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Abstract

It is well known that the tensor product of n + 1 lowest weight representations
of (a generalization of) the oscillator algebra b(1) can be depicted by a binary cou-

pling tree. With each such binary coupling tree, we associate a polynomial R
(h)
l (x)

that will turn out to be an n-variable Hermite polynomial. We prove that the poly-

nomials R
(h)
l (x) associated with a fixed binary coupling tree are orthogonal over

the n-dimensional real space for some weight function, that is independent of the
shape of the considered binary coupling tree. The connection coefficients express-
ing a polynomial associated with a given binary coupling in terms of polynomials
associated with another binary coupling tree are the 3nj-coefficients of b(1).
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I Introduction

General recoupling coefficients or 3nj-coefficients of Lie algebras play an important role

in theoretical physics, but also have many mathematical applications, e.g. the 3j and 6j

coefficients of su(2) exhibit a close relationship with Hahn and Racah polynomials [1, 2].

In [3] Granovskĭı and Zhedanov give a new method for the construction of 3nj-symbols.

In [4] their method was applied to the Lie algebras su(1, 1) and b(1) to find addition

formulas for various orthogonal polynomials. Generalizing the most important formulas

in this paper, we showed in [5] that one can associate multivariable Jacobi and continuous

Hahn polynomials with tensor products of positive discrete series representations of the Lie

algebra su(1, 1). A convenient way to describe the order of taking these tensor products

(or couplings) is the use of binary coupling trees, see [6, Topic 12] and [7, 8]. We will use

tree terminology (e.g. leaf nodes, root node, subtree,. . . ) that should be self-explanatory,

but in doubt see [9].

In this article, we will follow the same technique as in [5] to find multivariable Hermite

polynomials that are associated with tensor products of lowest weight representations of

(an extension of) the oscillator algebra. We will show that these multivariable Hermite

polynomials are orthogonal on R
n for a certain weight function that is independent of the

order of taking tensor products, although the polynomials themselves are dependent on

this order. The connection coefficients between the different classes of polynomials will

turn out to be (just as in [5]) the 3nj-coefficients of the oscillator algebra.

In general, orthogonal polynomials in several variables give rise to certain difficulties that

are not present in the one variable situation. For example, orthogonal polynomials in

n variables are no longer uniquely defined by the region Ω and the weight function on

the region. This is closely related to the fact that there is no obvious natural order for

polynomials in several variables.

The space of all polynomials in the variables x1, . . . , xn with real coefficients is denoted

R[x1, . . . , xn] or Πn for short. The degree of a polynomial P ∈ Πn is the highest degree of
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any of its monomials. Let 〈·, ·〉 be an inner product defined on Πn, then P is an orthogonal

polynomial if 〈P,Q〉 = 0 for all polynomials Q with degQ < degP . This definition does

not require that P is orthogonal with other (orthogonal) polynomials of the same degree.

In our case the inner product will be defined in terms of some (classical) weight function

W on some (classical) region Ω in R
n: 〈P,Q〉 =

∫

Ω
P (x)Q(x)W (x) dx.

The rest of this article is organized as follows: In Section II we give the definition of the

Lie algebra b(1) and a class of representations, together with expressions for its Clebsch-

Gordan and Racah coefficients. In Section III the method of Granovskĭı and Zhedanov is

briefly explained and a (new) addition formula for Meixner polynomials is found. Whereas

in Section III we confine ourselves to the tensor product of three representations, we turn in

Section IV to the multivariable case. We explain how to associate a multivariable Hermite

polynomial to a binary coupling tree and prove the orthogonality of these polynomials.

In the last Section, we show how this leads to an integral formula for 3nj-coefficients of

b(1).

We conclude this introduction with some notational conventions. The notation for (gen-

eralized) hypergeometric functions is the standard one [10, 11]:

pFq

(

a1, . . . , ap

b1, . . . , bq
; z

)

=
∞
∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (1.1)

with (a)k the Pochhammer symbol: (a)k = a(a+1) · · · (a+k−1) for k > 0, and (a)0 = 1.

Convergence issues will not arise since all the hypergeometric functions in this article are

terminating (i.e. one of the numerator parameters is a negative integer). Furthermore, for

the one-dimensional orthogonal polynomials appearing in this article, we will adopt the

notation and normalization of [12]. In particular, we denote the Hermite polynomials by

Hn(x), with:

Hn(x) = (2x)n
2F0

(−n/2,−(n− 1)/2

− ;− 1

x2

)

. (1.2)

These are orthogonal on R for the weight function exp(−x2):

∫ ∞

−∞

Hn(x)Hm(x)e−x2

dx =
√
π2nn!δn,m. (1.3)
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II The Lie algebra b(1) and tensor products for a class

of representations

The Lie algebra b(1) [13, 4] is four-dimensional, with basis elements b±, H and N subject

to the relations

[b−, b+] = H, [N, b±] = ±b± and [H, x] = 0, for x = b±, N, (2.4)

where the basis elements obey the following unitary conditions H † = H, N † = N and

(b±)† = b∓ (more precisely: the Lie algebra b(1) is a ?-algebra with ?-operation defined

by H? = H, N ? = N and (b±)? = b∓; then the representation operators corresponding to

the Lie algebra elements satisfy the same conjugacy properties in the ?-representations

considered here).

