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1 Introduction

Consider a subject who is making N > 0 successive observations of a certain phe-
nomenon. We represent these observations by N random variables X1, . . . , XN . By
random variable, we mean a variable about whose value the subject may entertain
certain beliefs. We assume that at each successive instant k, the actual value of the
random variables Xk can be determined in principle. To fix ideas, our subject might
be looking for frogs in the Amazon forest, and then Xk is the species of the k-th
frog he comes across. Or, he might, as an archetypical example, be drawing balls
without replacement from an urn, in which case Xk could designate the color of the
k-th ball taken from the urn.

In the type of predictive inference we consider here, our subject in some way uses
zero or more observations X1, . . . , Xn made previously, i.e., those up to a certain
instant n ∈ {0,1, . . . ,N−1}, to predict, or make inferences about, the values of the
future, or as yet unmade, observations Xn+1, . . . , XN . Here, we only consider the
problem of immediate prediction: he is only trying to predict, or make inferences
about, the value of the next observation Xn+1.

We are particularly interested in the problem of making such predictive inferences
under prior ignorance: initially, before making any observation, our subject knows
very little or nothing about what produces these observations. In the urn example,
this is the situation where he does not know the composition of the urn, e.g., how
many balls there are, or what their colors are. What we do assume, however, is that
our subject makes an assessment of exchangeability to the effect that the order in
which a sequence of observations has been made does not matter for his predictions.

In such a situation, a subject usually determines, beforehand, a non-empty finite set
X of possible values, also called categories for the random variables Xk. It is then
sometimes held, especially by advocates of a logical interpretation to probability,
that our subject’s beliefs should be represented by some given family of predictive
probability mass functions. Such a predictive family is made up of real-valued maps
pn+1

X (·|x) on X , which give, for each n = 0, . . . ,N−1 and each x= (x1, . . . ,xn) in
X n, the so-called predictive probability mass function for the (n + 1)-th observa-
tion, given the values (X1, . . . ,Xn) = (x1, . . . ,xn) =x of the n previous observations.
Any such family should in particular reflect the above-mentioned exchangeability
assessment. Cases in point are the Laplace–Bayes Rule of Succession in the case
of two categories [1], or Carnap’s more general λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one example, can strongly de-
pend on the number of elements in the set X . This may well be considered un-
desirable. If for instance, we consider drawing balls from an urn, predictive infer-
ences about whether the next ball will be ‘red or green’ ideally should not depend
on whether we assume beforehand that the possible categories are ‘red’, ‘green’,
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‘blue’ and ‘any other color’, or whether we take them to be ‘red or green’, ‘blue’,
‘yellow’ and ‘any other color’. This desirable property was called representation
invariance by Peter Walley [3], who showed that it is satisfied by the so-called
Imprecise Dirichlet-Multinomial Model (or IDMM for short [4]). The IDMM can
be seen as a special system of predictive lower previsions and it is a (predictive)
cousin of the parametric Imprecise Dirichlet Model (or IDM [3]). Lower previsions
are behavioral belief models that generalize the more classical Bayesian ones, such
as probability mass functions, or previsions. We assume that the reader is familiar
with the basic aspects of the theory of coherent lower previsions [5]. Relatively
short introductions can be found in papers by Walley [6] and by ourselves [7,8].

Here, we intend to study general systems of such predictive lower previsions. In
Section 2, we give a general definition of such predictive systems and study a
number of properties they can satisfy, such as coherence and exchangeability. In
Section 3, we study the property of representation insensitivity for predictive sys-
tems, which is a stronger version of Walley’s representation invariance, tailored
to making inferences under prior ignorance. We show in Section 4 that there are
representation insensitive and exchangeable predictive systems, by giving two ex-
amples. These two can be used to generate so-called mixing predictive systems,
which are studied in Section 5. Among these mixing predictive systems, the ones
corresponding to an IDMM take a special place, as they are the only ones to satisfy
all the above-mentioned properties and an extra one, called specificity, related to
behavior under conditioning. In the Conclusions, we list a number of interesting,
as yet unresolved, questions. We have gathered proofs in an Appendix.

2 Predictive families and systems

2.1 Families of predictive lower previsions

First assume that, before the subject starts making the observations Xk, he fixes a
non-empty and finite set X of possible values for all the random variables Xk. We
now want to represent his beliefs about the value of the (n+1)-th observation Xn+1,
if he came to observe the sequence of values x = (x1, . . . ,xn) ∈X n for the first n
random variables, or in other words, if he came to know that Xk = xk for k = 1, . . . ,n.
The model we propose for this is a lower prevision Pn+1

X (·|x) on the set L (X ) of
all gambles on X . Let us first make clear what this means.

A gamble f on X is a real-valued map on X . It represents an uncertain reward,
expressed in terms of some predetermined linear utility scale. When interpreted as
a gamble on the outcome Xn+1, it yields a (possibly negative) reward of f (x) utiles
if the value of the next variable Xn+1 turns out to be the category x in X . The
set of all gambles on X is denoted by L (X ). The lower prevision Pn+1

X ( f |x)
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of any gamble f on X is the subject’s supremum acceptable price for buying
this gamble, or in other words, the highest r such that he accepts the uncertain
reward f (Xn+1)− p for all p < r, conditional on his having observed the values
x = (x1, . . . ,xn) for the first n variables (X1, . . . ,Xn). His corresponding predictive
upper prevision, or infimum selling price for f , is then given by the conjugacy
relationship: Pn+1

X ( f |x) =−Pn+1
X (− f |x).

A specific class of gambles is related to events, i.e., subsets A of X . This is the
class of indicators IA that map any element of A to one and all other elements of X
to zero. A lower prevision that is defined on (indicators of) events only is called a
lower probability, and we often write Pn+1

X (A|x) instead of Pn+1
X (IA|x). The reader

may wonder at this point why we work with the seemingly more complicated lan-
guage of gambles and lower previsions, rather than with that of events and lower
probabilities. The main reason is that, as Walley has shown [5], the former is much
more expressive: in contradistinction with a coherent prevision, a coherent lower
prevision is not completely characterized by the values it assumes on events.

By the predictive lower prevision Pn+1
X (·|x), which models beliefs about the value

of the next random variable Xn+1 given the observations (X1, . . . ,Xn) =x, we mean
the real-valued functional, defined on the set of all gambles L (X ), that assigns
to any gamble f its predictive lower prevision Pn+1

X ( f |x). We assume that the
subject has such a predictive lower prevision Pn+1

X (·|x) for all x in X n and all
n ∈ {0, . . . ,N − 1}, where N > 0 is some fixed positive integer, representing the
maximum or total number of observations we are interested in. For n = 0, there
is some slight abuse of notation here, because we then actually have an uncondi-
tional predictive lower prevision P1

X on L (X ) for the first observation X1, and no
observations have yet been made. We are thus led to the following definition.

Definition 1 (Family of predictive lower previsions) Consider a finite and non-
empty set of categories X . An X -family of predictive lower previsions, or predic-
tive X -family for short, for up to N > 0 observations is a set of predictive lower
previsions σN

X :=
{

Pn+1
X (·|x) : x ∈X n and n = 0, . . . ,N−1

}
.

It is useful to consider the special case, mentioned in the Introduction, and quite
common in the literature, of a family of predictive lower previsions of which all
members Pn+1

X (·|x) are actually linear or coherent previsions Pn+1
X (·|x), i.e, such

that for each n = 0, . . . ,N− 1 and x ∈X n there is some predictive (probability)
mass function pn+1

X (·|x) on X such that pn+1
X (z|x)≥ 0 and ∑z∈X pn+1

X (z|x) = 1,
and where for all gambles f on X , Pn+1

X ( f |x) = ∑z∈X f (z)pn+1
X (z|x). Such lin-

ear previsions are the Bayesian belief models usually encountered in the literature
(see for instance de Finetti’s book [9]). We can use Bayes’s rule to combine these
predictive mass functions into unique joint mass functions pn

X on X n :=×n
i=1X ,

given by

pn
X (x) = pn

X (x1, . . . ,xn) =
n−1

∏
k=0

pk+1
X (xk+1|x1, . . . ,xk),
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for all x= (x1, . . . ,xn) in X n and n = 1, . . . ,N. This leads to unique corresponding
linear previsions Pn

X on L (X n), the set of gambles g on X n, given by

Pn
X (g) = ∑

x∈X n
g(x)pn

X (x). (1)

For n = N, we call PN
X the joint linear prevision associated with the given predic-

tive family of linear previsions. It models beliefs about the values that the random
variables (X1, . . . ,XN) assume jointly in X N .

