-i : H -i×S-i→ N : (h-i

t ,s-i) 7→ n-i(h-i
t ,s-i), where n-i(h-i

t ,s-i) is
the total number of rounds the opponent has played s-i in the history h-i

t . It immedi-
ately follows that ∑s-i∈S-i n-i(h-i

t ,s-i) = t. When the history h-i
t under consideration is

implicit, we use the notation n-i
t for n-i(h-i

t , ·). Similarly, we can also consider ν -i, the
(relative) frequency of observed strategies, where ν -i(h-i

t ,s-i) = n-i(h-i
t ,s-i)/t is the

total fraction of the rounds the opponent played s-i in the history h-i
t . Again, when

the history under consideration is implicit, we can write ν -i
t for n-i

t /t. We also use
count and frequency profiles n := (ni,n-i) and ν := (ν i,ν -i).

3 Assessing the opponent’s strategy

In this section, we look at what a player (thinks he) knows about his opponent’s
strategy choice and how to model this belief. We start out in Sec. 3.1 with the basic
assumptions made by the player. Then, we consider possible belief models and how
to update them using observations of the pure strategies played during previous
rounds in Secs. 3.2 and 3.3, where we introduce the imprecise Dirichlet model.
Finally, in Sec. 3.4, we link so-called assessment rules to these belief models.

3.1 Modelling the opponent

In the classical model of fictitious play [2,11], the players base their strategy choice
on their opponent’s so-called accumulated mixed strategy. This corresponds to
using ν -i

t , the frequency of observed pure strategies played by the opponent in the
first t rounds. (Note that this can be interpreted as a strategy of the opponent.)
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To make the basic assumption of this model explicit [7, Ch. 2], we can say that
each player is convinced that his opponent is playing a fixed mixed strategy that
is (initially completely) unknown to him. This implies that the players do not try
to influence their opponent’s strategy choices. They do try to learn as much as
they can about this unknown strategy from the observation of their opponent’s play.
Because of this assumption, the order of the strategies played by the opponent is
irrelevant, and the only observational data a player uses is the sufficient statistic n-i

or, equivalently, t and ν -i.

So, under the assumptions of fictitious play, the opponent is modelled as an unknown
iid-process (identical independent draws). A player could imagine his opponent
drawing marbles from a bag (sampling with replacement from a finite set). Marble
types then correspond to pure strategies of the opponent and the relative frequency
of each type to the unknown mixed strategy played by the opponent.

Considering the model given for the opponent, just using the frequency of observed
strategies ν -i as the assessment for his strategy seems natural, but is nevertheless
problematic: What is the rationale behind this choice of an assessment, and what is
the justification for modifying it once a new round has been played? Classically, an
interpretation is given by assuming that the players use a form of Bayesian inference
[7, Ch. 2]. This will be described and investigated in the following subsection.

3.2 The precise Dirichlet model

The assessments made in the model of fictitious play are formulated in the framework
of Bayesian inference as follows. The player considers all of his opponent’s mixed
strategies to be possible a priori. So he uses a prior probability density function
over his opponent’s simplex to model his uncertainty about his opponent’s mixed
strategy choice – assumed to be fixed in time. After observing the pure strategy
played by his opponent in that round, he can construct a likelihood function. Using
Bayes’s rule, the prior and the likelihood function are combined to form a posterior
probability density function over his opponent’s simplex. This posterior then models
his uncertainty about the opponent’s strategy choice, after having observed the pure
strategy played by the opponent.

Because the opponent is modelled as an iid-process and has a finite number of pure
strategies, the likelihood function, defined on Σ -i, takes the form of a multinomial
probability mass function L(σ -i|n-i

t ) ∝ ∏s-i∈S-i σ -i(s-i)n-i
t (s-i). For any history h-i

t , it
gives the chance that n-i

t was produced by an opponent using a mixed strategy σ -i.

The basis for our models is the Dirichlet density D(·|r,ρ -i). It is defined on the
interior int(Σ -i) of the unit simplex Σ -i by D(σ -i|r,ρ -i) ∝ ∏s-i∈S-i σ -i(s-i)rρ -i(s-i)−1,
where r ∈ R+ and ρ -i ∈ int(Σ -i). The family of Dirichlet densities can take on a
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variety of shapes, depending on the choice of parameters and thus represent a variety
of (prior) beliefs. This is the reason for using this family, together with them being
conjugate for multinomial sampling, resulting in posteriors from the same family
that are easily obtained. The linear prevision (expectation functional) P(·|r,ρ -i)
associated with a Dirichlet density D(·|r,ρ -i) is called a precise Dirichlet model or
PDM. It is defined on measurable gambles (real valued random variables on Σ -i).
The prevision of σ -i(s-i), i.e., the prevision of the chance that the opponent plays s-i,

P(σ -i(s-i)|r,ρ -i) =
∫

int(Σ -i) σ -i(s-i)D(σ -i|r,ρ -i)dσ -i, (3)

turns out to be equal to the parameter ρ -i(s-i). This implies that P(σ -i|r,ρ -i), the
player’s expected value for the strategy played by the opponent, is ρ -i.

A prior PDM, P(·|r0,ρ
-i
0 ), is the model used by the player to represent his initial

uncertainty about his opponent’s strategy. The parameters’ subscript (0 here) indi-
cates the number of observations on which the model is based. This prior model
can be updated to a posterior model after one or more rounds of the game, i.e., after
observing n-i

t . This amounts to normalizing the product of the prior D(·|r0,ρ
-i
0 ) and

the likelihood function L(·|n-i
t ), resulting in a new Dirichlet density D(·|rt ,ρ

-i
t ), with

updated parameters 3

rt = r0 + t and ρ -i
t = r0ρ -i

0 +n-i
t

r0+t = r0
r0+t ρ -i

0 + t
r0+t ν -i

t . (4)

The posterior PDM, P(·|rt ,ρ
-i
t ), which represents the updated uncertainty about his

opponent’s mixed strategy after observing n-i
t , is thus easily obtained by updating

the parameters as shown above in Eq. (4).

In Eq. (4), we see that the expected strategy is a convex mixture of the expected strat-
egy ρ -i

0 chosen prior to any observation and the frequency of observed strategies ν -i
t .

As t becomes large relative to r0, the expected strategy is mainly determined by the
observations. Considering that all observations have equal weight, this means that r0
can be interpreted as the number of imaginary rounds that determine ρ -i

0 and is thus
related to the trust the player has in his initial choice.

The problem the players are now faced with is how to choose the prior parameters r0
and ρ -i

0 . If the player initially knows nothing about his opponent, every choice seems
arbitrary. For any choice of prior PDM, an initial expected strategy ρ -i

0 is fixed.
This has very strong behavioral implications, as we shall see in Sec. 4.2: it yields
an essentially unique optimal strategy for the player to follow in response to the
opponent’s strategy, and we feel this to be unwarranted given the player’s initial
ignorance about what his opponent will do. Therefore, we are of the opinion that
by using this classical approach, the player initially assumes more than he actually
knows, and uses an assessment model that is too precise and is therefore not a good
model for prior ignorance. In the next subsection, we propose a model that alleviates
this arbitrariness by allowing for some imprecision.