It is well known that this Lie algebra has a class of lowest weight representations [13],

characterized by two positive numbers h and k. These representations are infinite di-

mensional and have a set of orthonormal basis vectors |h, k, n〉, with n = 0, 1, 2, . . .. The

action of the operators corresponding to the Lie algebra basis elements on these basis

vectors is given by


































H|h, k, n〉 = h|h, k, n〉,

N |h, k, n〉 = (k + n)|h, k, n〉,

b−|h, k, n〉 =
√
hn|h, k, n− 1〉,

b+|h, k, n〉 =
√

h(n+ 1)|h, k, n+ 1〉.

(2.5)

One can verify that these representations are unitary and irreducible when h > 0 and

k ≥ 0.

Taking the tensor product of two such unitary and irreducible representations (h1, k1) and

(h2, k2) gives again a unitary representation that is completely reducible into representa-

tions of the same type:

(h1, k1)⊗ (h2, k2) =
∞
⊕

j=0

(h1 + h2, k1 + k2 + j). (2.6)
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We note that the h-labels are simply additive and that the difference between the resulting

and consisting k-labels is a nonnegative integer.

Now, one can express a basis vector |h1 + h2, k1 + k2 + j, n〉 in terms of tensor product

vectors |h1, k1, n1〉⊗ |h2, k2, n2〉. The coefficients accomplishing this connection are called

the Clebsch-Gordan coefficients. Explicitly one has, in an obvious notation with k12 =

k1 + k2 + j,

|(h1, h2), k12, n〉 ≡ |(h1, k1;h2, k2)h1+h2, k1+k2+j, n〉 =
∑

n1,n2

Ch1,h2,j
n1,n2,n|h1, k1, n1〉⊗|h2, k2, n2〉,

(2.7)

where the sum is over all positive integers n1 and n2 such that n1 + n2 = n + j. The

labels k1 and k2 have been omitted from the notation of the Clebsch-Gordan coefficients

as they are independent of them [4, Section VI]. An explicit expression is given by:

Ch1,h2,j
n1,n2,n = δn1+n2,j+n(−1)n2

(n1 + n2)!a
n+n2bn1−n

√
n1!n2!j!n!

2F1

(−n,−n2

−j − n ;
1

a2

)

, (2.8)

with

a =

√

h1

h1 + h2

, b =

√

h2

h1 + h2

, and thus a2 + b2 = 1. (2.9)

We remark that although the denominator parameter in (2.8) is a negative integer, the

hypergeometric notation is still well-defined because the denominator parameter is smaller

than the numerator parameters, which determine the termination.

The tensor product of three representations (h1, k1), (h2, k2) and (h3, k3) can be formed

in two different ways:

((h1, k1)⊗ (h2, k2))⊗ (h3, k3), and (h1, k1)⊗ ((h2, k2)⊗ (h3, k3)). (2.10)

The coefficients relating the two coupled bases, for which the notation is self-explanatory,

are called the recoupling or Racah coefficients:

|((h1, h2)h3), k12, k, n〉 =

k−k1
∑

k23=k2+k3

h1,h2,h3
Uk1,k2,k12

k3,k,k23
|(h1(h2, h3)), k23, k, n〉. (2.11)
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This representation of the Lie algebra b(1) has the remarkable property that its Racah

coefficients are of the same type as its Clebsch-Gordan coefficients [4, Section VII]. One

has

h1,h2,h3
Uk1,k2,k12

k3,k,k23
= (−1)j12

(j + j12)!ã
j12+j′

b̃j−j′

√
j12!j23!j!j ′!

2F1

(−j12,−j ′
−j12 − j

;
1

ã2

)

, (2.12)

with

ã =

√

h1h3

(h1 + h2)(h2 + h3)
, b̃ =

√

h2(h1 + h2 + h3)

(h1 + h2)(h2 + h3)
, and thus also ã2 + b̃2 = 1.

(2.13)

Moreover, we denoted the nonnegative integer differences by

j12 = k12 − k1 − k2, j = k − k12 − k3, j23 = k23 − k2 − k3 and j′ = k − k1 − k23, (2.14)

and thus j12 + j = j23 + j′. We remark that the recoupling coefficients are only dependent

on these integer differences (and not on the k-labels themselves). We choose however

to adopt a notation for the recoupling coefficients of b(1) that resembles that of the

recoupling coefficients of su(1, 1) in [5].

It is known [1] (and also immediately clear from the expressions given here) that both the

Clebsch-Gordan and Racah coefficients of b(1) can be written in terms of the Krawtchouk

polynomials [12].

III Construction of convolution identities

In the seminal paper [3] a new method for the construction of 3nj-symbols was introduced

and applied to the su(1, 1) case. This method can be extended to other Lie algebras, and

in [14] it was used to derive a generating function for the 9j-symbols of the oscillator

algebra. In [4, 15] this method was used to find addition formulas or convolution identities

for orthogonal polynomials.