2.2 Systems of predictive lower previsions

When a subject is using a family of predictive lower previsions σN
X , this means

he has assumed beforehand that the random variables X1, . . . , XN all take values
in the set X . It cannot, therefore, be excluded at this point that his inferences, as
represented by the predictive lower previsions Pn+1

X (·|x), strongly depend on the
choice of the set of possible values X . Any initial choice of X may lead to an
essentially very different predictive family σN

X . In order to be able to deal with this
possible dependence mathematically, we now define predictive systems as follows.

Definition 2 (System of predictive lower previsions) Fix N > 0. Consider for any
finite non-empty set of categories X an X -family σN

X of predictive lower previ-
sions Pn+1

X (·|x). The set σN :=
{

σN
X : X is a finite and non-empty set

}
is called a

system of predictive lower previsions, or predictive system for short, for up to N
observations. We denote by ΣN the set of all such predictive systems.

It is such predictive systems whose properties we intend to study. For two predictive
systems σN and λ N we say that σN is less committal, or more conservative, than
λ N , and we denote this by σN � λ N , if each predictive lower prevision Pn+1

X (·|x)
in σN is point-wise dominated by the corresponding predictive lower prevision
Qn+1

X
(·|x) in λ N : Pn+1

X ( f |x) ≤ Qn+1
X

( f |x) for all gambles f on X . The reason
for this terminology should be clear: a subject using predictive system λ N will be
buying gambles f on X at supremum prices Qn+1

X
( f |x) that are at least as high as

the supremum prices Pn+1
X ( f |x) of a subject using predictive system σN .

The binary relation � on ΣN is a partial order: it is reflexive, anti-symmetric and
transitive. A non-empty subset

{
σN

γ : γ ∈ Γ

}
of ΣN may have an infimum (or great-

est lower bound) with respect to this partial order, and whenever it exists, this
infimum corresponds to taking lower envelopes: if we fix X , n and x, then the
corresponding predictive lower prevision in the infimum predictive system is the
lower envelope infγ∈Γ Pn+1

X ,γ(·|x) of the corresponding predictive lower previsions
Pn+1

X ,γ(·|x) in the predictive systems σN
γ , γ ∈ Γ.
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2.3 Coherence requirements

As is usually done for belief models, we impose certain consistency, or rationality,
requirements on the members Pn+1

X (·|x) of a predictive system σN .

Definition 3 (Coherence) A system of predictive lower previsions is called coher-
ent if it is the infimum of a collection of systems of predictive linear previsions.

This is equivalent to requiring, for each choice of X , that the conditional lower pre-
visions Pn+1

X (·|x) for n = 0, . . . ,N−1 and x ∈X n should satisfy Walley’s (joint)
coherence condition. 3 Coherence is in the present context 4 also equivalent to re-
quiring that the predictive lower previsions Pn+1

X (·|x) should be (separately) co-
herent, meaning that for each finite and non-empty set X , n = 0, . . . ,N−1 and x
in X n, Pn+1

X (·|x) should satisfy, for all gambles f and g on X and all real λ ≥ 0:

(C1) Pn+1
X ( f |x)≥ inf f [accepting sure gains];

(C2) Pn+1
X ( f +g|x)≥ Pn+1

X ( f |x)+Pn+1
X (g|x) [super-additivity];

(C3) Pn+1
X (λ f |x) = λPn+1

X ( f |x) [positive homogeneity].

2.4 Exchangeability and regular exchangeability

Next, we show how to formulate an assessment of exchangeability of the random
variables X1, . . . , XN in terms of a system of predictive lower previsions. A sub-
ject would make such an assessment if he believed that the order in which these
variables are observed is not important. Let us make this idea more precise.

We begin with the definition of exchangeability for a precise predictive system,
i.e., a system of predictive linear previsions. For each choice of X , the precise X -
family σN

X has a unique joint linear prevision PN
X on L (X N), defined by Eq. (1),

which describes beliefs about what values the joint random variable (X1, . . . ,XN)
assumes in X N . We then call the precise predictive system exchangeable if all the
associated joint linear previsions PN

X are. Formally, consider the set of all per-
mutations of {1, . . . ,N}. With any such permutation π we can associate a per-
mutation of X N , also denoted by π , that maps any x = (x1, . . . ,xN) in X N to
πx := (xπ(1), . . . ,xπ(N)). Similarly, with any gamble f on X N , we can consider

3 See Walley’s book [5]: Section 6.2 for separate coherence, Section 7.1.4 for (joint) co-
herence of conditional lower previsions, and Section K3 for Williams’s Theorem. Since
the random variables Xk are assumed to only take on a finite number of values, Walley’s
coherence condition here coincides with the one first suggested by Williams [10].
4 This follows from our generalized Marginal Extension Theorem for random variables
[11, Theorem 4]: for any random variables X1, . . . , XN , any separately coherent conditional
lower previsions P1, P2(·|X1), . . . , PN(·|X1, . . . ,XN−1) are automatically (jointly) coherent.
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the permuted gamble π f := f ◦ π , or in other words (π f )(x) = f (πx). We then
require that PN

X (π f ) = PN
X ( f ) for any such permutation π and any gamble f

on X N . Equivalently, in terms of the joint mass function pN
X , we require that

pN
X (πx) = pN

X (x) for all x in X N and all permutations π . See de Finetti’s work
[9,12] for more details and discussion of exchangeability for linear previsions.

We adopt the following definition of exchangeability for general predictive systems.

Definition 4 (Exchangeability) A system of predictive lower previsions is called
exchangeable if it is the infimum of a collection of exchangeable systems of predic-
tive linear previsions. We denote by 〈ΣN

e ,�〉 the set of all exchangeable predictive
systems for up to N observations, with the same order � as defined on 〈ΣN ,�〉.

It follows at once from this definition that the infimum of any non-empty collection
of exchangeable predictive systems is still exchangeable, as an infimum of infima
(and therefore an infimum itself) of collections of exchangeable systems of predic-
tive linear previsions. This means that the partially ordered set 〈ΣN

e ,�〉 is a com-
plete semi-lattice [13, Sections 3.19–3.20]. We next turn to a stronger requirement,
introduced mainly for reasons of mathematical convenience.

Definition 5 (Regular exchangeability) A system of predictive lower previsions is
called regularly exchangeable if it is the infimum of some collection σN

γ , γ ∈ Γ, of
exchangeable systems of predictive linear previsions, where for all finite non-empty
X , all x in X N−1, and all γ in Γ, pN−1

X ,γ (x) = ∏
N−2
k=0 pk+1

X ,γ(xk+1|x1, . . . ,xk) > 0.

The term regular reminds of the notion of regular extension considered by Walley
[5, Appendix J]. Regular exchangeability implies that every predictive lower previ-
sion Pn+1

X (·|x) is the lower envelope of the predictive linear previsions Pn+1
X ,γ(·|x),

uniquely derived from the joint linear previsions PN
X ,γ by applying Bayes’s rule:

Pn+1
X ,γ( f |x) =

PN
X ,γ( f I{x}×X N−n)

PN
X ,γ({x}×X N−n)

,or equivalently pn+1
X ,γ(z|x) =

pn+1
X ,γ(x,z)

pn
X ,γ(x)

,

since the probability pn
X ,γ(x) := PN

X ,γ({x}×X N−n) of the conditioning event
is non-zero. All regularly exchangeable predictive systems are in particular also
exchangeable and coherent. A precise exchangeable predictive system is regularly
exchangeable if and only if pN−1

X (x) > 0 for all x∈X N−1 and all finite non-empty
sets X : regular exchangeability is a stricter requirement than exchangeability.