3 Correspondence with Walley’s [13] notation: t↔ N, r0↔ s, ρ -i
0 ↔ t, and n-i

t ↔ n.
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3.3 The imprecise Dirichlet model

We propose that initially, when we have no information concerning our opponent’s
strategy, all ρ -i

0 ∈ Σ -i are considered as possible initial expected strategies. To
express this in mathematical terms, we use the set of Dirichlet densities D(r0,R

-i
0 ) =

{D(·|r0,ρ
-i
0 ) : ρ -i

0 ∈R-i
0 }, where R-i

0 = int(Σ -i), removing the arbitrary choice of an
initial ρ -i

0 . A choice for r0 still has to be made, however.

Instead of working with a linear prevision, we now work with a lower prevision P
and an upper prevision P, defined as the lower and upper envelopes (i.e., infima
and suprema) of the set of linear previsions P ′ = {P(·|D) : D ∈ D}. Because
P(·|D) =−P(−·|D), the upper prevision is implicitly known when we only specify
a lower prevision. Instead of working with P ′, we work with the closed convex hull
P = co(P ′) for mathematical practicality. The lower and upper envelopes do not
change, and there is a one-to-one relationship between lower previsions and closed
convex sets of previsions. Walley [12] gives an extensive treatment of imprecise
probability models such as lower and upper previsions.

For any subset R-i of the interior int(Σ -i) of the opponent’s simplex, the lower
prevision P(·|r,R-i) is called an imprecise Dirichlet model or IDM [13]. We use such
models as generalizations of PDMs in order to represent the player’s knowledge about
his opponent’s strategy. The lower prevision of the opponent’s mixed strategy σ -i

is calculated component-wise as P(σ -i(s-i)|r,R-i) = infρ -i∈R-i P(σ -i(s-i)|r,ρ -i) =
infρ -i∈R-i ρ -i(s-i). So, loosely speaking, the expected chance for the opponent to
play s-i is at least infρ -i∈R-i ρ -i(s-i) and, similarly, not higher than supρ -i∈R-i ρ -i(s-i).

The prior IDM, P(·|r0,R
-i
0 ), with R-i

0 = int(Σ -i), is the model used by the player to
represent his initial uncertainty about his opponent’s mixed strategy. The choice
R-i

0 = int(Σ -i) has been argued [13] to result in a good model for prior ignorance.
Additional prior information could correspond to a more specific choice for R-i

0 .
Using regular extension [12, App. J] – as is done implicitly by Walley [13, Sec. 2.3] –
, we can update this model after one or more rounds of the game, i.e., after observing
n-i

t . This amounts to updating every linear prevision in P(r0,R
-i
0 )′ as shown in

Sec. 3.2, which results in an updated set of linear previsions P(rt ,R-i
t )′, where

rt = r0 + t and

R-i
t = r0R

-i
0 +n-i

t
r0+t := {ρ -i

t = r0ρ -i
0 +n-i

t
r0+t : ρ -i

0 ∈R-i
0 }= r0

r0+t R
-i
0 + t

r0+t ν -i
t . (5)

The corresponding updated IDM is P(·|rt ,R-i
t ). When we consider that P(rt ,R-i

t ) =
co(P(rt ,R-i

t )′), the set of possible expected strategies is the closure cl(R-i
t ) of R-i

t .
This set is convex and compact. Initially it is cl(R-i

0 ) = cl(int(Σ -i)) = Σ -i.

As is shown at the end of Eq. (5), the expression for the set of possible expected
strategies is a convex mixture of (i) the set R-i

0 , representing our initial ignorance,
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whose weight decreases as t increases (as more observations become available),
(ii) the frequency of observed strategies ν -i

t , whose weight increases as t increases. It
is similar to the one found for a PDM in Eq. (4). Again, r0 can be seen as the weight
accorded to the initial beliefs.

3.4 Assessment rules

A player’s assessments about his opponent’s strategy after any round t are modelled
by either a PDM P(·|rt ,ρ

-i
t ) or an IDM P(·|rt ,R-i

t ), depending on which type of prior
uncertainty model he uses. These previsions contain all the information the player
has about the unknown mixed strategy he thinks his opponent is playing.

Fudenberg and Kreps [5] introduce the concept of an assessment rule µ -i. It deter-
mines the opponent’s strategies the player believes are most likely to be played in the
next round, based on the observed history h-i

t and some initial beliefs. Because we
are focusing on the models used to represent the assessment, we emphasize that the
assessment rule is a function of the current parameters’ value – denoted generically
by qt –, belonging to a model-dependent set Qt of possible values. So an assessment
rule is defined as the map µ -i : Qt →℘(Σ -i) : qt 7→ µ -i(qt), where ℘(Σ -i) denotes
the power set of Σ -i. Whenever the parameters are implicit, we use µ -i

t = µ -i(qt).

In contrast to Fudenberg and Kreps [5], we allow for assessment rules that corre-
spond to more than one mixed strategy, i.e., that are set-valued. Such a set contains
all the opponent’s strategies the player believes are most likely to be played in the
next round. No distinction is made between strategies in the set, but they are all
considered more likely than the strategies that are not in the set. We also use profiles
µ = (µ i,µ -i) of assessment rules, which then correspond to a subset of Σ .

When the player uses a PDM, qt = (rt ,ρ
-i
t ) and – identifying singletons with ele-

ments – we have µ -i
t = ρ -i

t . When he uses an IDM, qt = (rt ,R-i
t ) and µ -i

t = cl(R-i
t ).

Classical fictitious play as described by Brown [2] and Robinson [11] can be seen
as a limit case for r0→ 0 of both the PDM and the IDM. In this case µ -i

t = ν -i
t .

When considering extensions to fictitious play, Fudenberg and Kreps [5] defined
some classes of assessment rules. To make them fit in the more general context of
this paper, we reformulate them to allow for set-valued assessment rules. A profile
of assessment rules belongs to a certain class if both its components belong to it.

An assessment rule µ -i is adaptive if it attaches diminishing importance to earlier
parts of the history, as the number of rounds increases. Formally: for all t and all
ε > 0

∃t∗ > t : ∀t ′ > t∗ : ∀h-i
t ′ ∈H -i

t ′ : ∀σ -i ∈ µ -i
t ′ : σ -i(s-i) < ε, (6)

for every pure strategy s-i that was not played in the last t ′− t rounds.
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Among all adaptive assessment rules, those that converge in some sense to the
frequency of observed strategies ν -i

t are of special interest. An assessment rule is
called asymptotically empirical if for every infinite history h-i

∞ with partial histories
h-i

t , it holds that

limt→∞ sup
σ -i∈µ -i

t ,s-i∈S-i|ν -i(h-i
t ,s-i)−σ -i(s-i)|= 0. (7)

From Eqs. (4) and (5) it can be deduced that the assessment rules associated with
the PDM and IDM are asymptotically empirical and thus adaptive.