In short: starting with a certain operator X acting on the representation space of the Lie

algebra, one finds a quantity Qn(x) that is the remainder of the overlap coefficient between
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an eigenvector of X and the basis vector |n〉 after factoring out the “zero-amplitude” part.

E.g. in the b(1) case

〈h, k, x|h, k, n〉 = 〈h, k, x|h, k, 0〉Qn(x;h, k). (3.15)

For certain choices of X, the quantity Q will be a classical orthogonal polynomial. How-

ever, this need not be so, and interesting applications exist without Q being an orthogonal

polynomial [14]. Next, one uses this polynomial Q and the (zero-amplitude) Clebsch-

Gordan coefficients of the considered Lie algebra to define a two-variable polynomial

Sj(x1, x2) that satisfies the important relation (written down for the b(1) case)

Sk1,k2

k12−k1−k2
(x1, x2;h1, h2)S

k12,k3

k−k12−k3
(x1 + x2, x3;h1 + h2, h3)

=

k−k1
∑

k23=k2+k3

h1,h2,h3
Uk1,k2,k12

k3,k,k23
Sk1,k23

k−k1−k23
(x1, x2 + x3;h1, h2 + h3)S

k2,k3

k23−k2−k3
(x2, x3;h2, h3).

(3.16)

In [4] it was deduced that, when choosing X = b+ + b−, the expression for the polynomial

S is given by

S
(k1,k2)
j (x1, x2;h1, h2) =

1
√

2jj!
Hj

(
√

h2

2h1(h1 + h2)
x1 −

√

h1

2h2(h1 + h2)
x2

)

. (3.17)

Using the expressions (3.17) and (2.12) in (3.16) yields (after some simple renamings) the

following identity for Hermite polynomials [4, Formula 6.16]:

Hj(av1 + bv2)Hn(−bv1 + av2) =

j+n
∑

k=0

(

j + n

k

)

an+kbj−k
2F1

(−n,−k
−j − n ;

1

a2

)

Hk(v1)Hj+n−k(v2),

(3.18)

with a2 + b2 = 1.

Remark 1 Note that in (3.18) the variables of the Hermite polynomials on the left side

are an orthogonal transformation of the variables on the right side.

Remark 2 Recently Wünsche [16, 17], inspired by the following (alternative) definition

of the Hermite polynomials:

Hm(x) = exp(−1

4

∂2

∂x2
)(2x)m (3.19)
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introduced his so-called Hermite 2D polynomials

Hm,n(A;x, y) = exp
(

−1

4

( ∂2

∂x2
+

∂2

∂y2

)

)

(2x′)m(2y′)n, (3.20)

where
(

x′

y′

)

= A

(

x
y

)

. (3.21)

Herein, A is an arbitrary two-dimensional matrix. Wünsche gave three different represen-

tations for the Hermite 2D polynomials. From one of them [16, Formula 2.11], it can be

seen that the left hand side of (3.18) coincides with a Hermite 2D polynomial, provided

A is an orthogonal matrix. In this light it turns out that (3.18) is a special case of the

representation [16, Formula 2.8] for Hermite 2D polynomials.

It is interesting to investigate the Granovskĭı and Zhedanov method for another form for

the operator X. Let X = H + N + b+ + b− (more general choices lead essentially to

the same result); in this case one identifies (by considering its three-term recurrence) the

polynomial Q as being a Charlier polynomial [12]:

Qn(x;h, k) = (−1)n

√

hn

n!
Cn(x− k;h)

= (−1)n

√

hn

n!
2F0

(−n,−x+ k

− ;−1

h

)

.

(3.22)

Using the definition of the S-polynomial

Sk1,k2

j (x1, x2;h1, h2) =
∑

n1+n2=j

Ch1,h2,j
n1,n2,0 Qn1

(x1;h1, k1)Qn2
(x2;h2, k2), (3.23)

and the easily verified identity (expand the two hypergeometric series on the left side,

interchange the order of summation and apply the binomial theorem)

∑

n1+n2=j

(−1)n2

n1!n2!
2F0

(−n1, y1

− ; a1

)

2F0

(−n2, y2

− ; a2

)

= (a2)
j (y2)j

j!
2F1

( −j, y1

1− y2 − j
;−a1

a2

)

,

(3.24)

we arrive at the following explicit expression for S (which we, for distinction with the
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Hermite-case, denote by S) :

Sk1,k2

j (x1, x2;h1, h2) =

√

hj
1

j!(h1 + h2)jhj
2

(k2 − x2)j 2F1

( −j, k1 − x1

1− j − k2 + x2

;−h2

h1

)

(3.25)

=

√

hj
1

j!(h1 + h2)jhj
2

(k1 + k2 − x1 − x2)j 2F1

( −j, k1 − x1

k1 + k2 − x1 − x2

; 1 +
h2

h1

)

.

