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Abstract

We propose to find the propagation constants of modes in layered media by means of signal identification methods. To this
effect we employ Cauchy’s theorem, conformal mapping and Fast Fourier Transform (FFT) techniques to generate relevant
Hankel moments, afterwards to be processed with selected signal identification algorithms. The method, terminated by a few
Newton steps, provides a batch of highly accurate roots in appropriate disks or half-disks.
� 2004 Elsevier GmbH. All rights reserved.
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1. Introduction

Leaky waves, which are found as complex solutions of
the dispersion relation for dielectric waveguides, play an im-
portant role in many electromagnetic (EM) analysis tools
[1–3] as well as in practical devices such as leaky wave
antennas[4]. Locating the complex zeros, however, can be
quite cumbersome, especially when the dielectric substrate
consists of a number of different dielectric layers. In this
paper, we propose techniques based on signal identification
algorithms to efficiently and accurately locate the complex
zeros of dispersion relations for layered media. The tech-
niques can be applied for layered substrates consisting of
an arbitrary number of layers. The top and bottom substrate
can either be open or, for numerical reasons, terminated by
a perfectly matched layer (PML)[5–7].
Signal identification of exponential sum models (ESM) is

a frequently occurring and recurrent topic in signal process-
ing. The reason for this is that many physical signals, from
time series in medicine and economics to spectral analysis
in astronomy and sonar applications[8,9] can be expressed
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as sums of damped exponentials. Moreover, ESM has also
been used in EM analysis techniques, e.g. in the complex im-
age method for determining the Green’s function in layered
media. More mathematically speaking, it can be proved that
large classes of signals can be expressed as infinite sums of
exponentials, due to theirLp completeness over selected in-
tervals[10,11]. In addition, modelling by exponential sums
is inherent in linear systems theory[12] and its underlying
Hankel matrix framework[13,14]. Lastly and rather unex-
pectedly, exponential signal identification has recently been
used for reconstructing polygonal shapes from geometrical
moments[15].
In this paper, we propose to find the roots of transcen-

dental equations by means of signal identification tech-
niques. As a generalization of methods in[16,17], we
employ Cauchy’s theorem, conformal mapping and FFT
techniques to generate the relevant Hankel moments, which
are afterwards processed with selected signal identification
algorithms. Our choice (not exhaustive) is one of the four
following algorithms: the Pencil-of-Function method[18],
the SVD rank-based method[9], the Prony–Burrus–Parks
method [19,20] and a Neville-type interpolation method
[21]. Applied to finding the propagation constants of the
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leaky modes in stratified media, which correspond to the
complex zeros of transcendental dispersion relations, the
method, terminated by a few Newton steps, provides a batch
of highly accurate roots in selected disks or half-disks.

2. Roots of transcendental equations

It is well-known[16,17]that, given a functionF(z)which
is analytic in a simply connected open domain� bounded
by a simple Jordan curve�, except for a simple pole atp0,
we can recover this pole by means of the formula

p0 =
∮

� zF (z)dz∮
� F(z)dz

. (1)

This follows at once from Cauchy’s theorem. For an analytic
function f (z) exhibiting a single simple zeroz0 in � we
can takeF(z) = 1/f (z) in order to findz0 by formula (1).
Of course, one must be sure that only one zero is present
in �. This can be tested by making use of the principle of
the argument[22], which states that for an analytic function
f (z) with m zeros inside� we can write

m = 1

2�i

∮
�

f ′(z)
f (z)

dz. (2)

Whenm=1, formula (1) will yield the unique zero. In order
to generalize the approach to more than one zero we need
the following [17].