The number of times Tz(x) := |{k ∈ {1, . . . ,n} : xk = z}| that a given category z in
X has been observed in some sample x ∈X n of length 0 ≤ n ≤ N, is of special
importance when there is regular exchangeability. Consider the counting map TX

that maps samples x of length n to the X -tuple TX (x) whose components are
Tz(x), z ∈X . TX (x) tells us how often each of the elements of X appears in
the sample x, and as x varies over X n, TX (x) assumes all values in the set of
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count vectors N n
X :=

{
m ∈ NX

0 : ∑z∈X mz = n
}

. Here N0 denotes the set of non-
negative integers (including zero). It is easy to see that any two samples x and y of
length n have the same count vector TX (x) = TX (y) if and only if there is some
permutation π of {1, . . . ,n} such that y = πx. This leads to the following result.

Proposition 1 In a precise exchangeable predictive system σN , consider any finite
non-empty set X , 0≤ n≤ N−1, and x and y in X n such that TX (x) = TX (y).
Then pn

X (x) = pn
X (y). And if pn

X (x) = pn
X (y) > 0, then Pn+1

X (·|x) = Pn+1
X (·|y).

As an immediate corollary, we see that in any regularly exchangeable predictive
system, the predictive lower previsions Pn+1

X (·|x) only depend on the sample x
through its count vector m= TX (x): for any other sample y such that TX (y) =
m, it holds that Pn+1

X (·|x) = Pn+1
X (·|y) and we use the notation Pn+1

X (·|m) for
Pn+1

X (·|x) in order to reflect this. In fact, from now on we only consider predictive
systems—be they regularly exchangeable or not—for which the predictive lower
previsions only depend on the observed samples through their count vectors, or in
other words, for which the count vectors are sufficient statistics.

Regular exchangeability allows us to prove the following inequality, which has
far-reaching consequences. We denote by ez the count vector in N 1

X whose z-
component is one and all of whose other components are zero; it corresponds to the
case where we have a single observation of a category z in X .

Proposition 2 In a regularly exchangeable predictive system σN , it holds for all
finite and non-empty sets X , all 0 ≤ n ≤ N− 2, all m in N n

X and all gambles f
on X that Pn+1

X ( f |m)≥ Pn+1
X (Pn+2

X ( f |m+e·)|m). Here Pn+2
X ( f |m+e·) denotes

the gamble on X that assumes the value Pn+2
X ( f |m+ez) in z ∈X .

3 Representation invariance and representation insensitivity

We now turn to Walley’s notion of representation invariance; see his IDM paper [3]
for detailed discussion and motivation. Representation invariance could also, and
perhaps preferably so, be called pooling invariance. Consider a set of categories X ,
and a partition S of X . Each element S of such a partition corresponds to a single
new category, that consists of all the elements x ∈ S being pooled, i.e., consid-
ered as one. Denote by S(x) the unique element of the partition S that a cate-
gory x ∈X belongs to. So we consider S as a map from X to S . If a gamble g
on X does not differentiate between pooled categories, or in other words, is con-
stant on the elements of S , this means that there is some gamble f on S such that
g = f ◦S. Similarly, with a sample x= (x1, . . . ,xn)∈X n, there corresponds a sam-
ple Sx := (S(x1), . . . ,S(xn)) ∈S n of pooled categories. We can of course consider
the partition S as a set of categories, and then representation invariance requires
that Pn+1

X ( f ◦ S|x) = Pn+1
S ( f |Sx): for gambles that do not differentiate between
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pooled categories, it should not matter whether we consider predictive inferences
for the set of original categories X , or for the set of pooled categories S .

Besides pooling invariance, we can also require renaming invariance: as long as no
confusion can arise, it should not matter for a subject’s predictive inferences what
names he gives to the different categories. This may seem too trivial to even men-
tion, and as far as we know, it is always implicitly taken for granted in predictive in-
ference. But it will be well to devote some attention to it here, in order to distinguish
it from the category permutation invariance to be discussed shortly, with which it is
easily confused if we do not pay proper attention. If we have a renaming bijection λ

between a set of categories X and a set of renamed categories Y , where we clearly
distinguish between the elements of X and those of Y , then with a gamble f on the
set of renamed categories, there corresponds a gamble f ◦λ on the set of original
categories X . Similarly, with a sample x= (x1, . . . ,xn) of original categories, there
corresponds a sample of renamed categories λx := (λ (x1), . . . ,λ (xn)). Clearly, we
should then require that PX ( f ◦λ |x) = PY ( f |λx).

We have already stated in the Introduction that we are especially interested in pre-
dictive inference where a subject starts from a state of prior ignorance. In such a
state, he has no reason to distinguish between the different elements of any set of
categories X he has chosen. To formalize this idea, consider a permutation ϖ of the
elements of X . 5 With any gamble f on X , there corresponds a permuted gamble
f ◦ϖ . Similarly, with an observed sample x in X n, there corresponds a permuted
sample ϖx := (ϖ(x1), . . . ,ϖ(xn)). If a subject has no reason to distinguish between
categories z and their images ϖz, this means that Pn+1

X ( f ◦ϖ |x) = Pn+1
X ( f |ϖx). We

call this property category permutation invariance. 6 Formally, it closely resembles
renaming invariance, but whereas the latter is a trivial requirement, category permu-
tation invariance can only be justified when our subject has no reason to distinguish
between the categories, which may for instance happen when he is in a state of
prior ignorance. To draw attention to the difference between the two in a somewhat
loose manner: category permutation invariance allows confusion between new and
old categories, something which renaming invariance carefully avoids.

We call representation insensitivity the combination of representation, renaming
and category permutation invariance. It means that predictive inferences remain
essentially unchanged when we transform the set of categories, or in other words
that they are essentially insensitive to the choice of representation, i.e., category
set. It is not difficult to see that representation insensitivity can be formally char-
acterized as follows. Consider two non-empty and finite sets of categories X

5 This permutation ϖ of the elements of X , or in other words of the categories, should
be contrasted with the permutation π of the order of the observations, i.e., of the time set
{1, . . . ,N}, considered in Section 2.4 in order to define exchangeability.
6 This requirement is related to the notion of (weak) permutation invariance that two of us
studied in much detail in a paper [7] dealing with symmetry in uncertainty modeling.
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and Y , and a so-called relabeling map ρ : X → Y that is onto, i.e., such that
Y = ρ(X ) := {ρ(x) : x ∈X }. Then with any gamble f on Y there corresponds a
gamble f ◦ρ on X . Similarly, with an observed samplex in X n, there corresponds
a transformed sample ρx := (ρ(x1), . . . ,ρ(xn)) in Y n. Representation insensitivity
for immediate prediction then means that Pn+1

X ( f ◦ρ|x) = Pn+1
Y ( f |ρx).

3.1 Definition and basic properties

For any gamble f on a finite non-empty set of categories X , its range f (X ) :=
{ f (x) : x ∈X } can again be considered as a set of categories, and f itself can be
seen as a relabeling map. With anym in N n

X there corresponds a count vectorm f

in N n
f (X ) defined by m f

r := ∑ f (x)=r mx for all r in f (X ). Clearly, if x is a sam-
ple with count vector m, then the relabeled sample fx = ( f (x1), . . . , f (xn)) has
count vector m f . Representation insensitivity is then equivalent to the following
requirement, which we take as its definition, because of its simplicity and elegance.

Definition 6 (Representation insensitivity) A predictive system σN is representa-
tion insensitive if for all 0≤ n≤ N−1, all finite non-empty sets X and Y , all
m ∈N n

X andm′ ∈N n
Y , and all gambles f on X and g on Y such that f (X ) =

g(Y ), the following implication holds:m f =m′g⇒ Pn+1
X ( f |m) = Pn+1

Y (g|m′).