(3.26)

It is thus clear that in this case the S-polynomial can be written in terms of a Meixner

polynomial [12]:

Sk1,k2

j (x1, x2;h1, h2) =

√

hj
1

j!(h1 + h2)jhj
2

(k2 − x2)j Mj(x1 − k1; 1− j − k2 + x2,
h1

h1 + h2

)

(3.27a)

=

√

hj
1

j!(h1 + h2)jhj
2

(k1 + k2 − x1 − x2)j Mj(x1 − k1; k1 + k2 − x1 − x2,−
h1

h2

).

(3.27b)

If we now plug all the basic ingredients into (3.16), we get a convolution identity for

Meixner polynomials.

Theorem 3 The Meixner polynomials satisfy the following identity:

(1− j + x2)j(−s+ j)nMj(x1; 1− j + x2,
b

a

a− 1

b− 1
)Mn(x1 + x2 − j;−s+ j, a)

=

(

b

a

)j+n(
a

a− 1

)j j+n
∑

k=0

(

j + n

k

)(

b− 1

b

)k

(−s+ k)j+n−k(1− k + x2)k

2F1

(−j,−j − n+ k

−j − n ;
a

b

)

Mj+n−k(x1;−s+ k, b)Mk(s− x1 − x2; 1− k + x2,
b− 1

a− 1
),

(3.28)

where s is some (arbitrary) constant.

Remark 4 We have written down two expressions in which the S-polynomials are Meixner

polynomials of degree j. There are four more of these expressions. This is because of the

24 Kummer solutions to the Gauss differential equation, there are six of them that have

the first numerator parameter (in this case −j) fixed, see [11].
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Remark 5 From the introductory section it is clear that for the multivariable case, we

restrict ourselves to the Hermite case. One may ask oneself why this is the case. The

reason is: orthogonality. Indeed if one replaces x2 by 1 − x1 in (3.17) it is immediately

clear (and see also next section) that S satisfies an orthogonality relation.

For the S-case things are different. The Meixner polynomials also satisfy a (discrete)

orthogonality, namely

∞
∑

x=0

(β)x

x!
cxMm(x; β, c)Mn(x; β, c) =

c−nn!

(β)n(1− c)β
δm,n, β > 0 and 0 < c < 1. (3.29)

We note that the conditions imposed on β and c are to ensure that the weight function is

positive. However, the orthogonality is valid whenever 0 < |c| < 1 and β is not a negative

integer. We cannot apply this orthogonality: e.g. in the case (3.27a) the parameter β (after

replacing x2 by 1−x1) depends on x1 which is clearly not allowed; in the case (3.27b) the

parameter c does in general (i.e. for arbitrary values of h1 and h2) not meet its requirement

(0 < |c| < 1). The other four ways of writing S have similar problems.

IV Multivariable Hermite polynomials

When working with multivariable Hermite polynomials the classical region of integra-

tion is the real n-dimensional space R
n. In [18, Section 2.3.4] the weight function

exp
(

−(x2
1 + · · ·+ x2

n)
)

is considered and two different orthogonal bases are given. One of

them is just a product of n classical Hermite polynomials. In [19, Section 12.8] another

generalization of Hermite polynomials is considered; these are orthogonal with respect to

the weight function exp(−ϕ(x)) with ϕ(x) =
∑

i,j cijxixj where C is a symmetric, square,

and positive definite matrix. The multivariable Hermite polynomials appearing in the

(n+ 1)-fold tensor product are orthogonal over R
n for the weight function

exp(−ψ(x)), with ψ(x) = (x1, x2, . . . , xn, s− σ(x))A(x1, x2, . . . , xn, s− σ(x))t, (4.30a)

where A ∈ R
(n+1)×(n+1), σ(x) = x1 + · · · + xn and s some arbitrary constant. Moreover,

it will turn out that

Aij =
1

2hi

δij −
1

2|h| , (4.30b)

10



where |h| = h1 + · · ·+ hn+1.

We recall the expression for the two-variable S-polynomial, (where we have dropped the

superscripts k because S is independent of them)

Sj(x1, x2;h1, h2) =
1

√

2jj!
Hj

(
√

h2

2h1(h1 + h2)
x1 −

√

h1

2h2(h1 + h2)
x2

)

. (4.31)

Since the Hermite polynomials are even resp. odd if their degree is even resp. odd, the

S-polynomials have the following property:

Sj(x1, x2;h1, h2) = (−1)jSj(x2, x1;h2, h1). (4.32)

This property has an interpretation in terms of the twist operation on binary coupling

trees [8], see Figure 1, which in turn stems from the corresponding property of Clebsch-

Gordan coefficients of b(1)

Ch1,h2,j
n1,n2,n = (−1)jCh2,h1,j

n2,n1,n. (4.33)

(Note that this last equality is just Pfaff’s transformation [20] for terminating 2F1-series.)

The second identity satisfied by the S-polynomials can be interpreted in terms of the

rotation operation on binary coupling trees [8], see Figure 2. It is thus related to the two

ways in which one can couple three b(1) representations. We repeat it here:

Sk12−k1−k2
(x1, x2;h1, h2)Sk−k12−k3

(x1 + x2, x3;h1 + h2, h3)

=

k−k1
∑

k23=k2+k3

h1,h2,h3
Uk1,k2,k12

k3,k,k23
Sk−k1−k23

(x1, x2 + x3;h1, h2 + h3)Sk23−k2−k3
(x2, x3;h2, h3).