Theorem 1. Let the analytic functionf (z) have exactly m
simple zerosz1, z2, . . . , zm in � and let g(z) be analytic
such thatg(zk) �= 0 for k = 1,2, . . . , m. Then there exist
non-vanishing coefficients̃dk, k=1,2, . . . , m such that the
Hankel moments

hn = 1

2�i

∮
�

g(z)

f (z)
zn dz

=
m∑

k=1

d̃kz
n
k , n = 0,1,2, . . . . (3)

Proof. The functionf (z) can be written as

f (z) =
∏m

k=1 (z − zk)

r(z)
, (4)

wherer(z) is analytic in� with r(z) �= 0. Since

1∏m
k=1 (z − zk)

=
m∑

k=1

ck

z − zk
(5)

with

ck = 1∏
l �=k (zk − zl)

,

application of Cauchy’s theorem yields

hn = 1

2�i

∮
�

g(z)

f (z)
zn dz =

m∑
k=1

ckg(zk)r(zk)z
n
k (6)

with n = 0,1,2, . . . . This completes the proof.�

Note that a straightforward choice for the functiong(z)
is the constant functiong(z)= 1. The other straightforward
choiceg(z) = f ′(z), with n = 0, will be employed mainly
to determine the number of zerosm.
We will restrict ourselves to zeros inD, the open unit disk

for the following reason: consider the conformal mapping
�(u) fromD onto�. This mapping always exists, by virtue
of the Riemann mapping theorem[23]. Then the zeros of
f (z) in� correspond with the zeros off (�(u)) inD. Taking
g(u) = 1, the Hankel momentshn can be written as

hn = 1

2�

∫ 2�

0

ei(n+1)�

f (�(ei�))
d� =

m∑
k=1

dku
n
k (7)

with n = 0,1,2, . . . . Opting for the(N + 1)-point closed
trapezoidal quadrature rule we obtain

hn = 1

N

N−1∑
k=0

e2�i(n+1)k/N

f (�(e2�ik/N ))
+ �n, (8)

where �n is the error associated with the quadrature rule.
Assuming that the error terms are sufficiently small—see the
appendix for some pertinent error bounds—and choosing
N as a power of two, (8) is most effectively calculated by
means of an FFT. After obtaining the Hankel moments, and
processing them with one or more of the signal identification
algorithms of the next section, we finally obtain the unit disk
zerosuk and the�-domain zeros byzk = �(uk).

3. Signal identification algorithms

Given the Hankel moments

hn =
m∑

k=1

dku
n
k , n = 0,1,2, . . . , (9)

the zerosuk are recovered by judiciously processing the mo-
mentshn by means of one of the following four algorithms.
Note that there exist other algorithms, such as the ones in
[13,24], but we have to be restrictive somehow, and therefore
we limit ourselves to the non-exhaustive but representative
list below.

3.1. Algorithm 1: Pencil-of-Function method

Consider them × m Hankel matrix

Hm =

 h0 · · · hm−1

... · · · ...

hm−1 · · · h2m−2


 (10)
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and its shifted version

H 1
m =


 h1 · · · hm

... · · · ...

hm · · · h2m−1


 . (11)

It is then easy to prove[17,18] that the zerosuk are the
eigenvalues of the generalized eigenvalue problem

H 1
m = �Hm. (12)

In this method, we need the firstM = 2m Hankel moments
h0, . . . , hM−1.

3.2. Algorithm 2: SVD rank-based method

The SVD-based method[9] exploits the fact that the Han-
kel matrixHm+1 exhibits a unit rank deficit, i.e. it has rank
exactlym. More generally, we can say thatHm+r has rank
exactlym, for all r�0. Hence, the nullspace ofHm+1 is the
span of a unit norm vectorc representing the coefficients
of the root polynomial of the zerosuk. TakingU�VH as
the SVD ofHm+1, finding this nullspace is equivalent with
solvingU�VHc = 0, or sinceU is unitary�VHc = 0. If
the singular values are sorted in decreasing order, we have
�1��2 · · · ��m >�m+1=0, from which we conclude that
c is the last column of the right singular factorV . Note that
the vectorc can also be obtained via the minimization pro-
cedure

c = arg min
x

‖Hm+1x‖
‖x‖ , (13)

where‖ · ‖ is the Euclidian norm.
In this method, we need the firstM + 1 Hankel moments

h0, . . . , hM .

3.3. Algorithm 3: Prony–Burrus–Parks method

Since the Hankel momentshn can be considered as the
time-domain impulse response of an IIR filter withm poles
andm − 1 zeros, we can use the Prony–Burrus–Parks al-
gorithm[19] e.g. as implemented in the MATLAB� Signal
Processing Toolbox[20].
The function [num,den] = prony(h,m-1,m)

yields the numerator and denominator of the IIR filter and
theuk follow from u = roots(den) . In this method, we
minimally need the firstM Hankel momentsh0, . . . , hM−1.