Clearly, a predictive system σN is representation insensitive if and only if for all
finite and non-empty sets X , all 0≤ n≤ N−1, allm ∈N n

X and all f ∈L (X ):

Pn+1
X ( f |m) = Pn+1

f (X )(id f (X ) |m f ), (2)

where id f (X ) denotes the identity map (gamble) on f (X ). The predictive lower
prevision Pn+1

X ( f |m) then depends on f (X ) andm f only, and not directly on X ,
f and m. To put it more explicitly, Pn+1

X ( f |m) only depends on the values that f
may assume, and on the number of times each value has been observed.

We denote by ΣN
e,ri the set of all exchangeable predictive systems that are repre-

sentation insensitive. It is a subset of the class ΣN
e of all exchangeable predictive

systems, and it inherits the order �. Clearly, taking (non-empty) infima preserves
representation insensitivity, so 〈ΣN

e,ri,�〉 is a complete semi-lattice as well. We shall
see further on in Theorem 6 that these two structures have the same bottom (the
vacuous representation insensitive and exchangeable predictive system).

We are interested in finding, and studying the properties of, predictive systems that
are both exchangeable (and therefore coherent) and representation insensitive. We
believe performing such a study to be quite important, and we report on our first
attempts to do so in the rest of this paper.
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3.2 The lower probability function

With any predictive system σN , we can associate a map ϕσN defined on the subset
{(n,m) : 0≤ m≤ n≤ N−1} of N2

0 by

ϕσN (n,m) := Pn+1
{0,1}(id{0,1} |n−m,m).

Why this map is important, becomes clear if we look at predictive systems that are
representation insensitive. Consider any proper event /0 6= A ⊂X , then it follows
by applying Eq. (2) with f = IA, that

Pn+1
X (A|m) = Pn+1

{0,1}(id{0,1} |n−mA,mA),= ϕσN (n,mA) (3)

where mA := ∑z∈A mz. So we see that in a representation insensitive predictive sys-
tem, the lower probability ϕσN (n,m) of observing an event (that is neither consid-
ered to be impossible nor necessary) does not depend on the embedding set X nor
on the event itself, but only on the total number of previous observations n, and on
the number of times m that the event has been observed before. Something similar
holds for the upper probability of observing a non-trivial event: by conjugacy,

Pn+1
X (A|m) = 1−Pn+1

X (Ac|m) = 1−ϕσN (n,mAc) = 1−ϕσN (n,n−mA), (4)

where Ac denotes the set-theoretic complement of the event A. This property 7 of
representation insensitive predictive systems is reminiscent of Johnson’s sufficient-
ness postulate [16] (we use Zabell’s terminology [17]), which requires that the
probability that the next observation will be some category x is a function fx(n,mx)
that depends only on x, on the number of times mx that this category x has been ob-
served before, and on the total number of previous observations n. Representation
insensitivity is stronger: it entails that the function ϕσN that ‘corresponds to’ the fx
is the same for all categories x in all possible finite and non-empty sets X .

We call ϕσN the lower probability function of the predictive system σN . To alleviate
the notational complexity, we suppress the index and simply write ϕ , whenever it
is clear which predictive system we are talking about. Let us now consider any
predictive system σN that is representation insensitive and exchangeable. We show
in the next section that there are such predictive systems. But first we look at a
number of interesting properties for the associated lower probability function ϕ .

Proposition 3 Let N > 0 and let σN be a representation insensitive and coherent
predictive system with lower probability function ϕ . Then

7 Another interesting property of the map ϕσN is that it completely determines the values
of the predictive system on gambles for those predictive systems which have the addi-
tional property of 2-monotonicity. This is for instance the case of the mixing predictive
systems we shall study in Section 5. A thorough and general study of the condition of
2-monotonicity for lower previsions can be found in [14,15].
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1. ϕ is [0,1]-bounded: 0≤ ϕ(n,k)≤ 1 for all 0≤ k ≤ n≤ N−1.
2. ϕ is super-additive in its second argument: ϕ(n,k + `) ≥ ϕ(n,k)+ ϕ(n, `) for

all non-negative integers n, k and ` such that k + `≤ n≤ N−1.
3. ϕ(n,0) = 0 for all 0≤ n≤ N−1.
4. ϕ(n,k)≥ kϕ(n,1) for 1≤ k ≤ n≤ N−1,

and 0≤ nϕ(n,1)≤ 1 for 1≤ n≤ N−1.
5. ϕ is non-decreasing in its second argument:

ϕ(n,k +1)≥ ϕ(n,k) for 0≤ k < n≤ N−1.

If σN is moreover regularly exchangeable, then

6. ϕ(n,k)≥ ϕ(n+1,k)+ϕ(n,k)[ϕ(n+1,k +1)−ϕ(n+1,k)]
for 0≤ k ≤ n≤ N−2.

7. ϕ is non-increasing in its first argument:
ϕ(n+1,k)≤ ϕ(n,k) for 0≤ k ≤ n≤ N−2.

8. ϕ(n,1)≥ ϕ(n+1,1)[1+ϕ(n,1)] for 1≤ n≤ N−2.
9. Suppose that ϕ(n,1) > 0 and define sn := 1

ϕ(n,1) −n for 1≤ n≤ N−1.
Then sn ≥ 0, ϕ(n,1) = 1/(sn +n) and sn is non-decreasing.

The sn that appear in this proposition will later, in Section 5.2, turn out to be con-
stant (independent of the number of observations n) under special additional as-
sumptions, and will there play the rôle of the hyper-parameter s in the IDMM.

In particular, these results, together with Eqs. (3) and (4), allow us to draw in-
teresting and intuitively appealing conclusions about predictive lower and upper
probabilities, which are valid in any representation insensitive and coherent pre-
dictive system: (i) the lower probability of observing an event that has not been
observed before is zero, and the upper probability of observing an event that has
always been observed before is one [Proposition 3.3]; and (ii) if the number of ob-
servations remains fixed, then both the lower and the upper probability of observing
an event again do not decrease if the number of times the event has already been
observed increases [Proposition 3.5]. In predictive systems that are moreover regu-
larly exchangeable, we also see that (iii) if the number of times an event has been
observed remains the same as the number of observations increases, then the lower
probability for observing the event again does not increase [Proposition 3.7].

When the predictive system we consider consists solely of families of predictive
linear previsions (apart perhaps from predictive lower previsions for dealing with
zero previous observations), we can use the additivity of linear previsions, instead
of the mere super-additivity of (separately) coherent lower previsions used previ-
ously, to get stronger versions of parts of Proposition 3.

Corollary 4 Consider a representation insensitive and coherent predictive system
σN , with a lower probability function ϕ , and such that all the predictive lower
previsions Pn+1

X (·|m) for 0 < n ≤ N− 1 are linear previsions. Then the following

12



statements hold for all 0 < n≤ N−1:

1. ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `) for all k, `≥ 0 such that k + `≤ n;
2. ϕ(n,k) = kϕ(n,1) for all 0≤ k ≤ n.

4 Are there representation insensitive and exchangeable predictive systems?

We have not yet proven that our notions of representation insensitivity and ex-
changeability for predictive system are compatible, or in other words, we do not
know yet if there are any predictive systems that are both representation insensi-
tive and exchangeable (let alone regularly so). We remedy this situation here by
establishing the existence of two ‘extreme’ types of representation insensitive and
exchangeable predictive systems, one of which is also regularly exchangeable.

Consider, for any predictive system σN that is both representation insensitive and
exchangeable, the predictive lower previsions for n = 0. These are actually un-
conditional lower previsions P1

X on L (X ), modeling our beliefs about the first
observation X1, i.e., when no observations have yet been made. It follows right
away from Proposition 3 and Eqs. (3) and (4) that for any proper subset A of X ,
P1

X (A) = ϕ(0,0) = 0. Since P1
X is assumed to be a (separately) coherent lower pre-

vision, Proposition 5 below then guarantees that P1
X ( f ) = min f , for any gamble f

on X . So all the P1
X in a representation insensitive and exchangeable predictive

system must be so-called vacuous lower previsions. 8 This means that there is no
choice for the first predictions. It also means that it is impossible to achieve repre-
sentation insensitivity in any precise predictive system (but see Theorem 7 further
on for a predictive system that comes close).