(4.34)

Notice how the left side of (4.34) follows from the tree on the left side of Figure 2. With

each non-leaf node (i.e. with each intermediate or final coupling) one associates an S-

polynomial. The first (resp. second) variable of this S-polynomial is the sum of all the

variables associated with the leaves in the left (resp. right) subtree of the considered

node. The same applies to the parameters hi. The (positive integer) lower parameter is
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the difference between the value of the coupled representation k-label and the consisting

k-labels. The S-polynomials on the right side of (4.34) are formed in the same way but

working with the tree on the right side of the figure. The recoupling coefficient appearing

in (4.34) is that associated with a recoupling of three representations as shown in Figure 2.

Now, we generalize the way the left hand side of (4.34) is formed and we associate with the

tensor product of n+ 1 representations a product of n S-polynomials, each S-polynomial

being associated with a non-leaf node of the binary coupling tree. From the decomposi-

tion (2.6) it follows that with each non-leaf node we can associate a non-negative integer.

We will denote these by li, such that we write R
(h)
l (x) for the resulting polynomial. In

principle the notation R
(h)
l (x) should also contain a reference to its defining binary cou-

pling tree; for the moment however, we are dealing only with arbitrary but fixed trees, so

we drop this reference in the notation.

Example 6 Consider the following tensor product of five b(1) representations:

(((h1, k1)⊗ (h2, k2))⊗ (h3, k3))⊗ ((h4, k4)⊗ (h5, k5)),

depicted by the binary coupling tree in Figure 3 (where we omitted the additive h-labels).

With this tensor product, we associate the following polynomial:

Rh1,h2,h3,h4,h5

l1,l2,l3,l4
(x1, x2, x3, x4, x5)

= Sl1(x1, x2;h1, h2)Sl2(x1 + x2, x3;h1 + h2, h3)Sl3(x4, x5;h4, h5)

· Sl4(x1 + x2 + x3, x4 + x5;h1 + h2 + h3, h4 + h5)

=
1

√

2|l|l1!l2!l3!l4!
Hl1

(
√

h2

2h1(h1 + h2)
x1 −

√

h1

2h2(h1 + h2)
x2

)

·Hl2

(
√

h3

2(h1 + h2)(h1 + h2 + h3)
(x1 + x2)−

√

h1 + h2

2h3(h1 + h2 + h3)
x3

)

·Hl3

(
√

h5

2h4(h4 + h5)
x4 −

√

h4

2h5(h4 + h5)
x5

)

·Hl4

(
√

h4 + h5

2(h1 + h2 + h3)(|h|)
(x1 + x2 + x3)−

√

h1 + h2 + h3

2(h4 + h5)(|h|)
(x4 + x5)

)

.

(4.35)
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Change of variables

We introduce n new variables vi, each vi being the argument of one of the Hermite

polynomials in R
(h)
l (x). This however does not lead to a unique correspondence between

the n+ 1 variables x and the n variables v. To this end we introduce a linear constraint

between the variables x: x1 + · · · + xn + xn+1 = s with s some arbitrary constant. Note

that this is consistent with the definition of ψ in (4.30).

The order in which the variables vi (and integers li) are associated to the non-leaf nodes

is immaterial, but for the sake of explicitness we do this in post-order [9].

Example 7 For the tree in Figure 3 the connection between the variables v and x is the

following:














































v1 = c1x1 − d1x2

v2 = c2(x1 + x2)− d2x3

v3 = c3x4 − d3x5

v4 = c4(x1 + x2 + x3)− d4(x4 + x5)

s = x1 + x2 + x3 + x4 + x5.

(4.36)

Here, we have used abbreviations ci and di for the rather tedious combinations of hi

in (4.35). E.g.:

c2 =

√

h3

2(h1 + h2)(h1 + h2 + h3)
and d2 =

√

h1 + h2

2h3(h1 + h2 + h3)
. (4.37)

The equations (4.36) can also be written in matrix form (setting s = v5):












c1 −d1 0 0 0
c2 c2 −d2 0 0
0 0 0 c3 −d3

c4 c4 c4 −d4 −d4

1 1 1 1 1

























x1

x2

x3

x4

x5













=













v1

v2

v3

v4

v5













. (4.38)

Since the arguments of the Hermite polynomials are linear combinations of the variables

x, one can write (because T is non-singular, see (4.56))

T ·X = V ⇐⇒ X = T−1 · V, (4.39)
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where X and V are both column vectors, and T ∈ R
(n+1)×(n+1). From (4.39) it is clear

that the k-th row of the matrix T concerns the variable vk, while the i-th column concerns

the variable xi. Using the notation ck and dk we have

Tki =







ck if xi is in the left subtree of vk

−dk if xi is in the right subtree of vk

0 otherwise
for 1 ≤ k ≤ n and 1 ≤ i ≤ n+ 1,

(4.40a)

and

Tn+1,i = 1 for 1 ≤ i ≤ n+ 1. (4.40b)

The last row of T corresponds of course to the constraint x1 + · · ·+ xn+1 = s = vn+1.