3.4. Algorithm 4: Neville-type interpolation

Here, we need the firstMHankel momentsh0, . . . , hM−1.
Supposing we haveM different pointsw1, w2, . . . , wM

not in D at our disposal, consider theM polynomials of
(M − 1)-th degree defined as

M∑
l=1

Kk,lz
l−1 = K(z)

z − wk

, k = 1, . . . ,M, (14)

whereK(z) is the root polynomial of the pointswk, i.e.

K(z) =
M∏
k=1

(z − wk). (15)

Transforming the Hankel moments by means of theKk,l

matrix yields

ĥk−1 =
M∑
l=1

Kk,lhl−1 =
m∑
l=1

dl
K(ul)

ul − wk

=
m∑
l=1

el

wk − ul

(16)

with el =dlK(ul). Hence, the transformed Hankel moments
ĥ0, . . . , ĥM−1 represent the rational function

V (z) =
m∑
l=1

el

z − ul
(17)

sampled at the pointswk. A fast recursive algorithm to re-
construct the denominator of degreemand numerator of de-
greem− 1 of a rational function, given its tabulated values
atM = 2m points, is available in[21]. It is constructed as
follows: consider the arrayv = {v1, v2, . . . , vM} related to
the different complex points{w1, w2, . . . , wM}. Then, a ra-
tional functionV (z)=aM(z)/bM(z) withmpoles andm−1
zeros such thatV (wk) = vk can be recursively created by
the polynomial Neville-type algorithm

ak(z) = 	kak−1(z) + (z − wk−1)ak−2(z), (18)

bk(z) = 	kbk−1(z) + (z − wk−1)bk−2(z) (19)

with initial valuesa0 = 0, a1 = v1, b1 = b0 = 1. The value
for 	k is found by requiring thatvk = ak(wk)/bk(wk), i.e.

	k = (wk−1 − wk)
vkbk−2(wk) − ak−2(wk)

vkbk−1(wk) − ak−1(wk)
. (20)

In our case, we naturally takevk = ĥk−1. To implement
the method we still have leeway in choosing the points
wk. In our case we take theM-th roots of unity which re-
side on the unit circle, hence not inside the unit disk. We
havewk = Wk−1, with W = e2�i/M . The corresponding
transformation matrix is

Kk,l = W−(k−1)l (21)

implying that the transform̂hk−1=∑M
l=1Kk,lhl−1 can read-

ily be implemented by means of the DFT. Finally, the zeros
uk are found as the poles ofV (z), i.e. the zeros ofbM(z).

4. Conformal mappings

The conformal mapping technique can be used to trans-
form the unit disk, in which the zeros are recovered, to a
different region more suitable for our needs. Of particular
interest is the mapping

�1/2(u) = u − 1+ √
2+ 2u2

u + 1
, (22)



L. Knockaert et al. / Int. J. Electron. Commun. (AEÜ) 59 (2005) 230–238 233

which transformsD into the open halfdiskD1/2 defined as
{u : |u|<1,R(u)>0}. The mapping�(u) = a�1/2(u) + b

amounts to a translation, a rotation and a scaling of the
halfdisk.
Another useful mapping is the one transforming the unit

disk onto a regularn-gon inscribed in the unit circle. It is
given by[22]

�n(u) = C

∫ u

0
(1− wn)−

2
n dw

=Cu 2F1

(
1

n
,
2

n
;1+ 1

n
; un

)
, n>2, (23)

whereC is the constant yielding�n(1) = 1 and2F1(· · ·) is
the hypergeometric function

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k

(c)k

zk

k! (24)

and(a)k=a(a+1) · · · (a+k−1) is the Pochhammer symbol.
In general it is well-known that it is sufficient to know the

boundary correspondence function, i.e. themapping between
each boundary point of the unit circle and the boundary�.
For instance, when� is given in polar co-ordinates

� : z = z(
) = �(
)ei
, 0�
�2�, �(
)>0 (25)

then the boundary correspondence function is given by
(�)
which satisfies Theodorsen’s integral equation[23]


