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Abstract

A new three-parameter distribution called the type I half-logistic Nadarajah-Haghighi
(TIHLNH) is proposed. We discussed some important mathematical and statistical prop-
erties of the new model such as an explicit form of its rth moment, mean deviations,
quantile function, Bonferroni and Lorenz curves. The Shannon entropy and Renyi en-
tropy are computed, the expression for the Kullback-Leibler divergence measure is pro-
vided. The model parameters estimation was approached by the maximum likelihood
estimation (MLE), and the information matrix is obtained. The finite sample properties
of the MLEs are investigated numerically by simulation studies; by examining the bias
and mean square error of the estimators, and the results was satisfactory. We used two
real data applications to demonstrate the superior performance of the TIHLNH in terms
of fit over some other existing lifetime models.

Keywords: type I half logistic-G, Nadarajah-Haghighi distribution, moments, entropy, maxi-
mum likelihood estimation.

1. Introduction

Statistical models provide a significant contribution to the studies of natural life phenomenon.
One of the significant part of statistical studies is the modeling the lifetime data by a life-
time distribution. The exponential, half logistic, Rayleigh, and Weibull distributions etc., are
the commonly used classical models in reliability studies, biomedical sciences and life testing
because they have many close form properties with simple algebraic representation. Unfor-
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tunately, there are still various important problems which are often encountered in practice
where a real data does not follow any of the classical probability distribution; moreover, if
the failure rate is non-monotone, the majority of the classical models are incapable, also, the
rapid development in the applied fields of studies such as biomedical sciences, communication,
engineering, etc., required to provide for more alternative models as well as flexible models for
better exploration of complex data and non-monotone failure rates. To tackle these obstacles,
over the years an attempt has been made to define new class of probability distributions that
generalizes well-known probability distributions and at the same time provide high flexibility
in modeling lifetime data in practice. For example, the beta-G by Eugene, Lee, and Famoye
(2002), new extension of the beta-G Muhammad and Liu (2021a), gamma-G due to Zografos
and Balakrishnan (2009), Kumaraswamy-G Cordeiro and de Castro (2011), Weibull-X Alza-
atreh and Ghosh (2015), exponentiated sine-G Muhammad, Alshanbari, Alanzi, Liu, Sami,
Chesneau, and Jamal (2021a), odd-generalized exponential-G Tahir, Cordeiro, Alizadeh, Man-
soor, Zubair, and Hamedani (2015), transmuted Weibull-G Alizadeh, Rasekhi, Yousof, and
Hamedani (2018), generalized transmuted-G Alizadeh, Merovci, and Hamedani (2017), com-
plementary geometric transmuted-G Afify, Cordeiro, Nadarajah, Yousof, Ozel, Nofal, and Al-
tun (2016), generalized gamma-G Alzaatreh, Carl, and Famoye (2016), new Weibull-G Tahir,
Zubair, Mansoor, Cordeiro, Alizadehk, and Hamedani (2016), extended cosine-G Muham-
mad, Bantan, Liu, Chesneau, Tahir, Jamal, and Elgarhy (2021b) Lindley –G Cakmakyapan
and Gamze (2016), Hamedani, Yousof, Rasekhi, Alizadeh, and Najibi (2018) type I gen-
eral exponential-G, and Poisson odd-generalized exponential-G Muhammad (2016b) among
others.

In the past few years, a new family of distributions called type I half-logistic family has been
proposed in order to extend the class of lifetime distributions Cordeiro, Alizadeh, and Di-
niz Marinho (2016). The type I half logistic Burr X (TIHLBX) distribution is one of the
recently studied member of this family Shrahili, Elbatal, and Muhammad (2019). The cumu-
lative distribution function (cdf) of the type I half-logistic (TIHL-G) family of distributions
is given by

F (x; δ, λ) =

∫ − log[1−G(x;δ)]

0

2λe−λx

(1 + e−λx)2
dx =

1− [1−G(x; δ)]λ

1 + [1−G(x; δ)]λ
, (1)

where G(x; δ) is the baseline cdf depending on a parameter vector δ = (δ1, δ2, . . . , δn), δi ∈ R,
and λ > 0. For each baseline G, we can have type I half-logistic-G by considering (1). The
corresponding density (pdf) functions to (1) is

f(x; δ, λ) =
2λg(x; δ) [1−G(x; δ)]λ−1(

1 + [1−G(x; δ)]λ
)2 , (2)

where g(x; δ) is the baseline pdf.

In the last few years, Nadarajah and Haghighi (2011) introduced a new two-parameter dis-
tribution as an extension of the exponential distribution called Nadarajah-Haghighi (NH), its
cumulative distribution function (cdf) and probability density function (pdf) are

G(x) = 1− e1−(1+θx)α , x > 0, (3)

and

g(x) = αθ(1 + θx)α−1e1−(1+θx)
α
, x > 0, (4)

respectively, where θ, α > 0 are the scale and shape parameters respectively, when α =
1, (3) become the exponential distribution. The NH distribution possesses only decreasing
density and increasing, decreasing and constant hazard rates. Due to the fact that type I
half logistic generator of distributions provide additional flexibility to a baseline distribution,
in this study, we aim at providing a new flexible extension of the NH called the Type I
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half logistic Nadarajah-Haghighi (TIHLNH) distribution with capability of accommodating
both monotone and non-monotone failure rate, also with the ability to accommodate both
decreasing and unimodal densities.