4 Deciding on an optimal strategy

In this section, we investigate how the player can choose a strategy for the next
round, that is in some sense optimal for him. First, in Sec. 4.1, we recall some typical
ways of (partially) deciding on which strategy to use. Then, we look at how the
belief models for the opponent we introduced previously, the PDM and IDM, can be
used together with these ways of deciding (Secs. 4.2 and 4.3). Finally, in Sec. 4.4,
we make the link with so-called behavior rules.

4.1 Strategy types

A player’s strategy τ i is said to strictly dominate a strategy σ i when its corresponding
unknown payoff is strictly higher, i.e., when uτ i ≥ uσ i pointwise and uτ i 6= uσ i . A
strategy σ i is called inadmissible if there is another strategy τ i that dominates it,
otherwise it is admissible. The set of admissible strategies is nonempty and can be
written as a connected union of convex subsets of Σ i spanned by pure strategies. This
property, and the other properties we mention in this section can be seen to hold by
using ideas from Walley’s book [12, Sec. 3.9] and looking at the set {uσ i : σ i ∈ Σ i},
which forms a convex polytope in RN-i

.

A rational player can use admissibility as a criterion to limit the number of strategies
among which he has to decide. As can be seen from the definition, admissibilit in
no way depends on the opponent’s strategy choice. This implies that admissibility
cannot be directly incorporated into decisions based on the PDM or the IDM, which
are assessment models for this unknown strategy. However, this need not exclude
our using it separately.

Now suppose that the player knows his opponent is going to play a strategy σ -i in Σ -i.
Then, a best reply to σ -i is a strategy for which the corresponding unknown payoff
in σ -i is maximal. All admissible strategies are best replies to some σ -i and there are
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admissible best replies for all σ -i, but not all best replies must be admissible. The
set of all best replies to σ -i is denoted by BRi(σ -i), so

BRi(σ -i) = argmaxσ i∈Σ i uσ i(σ -i). (8)

It is interesting to note that BRi(σ -i) is a convex subset of Σ i, spanned by a subset
of the player’s pure strategies, so there exist only a finite number of different sets
of best replies. The collection of best replies to the strategies in S -i ⊆ Σ -i is given
by BRi(S -i) :=

⋃
σ -i∈S -i BRi(σ -i), which in general is not a convex subset of Σ i

anymore. An illustration of the best reply map is given in Fig. 2.

1 2Σ
i

1

2

Σ
-i

BR
i

horizontal segment: indicates

indifference between strategies

Fig. 2. An illustration of the best reply map for players with two pure strategies. The bold
line gives the graph of BRi.

In sharp contrast to admissibility, it is clear that a player using best replies needs a
model of his opponent. Even though a player using a PDM or IDM does not know
what his opponent’s strategy is going to be, the same idea, maximizing expected
payoff, is applicable, as will be shown in the next subsections.

Up to now, we have made no assumptions involving the opponent’s payoff u-i. But
when the player knows (or has suspicions that make him act as if he knows) he is
playing a strictly competitive game (e.g., zero-sum games), his opponent supposedly
chooses a strategy that minimizes the player’s own payoff. Then it could be rational
to play the maximin strategy that maximizes this minimal payoff. There always exist
(admissible) maximin strategies. When the opponent is known to restrict himself to
S -i ⊆ Σ -i, the set of all maximin strategies, denoted MMi(S -i), is

MMi(S -i) = argmaxσ i∈Σ i infσ -i∈S -i uσ i(σ -i). (9)

Note that MMi(S -i)⊆ BRi(S -i) and MMi(σ -i) = BRi(σ -i), so a maximin strategy
is a special type of best reply.

As with best replies, the idea behind maximin strategies can be used in conjunction
with an assessment model such as the IDM, but not for the PDM (as we shall see in
Sec. 4.3).

In classical fictitious play, a player uses a best reply to ν -i
t , the frequency of observed

strategies; i.e., he uses an element of BRi(ν -i
t ). When using models such as the

PDM and IDM, we have a different form of information: previsions P(·|r,ρ -i) and
P(·|r,R-i). So we do not know an opponent’s strategy or his possible set of strategies.
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And although we do know his (set of) expected strategies, we are – without further
motivation – not justified in considering best replies to such expected strategies.
However, we shall see further on that, because linear previsions and payoff functions
are linear, we can nevertheless treat expected strategies as if they were actual
strategies, and consider best replies to them as optimal.

4.2 Optimal strategies under a PDM

We now use the ideas behind the definition of a best reply in a setting where a
probability distribution over all the opponent’s strategies is given, instead of a single
strategy. We are going to look for a strategy for which the prevision of the correspond-
ing gamble is maximal. This (maximizing expected utility) is the usual approach in
Bayesian decision making [4,1]. So we are looking for argmaxσ i∈Σ i P(uσ i|r,ρ -i).

Using Eqs. (2), (1) and (3), the prevision of the unknown payoff uσ i becomes

P(uσ i|r,ρ -i) =
∫

int(Σ -i) uσ i(σ -i)D(σ -i|r,ρ -i)dσ -i = ∑s-i∈S-i uσ i(s-i)P(σ -i(s-i)|r,ρ -i)

= ∑s∈S ui(s)σ i(si)ρ -i(s-i) = uσ i(ρ -i). (10)

Equation (8) then shows that argmaxσ i∈Σ i P(uσ i|r,ρ -i) = argmaxσ i∈Σ i uσ i(ρ -i) =
BRi(ρ -i), a result that is based essentially on the bilinear character of the payoff ui

and on the linearity of the linear prevision P(·|r,ρ -i). It justifies the approach that
is usual with fictitious play [7], where the PDM is only used to get the expected
strategy ρ -i and BRi(ρ -i) is the (nonempty) set of optimal strategies.

Another line of reasoning, which will prove useful in Sec. 4.3, can be used to get
argmaxσ i∈Σ i P(uσ i|r,ρ -i) as the set of optimal strategies. When looking for a best
reply to a strategy σ -i, the player’s own strategies σ i are ordered according to their
expected payoff uσ i(σ -i). This means that the relative order of two strategies σ i

and τ i is determined by looking at the difference in payoff uσ i(σ -i)−uτ i(σ -i). The
generated order is linear: σ i can either be better, worse, or as good as τ i.

With a PDM, the order is determined by the previsions of the payoff differences
P(uσ i − uτ i|r,ρ -i). Because P(·|r,ρ -i) is linear, this order is also linear. So then
an optimal strategy σ i is a maximal element of the order. This corresponds to the
nonnegativity of P(uσ i−uτ i|r,ρ -i) for all τ i, which is equivalent to the criterion of
optimality given above,

minτ i∈Σ i P(uσ i−uτ i|r,ρ -i)≥ 0 (11)
⇔ P(uσ i|r,ρ -i)≥maxτ i∈Σ i P(uτ i|r,ρ -i)
⇔ σ i ∈ argmaxτ i∈Σ i P(uτ i|r,ρ -i) = BRi(ρ -i).