(�) − �

= 1

2�
PV

∫ 2�

0
cot

(
� − �
2

)
log(�(
(�)))d� (26)

for 0���2�, where PV stands for the Cauchy Principal
Value. The resulting conformal mapping is

�(u) = ue(u), (27)

where(u) is

(ei�) = log(�(
(�))) + i[
(�) − �] (28)

on the unit circle and

(u) = 1

2�i

∫ 2�

0

(ei�)

ei� − u
dei� (29)

inside the unit disk. Note that Theodorsen’s integral equa-
tion is highly non-linear, and therefore, in our context, of
limited utility. Also, since too many complicated function
evaluations have a serious slowing down effect on the over-
all processing time, we will not present examples for the
regularn-gon and restrict ourselves to roots inD andD1/2.

5. Application to modes in layered media

5.1. Dispersion relation

Consider a planar layered medium consisting ofN dielec-
tric layers of infinite horizontal extent with thicknessdi and

Fig. 1.A layered medium.

permittivity �i , i = 1, . . . , N , as shown inFig. 1. The first
and the last layers can either be open or terminated by a per-
fectly electrical conducting (PEC) plane. In the latter case,
one or both of these layers could be PMLs, so that the closed
configuration behaves approximately as an open structure.
The technique to find the complex propagation constants�
of the modes that exist in these structures is well-known
[25,26] and we will only give a brief overview here. With
each layeri, we associate a transfer matrixTi , given by

Ti =
[

(e2j�i di + 1) −Zi(e2j�i di − 1)
−1

Zi

(e2j�i di − 1) (e2j�i di + 1)

]
(30)

with Zi = 1
�i

for TE modes andZi = �i

�i
for TM modes, and

with �i =
√

�i − �2. In order to determine the number of
zeros within a certain contour, the derivative of this matrix
with respect to� is also required, and is given by

�Ti
��

=
[
A11 A12
A21 A22

]
(31)

with

A11= −2j�di
�i

e2j�i di ,

A12 = −�Zi

��

(
e2j�i di − 1

)
+ 2jZi�di

�i

e2j�i di ,

A21= 1

Z2
i

�Zi

��

(
e2j�i di − 1

)
+ 2j�di

Zi�i

e2j�i di ,

A22 = −2j�di
�i

e2j�i di (32)

and with �Zi

�� = �
�3
i

for TE modes and�Zi

�� = − �
�i�i

for TM

modes. The contribution of theN − 1 bottom layers to the
dispersion relation is then given bytbottom = TN−1 · . . . ·
T1 · b, with the column vectorb describing the termina-
tion. When the bottom layer is terminated by a PEC plate,
we haveb = [0,1]T, whereas for an infinite bottom layer
b = [1,− 1

Z0
]T. The contribution of the top layer is simi-

lar: ttop = [−1,− 1
Z0

]T for an infinite top layer andttop =
[Z0(e2j�0d̃N −1), (e2j�0d̃N +1)]T when it consists of a PML
terminated by a PEC plate, with̃dN = dN(� − j 	

��0
) (� and

	 being material parameters describing the PML[5]).The
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dispersion relation for the complex propagation constants�
of the layered medium is therefore of the formf (�) = 0,
with

f (�) = det[tbottom, − ttop]. (33)

The derivative is then found as

f ′(�) = det

[
�tbottom,

��
− ttop

]
+ det

[
tbottom, − �ttop

��

]
(34)

with

�tbottom
��

=
N−1∑
i=1

TN−1 · . . . Ti+1 · �Ti
��

· Ti−1 · . . . · T1 · b

+ TN−1 · . . . · T1 · �b
��

. (35)

Let us now focus for a moment on a layered medium termi-
nated by means of a PEC with PML coating. For a single
layered microstrip substrate terminated by a PML, it was
shown in[27] that, for a high mode numbern, the modes
can be decomposed into leaky modes that depend only on
the characteristics of the microstrip and modes that depend
mainly on the characteristics of the PML. Following[28],
approximate analytical expressions for both modes can then
be used as initial estimates, and some simple Newton steps

� → � − f (�)
f ′(�)