In statistical literature, the extensions of probability models have greatly contributed to dis-
tribution theory, leading to several important mathematical and statistical tools useful in both
theory and practice. Here, we want provide an extensive studies of the mathematical and sta-
tistical properties of the TIHLNH to present closed form and convenient representation of the
model properties with the aid of several mathematical techniques, computational algorithms
and computer packages for numerical computations. Different probability models serve dif-
ferent purposes and represent different data generation procedures. The TIHLNH serves as
a new tool for generating different kind of data with different characteristics. In addition, to
demonstrate how TIHLNH provide a better fit in comparison with the NH and other related
models in some practical applications. We hoped that the new proposed TIHLNH may serve
as an important additional tool in both theoretical studies and practice in probability and
applied statistics, among others.

The rest of the paper is arranged as follows: In section 2, we derived the TIHLNH distribution
and presented some of its mathematical and statistical properties. In section 3, the maximum
likelihood estimation is discussed. In section 4, the potentiality of the new model is illustrated
by the use of two real data set. Conclusions in section 5.

2. The new model and properties

In this section, we introduce the new three parameter type I half-logistic Nadarajah-Haghighi
(TIHLNH) distribution. Let the baseline cumulative distribution of (1) be the NH distribu-
tion given by (3), therefore, the cdf of the TIHLNH distribution can be written as

F (x;α, θ, λ) =

∫ − log[1−(1−e1−(1+θx)α)]

0

2λe−λt

(1 + e−λt)2
dt =

1− eλ[1−(1+θx)α]

1 + eλ[1−(1+θx)α]
, x, α, θ, λ > 0. (5)

The corresponding probability density, survival function and hazard rate function of the
TIHLNH are respectively given by

f(x;α, θ, λ) =
2αθλ (1 + θx)α−1 eλ[1−(1+θx)

α](
1 + eλ[1−(1+θx)α]

)2 , (6)

s(x;α, θ, λ) =
2eλ[1−(1+θx)

α]

1 + eλ[1−(1+θx)α]
, (7)

h(x;α, θ, λ) =
αθλ(1 + θx)α−1

1 + eλ[1−(1+θx)α]
. (8)

We denote X ∼ TIHLNH(φ), a random variable X with pdf given by (6), where φ = (α, θ, λ).

Interpretation 1. Let (X,T ) be a random vector with joint density function f(x, t) defined
on R2. Suppose that the conditional cumulative distribution of X given T = t is K(x|t)
and T ∼ E(t). Then the following defines the unconditional survival function of X, s(x) =∫
K̄(x|t)E(t)dt. The survival function s(x) is obtained by compounding the survival function

K̄(x|t) = 1 − K(x|t) and the density of E(t). Suppose that the survival function K̄(x|t) =

e
−t

(
1−eλ(1−(1+θx)α)

2eλ(1−(1+θx)α)

)
where x, α, θ, λ, t > 0, and T assumed to have exponential distribution

with mean 1, then X has survival function given by (7).

Proof. For all x, t, α, θ, λ > 0, the survival function is given as
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s(x) =

∫
K̄(x|t)E(t)dt =

∫ ∞
0

e
−t

(
1−eλ(1−(1+θx)α)

2eλ(1−(1+θx)α)

)
e−tdt

=

∫ ∞
0

e
−t

(
1−eλ(1−(1+θx)α)

2eλ(1−(1+θx)α)
+1

)
dt =

(
1− eλ(1−(1+θx)α)

2eλ(1−(1+θx)α)
+ 1

)−1
=

2eλ[1−(1+θx)
α]

1 + eλ[1−(1+θx)α]
.

Proposition 2.1. The asymptotic of the cdf of TIHLNH in (5) for a very small x i.e, x→ 0+

is

lim
x→0+

F (x) ∼ (1/2)(λ[(1 + θx)α − 1]).

Proof. By the transitivity property of asymptotic,

lim
x→0+

F (x) ∼ (1/2)(1− eλ[1−(1+θx)α]) ∼ (1/2)(λ[(1 + θx)α − 1]).

Theorem 2.2. The probability density function of the TIHLNH in (6) is (i) decreasing if
α ≤ 1, (ii) log-concave if α ≥ 1.

Proof. (i) We consider f ′(x) below, and it is shown that f ′(x) is negative for all α ≤ 1.

f ′(x) =
2αθ2λ(1 + θx)α−2eλ(1−(1+θx)

α)

(1 + eλ(1−(1+θx)α))3

×
[
(α− 1)(1 + eλ(1−(1+θx)

α))− αλ(1 + θx)α−1(1− eλ(1−(1+θx)α))
]
.

(ii) Let w = (1 + θx)α, it implies that w ≥ 1 for x > 0, thus, x = (w
1
α − 1)/λ. Therefore, we

can write TIHLNH pdf in term of w as

B(w) = f((w
1
α − 1)/λ) = 2αθλ

w
α−1
α eλ(1−w)

[1 + eλ(1−w)]2
, w ≥ 1.

