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Abstract—We report taper designs with high transmission
efficiencies and with lengths shorter than those needed for
adiabatic operation. The tapering occurs between rectangular
optical waveguides with the same vertical silicon-on-insulator
layer structure, but with different horizontal widths, namely 0.5
and 2.0 µm, and for taper lengths between 0.5 and 3.0 µm. After
a comparison between two different optimization methods in a
two-dimensional calculation scheme, one of these is repeated using
three-dimensional calculations. The results show that, also in the
length region where conventional linear and parabolic tapers are
not yet adiabatic, tapers with a high efficiency can be designed by
applying complex taper structures with more degrees of freedom.

Index Terms—Compact taper, nonadiabatic taper, optical cou-
pler, optimization.

I. INTRODUCTION

E FFICIENT coupling between two optical waveguides has
already been studied thoroughly in the past. After first

proposing a linear taper [1], it was soon realized that mode
conversion tends to become higher in the wider part of the
taper, and applying a slower tapering there leads to tapers
with parabolic shapes [2]. In [3], it was proven that when the
taper length is long enough, the parabolic shape leads to the
highest coupling efficiency, and a lower limit for this adiabatic
operation was also given. However, this length requirement for
adiabatic operation leads to very long taper structures.

Tapers are traditionally put at the edge of a photonic in-
tegrated circuit (PIC), as an interface to the outside world.
Examples here are the coupling of a planar waveguide, like a
laser cavity in III–V semiconductor material, to a silica optical
fiber, or tapers towards the facets to ease the integration of an
active PIC in III–V semiconductor material with a passive PIC
in silica-on-Silicon, to create a hybrid device. In these cases,
the taper, also called the spot-size convertor (SSC), normally
has to change not only the size of the optical mode, but also
the shape of the mode, to optimize the coupling between two
different waveguides. As the number of interfaces between a
PIC and the outside world is normally limited to a few, the
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length of these tapers and the surface area they consume on
an optical chip has never been problematic.

However, as PICs start to incorporate multiple optical com-
ponents, many tapers appear within an optical chip. This occurs,
for example, if photonic wires are applied where monomodality
is important but broader waveguides for connections are needed
to be very low loss, like in delay lines, or at the interface be-
tween photonic crystal waveguides and conventional photonic
waveguides.

In an arrayed-waveguide grating (AWG), the interface be-
tween the free-space star coupler and the array waveguides can
be optimized for low loss by tapering the array waveguides from
touching each other while being multimodal to being decoupled
and monomodal. This operation adds a large number of tapers
to a PIC.

Waveguide gratings that couple light perpendicularly from a
waveguide into or out of an optical fiber [5] allow the place-
ment of optical fibers everywhere within a PIC and also make
it possible to connect two-dimensional (2-D) fiber arrays di-
rectly to an optical chip. In both cases, the tapering between
a broad and a narrow planar waveguide still needs to be taken
care of.

As the number of tapers within a PIC grows, their footprint
should become as small as possible to reduce material, process-
ing, and packaging costs. Therefore, innovative and short taper
designs are needed.

Mathematical optimization techniques have been applied
before to improve the coupling between optical waveguides. In
[6], the coupling between a fiber and a silica ridge waveguide
is improved by 2.6 dB using a genetic optimization. A more
mathematical approach to optimize the shape of a coupler can
be found in [8], where the problem is presented as a nonlinear
inverse problem. Also building on inverse problem theory is the
optimization of a 3-dB Y-splitter in [9].

We will use a method similar to that of [6], but in a high-
contrast index material, where other mechanisms play a role
and other simulation tools must be applied.

In Section II, two methods are discussed to construct tapers
and optimize them using a 2-D calculation scheme: one method
based on segmented waveguide sections and one based on
splines. These two methods are then compared with each other
and one is selected for application in Section III, where the
same optimization is then redone using an approximate three-
dimensional (3-D) scheme, and the results checked using a
rigorous electromagnetic calculation. In Section IV, a short
discussion and conclusion follows.

First structures based on the segmented waveguide approach
have already been realized in silicon-on-insulator (SOI) and
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Fig. 1. Schematic presentation of the taper built out of randomly segmented
waveguide sections.

have led to an improved efficiency when compared with a linear
taper [10]. These structures have been designed using the same
method as described in Section II, but with different widths for
the input and output waveguide and with the lengths of the
various waveguide segments not fixed, but also parameters to
be optimized.