(36)

allow to determine all the propagation constants rapidly and
accurately. In the general case ofN layers, for a high mode
numbern, the modes can still be decomposed into leaky
modes that depend only on the characteristics of theN − 1
bottom layers and modes that depend mainly on the charac-
teristics of the PML. Analytical expressions can be derived
for the latter modes for large mode numbers, by making the
approximations|e+2j�r d |>1 and�r ≈ �0 ≈ +j�. The con-
tribution of theN − 1 bottom layers is then approximated
by b= [1, −1

Zeff
]T, i.e. an infinite layer with an effective per-

mittivity that can be calculated analytically. This means that
the technique described in[28] can be applied to determine
the eigenvalues of these modes rapidly. On the other hand,
the other set of modes are approximately given by the leaky
modes of theN − 1 bottom layers, terminated by an open
infinite top layer, since for these modes|e−2j�0d̃ |>1 so that

ttop=
[
Z0

(
e2j�0d̃N − 1

)
(
e2j�0d̃N + 1

)
]

≈ −Z0e
2j�0d̃N

[ −1
−1/Z0

]
. (37)

Since these modes do not depend on the characteristics of
the PML anymore, we will not consider PML terminated
substrates in the sequel and focus our attention on locating
the leaky modes of open layered substrates.

5.2. Numerical issues

Before tackling the actual examples, we wish to make the
following general remark. Whenever the roots, obtained as a
result of the signal identification approach, are found to lack
sufficient accuracy, we can terminate the procedure by a few
Newton steps (36), as discussed in the previous section, in
order to further enhance the global precision defined as

P =max(|f (�1)|, |f (�2)|, . . . , |f (�m)|). (38)

In all the examples we utilize a 1024 point FFT.
Keep in mind that it is important to restrict the radii of

the disks or halfdisks such that there are a limited number
of roots in it, say less than 20. The reason for this is that
the Hankel moments ‘blow up’ and lose numerical precision
when the radii become too large. Also, the determination
of the number of roots by means of the principle of the
argument becomes inaccurate when the radii are too large.

5.3. Example I: a microstrip substrate

In order to validate the algorithms developed in Section
3, we consider a planar dielectric microstrip substrate with
thicknessd = 9mm and permittivity�r = 3 at 12GHz. The
substrate has no magnetic contrast(�r = 1). The propaga-
tion constants for this structure were already calculated in
[28], based on analytical estimates for the zeros followed by
Newton iteration steps.
In Fig. 2, the propagation constants of the leaky modes of

this substrate are shown, now found by using the four sig-
nal identification algorithms. The conformal mapping tech-
nique of Section 4 is used to restrict the domains in which
the propagation constants are located to the halfdisks shown
in the figure. In order to ensure that none of the zeros is
located on the boundary of the halfdisk, we rely on the es-
timate of the imaginary part of the propagation constants at
high mode numbersn, given by− (2n+1)�

2d [28]. We there-
fore choose the imaginary part of the center of the halfdisks
as (2m+1)�

2d and the radius as(2l+1)�
2d , with l andm integers.

The radius is chosen such that about 13 zeros are found in
each halfdisk. The halfdisk close to the real axis is cho-
sen smaller, because of the reduced accuracy in this region
for zero finding, due to the presence of a branchcut. This
smaller halfdisk accommodates seven zeros. The technique
is not used to determine the propagation constants of the
guided modes, located on the real axis. For these modes, a
zero search along the real axis is faster and more accurate,
because of the presence of a branchcut. In total 59 propa-
gation constants for the TE modes and 60 propagation con-
stants for the TM modes are found by defining 5 halfdisks.
Five Newton steps are used to improve the accuracy of the
zeros, whenever necessary. The technique was implemented
in MATLAB TM and the calculations were performed on a
2.4GHz Pentium IV processor. For the TE modes, algorithm
1 takes 3.20 s to determine the zeros with a global precision
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Table 1.Number of accurate digits for some normalized propagation constants�
k0

of TE leaky modes without Newton steps

Mode no. Estim.[28] Alg. 1 Alg. 2 Alg. 3 Alg. 4 Exact zero�
k0

4 2 6 6 6 6 0.99713447325266−j5.93895922247753
15 4 7 8 8 7 1.51504618778711−j21.42715886211458
28 4 8 8 8 8 1.78122110319268−j39.52559386486341
41 5 6 7 7 6 1.94651748790590−j57.59795588775396
54 5 7 7 7 7 2.06663919837921−j75.66256876746958