The result is obtained by considering the second derivative of logB(w) as

(logB(w))′′ = −(α− 1)

αw2
− 2λeλ(1−w)

1 + eλ(1−w)

[
1− eλ(1−w)

1 + eλ(1−w)

]
,

where (logB(w))′′ < 0 at α ≥ 1. This proof is analogous to that of Lemonte (2013).

Theorem 2.3. The hazard rate function of the TIHLNH given by (8) is monotonic increasing
if α ≥ 1.

Proof. Follow from theorem 2.2 (ii), log-concave property of f(x).

The limiting behavior of the f(x) and h(x) are: limx→0 f(x) = αθλ/2, limx→∞ f(x) = 0,
limx→0 h(x) = αθλ/2, limx→∞ f(x) = 0 for α < 1, limx→∞ f(x) = ∞ for α > 1, and
limx→∞ f(x) = θλ for α = 1.

Its clear from the figure 1 (left) that unlike NH, the TIHLNH can accommodate both decreas-
ing and unimodal densities. In addition, NH possesses only monotone and constant failure
rate, from the figures 1 (right), 2 and 3 we can see that TIHLNH has increasing, decreasing,
unimodal, bathtub and decreasing-increasing-decreasing failure rate functions.
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Figure 1: Plots of some possible shapes of the pdf (left) and hrf (right) of the TIHLNH for some value
of parameters
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Figure 2: Plots of some possible shapes of the hrf of the TIHLNH for some value of parameters
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Figure 3: Plots of some possible shapes of the hrf of the TIHLNH for some value of parameters

2.1. Quantile function

The quantile function of the TIHLNH is computed by inverting equation (5) as

Q(u) = θ−1

([
1− λ−1 ln(

1− u
1 + u

)

] 1
α

− 1

)
, (9)

where u ∈ (0, 1). Therefore, we can get the value of the median and other percentiles of X
from (9). Moreover, equation (9) can be used to generate random data that follow TIHLNH
by setting u ∼ U(0, 1), where U(0, 1) is the uniform distribution. The median of X is obtained

as Med(X) = θ−1
([

1− λ−1 ln(13)
] 1
α − 1

)
, the behavior of the median is discussed in table 1,
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indicating that the median is decreasing as α, θ, and λ increases. Further, equation (9) can
be use to determine the behavior of the skewness and kurtosis of the TIHLNH with respect
to the parameters by using the Bowley’s skewness (Bs) and the Moors’ kurtosis (Mk) defined
below; notice that these measures are independent of θ.

Bs =
Q(34)− 2Q(24) +Q(14)

Q(34)−Q(14)
and Mk =

Q(78)−Q(58)−Q(38) +Q(18)

Q(68)−Q(28)
.

Figure 4 shows that both the skewness and kurtosis of the TIHLNH distribution are decreas-
ing in α and increasing in λ.

alpha
lambda

B
 −

 S

(a)

alpha
lambda

M
 −

 K

(b)

Figure 4: Plots of (a) Bowley skewness and (b) Moores kurtosis of the TIHLNH distribution

2.2. Moments

In this subsection, the moments of the TIHLNH distribution are derived and analyzed.

Theorem 2.4. The rth moment of the TIHLNH is given by

µ
′
r(x) =

∞∑
j=0

r∑
i=0

2λ
(−2
j

)(
r
i

)
(−1)r−ieλ(j+1)

θr [λ(j + 1)]
r
α
+1

Γ(
r

α
+ 1, λ(j + 1)). (10)

Proof. The rth ordinary moment of X can be obtained as

µ
′
r(x) = E(Xr) =

∫ ∞
0

xrf(x, φ)dx (11)

= 2λθα
∞∑
j=0

(−2
j

)
eλ(j+1)

∫ ∞
0

xr(1 + θx)α−1 e−λ(j+1)(1+θx)α dx,

by setting t = λ(j + 1)(1 + θx)α , µ
′
r(x) reduces to

µ
′
r(x) = 2λθ−r

∞∑
j=0

(−2
j

)
eλ(j+1)

∫ ∞
λ(j+1)

[
t
1
α

[λ(j + 1)]
1
α

− 1

]r
e−tdt.

Using the binomial series in power of r, the integral becomes

µ
′
r(x) =

∞∑
j=0

r∑
i=0

2λ
(−2
j

)(
r
i

)
(−1)r−ieλ(j+1)

θr [λ(j + 1)]
r
α
+1

Γ(
r

α
+ 1, λ(j + 1)).

Where Γ(a, n) =
∫∞
n xa−1e−xdx is the upper incomplete gamma function.
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It is clear from (10) that the rth moments of the TIHLNH has simple convergent series
representation with less summations, thus, it can be determine numerically with the aid of
computer capabilities.