II. 2-D CALCULATIONS

The effective index transformation converts a 3-D optical
problem into an approximately equivalent 2-D problem. An
SOI layer structure (0.22-µm Si/1.0-µm silica/Si-substrate)
results in an effective core index of 2.83 for the transverse
electric (TE) mode (dominant electric field component parallel
to the layer structure) at a wavelength of 1.55 µm.

After this transformation, 2-D structures are calculated using
CAvity Modelling FRamework (CAMFR) [11], an eigenmode
expansion method.

A. Randomly Segmented Waveguide Approach

Input and output waveguides are separated by a predefined
distance L, the total length of the taper (Fig. 1), and a number
N of short waveguide segments all with the same length Li =
L/N , along the propagation axis z, but with different widths
Wi, along the perpendicular direction x, are placed in between,
symmetrically around the propagation direction. The widths are
bound by a lower and upper limit and are integer multiples of
a small width step ∆L, mostly 10 nm. The lower limit and the
step of the allowed widths are chosen to reflect the resolution
of the fabrication process, while the upper width limit allows
us to work with a fixed simulation area, which speeds up the
numerical computation.

By changing the widths Wi of all the sections, the ground
mode intensity transmission between the two straight wave-
guides also changes. To find out which width values
[W1,W2, . . . ,WN ] lead to a good transmission, an evolutionary
or genetic optimization is applied. To evaluate the transmission
of a particular structure, its energy ground-mode transmission
is calculated using a bidirectional fully vectorial eigenmode ex-
pansion with an absorbing boundary condition [11]. The exact
workings of the method are not repeated here, but it suffices
to mention that a scattering matrix is computed connecting
the forward- and backward-propagating waveguide modes in
the input and output waveguide. One element of this matrix is
the amplitude transmission between the forward ground mode
in the input and the output waveguide, and is a complex number

T (0, 0). The square of the modulus of this number |T (0, 0)|2 is
a real number and gives the energy ground-mode transmission
of the taper. This is a direct measure of the taper’s efficiency
and is used as its fitness in the optimization.

The optimization scheme is similar to the one explained
in [6] and [7], except for the crossover operator and that a
waveguide section cannot disappear during our optimization,
to keep the taper length L fixed. As the starting point for the
optimization, 250 random structures, now called individuals
are computed and their respective transmissions, or fitnesses,
calculated. Then, the 100 fittest initial individuals form what
is called generation 0. Of this generation, two individuals,
now called parents, are chosen using Roulette Wheel selection,
where a higher intensity transmission T gives a higher chance
of being selected, namely Tj/

∑
i Ti. The properties of the

selected individuals are mixed into two new structures, their
offspring. The mixing occurs using a uniform crossover, mean-
ing that for every section it is randomly determined whether
offspring individual 1 inherits the width from parent 1 or
parent 2, with offspring individual 2 always inheriting the
other width. After crossover, a mutation slightly changes each
offspring individual by applying a random change to every Wi.
The new value of Wi is obtained in a three-step process. It
starts with a normally distributed random number with µ = Wi

and σ = 0.75 × ∆L, which is then rounded off to the nearest
multiple of ∆L, and lastly, checked whether it lies between the
upper and lower limits for Wi, otherwise the nearest limit is
taken. This procedure guarantees approximate chances of 50%,
46%, and 4% for respective width changes of 0 · ∆L, ±1 · ∆L,
and ±2 · ∆L after mutation. The offspring gets calculated and
added to generation 0, of which the two individuals with the
worst transmission efficiency are removed, and the remaining
make up generation 1. From here on, the same process iterates
until a certain stop condition, in this case until the difference in
fitness between the best and the worst (one hundredth) individ-
ual within a generation converges to less than 0.005. This typ-
ically takes less than 1000 generations, with some exceptions
(many sections and a short total length) requiring up to 2500
generations.

We studied the tapering between an input waveguide width of
0.5 µm and an output waveguide width of 2.0 µm for lengths
of the taper section between 0.5 and 3.0 µm. For these widths,
a linear taper is already adiabatic when 10 µm long, so the
footprint of a taper is already modest and the achievable gain
negligible. However, this case should be seen as an example
that can be ported to other coupling problems, where a bigger
gain can be achieved.

