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Abstract

We show that there exists an explicit descriptor state space format which actually describes all strictly passive transfer
functions. A key advantage of this explicitly strictly passive descriptor state space format resides in its relation with congruence
projection-based reduced order modeling, where the resulting reduced order model is also cast in this same format. Another
advantage of the format is that it allows for a simple construction of strictly passive random systems generators.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For time-invariant linear dynamical systems, strict
passivity guarantees stability and the possibility of
synthesis of the transfer function by means of a lossy
physical network of resistors, capacitors, inductors and
transformers[1]. It is well-known that strict passivity
is equivalent with the strict positive reality of the sys-
tem’s transfer function[3]. Hence the strict passivity of
a linear system can be checked by determiningwhether
its transfer function is strictly positive real, and this in
turn, by the well-known Kalman–Yakubovich–Popov
positive-real lemma, implies testing the solvability of
certain linear matrix inequalities (LMIs). It is known
[3] that there are explicit solutions to LMI problems
for only a few very special cases. However, they can
be solved numerically by interior point methods.
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In this paper we tackle the strictly positive real prob-
lem in another fashion. We show that there exists an
explicit descriptor state space format involving posi-
tive definite matrices, which actually describes all
strictly positive real transfer functions. One of themain
advantages of this explicitly strictly passive descrip-
tor state space format resides in its connection with
congruence projection-based reduced order modeling,
where the resulting reduced order model is cast direc-
tly in the same strictly passive state space format. An-
other advantage is that it allows for a simple construc-
tion of a strictly passive random systems generator.

2. Main results

In what followsXT andXH, respectively, denote the
transpose and Hermitian transpose of a matrixX, and
Im denotes the identity matrix of dimensionm. For two
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Hermitian matricesX andY , the matrix inequalities
X >Y or X�Y mean thatX − Y is, respectively,
positive definite or positive semidefinite. For the real
system with minimal realization

ẋ = Ax + Bu, (1)

y = LTx + Du, (2)

whereB �= 0 andL �= 0 aren × p real matrices and
A is a n × n real matrix, to be strictly passive (also
called strictly positive real), it is required that thep×p

transfer function

H(s) = LT(sIn − A)−1B + D (3)

is analytic in the open right halfplaneR[s]>0, such
that

H(i�) + H(i�)H��Ip ∀� ∈ R (4)

for some�>0. This naturally implies that all the poles
of H(s) must be located in the open left halfplane
R[s]<0, or stated otherwise:A must be stable, i.e.
R[Sp(A)]<0.
Note that, from requirement (4), it is readily seen

that adding a constantp × p matrix D0 to a merely
passiveH(s) results in a strictly passive transfer func-
tion H(s) + D0 if and only if D0 + DT

0 >0. Before
proving our main result we need the following

Lemma. Let

M =
[
M11 M12
MT

12 M22

]
(5)

be a(n + p) × (n + p) symmetric matrix partitioned
in its n × n, n × p, p × n, p × p blocks. ThenM >0
if and only if there exists an × n nonsingular matrix
Q and an × p matrix W such that

M11= QQT,

M12 = QW ,

M22>WTW . (6)

Proof. LetQandWsatisfy (6). ThenM can be written
as

M =
[

Q 0
WT Ip

] [
In 0
0 M22 − WTW

] [
QT W

0 Ip

]
.

(7)

SinceM22−WTW >0, the matrixM is a congruence
of a positive definite matrix and hence itself positive
definite.
Conversely, ifM >0 thenM11>0 and hence has a

Cholesky factorizationM11= QQT. Now, withW =
Q−1M12 it is evident that (7) is a block Cholesky
factorization ofM and henceM22 − WTW >0 must
hold. �

Theorem 1. Let system(1)–(2)with transfer function

H(s) = LT(sIn − A)−1B + D (8)

be strictly passive(and hence stable).Then there exists
a n × n matrix P = P T >0, a n × n matrix G such
thatG+GT >0 and an×p matrix R such thatH(s)

can be written as

H(s) = LT(sP + G)−1R + 1
2(L − R)T(G + GT)−1

× (L − R) + D1, D1 + DT
1 >0. (9)

Conversely, let P = P T >0 and G such thatG +
GT >0. Then the system with transfer function(9) is
strictly passive.

Proof.