The rth ordinary moment µ
′
r in (10) or (11) can be used to obtain the moments by substituting

r = 1, 2, 3 . . ., where possible. The variance ( σ2), skewness (γ3), kurtosis(γ4) and coefficient

of variation (CV) of X could be obtain using σ2 = µ
′
2 − µ

′2
1 , γ3 =

µ
′
3−3µ

′
2µ
′
1+2µ

′3
1

(µ
′
2−µ

′2
1 )3/2

, γ4 =

µ
′
4−4µ

′
3µ
′
1+6µ

′
2µ
′2
1 +3µ

′4
1

(µ
′
2−µ

′2
1 )2

and CV =

√
µ
′
2

µ
′2
1

− 1.

The numerical values of some moments, variance ( σ2), skewness (γ3), kurtosis(γ4), and coef-
ficient of variation (CV) of the TIHLNH are given in table 1. The numerical values indicated
that as the parameters α, θ, and λ increases the given moments, variance, and skewness are
decreasing, while the kurtosis is decreasing-increasing-decreasing and the coefficient of varia-
tion is decreasing than increasing. For the missing values of µ

′
25 and µ

′
100 for some parameters

in table 1, the numerical integral was unable to obtained even with higher error tolerance,
also, the for the series representation it is necessary to used higher precision which required
Rmpfr (mpfr) package Mächler (2015) in R software Team (2019), but unfortunately the
incomplete gamma function gammainc in R is yet to operate with mpfr, hence, Monte Carlo
method can be used, thus, we consider this case as future work to consider other possible
packages and address it in detail, as occurs in the Castellares and Lemonte (2019) for the
moments of the generalized Gompertz, Guerra, Peña-Ramirez, Peña-Ramirez, and Cordeiro
(2020) for the moments of the beta Burr XII, Cordeiro and Bager (2015) for the moments of
some Kumaraswamy generalized distributions, among others.

Now, we compute the conditional moments of the TIHLNH which are useful in computing
the mean deviations, Bonferroni and Lorenz curves and so on. The sth lower incomplete
moments of X is defined by vs(t) and computed as

vs(t) =

∫ t

0
xsf(x, φ)dx =

∞∑
j=0

s∑
i=0

2λ
(−2
j

)(
s
i

)
(−1)s−ieλ(j+1)

θs [λ(j + 1)]
s
α
+1

γ(
s

α
+ 1, λ(j + 1)(1 + θt)α), (12)

where γ(a, t) =
∫ t
0 x

a−1e−xdx is the lower incomplete gamma function.

2.3. Mean deviations, Bonferroni and Lorenz curves

The mean deviation about the mean δ1(X) and mean deviation about the median δ2(X)
measure the amount of scatter in a population. For a random variable X with TIHLNH ,
the mean deviations are defined by δ1(X) =

∫∞
0 | x − µ′ | f(x)dx = 2µ

′
F (µ

′
) − 2ψ(µ

′
) and

δ2(X) =
∫∞
0 | x −M | f(x)dx = µ

′ − 2ψ(M), respectively, where F (x) is the distribution

function of X, µ
′

= E(X) is the mean of X and M = Med(X). To compute δ1(X) and
δ2(X), it is enough to obtain ψ(a) by considering (12) at s = 1. The numerical values of the
δ1(X) and δ2(X) of the TIHLNH are given in table 1 showing that both δ1(X) and δ2(X)
are decreasing as the parameters α, θ and λ increases.

The Bonferroni and Lorenz curves are very important in reliability, econometrics, and insur-
ance among others. The Bonferroni and Lorenz curves are defined respectively by B(p) = ψ(q)

pµ′

and L(p) = ψ(q)

µ′
, where ψ(q) is computed from (12), µ

′
can be determined from (10) with

r = 1, q = Q(p) is calculated from (9) and p is any given probability. Figure 5 show the
plots of the Bonferroni and Lorenz curves of TIHLNH as the probability p for some values
of parameters.

2.4. Entropy and Kullback-Leibler divergence

The entropy of a random variable X is a measure of the variation of uncertainty. Here, we
derived the Renyi entropy and Shannon entropy. The Renyi entropy of a random variable
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Figure 5: Plots of Bonferroni and Lorenz curves of the TIHLNH distribution for some parameter
value.

Table 1: The numerical values of the median (Med(X)), some moments (µ
′

r, r = 1, 2, 3, 4, 25, 100),
variance ( σ2), skewness (γ3), kurtosis(γ4), coefficient of variation (CV), and mean deviations
δ1(X) & δ2(X) of the TIHLNH for some parameter values

(α, θ, λ) (0.5, 0.6, 0.7) (0.8, 0.9, 0.8) (1.2, 1.1, 1.5) (1.5, 1.6, 1.7) (2.5, 2.1, 1.9) (2.9, 2.8, 2.0) (3.0, 3.5, 2.5) (5.7, 5.0, 4.5) (7.0, 6.0, 5.0)

Med(X) 9.3368 2.1619 0.5279 0.24638 0.095350 0.058199 0.036885 0.00781 0.004797

µ
′
1 17.7914 2.9506 0.6436 0.29213 0.108890 0.066128 0.042367 0.00912 0.005614

µ
′
2 950.96 16.540 0.6779 0.13482 0.017882 0.006555 0.00273 0.00013 5.693×10−5

µ
′
3 106093.1 138.86 0.9553 0.08097 0.003689 0.000812 0.000221 2.078×10−5 1.743×10−7