Making the notation ck and dk explicit we have:

ck =

√

√

√

√

√

√

√

√

√

∑

right leaves
of vk

hi

2
(

∑

left leaves
of vk

hi

)(

∑

all leaves
of vk

hi

) , and dk =

√

√

√

√

√

√

√

√

√

∑

left leaves
of vk

hi

2
(

∑

right leaves
of vk

hi

)(

∑

all leaves
of vk

hi

) . (4.41)

When the R-polynomial is transformed using (4.39) it becomes, by definition of the

transformation, a product of n independent Hermite polynomials. The orthogonality

for the Hermite polynomials will be applicable provided that ψ(x) of (4.30) transforms

into v2
1 + · · ·+ v2

n, i.e.:

(x1, . . . , xn+1)A(x1, . . . , xn+1)
t = (v1, . . . , vn+1)(T

−1)tAT−1(v1, . . . , vn+1)
t

= v2
1 + · · ·+ v2

n.
(4.42)

This, in turn, is equivalent to

(T−1)tAT−1 =

(

In On×1

O1×n 0

)

⇐⇒ A = T t

(

In On×1

O1×n 0

)

T, (4.43)
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where In denotes the identity matrix of order n and On×m is the zero-matrix of the given

order. This last equality provides us a way for calculating the explicit form of the matrix

A, namely

Aij =
n
∑

k=1

TkiTkj for 1 ≤ i, j ≤ n+ 1. (4.44)

Lemma 8 For an arbitrary binary coupling tree on n + 1 leaves with leaf labels (hi, ki),

i = 1, . . . n+ 1, and with transformation matrix T defined by (4.40), we have

Aij =
n
∑

k=1

TkiTkj =
1

2hi

δij −
1

2|h| . (4.45)

The matrix A is thus independent of the shape of the binary coupling tree.

Proof : Let nln (resp. nrn) denote the number of leaves in the left (resp. right) subtree

of vn, the root node of the tree. We can then split up our formula into three parts:

Aij =
n
∑

k=1

TkiTkj =
nln−1
∑

k=1

TkiTkj +
n−1
∑

k=nln

TkiTkj + TniTnj. (4.46)

Since the first (resp. second) sum of (4.46) corresponds to the A-matrix of the left

(resp. right) subtree of the root, we use induction on the number of internal nodes in

the tree. It is easily verified that the desired result is true for small values of n.

There are (essentially) two cases to consider:

1. The variables xi and xj belong both to the same subtree of vn,

2. the variables xi and xj belong to different subtrees of vn.

Let xi and xj both belong to the same, say left, subtree of vn. This implies Tni = Tnj = cn,

and thus

n
∑

k=1

TkiTkj =

(

1

2hi

δij −
1

2(h1 + · · ·+ hnln)

)

+ 0 +
(hnln+1 + · · ·+ hn+1)

2|h|(h1 + · · ·+ hnln)

=
1

2hi

δij −
1

2|h| .
(4.47)
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where the first sum in (4.46) is evaluated using the induction hypothesis, the second sum

is zero because Tki = Tkj = 0 for k = nln, . . . , n− 1, and the third term is simply c2n. (We

assumed, for the sake of simplicity, that the leaves in the left subtree have labels h1 up to

hnln .)

Secondly, let xi belong to the left subtree and xj to the right subtree. In this case Tkj = 0

for k = 1, . . . , nln − 1 and Tki = 0 for k = nln, . . . , n− 1. This implies

n
∑

k=1

TkiTkj = −cndn = − 1

2|h| . (4.48)

�

Thus we have established that the weight function (4.30) after transformation with (4.39)

becomes a product of n classical Hermite weights.

The Jacobian of the transformation

The transformation between the variables x and v is a simple linear transformation. If

we want to show the orthogonality of the R-polynomials, we need the Jacobian of the

transformation, i.e. we want to know

J =

∣

∣

∣

∣

det
∂xi

∂vk

∣

∣

∣

∣

, with 1 ≤ i, k ≤ n. (4.49)

From (4.39) it is immediately clear that

det
∂vk

∂xi

= detT for 1 ≤ i, k ≤ n+ 1. (4.50)

However, we need the Jacobian between the n independent variables xi and the n variables

vk. The linear constraint between the n + 1 variables xi is equivalent to subtracting the

last column of the matrix T from all its other columns; this does not affect the value of

the determinant of T . Since the (n+ 1)-th row of T now entirely consists of zeros, except

for the last element, we have

det
∂vk

∂xi

= detT for 1 ≤ i, k ≤ n. (4.51)
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Since we use a linear transformation we now have

J =

∣

∣

∣

∣

det
∂xi

∂vk

∣

∣

∣

∣

=

∣

∣

∣

∣

1

detT

∣

∣

∣

∣

. (4.52)

It is thus sufficient to calculate the determinant of the matrix T .