• Direct part of the theorem: It is known [3] that re-
quirement (4) is satisfied if and only if there exists
an×n symmetric matrixP =P T >0 satisfying the
LMI

[
ATP + PA PB − L

BTP − LT −D − DT

]
<0. (10)

By the Lemma, this is equivalent with findingP , a
n × n nonsingular matrixQ and an × p matrixW
such that

ATP + PA = −QQT <0, (11)

PB − L = −QW , (12)

D + DT >WTW �0. (13)

After eliminatingQ andWwe obtain the inequality

D + DT > − (L − PB)T

× (ATP + PA)−1(L − PB). (14)
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Since the system is strictly passive, aP = P T >0
satisfying (11) exists. PuttingG = −PA andR =
PB, inequality (14) can be written as

D+DT >(L−R)T(G+GT)−1(L−R), (15)

where of courseG+GT=QQT >0. If we substitute
A=−P−1G andR=PB into the transfer function,
we obtain

H(s) = LT(sP + G)−1R + D (16)

which can be written as

H(s) = LT(sP + G)−1R + 1
2(L − R)T

× (G + GT)−1(L − R) + D1 (17)

with

D1 = D − 1
2(L − R)T(G + GT)−1(L − R),

(18)

whereD1 + DT
1 >0 andD1 − DT

1 = D − DT.
• Converse part of the theorem: SupposeH(s) is of
the form (9), i.e.

H(s) = LT(sP + G)−1R + 1
2(L − R)T

× (G + GT)−1(L − R) + D1 (19)

with G + GT >0, P = P T >0 andD1 + DT
1 >0.

PutA = −P−1G, B = P−1R and

D = 1
2(L − R)T(G + GT)−1(L − R) + D1.

(20)

Let G + GT = QQT andW = −Q−1(PB − L).
ThenH(s) = LT(sIn − A)−1B + D with

ATP + PA = −QQT <0, (21)

PB − L = −QW , (22)

D + DT >WTW + (D1 + DT
1 )>WWT. (23)

Thus conditions (11)–(13) are satisfied.�

Note that the Lyapunov inertia theorem[2] applied
to (21) immediately implies thatA is stable. Interest-
ingly enough, if we takeL=R, in [4] it is proved that
transfer functions of the form1

H(s) = LT(sP + G)−1L P �0 G + GT�0

det(sP + G) /≡ 0 (24)

are passive—not necessarily strictly.
Note also that the format (9) is invariant with respect

to nonsingular square congruence transforms, i.e. let
U be ann × n nonsingular square matrix and define
the modified matrices as

P̃ = UTPU, G̃ = UTGU ,

L̃ = UTL, R̃ = UTR. (25)

ThenH̃ (s) = H(s). But we can say more.

Theorem 2. LetP = P T >0 andG + GT >0. Let V
be ann × r, 1�r�n matrix of full rank and define
the modifiedr × r and r × p matrices as

P̃ = V TPV , G̃ = V TGV ,

L̃ = V TL, R̃ = V TR. (26)

Then the transfer function

H2(s) = L̃T(sP̃ + G̃)−1R̃ + 1
2(L − R)T

× (G + GT)−1(L − R) + D1, (27)

whereD1 + DT
1 >0, is strictly passive.

Proof. SinceP =P T >0,G+GT >0 andV is of full
rank, we know thatV TPV andV T(G + GT)V are
both positive definite. HencẽP >0 andG̃ + G̃T >0
and consequently, by Theorem 1,H1(s) defined as

H1(s) = L̃T(sP̃ + G̃)−1R̃ + 1
2(L̃ − R̃)T(G̃ + G̃T)−1

× (L̃ − R̃) + D1 (28)

is strictly passive. There remains to be proved that

(L̃ − R̃)T(G̃ + G̃T)−1(L̃ − R̃)

�(L − R)T(G + GT)−1(L − R). (29)

1 det(sP + G) /≡ 0 means thatsP + G is a regular matrix
pencil, i.e. det(sP + G) = 0 has a finite number ofs values as
solutions.
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PuttingG + GT = S, this will be the case when

S−1 − V (V TSV )−1V T�0. (30)

Taking the Cholesky decompositionS=��T, inequal-
ity (30) can be transformed into

F = In − �TV
(
V T��TV

)−1
V T��0. (31)

It is readily verified thatF is an orthogonal projector,
i.e.F 2 = F andF T = F , implying F �0. �

3. Applications

3.1. Strictly passive reduced order modeling

The theorems of the preceding section have interest-
ing applications in terms of reduced order modeling.
To see this, we first write the Laurent–Taylor expan-
sion ofH(s) in the vicinity of s = ∞. We have

H(s) = LT(sP + G)−1R + D

= D +
∞∑
k=0

(−1)ks−k−1LT(P−1G)kP−1R. (32)

PuttingP−1G= � = −A andP−1R =B, this can be
written as

H(s) = D +
∞∑
k=0

(−1)ks−k−1LT�kB

=
∞∑

k=−1

(−1)ks−k−1Mk. (33)

The coefficientsMk =LT�kB, k�0 andM−1=−D

are known as the Markov moments ofH(s) at s =∞.
Next consider then × r Krylov matrix (r = pq)

K = [B,�B,�2B, . . . ,�q−1B] (34)

and consider choosing an orthonormal basis for the
columns ofK, which is equivalent to performing the
‘thin’ SVD of the Krylovmatrix asK=U�V T, where
then × r matrixU is column-orthogonal. Putting

P̃ = UTPU, G̃ = UTGU, R̃ = UTR,

L̃ = UTL, �̃ = P̃−1G̃, B̃ = P̃−1R̃ (35)

the new Markov moments are given by

M̃−1 = M−1 = −D,

M̃k = L̃T�̃
k
B̃ k = 0,1, . . . . (36)

We are now in a position to prove (see also[4]).