µ
′
4 20852297 1588.7 1.6689 0.05888 0.000894 0.000118 2.076×10−5 4.326×10−8 9.037×10−7

µ
′
25 - - 3.283×1014 6185.156 2.115×10−10 3.261×10−16 1.398×10−20 9.050×10−37 1.241×10−41

µ
′
100 - - - - 4.021×10−9 6.252×10−34 7.074×10−51 1.029×10−116 4.342×10−137

σ2 634.4293 7.8337 0.2637 0.04948 0.006025 0.002182 0.000931 4.551×10−5 2.541×10−5

γ3 4.16769 1.9990 1.3262 1.15240 0.919099 0.885717 0.839885 0.24222 -3.36231
γ4 38.2825 16.9660 20.2695 22.5241 27.0273 27.7770 25.7478 25.2995 29.2310
CV 1.41573 0.9486 0.7978 0.76140 0.712840 0.706370 0.720215 0.73990 0.89784
δ1(X) 15.8011 2.0593 0.3986 0.17503 0.062170 0.037508 0.024416 0.00537 0.003322
δ2(X) 14.0341 1.9591 0.3881 0.17136 0.061286 0.037007 0.024047 0.00528 0.003262

X with probability density function f(x) is defined as IR(ρ) = (1 − ρ)−1 ln
∫∞
−∞ f

ρ(x)dx, for

ρ > 0 and ρ 6= 1. First, we compute the
∫∞
0 fρ(x)dx.

∫ ∞
0

fρ(x)dx =

∞∑
j=0

(−2ρ
j

)
2ραρθρλρ

∫ ∞
0

(1 + θx)ρ(α−1) eλ(j+ρ)e−λ(j+ρ)(1+θx)
α
dx,

let t = λ(j + ρ)(1 + θx)α, then after some algebra the integral become a mixture of upper
incomplete gamma function as

∫ ∞
0

fρ(x)dx =
∞∑
j=0

(−2ρ
j

)
2ραρ−1θρ−1λρ eλ(j+ρ)

[λ(j + ρ)]
1
α
(1−ρ)+ρ

∫ ∞
λ(j+ρ)

t
1
α
(1−ρ)+ρ−1e−tdt

=
∞∑
j=0

τj(α, θ, λ, ρ)Γ(
1

α
(1− ρ) + ρ, λ(j + ρ)),

where τj(α, θ, λ, ρ) =

(−2ρ
j

)
2ραρ−1θρ−1λρ eλ(j+ρ)

[λ(j+ρ)]
1
α (1−ρ)+ρ

. Therefore, the Renyi entropy is given by

IR(ρ) = (1− ρ)−1 ln

 ∞∑
j=0

τj(α, θ, λ, ρ)Γ(
1

α
(1− ρ) + ρ, λ(j + ρ))

 . (13)

Table 2 provide some numerical values of the Renyi entropy for some parameter values and
ρ. Observe that the Renyi entropy is decreasing as the parameters and ρ increases.
The Shannon entropy of X is defined by E[− log f(X)] it is also a particular case of the
Renyi entropy when ρ → 1. The Shannon entropy of TIHLNH is obtained by considering
the following lemma 2.5.
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Lemma 2.5. Let X ∼ TIHLNH , and ξ > 0, then

E[(1 + θX)ξ] =
∞∑
j=0

ζ∗j (α, λ, ξ)Γ(
ξ

α
+ 1, λ(j + 1)), (14)

E[log(1 + θX)] =

∞∑
j=0

ζ∗∗j (λ)
∂

∂a

(
Γ( aα + 1, λ(j + 1))

[λ(j + 1)]
a
α

)
|a=0, (15)

E
[
log
(

1 + eλ[1−(1+θX)α]
)]

=
∞∑
k=1

∞∑
j=0

2(−1)k+1
(−2
j

)
k (k + j + 1)

, (16)

where ζ∗j (α, λ, ξ) =

(−2
j

)
2λeλ(j+1)

[λ(j+1)]
ξ
α+1

, and ζ∗∗j (λ) =

(−2
j

)
2λeλ(j+1)

[λ(j+1)] .

Proof. The proof of (14) as follows

E[(1 + θX)ξ] =

∫ ∞
0

(1 + θx)ξf(x)dx = 2αθλ
∞∑
j=0

eλ(j+1)
(−2
j

) ∫ ∞
0

(1 + θx)α+ξ−1e−λ(j+1)(1+θx)αdx

by letting t = λ(j + 1)(1 + θx)α, we get

E[(1 + θX)ξ] =

(−2
j

)
2λeλ(j+1)

[λ(j + 1)]
ξ
α
+1

∫ ∞
λ(j+1)

t
ξ
α e−tdt =

∞∑
j=0

ζ∗j (α, λ, ξ)Γ(
ξ

α
+ 1, λ(j + 1)),

where ζ∗j (α, λ, ξ) =

(−2
j

)
2λeλ(j+1)

[λ(j+1)]
ξ
α+1

.

The first step in the proof of (15) is given below, but the rest follow similar to the (14),
therefore, omitted.