Table 2.Number of accurate digits for some normalized propagation constants�
k0

of TM leaky modes without Newton steps

Mode no. Estim.[28] Alg. 1 Alg. 2 Alg. 3 Alg. 4 Exact zero�
k0

4 2 7 7 7 7 0.16405949006507−j6.00562039879446
15 3 8 8 8 8 0.15407757221948−j21.45799596883775
28 4 8 8 8 8 0.15347207447894−j39.54542183237766
41 4 8 8 8 8 0.15333833987778−j57.61285936490915
54 4 8 8 8 8 0.15328824481330−j75.67462553460562
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Fig. 2. Leaky modes in the microstrip substrate. Circles: TM
modes, diamonds: TE modes, points:[28].

P = 6.45× 10−16, method 2 takes 3.22 s to determine the
zeros with a global precisionP = 5.06× 10−16, technique
3 takes 3.23 s to determine the zeros with a global preci-
sionP = 5.98× 10−16 and method 4 takes 3.31 s to deter-
mine the zeros with a global precisionP = 6.36× 10−16.
For the TM modes, algorithm 1 takes 3.16 s to determine
the zeros with a global precisionP=2.54×10−14, method
2 takes 3.16 s to determine the zeros with a global preci-

sionP = 5.51× 10−14, algorithm 3 takes 3.17 s to deter-
mine the zeros with a global precisionP=2.68×10−14 and
method 4 takes 3.26 s to determine the zeros with a global
precisionP = 2.68× 10−14. For the single layer problem,
the technique described in[28] is of course faster, requir-
ing 0.328 s to determine the 59 TE propagation constants
with a global precisionP = 2.84× 10−14 and 0.234 s to
determine the 60 TM propagation constants with a global
precisionP = 2.84× 10−14. In order to provide more in-
sight into the accuracy of the technique,Table 1presents
the number of accurate digits for some normalized propaga-
tion constants�

k0
of TE leaky modes andTable 2gives the

number of accurate digits for some normalized propagation
constants�

k0
of TM leaky modes, for the analytical estimates

in [28] and obtained with the four different algorithms of
Section 3, without applying additional Newton steps. The
four signal processing techniques provide much more ac-
curate estimates than the analytical expression of Rogier et
al. [28]. It is found that the second and the third algorithm
provide slightly more accurate zeros than the first and the
fourth method.

5.4. Example II: a two-layered substrate

Consider a substrate consisting of two dielectric layers,
terminated by a PEC plate at the bottom and by an open air
region at the top, as shown inFig. 3. The bottom dielectric
has permittivity�1=7.0�0 and thicknessd1=5mm, whereas
the top dielectric has permittivity�2 = 3.0�0 and thickness
d2=4mm. InFig. 4, the propagation constants of the leaky
modes of this substrate are shown, found by using the four
signal identification algorithms. The halfdisks that were used
to locate the zeros are also shown in the figure. To select
the halfdisks, we make use of the fact that for high mode
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Fig. 3.A substrate consisting of two dielectric layers.
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Fig. 4. Leaky modes in the two-layered substrate. Circles: TM
modes, diamonds: TE modes, points: principal of the argument
method.

numbersn, the imaginary part of the zeros is approximately
given by− (2n+1)�

2(d1+d2)
. We therefore choose the imaginary part

of the center of the halfdisks as(2m+1)�
2(d1+d2)

and the radius as
(2l+1)�
2(d1+d2)

, with l andm integers. The radius is chosen such
that about 13 zeros are found in each halfdisk. The halfdisk
close to the real axis is again chosen smaller and accommo-
dates seven zeros. In total, 59 propagation constants for the
TE modes and 60 propagation constants for the TM modes
are found by defining 5 halfdisks. For the TEmodes, method
1 takes 5.42 s to determine the zeros with a global precision
P = 4.4 × 10−15, method 2 takes 5.42 s to determine the
zeros with a global precisionP = 8.22× 10−16, method 3
takes 5.44 s to determine the zeros with a global precision
P=8.09×10−16 and method 4 takes 5.47 s to determine the
zeros with a global precisionP=3.53×10−14. For the TM
modes, method 1 takes 5.38 s to determine the zeros with a
global precisionP=3.45×10−14, method 2 takes 5.38 s to
determine the zeros with a global precisionP=4.38×10−14,
method 3 takes 5.38 s to determine the zeros with a global