Theorem 3. With the choice of U as above, the
Markov moments are equal up to orderq − 1, i.e.
M̃k = Mk for k = 0,1, . . . , q − 1.

Proof. Since we have constructed an orthonormal ba-
sis for the columns ofK, we can write�kB =UWk,
k =0, . . . , q −1, whereWk is a suitabler ×p matrix.
Note that we haveR=PB =PUW0 andR̃=UTR=
UTPUW0 = P̃W0 and henceB̃ = P̃−1R̃ = W0. Next
consider then × n matrix

Z = UP̃−1UTG. (37)

By induction, it is easy to prove thatZkU = U�̃
k
for

k = 0, . . . , q − 1 and hence

M̃k = L̃T�̃
k
B̃ = LTZkUW0

= LTZkB k = 0, . . . , q − 1. (38)

There remains to prove thatZkB = �kB for k =
0, . . . , q − 1. This is clearly the case fork = 0. Next
suppose thatZkB = �kB for somek. Then

P−1GZkB = �k+1B = UWk+1. (39)

Pre-multiplying byUTP yields

UTGZkB = UTPUWk+1 = P̃Wk+1 (40)

or

Wk+1 = P̃−1UTGZkB (41)

and hence

Zk+1B = UP̃−1UTGZkB

= UWk+1 = �k+1B. � (42)

Recall that by Theorem 2, the reduced order model
is strictly passive, when the original strictly passive
transfer functionH(s) is provided in the previously
defined strictly passive format.
Also, one often wishes to have equal Markov mo-

ments calculated about another point than infinity[4],
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or else to have Markov moments which are coeffi-
cients of a Laguerre expansion[5,6]. All these possi-
bilities can be dealt with by transforming the Laplace
variables by means of a Möbius transformation

s = �u + �
�u + 	

, �	 − �� �= 0. (43)

The resulting transfer function in theu-domain is

(�u + 	)LT(u(�P + �G) + (�P + 	G))−1R + D.

(44)

Now assuming that�P + �G is nonsingular, we can
define the matrices

B̂ = (�P + �G)−1R,

�̂ = (�P + �G)−1(�P + 	G). (45)

After construction of a basêU of the Krylov matrix

K̂ = [B̂, �̂B̂, �̂
2
B̂, . . . , �̂

q−1
B̂] = Û �̂V̂ T (46)

the reduced matrices are now

P̃ = ÛTP Û, G̃ = ÛTGÛ ,

R̃ = ÛTR, L̃ = ÛTL. (47)

For example, when� = s0,� = � = 1, 	 = 0, we in
fact perform a Taylor expansion abouts0, as in [4],
and when� = �, � = −1, 	 = 1, we in fact perform a
scaled Laguerre expansion with scaling factor�>0,
as in [5,6]. Of course, by Theorems 1 and 2, strict
passivity is always maintained.

3.2. A random strictly passive system generator

From Theorem 1 we know that a strictly passive
transfer function can always be written as

H(s) = LT(sP + G)−1R + 1
2(L − R)T

× (G + GT)−1(L − R) + D1 (48)

with P =P T >0,G+GT >0,D1+DT
1 >0. We can

implement this in MATLAB� by means of the fol-
lowing easily understood steps (epsil is a small posi-
tive number):

P = randn(n);P = P ∗ P ′ + epsil∗ eye(n);
L = randn(n, p);R = randn(n, p);

G = randn(n);G = G ∗ G′ + epsil∗ eye(n);

D0= 0.5 ∗ (L − R)′ ∗ G\(L − R);

Z = randn(n);Z = Z − Z′;G = G + Z;

D = randn(p);D = D ∗ D′;

Z = randn(p);Z = Z − Z′;D = D + Z + D0;

sys= dss(−G,R,L′,D, P ).

The command dss is from the control systems toolbox
descriptor system assignment, i.e. the command sys=
dss(A,B,C,D,E) creates a descriptor system with
transfer function

H(s) = C(sE − A)−1B + D. (49)

Note that, for notational convenience, we have used a
normal random number generator, but of course, any
random number generator with sufficient range will
do the job.
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