E[log(1 + θX)] =
∂

∂a
E[(1 + θX)a] |a=0 =

∂

∂a

∫ ∞
0

(1 + θx)af(x)dx |a=0.

For the proof of (16), after expansion of log
[
1 + eλ[1−(1+θx)

α]
]

and the denominator of f(x),
we have,

E
[
log
(

1 + eλ[1−(1+θX)α]
)]

=

∫ ∞
0

log
[
1 + eλ[1−(1+θx)

α]
]
f(x)dx

=

∞∑
k=1

∞∑
j=0

2
(−2
j

)k+1
αθλeλ(k+j+1)

k

∫ ∞
0

(1 + θx)α−1e−λ(k+j+1)(1+θx)αdx,

letting t = λ(k + j + 1)(1 + θx)α, we obtain E
[
log
(
1 + eλ[1−(1+θX)α]

)]
=
∑∞

k=1

∑∞
j=0

2(−1)k+1
(−2
j

)
k (k+j+1) .

Then, the Shannon entropy of the TIHLHN can be derived as

E[− log f(X)] = − log(2αλθ)− λ− (α− 1)E[log(1 + θX)] + λE[(1 + θX)α]

+ 2E
[
log
(

1 + eλ[1−(1+θX)α]
)]
. (17)

By applying (14)-(16) in (17) we get

E[− log f(X)] = log(2αλθ)−1 − λ− (α− 1)
∞∑
j=0

ζ∗∗(λ)
∂

∂a

(
Γ( aα + 1, λ(j + 1))

[λ(j + 1)]
a
α

)
|a=0

+ λ

∞∑
j=0

ζ∗j (α, λ)Γ(2, λ(j + 1)) +
∞∑
k=1

∞∑
j=0

4(−1)k+1
(−2
j

)
k (k + j + 1)

.
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The numerical values of the Shannon entropy given in table 2 indicated that the Shannon
entropy is decreasing as the parameters increases.

Now, we shall compute the Kullback-Leibler (KL) divergence for the TIHLNH distribu-
tions. The KL-divergence is a fundamental equation of information theory that measures
the proximity of two probability distributions, i.e it measures the distance between two
density functions. It is also called the information divergence and relative entropy. For
a random variables X1 ∼ TIHLNH(α1, θ, λ1) and X2 ∼ TIHLNH(α2, θ, λ2) with den-
sity functions f1(x) and f2(x), then the KL divergence measure of f1 and f2 is defined as

KL(f1||f2) =
∫∞
0 f1 log

(
f1
f2

)
dx. The following lemma 2.6 is used to obtain the last expression

in the simplified KL(f1||f2) in (19).

Lemma 2.6. Let X1 ∼ TIHLNH(α1, θ, λ1) and X2 ∼ TIHLNH(α2, θ, λ2), then

Ef1

[
log
(

1 + eλ2[1−(1+θX)α2 ]
)]

=

∫ ∞
0

log
[
1 + eλ2[1−(1+θX)α2 ]

]
f1(x)dx

=

∞∑
k=1

∞∑
i,j=0

ζ∗∗∗i,j,k(α1, α2, λ1, λ2)Γ(
α2i

α1
+ 1, λ1(j + 1)), (18)

where ζ∗∗∗i,j,k(α1, α2, λ1, λ2) =

(−2
j

)
2(−1)k+i+1λ1λi2k

ieλ2k+λ1(j+1)

k i! [λ1(j+1)]
α2i
α1

+1
.

Proof. After expanding the logarithmic expression, then follow similar to (10).

Here, we denote by Ef1 [k(x)] =
∫∞
0 k(x)f1(x)dx, the expectation a function K(x) base on f1.

Now, we compute the KL(f1||f2) as follows∫ ∞
0

f1 log

(
f1
f2

)
dx =

∫ ∞
0

f1(x) log f1(x)dx−
∫ ∞
0

f1(x) log f2(x)dx

= Ef1 [log f1(X)]− Ef1 [log f2(X)]

= log(α1λ1/α2λ2) + [λ1 − λ2] + (α1 − α2)Ef1 [log(1 + θX)]

− λ1Ef1 [(1 + θX)α1 ] + λ2Ef1 [(1 + θX)α2 ]

− 2Ef1

[
log
(

1 + eλ1[1−(1+θX)α1 ]
)]

+ 2Ef1

[
log
(

1 + eλ2[1−(1+θX)α2 ]
)]
.

(19)

Therefore, by considering lemma 2.5 for the third to six terms and lemma 2.6 for the last
expression of (19), we get

KL(f1||f2) = log(
α1λ1
α2λ2

) + [λ1 − λ2] + (α1 − α2)
∞∑
j=0

ζ∗∗(λ1)
∂

∂a

(
Γ( a

α1
+ 1, λ1(j + 1))

[λ1(j + 1)]
a
α1

)
|a=0

−
∞∑
j=0

λ1ζ
∗(α1, λ1)Γ(2, λ1(j + 1)) +

∞∑
j=0

λ2ζ
∗(α1, λ1, α2)Γ(

α2

α1
+ 1, λ1(j + 1))

−
∞∑
k=1

∞∑
j=0

4(−1)k+1
(−2
j

)
k (k + j + 1)

+

∞∑
k=1

∞∑
i,j=0

2ζ∗∗∗i,j,k(α1, α2, λ1, λ2)Γ(
α2i

α1
+ 1, λ1(j + 1)).