For every taper length, the number of taper sections is varied
from 2 to 14 in steps of two. Fig. 2 shows some of the results,
with every point being the end result of a separate genetic op-
timization. While a smooth linear and parabolic taper of length
1.5 µm, have an efficiency of 84% and 80%, respectively, the
structure with 14 sections transmits 99% of the incoming power
for an equal length.

As the degree of freedom of a structure increases, in this
case meaning more sections, the efficiency also increases. The
spectrum of a structure composed of 14 sections with a total
length of 1.5 µm is shown in Fig. 3. Fig. 4 shows the real
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Fig. 2. Optimized efficiencies of a segmented taper as a function of length
for various numbers of sections. For comparison, smooth linear and parabolic
tapers are added. Width of the input and output waveguides are 0.5 and 2.0 µm,
respectively.

Fig. 3. Spectrum of the taper consisting of 14 blocks and with a total length
of 1.5 µm.

part of the transverse magnetic field when the same structure
mentioned previously is excited with the TE ground mode at
the left. Fig. 3 reveals that the spectrum remains above 98%
for wavelengths in the range 1.5–1.6 µm, proving that the
sharp width variations in the structure do not necessarily lead
to strong resonances.

B. Spline-Based Staircase Approach

Instead of randomly placing independent waveguide seg-
ments between input and output, a taper is constructed by
randomly placing a number of points within a predefined box,
the length of which is the same as the taper length, and the
width is defined by the minimum and maximum waveguide
width allowed within a taper (Fig. 5).

The points are connected using cubic splines, which are
piecewise third-order polynomials that satisfy the condition for
a continuous zeroth and first derivative in each point. For the
inner points, these conditions completely define each spline. At
the outer points, however, an extra condition is set by forcing
the second derivative to zero, which has the advantage that

Fig. 4. Transversal magnetic field (real part) of a segmented taper excited
with the ground mode at the left. The taper has a length of 1.5 µm, connects
waveguides with widths of 0.5 and 2.0 µm, and consists of 14 sections.

Fig. 5. Schematic presentation of the spline polynomial used to construct a
taper and the staircase approximation applied before calculation.

splines with zero inner points coincide with linear tapers. The
choice for a particular boundary condition does not exclude
certain structures, as an extra spline point very close to a
boundary point makes the condition in this point unimportant.
The composed curve satisfying all these conditions is called
a natural cubic spline. Again, the structures are symmetrical
around the propagation (z-)axis. To calculate the structure with
eigenmode expansion, it needs to be divided into sections that
are invariant in the propagation direction. A discretization of
the continuous splines based on a fixed distance ∆W , typically
12.5 nm, in the transversal direction was chosen (Fig. 5). In
what follows, the two fixed points, one at the input and one at
the output, are not counted when the number of points is given.

The genetic optimization for the semicontinuous approach
follows the same scheme as in the previous section, except for
the crossover, where now a one-point crossover is applied to
generate two new individuals. An integer number m is ran-
domly chosen between zero and the total number of points t.
Offspring individual 1 inherits the first m points of individual
1 and the last t − m points of individual 2, with offspring in-
dividual 2 always inheriting the other points. Each point gets
mutated using the same Gaussian distribution as before, but
with σ = 7.5 nm and not discretized. Afterwards, all points of
a new individual are sorted with ascending z-coordinates, to
guarantee that the spline curve is a function.

Input and output waveguides and calculated taper lengths are
similar to those in the previous section. For every taper length,
the number of points is varied between zero and seven.
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Fig. 6. Optimized efficiencies of spline tapers as a function of the taper length
for various numbers of base points.

Fig. 7. Field plot corresponding to a spline taper with seven points and a
length of 2.5 µm.

Every point in Fig. 6 is the end result of a genetic optimiza-
tion. The curve labeled 0 points corresponds to a linear taper;
due to the boundary conditions for natural cubic splines, the
curve based on one point can never exactly coincide with a
parabolic taper. Again, it can be noted that a higher degree of
freedom leads to increasing efficiency.

Although a genetic algorithm does not guarantee the finding
of the absolute extremum of the function under evaluation, we
have two reasons to assume our optimized structures approxi-
mate this best structure very closely.