So when using a PDM as an assessment model for his opponent, the player makes

11



a choice ρ -i
0 for his initial model parameter. This implies that he initially plays a

strategy in BRi(ρ -i
0 ), a set which can be strongly dependent on ρ -i

0 . Now suppose,
for the sake of the argument, that after a large number of rounds t, it so happens
that ρ -i

t = ρ -i
0 . This means that the player’s set of optimal strategies after observing

the opponent’s response during t rounds, is the the same as when he sets out to
play. So this type of assessment model does not allow us to distinguish between
decisions based on different numbers of observations. The behavioral implications
of the model (which strategy to play next) are always equally strong.

4.3 Optimal strategies under an IDM

When using an IDM, we cannot just maximize the prevision of an unknown payoff
because we are working with a set of linear previsions P(r,R-i), or equivalently,
with lower and upper previsions P(·|r,R-i) and P(·|r,R-i).

What we do is use the IDM to generate an order of the player’s strategies. Compared
to τ i, a strategy σ i is

• equally good when both P(uσ i−uτ i|r,R-i) = 0 and P(uσ i−uτ i|r,R-i) = 0,
• strictly better when P(uσ i−uτ i|r,R-i) > 0, or, equivalently,
• strictly worse when P(uσ i−uτ i|r,R-i) < 0, and
• incomparable when none of the above hold.

The ‘strictly better’-relationship is now only a strict partial order, caused by the fact
that P(·|r,R-i) is not linear. We are mainly interested in the maximal elements of
this order, i.e., those that are undominated under the ‘strictly better’-relationship. A
maximal element is a strategy σ i that is not strictly worse than any other strategy, so
for which minτ i∈Σ i P(uσ i−uτ i|r,R-i) ≥ 0. This criterion is a clear generalization
of Eq. (11), the criterion found when using a PDM. (Other criteria are of course
possible, our criterion is equivalent to maximality [12, Sec. 3.9] and, because of the
convexity of the set of gambles, to E-admissibility [10].)

By rewriting the criterion, we get a more explicit description of the optimal strategies.
Using the definition of an upper prevision, linearity, and Eq. (10), we find

minτ i∈Σ i P(uσ i−uτ i|r,R-i)≥ 0 (12)
⇔ minτ i∈Σ i maxP∈P(r,R-i) P(uσ i−uτ i)≥ 0

⇔ minτ i∈Σ i supρ -i∈R-i
[
uσ i(ρ -i)−uτ i(ρ -i)

]≥ 0.

Considering that Σ i and cl(R-i) are compact, convex sets and that unknown payoffs
are bilinear functions, the maximin theorem [12, Sec. E6] applies, so the criterion be-
comes maxρ -i∈cl(R-i)

[
uσ i(ρ -i)−maxτ i∈Σ i uτ i(ρ -i)

]≥ 0. It can, and will, for any ρ -i

in cl(R-i), only be satisfied when σ i = BRi(ρ -i), which means BRi(cl(R-i)) is the
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(nonempty) set of optimal strategies. All strategies in this set are valid optimal
choices, but when compared amongst themselves, they are either equivalent or
incomparable. So within this set no strategy is strictly better than any other.

Whenever the player knows he is playing a strictly competitive game, it is rational
for him to try and limit his losses. When we defined maximin strategies, the player
knew what set S -i his opponent was choosing his strategy from. Now his beliefs are
contained in an IDM P(·|r,R-i) and to limit his losses, he tries to maximize the lower
prevision of his unknown payoff. (This would make no sense when using a PDM, as
lower and upper previsions coincide.) This means an optimal strategy σ i is defined
by σ i ∈ argmaxτ i∈Σ i P(uτ i|r,R-i). Rewriting this criterion gives a more explicit
description of the optimal strategies for this case. The definition of a lower previ-
sion gives argmaxσ i∈Σ i P(uσ i|r,R-i) = argmaxσ i∈Σ i minP∈P(r,R-i) P(uσ i), which is
equal to argmaxσ i∈Σ i minρ -i∈cl(R-i) uσ i(ρ -i) by Eq. (10). Using Eq. (9), the defini-
tion of a maximin strategy, we see that the optimal strategies now correspond to
the (nonempty) set MMi(cl(R-i)), 4 which is a subset of BRi(cl(R-i)), the optimal
strategies when no assumptions about the opponent’s payoff are made.

So now, when using an IDM as an assessment model for his opponent, the player
chooses R-i

0 = int(Σ -i) as his initial model parameter. This implies that he initially
plays a strategy in BRi(cl(R-i

0 )) = BRi(Σ -i) or a strategy in MMi(Σ -i), which is a
classical maximin strategy [1, Ch. 5]. This corresponds to the weakest possible ratio-
nal behavior. After a number of rounds t, the player uses a strategy in BRi(cl(R-i

t ))
or in MMi(cl(R-i

t )). Equation (5) shows that cl(R-i
t ) gets smaller as the number of

observations increases, and so the behavioral implications also get stronger. Using
an IDM, it is thus possible to distinguish decisions based on different amounts of
observational data, in contrast to the situation when using a PDM. As the number of
observations gets very large, the behavioral implications of an IDM often tend to be
the same as those of a PDM, which will be illustrated when discussing absorption to
strict equilibria in Sec. 5.2. That this is not a general rule will be illustrated when
discussing convergence to mixed equilibria in Sec. 5.3.

4.4 Behavior rules

The player’s behavior during round t is the way he chooses a strategy. For a rational
player, this behavior is based on the assessments about his opponent’s strategy and
on his own and possibly his opponent’s payoff.

In Sec. 4.2 we have seen that a rational player using a PDM P(·|rt ,ρ
-i
t ) as his

assessment of the opponent’s mixed strategy (assumed fixed), must choose any

4 This illustrates that the choice of decision criterion can be separated from the choice
of (imprecise) prior model, casting a new light on an old discussion between subjective
Bayesians [9] and game theorists [8].
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strategy in BRi(ρ -i
t ) in order to make an optimal decision, irrespective of the payoff

u-i of his opponent. In Sec. 4.3, we have shown that similarly a rational player using
an IDM P(·|rt ,R-i

t ) as his assessment of the opponent’s mixed strategy, must choose
any strategy in BRi(cl(R-i

t )), to make an optimal decision. In the latter case, however,
knowledge about the opponent’s payoff u-i can lead him to further refine his choice,
e.g., to MMi(cl(R-i

t ))⊆ BRi(cl(R-i
t )) when playing a strictly competitive game.

Together with assessment rules (see Sec. 3.4), Fudenberg and Kreps [5] introduce
the concept of a behavior rule φ i, which determines the strategy the player will use
in the next round (t +1), based on the observed history ht and some initial beliefs.
When qt ∈Qt are the parameters of the player’s belief model, a behavior rule is
defined as a map φ i : Qt → Σ i : qt 7→ φ i(qt). Whenever the parameters are implicit,
we use φ i

t = φ i(qt). We also use profiles of behavior rules φ = (φ i,φ -i). So, if φ t−1
is equal to the profile s, then s will be played in round t.