Example 9 For the running example, the transformation matrix T equals:

T =













c?1 −d?
1 0? 0 0

c?2 c?2 −d?
2 0 0

0 0 0 c‡3 −d‡3
c4 c4 c4 −d4 −d4

1? 1? 1? 1‡ 1‡













. (4.53)

We want to determine | detT | and to this end we transform T into an upper triangular

matrix, using column transformations only.

In (4.53), the nine elements annotated with a ? constitute the 3×3 transformation matrix

associated with the left subtree, and analogously for the four elements annotated with a

‡. Perform the column transformations, C1 ← C1−C2, C2 ← C2−C3, and C4 ← C4−C5

on T and one gets:

T =













c1 + d?
1 −d?

1 0? 0 0
0? c2 + d?

2 −d?
2 0 0

0 0 0 c3 + d‡3 −d‡3
0 0 c4 0 −d4

0? 0? 1? 0‡ 1‡













. (4.54)

Note that the nine starred elements form an upper triangular matrix; the same applies to

the four double-daggered elements. Moreover the column transformations performed so

far only concerned either the left or the right subtree, but not both.

Subtracting the fifth column from the third and swapping columns yields an upper trian-

gular matrix, with determinant:

(c1 + d1)(c2 + d2)(c3 + d3)(c4 + d4). (4.55)
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We can easily extend the method of this example to prove the following lemma.

Lemma 10 For an arbitrary binary coupling tree on n + 1 leaves with labels (hi, ki),

i = 1, . . . , n+ 1 and with transformation matrix T determined by (4.40), we have

| detT | =
n
∏

i=1

(ci + di) =

√

|h|
2n(h1 · h2 · · · · · hn+1)

. (4.56)

Proof : Once again we let nln (resp. nrn) denote the number of leaves in the left

(resp. right) subtree of vn. In general the matrix T has the following structure:

T =









T̃l O(nln−1)×nrn

O(nrn−1)×nln T̃r

cn, . . . , cn −dn, . . . ,−dn

1, . . . , 1 1, . . . , 1









. (4.57)

Herein, T̃l (resp. T̃r) is a part of the matrix associated with the left (resp. right) subtree

of vn. More particularly,
(

T̃l

1, . . . , 1

)

, (4.58)

is the matrix associated with the left subtree of vn.

The structure of the matrix suggests to use induction on the order of the matrix. We thus

assume that we can transform matrices smaller than T into upper triangular matrices,

using column transformations only, and that the elements on the diagonal are of the form

ci + di (and one element 1). Schematically:

(

T̃l

1, . . . , 1

)

column tf−−−−−→















c1 + d1

0 c2 + d2

0 0
. . .

0 · · · 0 cnln−1 + dnln−1

0 · · · 0 0 1















. (4.59)

Performing the same column transformations on the extended matrix yields:









T̃l

O(nrn−1)×nln

cn, . . . , cn
1, . . . , 1









column tf−−−−−→









T ′
l ∗

O(nrn−1)×nln

0 · · · 0 0 cn
0 · · · 0 0 1









, (4.60)
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where T̃ ′
l is a square upper triangular matrix of the order nln − 1 with diagonal elements

ci + di, where i = 1, . . . , nln − 1. The ∗ stands for some column vector.

One can apply the same arguments to the matrix corresponding to the right subtree of

vn, finally leading to

T =









T̃l O(nln−1)×nrn

O(nrn−1)×nln T̃r

cn, . . . , cn −dn, . . . ,−dn

1, . . . , 1 1, . . . , 1









−→









T̃ ′
l ∗ O(nln−1)×nrn

O(nrn−1)×nln T̃ ′
r ∗

0, . . . , 0 cn 0, . . . , 0 −dn

0, . . . , 0 1 0, . . . , 0 1









.

(4.61)

Subtracting the last column from the nln-th column and switching columns, transforms

T into an upper triangular matrix with diagonal elements ci +di, with i = 1, . . . n and one

diagonal element that equals one. The (absolute value of the) determinant of T is thus

| det(T )| = (c1 + d1) · (c2 + d2) · · · · · (cn + dn).

Rewriting this in terms of parameters hi is easy using induction and the simple fact that

cn + dn =

√

|h|
2(h1 + · · ·+ hnln)(hnln+1 + · · ·+ hn+1)

.

This completes the proof of (4.56), and thus

J =

√

2n(h1 · h2 · · · · · hn+1)

|h| . (4.62)

�

The orthogonality explicitly

It is immediately clear that if x and v are connected through (4.39), that x ∈ R
n ⇐⇒

v ∈ R
n.

With this last simple observation we are now in the position to prove the orthogonality

of the R-polynomials.
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Theorem 11 With the tensor product of n+ 1 b(1) representations labeled (hi, ki), with

i = 1, . . . , n + 1, i.e. with every binary coupling tree with n internal nodes, we associate

a set of polynomials R
(h)
l (x) in n variables. These polynomials are orthogonal on R

n for

the weight function

w(h)(x) = exp(−ψ(x)), with ψ(x) = (x1, x2, . . . , xn, s− σ(x))A(x1, x2, . . . , xn, s− σ(x))t,

(4.63)

and

Aij =
1

2hi

δij −
1

2|h| . (4.64)

Explicitly the orthogonality reads:

∫

Rn

R
(h)
l (x)R

(h)
l′ (x)w(h)(x) dx =

√

(2π)nh1 · · · · · hn+1

|h| δl,l′ . (4.65)

Proof : The proof is easy since we have collected all the ingredients in this section. We

have:

∫

Rn

R
(h)
l (x)R

(h)
l′ (x)w(h)(x) dx =

∫

Rn

J

n
∏

i=1

Hli(vi)√
2lili!