Proposition 5 Consider an arbitrary non-empty set X . Let P be a coherent lower
prevision on L (X ) such that P(A) = 0 for all A ⊂X . Then P is the vacuous
lower prevision on X , meaning that for all gambles f on X , P( f ) = inf f .

This leads us to consider the so-called vacuous predictive system νN where all
predictive lower previsions are vacuous: for all 0≤ n≤ N−1, all finite non-empty
sets X , allm ∈N n

X and all gambles f on X , Pn+1
X ( f |m) := min f .

Theorem 6 The vacuous predictive system νN is regularly exchangeable and rep-
resentation insensitive. It is the bottom of the complete semi-lattice 〈ΣN

e,ri,�〉. Its
lower probability function is given by ϕ(n,m) = 0 for 0≤ m≤ n≤ N−1.

8 This result was proven, in another way, by Walley [5, Section 5.5.1], when he argued
that his Embedding and Symmetry Principles under coherence only leave room for the
vacuous lower prevision. In the special case that there are no prior observations (n = 0), the
Embedding Principle is related to representation invariance, and the Symmetry Principle to
what we have called category permutation invariance.
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In the vacuous predictive system the predictive lower previsions Pn+1
X (·|m) do not

depend on the number of observations n, nor on the observed count vectors m. A
subject who is using the vacuous predictive system is not learning anything from
the observations. In particular, we see that representation insensitivity and (regular)
exchangeability do not guarantee that we become more committal as we have more
information at our disposal. Indeed, with the vacuous predictive system, whatever
our subject has observed before, he always remains fully uncommittal. If we want
a predictive system where something is really being learned from the data, it seems
we need to make some ‘leap of faith’, and add something to our assessments that is
not a mere consequence of exchangeability and representation insensitivity.

Are there less trivial examples of exchangeable and representation insensitive pre-
dictive systems? We know that we must make the vacuous choice for n = 0, but is
there, for instance, a way to make the predictive lower previsions precise, or linear,
for n > 0? The following theorem tells us there is only one such predictive system.

Theorem 7 Consider a predictive system where for any 0 < n≤ N−1 all the pre-
dictive lower previsions Pn+1

X (·|m) are actually linear previsions Pn+1
X (·|m). If this

predictive system is representation insensitive, then

Pn+1
X ( f |m) = Sn+1

X ( f |m) := ∑
z∈X

f (z)
mz

n
(5)

for all 0 < n ≤ N− 1, all finite non-empty sets X , all m ∈N n
X and all gambles

f on X . For its lower probability function ϕ , we then have ϕ(n,k) = k
n for all

0≤ k ≤ n and n > 0. Moreover, the predictive previsions given by Eq. (5), together
with the vacuous lower previsions for n = 0, constitute a representation insensitive
and exchangeable (but not regularly so) predictive system πN .

We call the predictive system πN described in Theorem 7 the Haldane predic-
tive system. The name refers to the fact that a Bayesian inference model with a
multinomial likelihood function using Haldane’s (improper) prior (see, e.g., Jef-
freys [18, p. 123]) would lead to these predictive previsions for n > 0. The fact that
the lower probability function of Haldane predictive system is always ϕ(n,k) = k

n
for all 0 ≤ k ≤ n ≤ N−1 and n > 0, together with Corollary 4, implies that state-
ments 6 and 8 in Proposition 3 hold with equality in this case. Moreover, we have
sn = 0 for all n≥ 0. Note that in this case the lower probability function coincides
with the classical frequentist estimation: the (lower and upper) probability for an
event that has been observed k times in n trials is equal to k

n .

It is an interesting consequence of Walley’s Marginal Extension Theorem [5, Sec-
tion 6.7.3] that for any finite and non-empty X , the only joint lower prevision
on L (X N) that is coherent with the Haldane predictive X -family is given by
PN

X (g) = minz∈X g(z, . . . ,z) for all gambles g on X N . 9 The Haldane predictive

9 This implies that the Haldane predictive system is not regularly exchangeable: any dom-
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system only seems to be coherent with a joint lower prevision PN
X which expresses

that our subject is certain that all variables Xk will assume the same value, but where
he is completely ignorant about what that common value is.

This is related to another observation: we deduce from Proposition 3.3 that in the
Haldane predictive system, when n > 0 then not only the lower probability but also
the upper probability of observing an event that has not been observed before is
zero! This models that a subject is practically certain (because prepared to bet at all
odds on the fact) that any event that has not been observed in the past will not be ob-
served in the future either. The sampling prevision Sn+1

X ( f |m) for a gamble f in this
predictive system is the expectation of f with respect to the observed (sampling)
probability distribution on the set of categories. The Haldane predictive system is
too strongly tied to the observations, and does not allow us to make ‘reasonable’
inferences in a general context. The Haldane and the vacuous predictive systems
are both extreme cases: in the latter the predictive lower previsions are independent
of the observed data, and in the former they depend too strongly on them.

5 Mixing predictive systems

We have found two representation insensitive and exchangeable predictive systems,
and both are not very useful: the first, because it does not allow learning from past
observations, and the second, because its inferences are too strong and we seem to
infer too much from the data. A natural question then is: can we find ‘intermediate’
representation insensitive and exchangeable predictive systems whose behavior is
stronger than the vacuous and weaker than the Haldane predictive system? A simple
way to get further models is to look at convex mixtures. Let us, therefore, consider
a finite sequence ε of N numbers εn ∈ [0,1], 0 ≤ n ≤ N− 1, and study the mixing
predictive system σN

ε whose predictive lower previsions are given by

Pn+1
X ( f |m) := εnSn+1

X ( f |m)+(1− εn)min f , (6)

for all 0 ≤ n ≤ N− 1, all finite non-empty sets X , all m ∈N n
X and all gambles

f on X . As Sn+1
X ( f |m) is only defined for n > 0, and since representation insen-

sitivity and coherence require that P1
X should be vacuous, we always let ε0 = 0

implicitly. We call any such sequence ε a mixing sequence, and we denote by ϕε

the lower probability function of the corresponding mixing predictive system σN
ε .

We are mainly interested in finding mixing predictive systems that are represen-
tation insensitive and (regularly) exchangeable. The following proposition tells us

inating precise exchangeable predictive system satisfies pN−1
X (x) = 0 for all x ∈X N−1

such that TX (x) =m 6= (N−1)ez for all z ∈X , and for any such x, the requirements for
regular exchangeability cannot be satisfied.
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that the only real issue lies with exchangeability. Its immediate proof is based on the
simple observation that representation insensitivity is preserved by taking convex
mixtures of any predictive systems.

Proposition 8 For any mixing sequence ε , the predictive system σN
ε is still repre-

sentation insensitive. Moreover, let 0≤ k ≤ n≤ N−1. Then ϕε(n,k) = εn
k
n , and if

εn > 0 then sn = n1−εn
εn

and εn = n
n+sn

. In particular ϕε(n,1) = εn/n is the lower
probability of observing a non-trivial event that has been observed once before in
n trials, εn = nϕε(n,1) is the lower probability ϕε(n,n) of observing a non-trivial
event that has always been observed before (n out of n times), and sn = 1−ϕε (n,n)

ϕε (n,1)
is the ratio of the upper probability of observing an event that has never been ob-
served before to the lower probability of observing a non-trivial event that has been
observed once before, in n trials.

We have already argued that, to get away from making vacuous inferences, and
to be able to learn from observations, we need to make some ‘leap of faith’ and
go beyond merely requiring exchangeability and representation insensitivity. One
of the simplest ways to do so, it seems, is to specify the numbers ϕ(n,1) for n =
1, . . . ,N−1, i.e., to specify, beforehand, the lower probability of observing any non-
trivial event that has been observed only once in n trials. We can then ask for the
most conservative representation insensitive predictive system that exhibits these
lower probabilities. Interestingly, mixing predictive systems play this part:

Theorem 9 Consider N > 0 and a mixing sequence ε . Let σN be a representation
insensitive coherent predictive system such that its associated lower probability
function ϕ satisfies ϕ(n,1)≥ ϕε(n,1) = εn/n for all 0 < n≤N−1. Then σN

ε � σN .