First, the shape of structures with relatively long lengths are
approximately parabolic (see Fig. 7 as an example). This is to be
expected of a structure whose length approaches the condition
for adiabatic operation. In this figure, only half of the structure
is shown because of symmetry reasons. This symmetry is also
exploited in the electromagnetic calculations by placing an
electric wall [11] at the position of the mirror plane.

And second, there is convergence within the results. For a
fixed taper length but an increasing number of points, structures
do not drastically change shape (Fig. 8). As different structures
are the results of totally independent optimizations, this leads
us to the conclusion that our structures converge to an optimal
form that could be described by the spline approach using a
large number of points.

C. Comparison and Conclusion of 2-D Calculations

Both 2-D approaches yield results that outperform smooth
linear and parabolic tapers of equal lengths. Both cases also
indicate that adding degrees of freedom to a structure leads to
increased efficiency after optimization. Due to the differences
between the two, rectangular blocks versus polynomial func-

Fig. 8. Field plots of spline tapers with a total length of 2.0 µm and (a) four,
(b) five, (c) six, and (d) seven points to illustrate the convergence of results.

Fig. 9. Left: Spline taper with seven points and block taper with eight sections,
taper length of 2.0 µm. Right: Spline taper with seven points and block taper
with ten sections, taper length of 1.0 µm.

tions, a certain structure cannot exactly be described by both.
However, when comparing various final structures of the two
cases (Fig. 9), some appear to be similar, not only in the form
of the taper but also in the resulting effect on the field. Note
that the length of a section is fixed, and only the width can be
altered during the course of the optimization.

In this figure, it is also clear that the shorter a certain design,
the more irregular its form becomes. For longer lengths, the
tapers closely resemble parabolic tapers, but when becoming
shorter, bumps seem to appear in the structures. Up until now,
we have not been able to mathematically describe the function
of these bumps, although they seem to favor the power transfer
between guided and radiation modes.

A comparison of Figs. 2 and 6 shows that the block approach
yields slightly better results for a certain number of variables.
As the two coordinates of a spline point can be altered, while the
length of a block section is fixed and only the width is changed,
one has to compare a number of spline points with the double
number of block sections.

Nevertheless, we will use the spline approach in the next
section for reasons of manufacturability. Fig. 10 shows both a
design as it appears on a lithography mask and the resulting
structure appearing in the lithographic resist layer after illumi-
nation in a deep-UV stepper at 248 nm. The resolution of this
imaging system is in the range of half the illumination wave-
length and is responsible for the rounding off of the intended
square structures, with some smaller artifacts almost com-
pletely disappeared. Taper forms based on splines are inherently
less abrupt and should therefore be easier to manufacture.

III. 3-D CALCULATIONS

A. Unidirectional Eigenmode Expansion

Because bidirectional 3-D eigenmode expansion calculations
are still too time consuming to be useful in combination with
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Fig. 10. Top: Scanning electron micrograph of a structure in resist. Bottom:
Original mask design. Size: 6 × 6 µm.

a structural optimization, a unidirectional approximation, as
explained later, is applied.

The optimization scheme is exactly the same as the one ex-
plained in Section II-B, except for the calculation of a structure.
An advantage of starting from a continuous taper form and of
the staircase approximation based on a fixed x grid is that a
certain waveguide cross section can only be followed by the
cross section that is ∆W narrower or wider. This drastically
reduces the number of possible transitions between cross sec-
tions that occur during the course of the optimization. Preceding
the optimization, a number of calculations are executed once
and stored in memory afterwards. Of every possibly occurring
waveguide cross section A, the first N modes are determined
and their propagation constants βi

A stored. Then TA,B , the
(complex) amplitude transmission matrix of the current cross
section A to the next cross section B, is calculated; element
(i, j) of this N × N matrix is the transmission from mode i
in cross section A to mode j in cross section B. Note that
the matrix corresponding to the opposite situation, transmission
from B to A, can be easily deduced from the previous situation
with the formula TB,A = TT

A,B . This information suffices for
the calculation of the transmission of a random structure based
on a continuous function, under the assumption of negligible
reflection. For every waveguide section, e.g., C, with a length
L, a diagonal N × N propagation matrix PC,L is derived by
placing exp(−j × βi