Hl′
i
(vi)

√

2l′
il′i!
e−v2

i dvi

= J
√
πnδl,l′

=

√

(2π)nh1 · · · · · hn+1

|h| δl,l′ .

(4.66)

�

Remark 12 It is an easy calculation to verify that ψ(x), when written explicitly in terms

of xi (1 ≤ i ≤ n), has the following form:

ψ(x) =
n
∑

i=1

1

2hi

x2
i +

1

2hn+1

(

n
∑

i=1

xi

)2

− s

hn+1

n
∑

i=1

xi + s2

(

1

2hn+1

− 1

2|h|

)

.

From this it is easily seen that the quadratic part of ψ(x) is positive definite, which is

neccessary for the integrability of the left hand side of (4.65). Observe that the minimum

of ψ(x) (i.e. the maximum of w(h)(x)) occurs at xi = shi/|h|, 1 ≤ i ≤ n.
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Theorem 11 is correct for any value of s. For each value of s one gets a different weight

function and different polynomials. Thus, both the weight function and the polynomials

R
(h)
l (x) depend on s; in both cases the reference to s is dropped to make the notation

easier. When s = 0 the weight function simplifies and ψ becomes a purely quadratic form,

which is thus as in [19].

V An integral formula for recoupling coefficients

In this section we will show that the set of polynomials R
(h)
l,T (x) associated with a fixed

binary coupling tree T and fixed representation labels (hi, ki), but varying values li forms

a basis for Πn. This means that a polynomial R
(h)
l,T1

(x) (l fixed) associated with a binary

coupling tree T1 can be written as a linear combination of polynomialsR
(h)
l′,T2

(x) (l′ variable)

associated with another binary coupling tree T2. The connection coefficients between these

two bases are the recoupling coefficients of b(1). The orthogonality of the R-polynomials,

shown in Theorem 11, leads to an integral formula for these recoupling coefficients.

We start with a simple observation: for any binary coupling tree the degree of R
(h)
l (x)

equals |l|. This follows immediately from the fact that Sj(x1, x2;h1, h2) is a polynomial

of degree j in x1 and x2.

Theorem 13 For any binary coupling tree on n+1 leaves, with fixed representation labels

(hi, ki) (i = 1, . . . , n + 1), the set of polynomials R
(h)
l (x) associated with it forms a basis

for Πn.

Proof : The orthogonality of the polynomials R
(h)
l (x) immediately implies their linear

independence. The theorem then follows by the same counting argument as in [5, Theorem

20]. �

Since the S-polynomials satisfy the two basic properties (4.32) and (4.34), which are

identical to the properties of the S-polynomials in the su(1, 1)-case (see [5, Formulas 2.11
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and 2.12]), one can use exactly the same reasoning as in [5, Theorem 21] to prove the

following theorem.

Theorem 14 Consider a binary coupling tree T1, with fixed values (hj, kj) and li. Con-

sider a second binary coupling tree T2 with the same fixed values (hj, kj) but varying values

l′i, such that |l| = |l′|. Then the polynomial R
(h)
l,T1

(x) can be written as a linear combination

of polynomials R
(h)
l′,T2

(x):

R
(h)
l,T1

(x) =
∑

|l′|=|l|

Cl′R
(h)
l′,T2

(x). (5.67)

The connection coefficient Cl′ is equal to the 3nj-coefficient 〈T1(l), T2(l
′)〉.

Corollary 15 For two arbitrary binary coupling trees T1 and T2 with the same represen-

tation labels (hj, kj) the recoupling coefficient 〈T1(l), T2(l
′)〉 is given by:

〈T1(l), T2(l
′)〉 =

√

|h|
(2π)nh1 · · · · · hn+1

∫

Rn

R
(h)
l,T1

(x)R
(h)
l′,T2

(x)w(h)(x) dx, (5.68)

with w(h)(x) as in Theorem 11.

Proof : The result follows immediately from combining Theorems 11 and 14. �

Remark 16 In Section III we saw that the addition formula (3.18) is a direct consequence

of the basic relation (3.16) for S-polynomials. Clearly, (5.67) is an extension of this

relation. If one changes from variables x to v on the right side of (5.67), the variables on

the left side will be an orthogonal transformation of the variables v. This can be seen be

using the “method of trees” and repeated application of (3.16). It can also be understood

by the fact that exp
(

−(v2
1 + · · ·+ v2

n)
)

is invariant under orthogonal transformations.
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Captions for Figures

1. A twist operation on binary coupling trees

2. A rotation on binary coupling trees

3. A binary coupling tree corresponding to the tensor product of five b(1) representa-

tions
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