Mixing predictive systems have a special part in this theory, because they are quite
simple, and in some sense most conservative. They are quite simple because, as
Proposition 8 shows, all that is needed to specify them is the values ϕ(n,1) of the
lower probability function, or in other words, the lower probabilities that an event
will occur that has been observed once in n observations. Theorem 9 shows they are
the most conservative coherent and representation insensitive predictive systems
with the given values for ϕ(n,1). We shall see that there are mixing predictive
systems with a non-trivial mixing sequence ε that are also regularly exchangeable.
First, we establish a necessary condition on ε for this to be the case.

5.1 The regular exchangeability of mixing predictive systems

Consider any mixing sequence ε and the corresponding mixing predictive system
σN

ε . Let us first derive a necessary condition that the εn should satisfy for the mix-
ing predictive system to be regularly exchangeable. For the corresponding lower
probability function ϕε it holds by Proposition 8 that ϕε(n,k) = εn

k
n ; if we substi-
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tute this in the inequality of Proposition 3.8 we see that it is necessary for regular
exchangeability that the εn should satisfy

εn

n
≥ εn+1

n+1

(
1+

εn

n

)
, n = 1, . . . ,N−1. (7)

We deduce from this that if one εn is zero, then all of the subsequent εn+k are zero
as well: if inferences are vacuous after n > 0 observations, they should also remain
vacuous after subsequent ones. Or, to put it more boldly, in regularly exchangeable
mixing predictive systems, if we are going to learn at all from observations, we
have to start doing so from the first observation.

5.2 Predictive inferences for the IDMM

To recover the immediate predictions of the IDMM, it is of particular interest to in-
vestigate for which types of mixing predictive systems, or in other words, for which
mixing sequences ε , we generally have an equality rather than only an inequality
in the condition of Proposition 2, i.e., for which

Pn+1
X ( f |m) = Pn+1

X (Pn+2
X ( f |m+e·)|m), (8)

for all finite and non-empty X , all 0 ≤ n ≤ N− 1, all m ∈N n
X and all gambles

f on X , where the predictive lower previsions Pn+1
X (·|m) are given by Eq. (6).

Using the definition of Sn+1
X ( f |m) and the (separate) coherence [use (C6) in the

Appendix] of Pn+1
X (·|m), we find that this is equivalent to the condition

εn

n
=

εn+1

n+1

(
1+

εn

n

)
, n = 1 . . . ,N−1, (9)

i.e., where we have the equality in (7). Clearly, one εn is zero if and only if all
of them are, which leads to the vacuous predictive system νN . From Theorem 6,
we know this vacuous system to be regularly exchangeable (and representation
insensitive). If we assume on the other hand that εn > 0 for n = 1, . . . ,N, and let
ζn := n/εn = n+ sn ≥ 1, then the above equality can be rewritten as ζn+1 = ζn +1,
which implies that there is some s≥ 0 such that ζn = n+ s, or equivalently, sn = s
and consequently, for n = 0,1, . . . ,N−1:

εn =
n

n+ s
, Pn+1

X ( f |m) =
n

n+ s
Sn+1

X ( f |m)+
s

n+ s
min f . (10)

The predictive lower previsions in Eq. (10) are precisely the ones that can be as-
sociated with the Imprecise Dirichlet-Multinomial Model (or IDMM) with hyper-
parameter s [4, Section 4.1]. We call mixing predictive systems of this type IDMM-
predictive systems. The vacuous predictive system corresponds to letting s→ ∞.
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Theorem 10 The vacuous predictive system, and the IDMM-predictive systems for
s > 0 are regularly exchangeable and representation insensitive, and they are the
only mixing predictive systems for which the equality (8) holds.

Among the mixing predictive systems, the ones corresponding to the IDMM are also
special in another way, which points to a very peculiar, but in our view intuitively
appealing, property of predictive inferences produced by the IDMM. Indeed, assume
that in addition to observing a count vectorm of n observations, we come know in
some way that the (n + 1)-th observation will belong to a proper subset A of X ,
and nothing else—we might suppose for instance that an observation of Xn+1 has
been made, but that it is imperfect, and only allows us to conclude that Xn+1 ∈ A.
Then we can ask what the updated beliefs are, i.e., what Pn+1

X ( f |m,A) is. Since
Pn+1

X (A|m) = εnmA/n > 0 if and only if mA > 0 and εn > 0, let us assume that
indeed mA > 0 and εn > 0, in which case the requirements of coherence allows us
to determine Pn+1

X ( f |m,A) uniquely, using the so-called Generalized Bayes Rule
[5, Section 6.4] on the conditional lower prevision Pn+1

X (·|m): Pn+1
X ( f |m,A) is

then the unique real µ such that

Pn+1
X (IA[ f −µ]|m) = 0. (11)

We then have the following characterization of IDMM-predictive systems, where
we denote by fA the restriction of the gamble f to the set A, by mA the A-tuple
obtained fromm by dropping the components that correspond to elements outside
A. The sum of the components ofmA is mA.

Theorem 11 (Specificity) The IDMM-predictive systems with s > 0 are the only
mixing predictive systems with all εn > 0, n = 1, . . . ,N−1 that satisfy the additional
requirement

Pn+1
X ( f |m,A) = PmA+1

A ( fA|mA) (12)

for all n = 1, . . . ,N−1, all m ∈N n
X , all gambles f on X and all proper subsets

A of X such that mA > 0.

We find the so-called specificity property of inferences—the term was coined by
Bernard [19], who first studied this property in the context of predictive inference—
characterized by Eq. (12) to be quite peculiar. Indeed, suppose that you have ob-
served n successive outcomes, leading to a count vectorm. If you know in addition
that Xn+1 belongs to A, then Eq. (12) tells you that the updated value Pn+1

X ( f |m,A)
is the same as the one you would get by discarding all the previous observations
producing values outside A, and in effect only retaining the mA observations that
were inside A! It is as if knowing that the (n+1)-th observation belongs to A allows
you to ignore all the previous observations that happened to lie outside A. This is
intuitively appealing, because it means that if you know that the outcome of the
next observation belongs to A, only the related behavior (the values of f on A and
the previous observations of this set) matter for your prediction.
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6 Conclusions

We have considered the problem of representation insensitivity in immediate pre-
diction. We have defined predictive systems, and the properties we imposed (ex-
changeability and representation insensitivity) have led us to consider mixing pre-
dictive systems and more specifically, IDMM-predictive systems (also satisfying
Eq. (12)). Much more work is needed, however, be able to draw a complete picture
of the issue of representation insensitivity in predictive systems. Indeed, while do-
ing research for this paper, we have come across a multitude of questions that we
have not yet been able to answer, and we list only a few of them here: (i) Are there
(regularly) exchangeable and representation insensitive predictive systems that are
not mixing predictive systems? (ii) Related questions are: are there (regularly) ex-
changeable and representation insensitive predictive systems that, unlike the mixing
systems, are not completely determined by the probabilities ϕ(n,1) of observing an
event that has been observed only once before in n observations; are there such pre-
dictive systems whose behavior on gambles, unlike that of mixing systems, is not
completely determined by the lower probability function ϕ; and are there such pre-
dictive systems whose lower probability function ϕ , unlike that of mixing systems,
is not additive in the sense that ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `)? (iii) Are there (reg-
ularly) exchangeable and representation insensitive mixing predictive systems that
are not of the IDMM-type. i.e., for which the equalities (8) and (9) are not satisfied?
(iv) Are there (regularly) exchangeable, representation insensitive non-mixing pre-
dictive systems that satisfy Eq. (12)? (v) Can we arrive at stronger conclusions if
we consider that the observations Xn make up an infinite exchangeable sequence?
(vi) Can more definite answers be given if we consider the general, rather than the
immediate, prediction problem?
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Appendix: Proofs of main results

We start by mentioning a few properties of (separately) coherent lower previsions
P on L (X ), i.e., lower previsions that satisfy (C1)–(C3). It is easy to check that
(C1)–(C3) also imply, for all gambles f and g on X , and all real µ:

(C4) P( f )≤ sup f ;
(C5) P( f )≤ P(g) if f ≤ g [monotonicity];
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(C6) P( f + µ) = P( f )+ µ [constant additivity].