C × L) as the ith diagonal element. Sup-
pose that a certain structure is approximated by cross section
A, followed by B with a length L1, C with a length L2, again
B with L3, and ends in C, then the total transmission matrix
can be written as

T = TA,B · PB,L1 · TB,C · PC,L2 · TC,B · PB,L3 · TB,C (1)

and the ground-mode intensity transmission is equal to
|T (0, 0)|2. The advantage of this scheme is the recyclability of
most of the data in the form of the propagation constants and
the transmission matrices. The disadvantage is that reflection is
completely neglected, which has little effect on smooth, long

Fig. 11. Optimized efficiencies of spline tapers as a function of the taper
length for various numbers of base points calculated with a 3-D unidirectional
method.

tapers but increases significantly with decreasing taper length.
The quantitative effect of this approximation is studied in the
next section.

The resulting efficiencies as a function of taper length and
for various numbers of spline points are shown in Fig. 11. What
is striking in this figure is the big difference in transmission
between structures based on one point and those based on two
points, while adding even more points only seems to have a
marginal effect as opposed to the 2-D scheme, Fig. 6, where
there is also a big difference between one and two points, but
where adding extra points can still bring significant improve-
ment. This could mean that the bumps do not have a similar
effect in a 3-D scheme, maybe because the radiation modes
are not recaptured as well as in 2-D, where the out-of-plane
radiation is not taken into account.

B. Bidirectional Eigenmode Expansion

As explained before, the optimized 3-D structures of Sec-
tion III-A do not take reflection into account. Because this
approximation can be rather crude for short structures, it is
necessary to check the results obtained with the unidirectional
method afterwards with a correct model. The model applied
here is the 3-D version of CAMFR [11], essentially a fully
vectorial 3-D eigenmode expansion. A complete calculation
of a structure consisting of around 20 different waveguide
cross sections takes a few hours of calculation time, making
it impossible to use this model in a structural optimization as
described above.

All structures of the previous section with lengths between
0.5 and 3.0 µm and based on one to seven points are recalcu-
lated, together with the accompanying (discretized) linear and
parabolic tapers (Fig. 12). For each length, the most efficient
structure is shown together with the efficiency calculated with
the unidirectional method. One field plot is shown as an illustra-
tion in Fig. 13. In all cases, the correct efficiency is lower than
the unidirectionally calculated efficiency, with the difference
being higher for shorter lengths, which points to an increasing
reflection in these structures.
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Fig. 12. Comparison between taper efficiencies calculated using 3-D uni-
directional and bidirectional eigenmode expansion. The number of points to
construct the taper is indicated.

Fig. 13. Field plot (transversal magnetic field at the middle of the silicon
layer) of the taper with a length of 1.5 µm and based on three points.

For taper lengths too short for adiabatic operation, the op-
timized structures always perform better, up to 20%, than
parabolic and linear tapers of that length.

While adding more degrees of freedom in all previous sec-
tions increased the efficiency, this seems not to be the case here.
The structure leading to the highest efficiency is almost always
based on two or three points. This means that the gain achieved
by refining in the unidirectional optimization is below the error
induced by the approximation of that method.

IV. CONCLUSION

We have studied the coupling between planar waveguides
with different widths but the same vertical layer structure,
namely silicon-on-insulator (SOI). The specific problem under
study was the coupling between SOI waveguides with widths
of 0.5 and 2.0 µm.

Two different algorithms were proposed to construct taper
forms other than linear and parabolic and compared to each
other using two-dimensional (2-D) calculations. Although the
block-based algorithm theoretically yields better results than
the spline-based approach, practical considerations have made
us choose the spline-based algorithm for an implementation
in a three-dimensional (3-D) calculation. To be time-efficient,
a unidirectional 3-D model was applied for the optimization
and afterwards checked using a full bidirectional eigenmode
expansion.

For taper lengths too short for adiabatic operation, where
parabolic tapers do not yet lead to a good coupling efficiency,
the optimized taper forms always perform better than con-
ventional parabolic tapers. Even for a taper length of only
1 µm, a transmission of 85% is reached. To achieve even better
operation, we believe that an optimization using a bidirectional
3-D calculation should be applied.
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