3. Parameter estimation

In this section, parameters estimation of the TIHLNH(φ) distribution is accomplished by the
maximum likelihood method (MLE) and investigated by simulation studies.
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Table 2: The numerical values of the Shannon and Renyi entropies of TIHLNH for some parameter
values

(α, θ, λ) Shannon Entropy (α, θ, λ) Shannon Entropy (ρ, α, θ, λ) IR(ρ) (ρ, α, θ, λ) IR(ρ)

(0.1, 0.5, 0.6) 14.2018 (1.0, 0.9, 1.0) 1.4122 (0.1, 0.4, 0.3, 0.5) 10.2020 (0.8, 0.9, 0.9, 1.0) 1.6952
(0.3, 0.6, 0.8) 5.3002 (1.0, 1.0, 1.0) 1.3069 (0.2, 0.6, 0.3, 0.5) 6.0462 (0.9, 1.2, 1.0, 1.0) 1.0295
(0.5, 0.6, 0.8) 3.6149 (1.0, 1.0, 1.2) 1.1245 (0.4, 0.7, 0.3, 0.5) 4.6857 (1.1, 1.2, 1.4, 1.3) 0.3895
(0.6, 0.6, 0.7) 3.3213 (1.5, 1.0, 1.2) 0.4922 (0.7, 0.9, 0.5, 0.8) 2.5802 (2.0, 1.3, 1.4, 1.4) 0.0578
(0.7, 0.7, 0.7) 2.7858 (1.5, 3.0, 1.2) -0.6064 (0.8, 0.9, 0.5, 0.8) 2.5196 (3.0, 1.5, 4.0, 2.0) -1.5752
(0.9, 0.7, 0.7) 2.2316 (5.0, 4.0, 6.0) -3.6380 (0.8, 0.9, 0.8, 0.9) 1.9246 (6.0, 5.0, 7.0, 9.0) -4.9034
(0.9, 0.8, 0.7) 2.0981 (9.0, 7.0, 10.0) -5.2500 (0.8, 0.9, 0.9, 0.9) 1.8068 (10.0, 9.0, 12.0, 18.0) -6.7590

3.1. Maximum likelihood method (MLE)

Let X1, X2, ..., Xn be a random sample of size n from TIHLNH(φ), where φ = (α, θ, λ)T .
Let the estimator of φ, be φ̂, the log likelihood function for the vector of parameters φ can
be written as

logL = n log 2 + n logα+ n log θ + n log λ+ nλ+ (α− 1)
n∑
i=1

log(1 + θxi)

− λ
n∑
i=1

(1 + θxi)
α − 2

n∑
i=1

log (1 + eλ(1−(1+θxi)
α)). (20)

The log-likelihood can be maximized by solving the nonlinear equations obtained by differen-
tiating (20) as

∂ log L

∂α
=
n

α
−

n∑
i=1

log zi − λ
n∑
i=1

zαi log zi + 2λ

n∑
i=1

eλ(1−z
α
i )zαi log zi

1 + eλ(1−z
α
i )

, (21)

∂ log L

∂θ
=
n

θ
+ (α− 1)

n∑
i=1

xi
zi
− αλ

n∑
i=1

zα−1i xi + 2αλ

n∑
i=1

zα−1i xie
λ(1−zαi )

1 + eλ(1−z
α
i )

, (22)

∂ log L

∂λ
=
n

λ
+ n−

n∑
i=1

zα − 2

n∑
i=1

eλ(1−z
α
i )(1− zαi )

1 + eλ(1−z
α
i )

, (23)

where zi = 1 + θxi. These equations can be solved by mathematical packages such as R and
Mathematica. Now, we discuss the existence of the MLEs under some possible conditions.
Analogous discussions for this proofs can be found in Jafari and Tahmasebi (2016); Muham-
mad (2016a, 2017a,c); Muhammad and Liu (2019, 2021b).

Proposition 3.1. Let K1(α;λ, θ,x), be the right hand side of equation (21), where λ and θ are
true values of the parameters, then K1(α;λ, θ,x) = 0 has at least one root.

Proof. From the (21), limα→0K1 = ∞, and in the limα→∞K1 we rewrite the last term

in (21), then the limit by L’hopital’s is 2λ limα→∞
∑n

i=1
(1+θxi)

α log(1+θxi)

e−λ(1−(1+θxi)
α)+1

= 0, therefore,

limα→∞K1 = −∞. Hence, K1 is a function passes from non-negative to negative, so K1 = 0
has at least one root.

Proposition 3.2. Let K2(θ;λ, α,x), be the right hand side of equation (22), where α > 1 and
λ are true values of the parameters, then K2(θ;λ, α,x) = 0 has at least one root.

Proof. From the (22), limθ→0K2 = ∞, and in the limθ→∞K2 we rewrite the last term in

(22) and its limit is 2αλ limθ→∞
∑n

i=1

[
xi(1+θxi)

α−1

e−λ(1−(1+θxi)
α)+1

]
|α>1, = 0, thus, limθ→∞K2 = −∞.