Proof of Proposition 1 We consider x and y in X n such that TX (x) = TX (y).
Then there is some permutation π of {1, . . . ,n} such that y = πx, so it follows
from exchangeability that pn

X (y) = PN
X ({y}×X N−n) = PN

X ({πx}×X N−n) =
PN
X ({x}×X N−n) = pn

X (x). We next assume pn
X (x) = pn

X (y) > 0 to prove that
pn+1

X (z|x) = pn+1
X (z|y) for all z∈X . This follows immediately from the equalities

pn+1
X (z|x)pn

X (x) = pn+1
X (x,z) = pn+1

X (y,z) = pn+1
X (z|y)pn

X (y), where the second
equality again follows by applying exchangeability. 2

Proof of Proposition 2 Consider anym in N n
X , and any x such that TX (x) =m.

Regular exchangeability tells us that σN is the infimum of a collection σN
γ ,γ ∈ Γ

of exchangeable precise predictive systems. Fix any γ in Γ and consider the corre-
sponding exchangeable joint linear prevision PN

X ,γ . For any gamble f on X , de-
fine the corresponding gambles g and g′ on X N by g(z) = f (zn+1)I{x}(z1, . . . ,zn)
and g′(z) = f (zn+2)I{x}(z1, . . . ,zn) for all z = (z1, . . . ,zN) in X N . Observe that
PN
X ,γ(g) = Pn+1

X ,γ( f |x)pn
X ,γ(x) and that

PN
X ,γ(g

′) = ∑
(yn+1,yn+2)∈X 2

f (yn+2)pn+2
X ,γ(yn+2|x,yn+1)pn+1

X ,γ(yn+1|x)pn
X ,γ(x)

= pn
X ,γ(x) ∑

yn+1∈X
Pn+2
X ,γ( f |x,yn+1)pn+1

X ,γ(yn+1|x)

= pn
X ,γ(x)Pn+1

X ,γ(P
n+2
X ,γ( f |x, ·)|x).

Since the linear prevision PN
X ,γ is exchangeable, we see that PN

X ,γ(g) = PN
X ,γ(g

′).
Hence Pn+1

X ,γ( f |x) = Pn+1
X ,γ(P

n+2
X ,γ( f |x, ·)|x), since pn

X ,γ(x) > 0, by the assumption
of regular exchangeability. Taking the infimum on both sides over all γ in Γ, and
invoking regular exchangeability leads to

Pn+1
X ( f |x) = inf

γ∈Γ
Pn+1
X ,γ( f |x) = inf

γ∈Γ
Pn+1
X ,γ(P

n+2
X ,γ( f |x, ·)|x)

≥ inf
γ∈Γ

Pn+1
X ,γ( inf

γ ′∈Γ

Pn+2
X ,γ ′( f |x, ·)|x) = Pn+1

X (Pn+2
X ( f |x, ·)|x).

Now recall that Pn+1
X (·|x) = Pn+1

X (·|m) and Pn+2
X (·|x,z) = Pn+2

X (·|m+ez). 2

Proof of Proposition 3 Statement 1 follows from (separate) coherence [use (C1)
and (C4)]. To prove statement 2, fix 0 ≤ n ≤ N−1 and non-negative k and ` such
that k + ` ≤ n. Consider a set X with three elements a, b and c, then there is
always an m in N n

X such that ma = k and mb = ` (whence mc = n− k− ` ≥ 0).
Consider the proper subsets A = {a} and B = {b} of X , then their union A∪B =
{a,b} is a proper subset of X and their intersection is empty: A∩B = /0. Now use
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the super-additivity of Pn+1
X (·|m) [this follows from (C2)] and then representation

insensitivity to find that indeed

ϕ(n,k + `) = Pn+1
X (A∪B|m)≥ Pn+1

X (A|m)+Pn+1
X (B|m) = ϕ(n,k)+ϕ(n, `).

Statements 3–5 follow trivially from statements 1 and 2. To prove statement 6,
consider a set of categories X = {a,b}. Fix 0≤ k ≤ n≤ N−2, and let m ∈N n

X
be such that ma = k and mb = n− k. We apply Proposition 2 with f = I{a} to get
Pn+1

X ({a}|m) ≥ Pn+1
X (Pn+2

X ({a}|m+e·)|m). Now define the gamble g on X by
g(a) := Pn+2

X ({a}|m+ ea) = ϕ(n + 1,k + 1) and g(b) := Pn+2
X ({a}|m+ eb) =

ϕ(n + 1,k), then it is clear from statement 5 that g(a) ≥ g(b) and therefore, using
g = g(b)+ [g(a)− g(b)]I{a} and the (separate) coherence of Pn+1

X (·|m) [use (C3)
and (C6)], Pn+1

X ({a}|m)≥ Pn+1
X (g|m) = g(b)+ [g(a)−g(b)]Pn+1

X ({a}|m). If we
now recall that Pn+1

X ({a}|m) = ϕ(n,k), we are done. Let us prove statement 7.
Observe that for 0 ≤ k ≤ n ≤ N−2, ϕ(n,k) ≥ 0 and ϕ(n + 1,k + 1) ≥ ϕ(n + 1,k)
[by statement 5]. Statement 6 then implies that indeed ϕ(n,k) ≥ ϕ(n + 1,k). To
prove 8, apply statement 6 with 1 = k ≤ n≤ N−2 to find that

ϕ(n,1)≥ ϕ(n+1,1)+ϕ(n,1)[ϕ(n+1,2)−ϕ(n+1,1)]
≥ ϕ(n+1,1)+ϕ(n,1)[2ϕ(n+1,1)−ϕ(n+1,1)]
= ϕ(n+1,1)[1+ϕ(n,1)],

where the second inequality follows from statement 4. We turn to statement 9. Ob-
serve that 1 ≥ ϕ(n,n) ≥ nϕ(n,1) by statement 4, whence 1

ϕ(n,1) ≥ n and therefore
indeed sn ≥ 0. To prove that sn is non-decreasing, apply the inequality in state-
ment 8 for 1 ≤ n ≤ N− 2 to get, after division of both sides of the inequality by
ϕ(n+1,1)ϕ(n,1): sn+1 +n+1 = 1/ϕ(n+1,1)≥ 1/ϕ(n,1)+1 = sn +n+1. 2

Proof of Proposition 5 Consider any gamble f on X , then we have to prove that
P( f ) = inf f . Since, as a consequence of the coherence of P [use (C6)], P( f ) =
inf f + P( f − inf f ), we only need to prove that P(g) = 0, where g is any non-
negative gamble with infg = 0. For any positive integer n, the set An := {g > 1

n}
is different from X because infg = 0, so the assumption implies that P(An) = 0.
Since moreover g ≤ 1

n + IAn supg, we deduce from the coherence of P [use (C5),
(C3) and (C6)] that 0≤ P(g)≤ 1

n +P(An)supg = 1
n for all n, whence P(g) = 0. 2

Proof of Theorem 6 We first prove that νN is regularly exchangeable. Consider the
collection Γ of all maps that associate with any non-empty and finite set X , some
element γ(X ) of

{
α ∈ RX

+ : ∑z∈X αz = 1
}

, where R+ is the set of (strictly) pos-
itive real numbers. For each γ in Γ, consider the predictive system σN

γ of predic-
tive linear previsions Pn+1

X ,γ( f |x) := ∑z∈X γz(X ) f (z), with predictive mass func-
tions pn+1

X ,γ(z|x) := γz(X ) > 0, z ∈X . Then it is clear that for all x in X N−1,
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pN−1
X ,γ(x) = ∏

N−2
k=0 pk+1

X ,γ(xk+1|x1, . . . ,xk) > 0, and that the vacuous predictive sys-
tem is the infimum of the collection σN

γ , γ ∈ Γ. The corresponding joint mass func-
tions pN

X ,γ are given by pN
X ,γ(x) = ∏z∈X γz(X )Tz(x), x ∈X N . As these only

depend on x through TX (x), the precise predictive systems σN
γ are exchangeable.