It is possible to write the behavior rules for the models we have discussed as a
function of the assessment rules for these models. (In general the assessment rules
contain less information than the assessments (a PDM or an IDM). This is why
we derived the optimal strategies directly from these assessments.) For the PDM,
qt = (rt ,ρ

-i
t ), so

φ i(rt ,ρ
-i
t ) ∈ BRi(µ -i(rt ,ρ

-i
t )) = BRi(ρ -i

t ).
For the IDM, qt = (rt ,R-i

t ), so

φ i(rt ,R-i
t ) ∈ BRi(µ

-i(rt ,R
-i
t )) = BRi(cl(R-i

t )),
φ

i(rt ,R
-i
t ) ∈MMi(µ

-i(rt ,R
-i
t )) = MMi(cl(R-i

t )) (for strictly competitive games).

In many cases the above equations do not define a unique behavior rule, more often
so when using an IDM than when using a PDM, but they say no more than this. To
get a unique rule, one ideally uses other justifiable criteria (such as admissibility),
but otherwise has to resort to an arbitrary choice.

Behavior rules determine which histories are possible. A history is called compatible
with the behavior rules φ of the players, if it can be generated (with non-zero chance)
by these behavior rules. Explicitly, this means that for every pure strategy profile
ht(t ′), with 1 ≤ t ′ ≤ t, that is a component of a compatible history, the chance
φ t ′−1(ht(t ′)) is strictly positive. This implies that the randomization devices used
by the players can select the pure strategies in ht(t ′) with non-zero chance. (The
uncertainty we talk about in this paragraph is due to the randomization mechanisms
used by the players, which is why we use the word chance.)

To consider extensions of fictitious play, Fudenberg and Kreps [5] defined some
classes of behavior rules. We generalize some of these to allow for set-valued
assessment rules. A profile of behavior rules belongs to a certain class if both its
components belong to it.

A behavior rule φ i is called myopic relative to an assessment rule µ -i if it maximizes
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the player’s immediate expected payoff, i.e., when φ i
t ∈ BRi(µ -i

t ) for all t and ht . It
is clear that the behavior rules we have defined above for the models using the PDM

and the IDM are myopic relative to the assessment rules we have defined in Sec. 3.4.

Let us look at a larger class of behavior rules, i.e., those for which immediate
expected payoff only has to be maximized asymptotically. We call a behavior rule φ i

strongly asymptotically myopic relative to the assessment rule µ -i if, for some
sequence εt > 0 with limt→∞ εt = 0 and for all t and histories h-i

t , it holds that

∀σ -i ∈ µ -i
t : ∀s̃i ∈ Si such that φ i

t (s̃
i) > 0: us̃i(σ -i)+ εt ≥maxsi∈Si usi(σ -i). (13)

This concept allows us to formulate results for a larger class of models than only the
ones using the PDM or the IDM. It is used in Theorems 3 and 4 of the next section.

5 Convergence results

In this section we give some results about the convergence of play to equilibria.
These results are formulated using the assessment rules and behavior rules introduced
in Secs. 3.4 and 4.4. They are similar to the ones presented by Fudenberg and Kreps
[5], but allow for set-valued assessment rules µ . Because randomization devices
are used – to be able to play mixed strategies – these results hold with chance 1;
this fact is not explicitly mentioned further on. The models based on the PDM or the
IDM are used as examples. After defining equilibria, we look at convergence to pure
equilibria in Sec. 5.2 and at convergence to mixed equilibria in Sec. 5.3.

5.1 Equilibria

An equilibrium is a strategy profile σ∗ for which the payoff for both players cannot be
increased if one of them changes his strategy, while his opponent’s strategy remains
unchanged. It is well known that this corresponds to the strategy profile being a fixed
point of the combined best reply mapping (defined as BR(σ) = BRi(σ -i)×BR-i(σ i)⊆
Σ ). So σ∗ is an equilibrium if and only if σ∗ ∈ BR(σ∗).

A strict equilibrium is a profile s∗ of pure strategies that is its own unique best reply,
i.e., for which s∗ = BR(s∗). A non-strict equilibrium is called a mixed equilibrium.
The concepts above are illustrated in Fig. 3, where we specify some games by
giving the best reply graph for both players (this is equivalent to giving their payoff
functions).
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1 2

1

2 s∗

strict
equilibrium

1 2

1

2

s
′∗

σ ∗

s∗

mixed
equilibrium

1 2

1

2

σ ∗

Fig. 3. Examples of equilibria for players with two pure strategies. On the left, there is
one strict equilibrium; in the middle, two strict and one mixed; on the right, one mixed.
Equilibria correspond to intersections of the graphs of BRi and BR-i (see Fig. 2).

5.2 Convergence to strict equilibria

First, let us look at when convergence to a strict equilibrium is guaranteed to occur.
One situation was described by Fudenberg and Kreps [5, Proposition 3.0]:

Theorem 1 (absorption to a strict equilibrium) If there is a strict equilibrium s∗
that is played in round t of a history ht compatible with myopic behavior rules φ

relative to the assessment rule µ = (ρ i,ρ -i) of players using a PDM, then s∗ will be
played during all subsequent rounds t ′ > t.

In Fig. 4, we give an illustration of a situation where absorption occurs. In this
situation, both players use a PDM with r0 = 2 and the best reply as a behavior rule.
The prior assessments are described by µ0. The table lists all the data necessary to
determine the assessment rules µ t for t up to 5 and the subsequent strategy profiles
φ t = st+1 = (si

t+1,s
-i
t+1) played; ties were broken arbitrarily. From round 5 onward,

only the strict equilibrium s∗ is played. In the picture, we show the evolution of µ t
with increasing round number t.

1 2Σ i

1

2

Σ -i 0

1

2

3

4 5

s∗ = (2,2)

µ
t
= (ρ i

t
,ρ -i

t
)

= t

r0+t
ν t + r0

r0+t
ρ

0

ρ i
t
(1) = 1−ρ i

t
(2)

ρ -i
t
(1) = 1−ρ -i

t
(2)

t ρ i
t (2),ρ -i

t (2) φ t

0 0, 1
2 (2,1)

1 1
3 , 1

3 (1,2)

2 1
4 , 1

2 (2,1)?

3 3
5 , 2

5 (1,2)?