precisionP=3.09×10−14 and method 4 takes 5.44 s to de-
termine the zeros with a global precisionP=7.69×10−14.
All algorithms have comparable CPU times and compara-
ble accuracies, with the Prony–Burrus–Parks method being
slightly more accurate. In order to determine the same prop-
agation constants with the principal of the argument method
(implemented in C on a Pentium IV processor), it takes 59 s
for the TE modes and 59 s for the TM modes.
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Appendix A.

A.1. Appendix

The error terms can be written as

�n = 1

2�

∫ 2�

0
ei(n+1)�G(�)d�

− 1

N

N−1∑
k=0

e2�i(n+1)k/NG(2�k/N), (A.1)

where

G(�) = 1

f (�(ei�))
. (A.2)

In [29] p. 345, it has been proved that the errorE(f ) of the
(N + 1)-point closed trapezoidal rule

E(f ) =
∫ b

a

f (t)dt − �
[
f (a)

2
+ f (b)

2

+
N−1∑
k=1

f (a + k�)

]
(A.3)

with � = b−a
N

, satisfies the inequality

|E(f )|� (b − a)2

4N

[
|f (a)| + sup

a� t �b

|f ′(t)|
]
. (A.4)

Note that, since the trapezoidal rule is exact for linear func-
tions, the above error bound can be sharpened (replacef (t)

with f (t) − � − �(t − a) for some�,�) to

|E(f )|� (b − a)2

4N
inf
�

sup
a� t �b

|f ′(t) − �|. (A.5)

In our case the error bound (A.4) reads as

|�n|� �2

N

[
|G(0)| + sup

0���2�
|G′(�) + i(n + 1)G(�)|

]
.

(A.6)
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The problemwith the error bound (A.6) is that, whileG(�) is
continuous and hence bounded, the derivativeG′(�) may be
unbounded, especially when using conformal mappings with
corner points. Of course, the corner points can be rounded
by using the conformal mapping��(u) = �(�u) where� is
a positive constant slightly smaller than 1, say� = 0.999.
We now present another bound based on theL2 (hence

smoothed) norm of derivatives ofG(�).

Theorem A.1. Let the pth(p�1) derivativeG(p)(�) be in
L2[0,2�] and n+1

N
��<1. Then there is a constantC�,p

independent ofN, n such that|�n|�C�,pN
−p.

Proof. Based on an argument similar to the one in[29] p.
293. Consider the Fourier series

G(�) =
∞∑

k=−∞
cke

ik�. (A.7)

By the premises we have

‖G(p)‖22 = 1

2�

∫ 2�

0
|G(p)(�)|2 d�

=
∞∑

k=−∞
|k|2p|ck|2<∞. (A.8)

The errors�n on the other hand, can be written as

�n = c−n−1 −
∞∑

k=−∞
ckN−n−1 = −

∑
k �=0

ckN−n−1. (A.9)

Hence

|�n|�
∣∣∣∣∣∣
∑
k �=0

ckN−n−1

∣∣∣∣∣∣
�

√∑
k �=0

|kN − n − 1|−2p

×
√∑

k �=0

|ckN−n−1|2|kN − n − 1|2p

�N−p‖G(p)‖2
√√√√∑

k �=0

∣∣∣∣k − n + 1

N

∣∣∣∣
−2p

(A.10)

by Schwarz inequality. Now putting� = n+1
N

��<1, and
with �(·) the Riemann zeta function, we obtain

∑
k �=0

|k − �|−2p�
∞∑
k=1

(k − �)−2p + �(2p)

��(2p) + 2p − �
2p − 1

(1− �)−2p

��(2p) + p

p − 1/2
(1− �)−2p. (A.11)

Hence taking

C�,p = ‖G(p)‖2
√

�(2p) + p

p − 1/2
(1− �)−2p (A.12)

completes the proof.�

The above theorem, shows that the error terms�n are uni-
formlyO(N−p) provided the relative ratio�= n+1

N
, which is

related to the Hankel moments needed, remains sufficiently
small.
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