Therefore all conditions for regular exchangeability are satisfied. That νN is repre-
sentation insensitive, follows immediately from

Pn+1
X ( f |m) = min

x∈X
f (x) = min

r∈ f (X )
r = min

r∈ f (X )
id f (X )(r) = Pn+1

f (X )(id f (X ) |m f ).

The lower probability function for νN satisfies ϕ(n,m) = minr∈{0,1} id{0,1}(r) = 0,
for 0 ≤ m ≤ n ≤ N − 1. Finally, since the vacuous lower prevision is point-wise
dominated by all linear previsions, the predictive system νN , which consists only
of vacuous lower previsions, is the point-wise smallest coherent predictive system.
We deduce that it is the bottom of the structure 〈ΣN

e,ri,�〉. 2

Proof of Theorem 7 Consider any finite and non-empty set of categories X , and
let 0 < n ≤ N− 1 and m ∈N n

X . It follows from representation insensitivity and
the linearity of Pn+1

X (·|m) that for any gamble f on X

Pn+1
X ( f |m) = ∑

z∈X
f (z)Pn+1

X ({z}|m) = ∑
z∈X

f (z)ϕ(n,mz), (?)

so, taking f to be the constant function 1, it follows that ∑z∈X ϕ(n,mz) = 1. Us-
ing another consequence of representation insensitivity and linearity [Corollary 4],
we infer that ϕ(n,mz) = mzϕ(n,1), so 1 = ∑z∈X mzϕ(n,1) = ϕ(n,1)∑z∈X mz =
nϕ(n,1). We see that ϕ(n,1) = 1

n for n > 0 and Corollary 4 then implies ϕ(n,k) = k
n .

Substituting this back into Eq. (?) yields Eq. (5).

We still have to show that πN is exchangeable and representation insensitive. We
begin with exchangeability, and establish that πN is the lower envelope of a specific
collection σN

γ ,γ ∈ Γ of exchangeable systems of predictive linear previsions. Con-
sider the collection Γ of all maps γ that associate with any finite and non-empty
set X , some particular element γ(X ) of X . Now define the predictive system
σN

γ as follows: the predictive linear previsions are given by P1
X ,γ( f ) = f (γ(X ))

for any f ∈L (X ), and by Pn+1
X ,γ(·|m) = Sn+1

X (·|m) [Eq. (5)] for 0 < n ≤ N− 1.
The resulting joint linear prevision PN

X ,γ has a joint mass function determined by
pN

X ,γ(γ(X ), . . . ,γ(X )) = 1. It is permutation invariant, and therefore the predic-
tive system σN

γ is exchangeable. It is straightforward to check that πN is indeed the
lower envelope of the collection of exchangeable precise predictive systems σN

γ ,
γ ∈ Γ, and is therefore an exchangeable predictive system. To check that it is rep-

22



resentation insensitive, observe that for any gamble f on X and all 0 < n≤ N−1:

Sn+1
X ( f |m) = ∑

z∈X
f (x)

mz

n
= ∑

r∈ f (X )
r

∑ f (x)=r mx

n
= Sn+1

f (X )(id f (X ) |m f ). 2

Proof of Theorem 9 Consider the predictive lower previsions Pn+1
X (·|m) that be-

long to the predictive system σN . For any non-negative gamble g on X , it follows
from the (separate) coherence [use (C2) and (C6)] of Pn+1

X (·|m) and representation
insensitivity that

Pn+1
X (g|m)≥ ∑

z∈X
g(z)Pn+1

X ({z}|m) = ∑
z∈X

g(z)ϕ(n,mz)

and if we use Proposition 3.4 and the assumption, we get

Pn+1
X (g|m)≥ ∑

z∈X
g(z)mzϕ(n,1)≥ εn ∑

z∈X
g(z)

mz

n
= εnSn+1

X (g|m).

Again using the (separate) coherence [(C6)] of Pn+1
X (·|m), it follows that for any

gamble f on X , since f −min f is non-negative,

Pn+1
X ( f |m) = min f +Pn+1

X ( f −min f |m)

≥min f + εnSn+1
X ( f −min f |m)

= εnSn+1
X ( f |m)+(1− εn)min f .

If we compare this with Eq. (6), we see that Pn+1
X (·|m) point-wise dominates the

corresponding predictive lower prevision in σN
ε , whence indeed σN

ε � σN . 2

Proof of Theorem 10 Consider the IDMM-predictive system defined by fixing
some s > 0 in Eq. (10). From Section 5.2, it only remains to prove that it is reg-
ularly exchangeable. Consider the collection Γ of all maps that associate with any
non-empty and finite set X , some element γ(X ) of

{
α ∈ RX

+ : ∑z∈X αz = 1
}

.
For each γ in Γ, consider the system σN

γ of predictive linear previsions

Pn+1
X ,γ( f |x) =

n
n+ s

SX ( f |TX (x))+
s

n+ s ∑
z∈X

γz(X ) f (z),

with predictive mass functions pn+1
X ,γ(z|x) = Tz(x)+sγz(X )

n+s > 0, z ∈X . Then it is
clear that for all x in X N−1, pN−1

X ,γ(x) = ∏
N−2
k=0 pk+1

X ,γ(xk+1|x1, . . . ,xk) > 0, and that
the IDMM-predictive system is the infimum of the collection σN

γ , γ ∈ Γ. It is readily
checked that the corresponding joint mass functions pN

X ,γ are given by

pN
X ,γ(x) =

1(N+s−1
N

) ∏
z∈X

(
Tz(x)+ sγz(X )−1

Tz(x)

)
,
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where
(r

k

)
= 1

k! ∏
k−1
i=0 (r− i) for real r and k > 0, and

(r
0

)
= 1. As these only de-

pend on x through TX (x), the precise predictive systems σN
γ are exchangeable.

Therefore all conditions for regular exchangeability are satisfied. 2

Proof of Theorem 11 We write down the left-hand side of Eq. (11) using Eq. (6)
and εn = n/(n+ sn) > 0 [see Proposition 8]. Since A is a proper subset of X , this
results in

Pn+1
X (IA[ f −µ]) =

n
n+ sn

∑
x∈A

[ f (x)−µ]
mx

n
+

sn

n+ sn
min{0,min

x∈A
f (x)−µ}

=
mA

n+ sn

[
∑
x∈A

f (x)
mx

mA
−µ

]
+

sn

n+ sn
min{0,min

x∈A
f (x)−µ}

=
mA

n+ sn
[SmA+1

A ( fA|mA)−µ]+
sn

n+ sn
min{0,min fA−µ}.

This value can only be zero if µ ≥min fA, so we see that Eq. (11) is equivalent to

µ = Pn+1
X ( f |m,A) =

mA

mA + sn
SmA+1

A ( fA|mA)+
sn

mA + sn
min fA.

Comparing this to PmA+1
A ( fA|mA) = mA

mA+smA
SmA+1

A ( fA|mA)+
smA

mA+smA
min fA, we see

that Pn+1
X ( f |m,A) is equal to PmA+1

A ( fA|mA) if and only if

mA(sn− smA)
(mA + sn)(mA + smA)

[
SmA+1

A ( fA|mA)−min fA

]
= 0.

We want this equality to hold for all gambles f on all X , all n = 1, . . . ,N− 1, all
m ∈ N n

X , and all proper subsets A of X such that mA > 0. It is clear that the
condition sn = s for some s > 0 and all n = 1, . . . ,N−1 is sufficient. To show that
it is also necessary, fix n ∈ {2, . . . ,N−1} and choose X = {a,b,c}, A = {a,b}, a
gamble f on X such that f (a) > f (b) = 0, and m ∈N n

X such that ma = n− 1,
mb = 0 and mc = 1. Then the condition above becomes (n−1)(sn−sn−1)

(sn+n−1)(sn−1+n−1) f (a) = 0,
or in other words sn = sn−1. 2
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