4 1
3 , 1

2 s∗

5 3
7 , 4

7 s∗

Fig. 4. An illustration of absorption when both players use a PDM with r0 = 2 and respectively
ρ -i

0 = (1
2 , 1

2) and ρ i
0 = (1,0). Recall that a player’s assessments µ -i

t about his opponent’s
strategy are determined by the assessment model’s parameters; here, these are the number
of (real and imaginary) rounds rt and the expected strategy ρ -i

t . The latter evolves with
the frequency of observed strategies ν -i

t , which reflects the opponent’s behavior φ -i
t . Round

numbers t are given in italics. Of all the moves φ t given in the table, those marked with ‘?’
could have been different. For the meaning of the bold lines, see Figs. 2 and 3.
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We want to stress the fact that absorption does not necessarily occur when the
assessment rule µ is not singleton-valued. This is illustrated in Fig. 5. Here, both
players use an IDM with r0 = 2 and the best reply as a behavior rule. The prior
assessments are described by µ0 = Σ . The table lists the information necessary
to determine the assessment rule µ t for the following rounds and the subsequent
strategy profiles φ t played (again, an arbitrary choice was made between the different
possible strategy profiles). In the picture, we again show the evolution of µ t with
increasing round number t. Even though s3 = φ 2 = s∗, absorption to this strict
equilibrium does not occur as φ 3 6= s∗.

1 2Σ i

1

2

Σ -i

1

2

3

4

s∗ = (2,2)

µ
t
= cl(R i

t
)× cl(R-i

t
)

= t

r0+t
ν t + r0

r0+t
Σ

ν i
t
(1) = 1−ν i

t
(2)

ν -i
t
(1) = 1−ν -i

t
(2)

t ν i
t (2),ν -i

t (2) φ t

0 (2,1)?

1 1,0 (1,2)?

2 1
2 , 1

2 s∗?

3 2
3 , 2

3 (2,1)?

4 3
4 , 1

2 . . .

Fig. 5. An illustration of non-absorption when both players use an IDM with r0 = 2. See
Fig. 4 for an explanation about the notation.

For set-valued µ , the result can be obtained by strengthening the requirements:

Theorem 2 (conditional absorption to a strict equilibrium) If, for some history
ht compatible with myopic behavior rules φ relative to the assessment rule µ =
cl(Ri)× cl(R-i) of players using an IDM, the strategy profile φ t cannot differ from
the strict equilibrium s∗, then s∗ will be played during all subsequent rounds t ′ > t.

Look at the condition “[if] φ t cannot differ from the strict equilibrium s∗”: due to
myopia φ t ∈ BR(µ t), so this condition is satisfied if and only if BR(µ t) = s∗.

Theorem 2 is illustrated in Fig. 6. It shows a possible continuation of the situation in
Fig. 5; from round 10 onwards, absorption has occurred. This illustrates that after a
sufficient number of rounds, the behavior of a player using an IDM often tends to be
the same as the behavior of a player using a PDM. The main reason is that, as the
area of µ t becomes smaller, it behaves more and more like a point, i.e., intersections
of µ t with the best reply mappings BRi and BR-i become rare.

We can also investigate when convergence to a strict equilibrium is guaranteed to
have occurred. This leads to a generalization of a result of Fudenberg and Kreps [5,
Proposition 4.1] to set-valued assessment rules.

Theorem 3 (repeated play of a pure strategy profile) Consider an infinite histo-
ry h∞ in H ∞ such that for some t0, a pure strategy profile s∗ is played in all
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1 2Σ i

1

2

Σ -i

4

10

s∗ = (1,1)

µ
t
= t

r0+t
ν t + r0

r0+t
Σ

ν i
t
(1) = 1−ν i

t
(2)

ν -i
t
(1) = 1−ν -i

t
(2)

t ν i
t (2),ν -i

t (2) φ t

4 3
4 , 1

2 s∗?

5 3
5 , 2

5 (2,1)?

6 2
3 , 1

3 s∗?

7 4
7 , 2

7 s∗?

8 1
2 , 1

4 (1,2)?

9 4
9 , 1

3 s∗

10 2
5 , 3

10 s∗

Fig. 6. An illustration of conditional absorption when both players use an IDM with r0 = 2.
See Fig. 4 for an explanation about the notation.

subsequent rounds. If h∞ is compatible with behavior rules φ that are strongly
asymptotically myopic relative to the adaptive assessment rules µ , then s∗ is an
equilibrium.

The conditions on the assessment rules of this theorem are satisfied when the players
use an IDM or a PDM. Note, however, that this result is also valid for other models
satisfying the conditions.

5.3 Convergence to mixed equilibria

Because absorption cannot be generalized straightforwardly to mixed equilibria, we
immediately look at when convergence to a mixed equilibrium is guaranteed to have
occurred. This leads to the following generalization to set-valued assessment rules
of another result of Fudenberg and Kreps [5, Proposition 4.2].

Theorem 4 (repeated play of a mixed strategy profile) Let the infinite history h∞

in H ∞ be such that for some mixed strategy profile σ∗, limt→∞ ν (ht , ·) = σ∗ holds,
where ht is a partial history of h∞ for every t. If the infinite history h∞ is compat-
ible with behavior rules φ that are strongly asymptotically myopic relative to the
assessment rules µ that are asymptotically empirical, then σ∗ is an equilibrium.

The conditions on the assessment rules of this theorem are satisfied when the players
use an IDM or a PDM. Again, this result is not restricted to these models.

Even though the focus in this paper is mostly on the use of the IDM and not on the
interpretation of ‘learning to play a mixed strategy’, we would like to finish this
section by showing that learning using an IDM (or other models with set-valued
assessment rules) can remedy some pathological behavior of the PDM (or other
models with singleton-valued assessment rules). Fudenberg and Kreps [5, Sec. 5]
argue that when using a PDM, most of the time no mixed strategy is played, but that
the players jump between pure strategies in cycles.
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This is illustrated with the battle of the sexes [3], where for some initial assessments
a suboptimal strategy profile is constantly played, even though convergence to the
mixed equilibrium occurs. 5 This is shown in Fig. 7, where both players use a
PDM with r0 = 1

2 and the best reply as a behavior rule. The prior assessments are
described by µ0 (the value of its components is given at the top of the table). We see
that only the suboptimal strategy profiles (1,1) and (2,2) are played, even though
convergence to σ∗ = ((2

3 , 1
3),(2

3 , 1
3)) occurs for both µ t and ν t .

1 2Σ i

1

2

Σ -i

0

1

2

3

4

5σ ∗
µ

t
= (ρ i

t ,ρ
-i
t )

ρ i
t
(1) = 1−ρ i

t
(2)

ρ -i
t (1) = 1−ρ -i

t (2)

t ρ i
t (2),ρ -i

t (2) φ t

0 3
5 , 3

5 (1,1)

1 3
15 , 3

15 (2,2)

2 13
25 , 13

25 (1,1)

3 13
35 , 13

35 (1,1)

4 13
45 , 13

45 (2,2)

5 23
55 , 23

55 (1,1)

Fig. 7. An illustration of pathological gameplay with the battle of the sexes when both
players use a PDM with r0 = 1

2 and ρ -i
0 = (2

5 , 3
5) = ρ i

0. No move could have been different.
See Fig. 4 for an explanation about the notation.

When the players use an IDM for the same game, the same history can be played, but
it is now very likely that the pathological correlated gameplay does not occur. This
is illustrated in Fig. 8, where both players use an IDM with r0 = 1

2 and the best reply
as a behavior rule. The prior assessments are described by µ0 = Σ . Even though

1 2Σ i

1

2

Σ -i

1

2

3

4

5

σ ∗

µ
t
= t

r0+t
ν t + r0

r0+t
Σ

ν i
t
(1) = 1−ν i

t
(2)

ν -i
t
(1) = 1−ν -i

t
(2)

t ν i
t (2),ν -i

t (2) φ t

0 (1,1)?

1 0,0 (2,2)?

2 1
2 , 1

2 (1,1)

3 1
3 , 1

3 (1,1)?

4 1
4 , 1

4 (2,2)?

5 2
5 , 2

5 (1,1)

Fig. 8. Gameplay with the battle of the sexes when using set-valued assessment rules when
both players use an IDM with r0 = 1

2 . See Fig. 4 for an explanation about the notation.

we took the partial history shown in this example to be the same as in Fig. 7, it is

5 Fudenberg and Levine [6] propose cautious variants of fictitious play to address this
problem and others. They focus on a modification of the players’ behavior rules, while we
– in this paper – focus mainly on a modification of the players’ assessment rules.
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clear that when the choice between the different possible φ t is made arbitrarily (or
using some targeted method), it is highly likely that the pathological gameplay is
interrupted at some point. In the table, we indicate all the strategy profiles that could
have been chosen differently with a star. This illustrates what we hinted at at the end
of Sec. 4.3, that after a sufficient number of rounds, the behavior of a player using
an IDM can sometimes be very different from the behavior of a player using a PDM,
thanks to using set-valued assessment rules instead of point-valued ones.

6 Overview of the IDM’s advantages and conclusions

So which of the two models for assessment we have discussed, the PDM and the IDM,
should be used? Of course this depends on the situation. Both are based on a form
of Bayesian inference. Both should reflect the available data and the assumptions
made. Neither should depend on any hidden or unjustified assumptions.

Assumptions about the initial strategy choice ρ -i
0 of the opponent, necessary for

using a PDM, are often unjustified. For example, the assumptions of fictitious play
do not say anything about the initial strategy choice. So then we can only say
something about the initial strategy choice by making additional assumptions. This
is the main reason we have proposed using the IDM, for which this is not necessary
(cf. Sec. 3.3). One consequence of initially having less information, is that the
behavior resulting from using an IDM (instead of a PDM) is less decisive, i.e., the set
of optimal strategies can be larger (cfr. Secs. 4.2 and 4.3). This is something very
natural and honest: when taking decisions, one should be less decisive when one has
less information.

Another interesting result similarly involves the influence of additional informa-
tion. Knowing that the game is strictly competitive does not restrict the set of
optimal strategies when using a PDM, but may restrict this set when using an IDM

(cf. Sec. 4.3).

Considering the similarities and differences between the PDM and the IDM, it is
not surprising that this is reflected in the resulting behavior. As we have illustrated,
the similarity allows absorption to strict equilibria to remain possible (cf. Sec. 5.2).
The difference allows some pathological forms of gameplay to become less likely
(cf. Sec. 5.3).

The basis for the differences is the possibility of having assessment rules that are set-
valued instead of point-valued (cf. Sec. 3.4). We have investigated the consequences
of using such set-valued assessment rules and have shown that existing results about
convergence to strict and mixed equilibria occurring can be generalized to this
context (cf. Sec. 5). However, the possibility of obtaining behavior different from
the classical learning models is probably the most interesting aspect of the model we
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propose in this paper. We think that the best way to achieve some goal or generate
some specific behavior is by formulating additional optimality criteria that further
restrict the set of optimal strategies in a way that encourages achieving the goal or
that favors the specific behavior. A speculative example: to avoid absorption to a
strict equilibrium, it might be useful to discourage use of the same pure strategy in
subsequent rounds.

With regard to extending the results of this paper, it is clear that the approach to
learning we have given here for two-player games can be generalized to multiplayer
games. There are two immediate options [7]. When the opponents are assumed to
play independently, a separate IDM can be used for each of the opponents. When
this assumption is not made, one IDM on the set spanned by all the tuples of the
opponents’ pure strategies can be used. We will not speculate on the generalization
of the convergence results to the multiplayer case.

A Appendix: proofs

Proof of Theorem 2 (includes Theorem 1 as a special case). The fact that φ t
cannot be different from s∗ means that BR(Ri

t ×R-i
t ) = s∗, or, for both players, that

BRi(R-i
t ) =

⋃
ρ -i

t ∈R-i
t

argmaxσ i∈Σ i uσ i(ρ -i
t ) = si∗. (A.1)

So the strategy si∗ is the unique best reply (payoff maximizer) for all ρ -i
t ∈R-i

t . By
myopia φ i

t+1 ∈ BRi(R-i
t+1) and for the round t +1 we can write

BRi(R-i
t+1) =

⋃
ρ -i

t+1∈R-i
t+1

argmaxσ i∈Σ i uσ i(ρ -i
t+1).

By using the bilinearity of the payoff and

ρ -i
t+1 = r0

rt+1
ρ -i

0 + 1
rt+1

n-i
t+1 = rt

rt+1
[ r0

rt
ρ -i

0 + 1
rt

n-i
t ]+ 1

rt+1
s-i∗ = rt

rt+1
ρ -i

t + 1
rt+1

s-i∗ ,

this can be rewritten as

BRi(R-i
t+1) =

⋃
ρ -i

t ∈R-i
t

argmaxσ i∈Σ i[ rt
rt+1

uσ i(ρ -i
t )+ 1

rt+1
uσ i(s-i∗ )].

Because of Eq. (A.1), si∗ is the unique maximizer of the first term. Because s∗ is a
strict equilibrium, this is also the case for the second term. This implies that si∗ is
also the unique maximizer of their sum, or that BRi(R-i

t+1) = si∗. Thus, by myopia,
φt+1 = s∗. Induction completes the proof. 2

Lemma 5 (used to prove Theorems 3 and 4) Consider an infinite history h∞ in
H ∞, adaptive assessment rules µ and a strategy profile σ∗ such that for each
player i there is a sequence of strictly positive reals δt (indexed by the round
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number t) converging to 0 for which it holds for all t that

∀σ -i ∈ µ -i
t : ∀s-i ∈ S-i : ∃λ σ -i

s-i,t ∈ R :

|λ σ -i

s-i,t |< δt and σ -i = [1−∑s-i∈S-i λ σ -i

s-i,t ]σ
-i∗ +∑s-i∈S-i λ σ -i

s-i,ts
-i. (A.2)

If h∞ is compatible with behavior rules φ that are strongly asymptotically myopic
relative to the assessment rules µ , then σ∗ is an equilibrium.

Proof of Lemma 5. We give a proof by contradiction and suppose ex absurdo that
σ∗ is not an equilibrium. We use λ σ -i

σ -i∗ ,t as a shorthand for 1−∑s-i∈S-i λ σ -i

s-i,t . Because
the behavior rules φ are strongly asymptotically myopic (Eq. (13)) we can write
for each player i, for all t and every σ -i ∈ µ -i

t that for all pure strategies s̃i for
which φ i

t (s̃
i) > 0, it holds that us̃i(σ -i)+εt ≥maxsi∈Si usi(σ -i), where εt > 0 is some

sequence converging to 0. Or, because of Eq. (A.2) and the bilinearity of the payoff,
again we can write for each player i, for all t and every σ -i ∈ µ -i

t that for all pure
strategies s̃i for which φ i

t (s̃
i) > 0, it holds that

λ σ -i

σ -i∗ ,tus̃i(σ -i∗ )+∑s-i∈S-i λ σ -i

s-i,tus̃i(s-i)+ εt ≥
maxsi∈Si[λ σ -i

σ -i∗ ,tusi(σ -i∗ )+∑s-i∈S-i λ σ -i

s-i,tusi(s-i)]. (A.3)

Because σ∗ is not an equilibrium, it holds for at least one player – called j – that
σ

j
∗ 6∈ BR j(σ - j

∗ ). Because – as mentioned in Sec. 4.1 – every σ j ∈ BR j(σ - j
∗ ) is a

convex combination of the s j ∈ BR j(σ - j
∗ ), there is a strategy ŝ j 6∈ BR j(σ - j

∗ ) such that
σ

j
∗(ŝ j) > 0. So for this strategy ŝ j,

maxs j∈S j us j(σ - j
∗ )−uŝ j(σ - j

∗ ) = γ > 0. (A.4)

We now show that this implies that there is some t∗ such that φ
j

t (ŝ j) = 0 for all t > t∗.
Ex absurdo, assume that this does not hold, then for all t∗ there is some t ′ > t∗ such
that φ

j
t ′(ŝ

j) > 0, or in other words, there is some subsequence φ
j

t ′ of φ
j

t such that
φ

j
t ′(ŝ

j) > 0 for all t ′. Eq. (A.3) holds in particular for i = j, t = t ′ and s̃ j = ŝ j, so by
substituting Eq. (A.4) in Eq. (A.3), we find that for all t ′

λ σ - j

σ
- j
∗ ,t ′

maxs j∈S j us j(σ - j
∗ )−λ σ - j

σ
- j
∗ ,t ′

γ +∑s- j∈S- j λ σ - j

s- j,t ′uŝ j(s- j)+ εt ′ ≥
maxs j∈S j [λ σ - j

σ
- j
∗ ,t ′

us j(σ - j
∗ )+∑s- j∈S- j λ σ - j

s- j,t ′us j(s- j)],

or

εt ′ ≥ λ σ - j

σ
- j
∗ ,t ′

γ +∑s- j∈S- j λ σ - j

s- j,t ′

≥0︷ ︸︸ ︷
[maxs j∈S j us j(s- j)−uŝ j(s- j)]

> λ σ - j

σ
- j
∗ ,t ′

γ−δt ′∑s- j∈S- j [maxs j∈S j us j(s- j)−uŝ j(s- j)].

Because γ > 0, limt ′→∞ εt ′ = 0, limt ′→∞ δt ′ = 0, and limt ′→∞ λ σ - j

σ
- j
∗ ,t ′

= 1, this cannot
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hold, so for sufficiently large t∗, φ
j

t (ŝ j) = 0 if t > t∗. Put in another way: there is a
strategy ŝ j, for which σ

j
∗(ŝ j) > 0, that is not in the history from t∗ onwards. Because

of the adaptivity of the assessment rules (Eq. (6)), σ j(ŝ j) will be arbitrarily small
for all σ j ∈ µ

j
t for sufficiently large t. This contradicts ( j’s opponent’s version of)

Eq. (A.2), which states that σ j(ŝ j) is at least λ σ - j

σ
- j
∗ ,t

σ
j
∗(ŝ j)−δt (strictly positive for

sufficiently large t). We conclude that σ∗ must be an equilibrium. 2

Proof of Theorem 3. Considering that the assessment rules are adaptive (Eq. (6)),
it holds for both players i that for all t and all ε > 0

∃tε > t : ∀t ′ > tε : ∀h-i
t ′ ∈H -i

t ′ : ∀s-i ∈ S-i such that n-i
t ′(s

-i) = n-i
t (s-i) : ∀σ -i ∈ µ -i

t ′ :
σ -i(s-i) < ε.

We can always choose tε > t0 (implying that φ t ′ = s∗ for all t ′ > tε ). Thus n-i
t ′(s

-i) =
n-i

t0(s
-i) will hold for every s-i 6= s-i∗ . This means every σ -i ∈ µ -i

t ′ can be written
as σ -i = σ -i(s-i∗ )s-i∗ + ∑s-i∈S-i,s-i 6=s-i∗ σ -i(s-i)s-i, where σ -i(s-i) < ε if s-i 6= s-i∗ , due to
adaptivity. Because ε can be chosen arbitrarily small, we can create a sequence
converging to 0 that fits the conditions of Lemma 5. Applying Lemma 5 completes
the proof. This is done by identifying σ∗ = s∗ and λ σ -i

s-i,t = σ -i(s-i) for all s-i in
S-i. 2

Proof of Theorem 4. Considering that the assessment rules are asymptotically
empirical (Eq. (7)), i.e., that

∀ε > 0: ∃t0 > 0: ∀t > t0 : sup
σ -i∈µ -i

t ,s-i∈S-i|ν -i(h-i
t ,s-i)−σ -i(s-i)|< ε

2

and using the assumptions of Theorem 4, i.e., that

∀ε > 0: ∃t1 > 0: ∀t > t1 : sup
σ -i∈µ -i

t ,s-i∈S-i|σ -i∗ (s-i)−ν -i(h-i
t ,s-i)|< ε

2 ,

it holds for both players i that for all ε > 0 there exists a t2 = max(t0, t1) such that
for all t > t2 and for all s-i ∈ S-i

sup
σ -i∈µ -i

t
|σ -i∗ (s-i)−σ -i(s-i)|

= sup
σ -i∈µ -i

t
|σ -i∗ (s-i)−ν -i(h-i

t ,s-i)+ν -i(h-i
t ,s-i)−σ -i(s-i)|

≤ sup
σ -i∈µ -i

t
(|σ -i∗ (s-i)−ν -i(h-i

t ,s-i)|+ |ν -i(h-i
t ,s-i)−σ -i(s-i)|)

< ε

2 + ε

2 = ε.

This implies that every σ -i ∈ µ -i
t can be written as σ -i = σ -i∗ +∑s-i∈S-i λ σ -i

s-i,ts
-i, where

λ σ -i

s-i,t < ε for all t > t2. Because ε can be chosen arbitrarily small, we can create a
sequence converging to 0 that fits the conditions of Lemma 5. Applying Lemma 5
again completes the proof. 2
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