Hence, K2 is a function that passes from non-negative to negative, so K2 = 0 has at least one
root.

Proposition 3.3. Let K3(λ;α, θ,x), be the right hand side of equation (23), where α and θ are
true values of the parameters, then K3(λ;α, θ,x) = 0 has at least one root.
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Proof. From the (23), limλ→0K3 = ∞, and limλ→∞K1 = n −
∑n

i=1 z
α
i < 0, since zi =

(1 + θxi) > 1, ∀θ, α, xi. Thus, K3 is a function passes from non-negative to negative, hence
K3 = 0 has at least one root.

Now, we can obtain an approximate confidence interval for the parameters. In the theorem
3.5 we established the asymptotic normality distribution for the MLEs, but we require the
following lemma 3.4 which is useful in the computation of the elements of Fisher information
matrix In.

Lemma 3.4. Let β1 ∈ R and β2, β3, β4, β5 ∈ N∪{0}, let X ∼ TIHLNH(φ) with pdf in (6), let

C(β1, β2, β3, β4, β5) = E

[
(1 + θX)β1 Xβ2 eβ3λ(1−(1+θX)α) logβ4(1 + θX)

[1 + eλ(1−(1+θX)α)]β5

]
,

then,

C(β1, β2, β3, β4, β5) =
∞∑
j=0

β2∑
i=0

κi,j
∂β4

∂tβ4

[
Γ(β1+t+iα + 1, λ(β3 + j + 1))

[λ(β3 + j + 1)]
t
α

]
t=0

,

where κi,j =

(−(β5+2)
j

)(
β2
i

)
2λ(−1)β2−i eλ(β3+j+1)

θβ2 [λ(β3+j+1)]
β1+i
α +1

.

Proof. we obtain the second step below after rewriting the logβ4(1 + θx) in partial derivative
form and the expansion of the denominator of f(x).

C(β1, β2, β3, β4, β5) = E

[
(1 + θX)β1 Xβ2 eβ3λ(1−(1+θX)α) logβ4(1 + θX)

[1 + eλ(1−(1+θX)α)]β5

]

=

∫ ∞
0

(1 + θx)β1 xβ2 eβ3λ(1−(1+θx)
α) logβ4(1 + θx)

[1 + eλ(1−(1+θx)α)]β5
f(x)dx

= 2αθλ
∞∑
j=0

(−(β5+2)
j

) ∂β4
∂tβ4

∫ ∞
0

xβ2(1 + θx)β1+t+α−1eλ(β3+j+1)(1−(1+θx)α)dx|t=0.

Let, u = λ(β3 + j + 1)(1 + θxi)
α, then,

C(β1, β2, β3, β4, β5) = 2λ
∞∑
j=0

(−(β5+2)
j

) eλ(β3+j+1)

θβ2 [λ(β3 + j + 1)]
β
α
+1

× ∂β4

∂tβ4

∫ ∞
λ(β3+j+1)

u
β1+t
α

[λ(β3 + j + 1)]
t
α

[
u

1
α

[λ(β3 + j + 1)]
1
α

− 1

]β2
e−udu|t=0.

Applying

[
u

1
α

[λ(β3+j+1)]
1
α
− 1

]β2
=
∑β2

i=0

(
β2
i

)
(−1)β2−iu

i
α

[λ(β3+j+1)]
i
α

we have,

C(β1, β2, β3, β4, β5) =
∞∑
j=0

β2∑
i=0

(−(β5+2)
j

)(
β2
i

)
2λ(−1)β2−i eλ(β3+j+1)

θβ2 [λ(β3 + j + 1)]
β1+i
α

+1

× ∂β4

∂tβ4

∫ ∞
λ(β3+j+1)

u
β1+t+i

α

[λ(β3 + j + 1)]
t
α

e−udu|t=0

=
∞∑
j=0

β2∑
i=0

κi,j
∂β4

∂tβ4

[
Γ(β1+t+iα + 1, λ(β3 + j + 1))

[λ(β3 + j + 1)]
t
α

]
t=0

,

where κi,j =

(−(β5+2)
j

)(
β2
i

)
2λ(−1)β2−i eλ(β3+j+1)

θβ2 [λ(β3+j+1)]
β1+i
α +1

.
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Theorem 3.5. The maximum-likelihood estimators φ̂ are consistent estimators, and
√
n(φ̂− φ)

is asymptotically multivariate normal with mean vector 0 and the variance–covariance matrix
I−1n , where In = −n−1E[∂2 logL/∂φ∂φT ] = −n−1E[Jn(φ)], and the elements of Jn(φ) are
given in the appendix, while the elements of In are

Iλλ =
1

λ2
+ 2C(0, 0, 1, 0, 1)− 4C(α, 0, 1, 0, 1) + 2C(2α, 0, 1, 0, 1)

− 2C(0, 0, 2, 0, 2) + 4C(α, 0, 2, 0, 2)− 2C(2α, 0, 2, 0, 2)

Iαα =
1

α2
+ λC(α, 0, 0, 2, 0)− 2λC(α, 0, 1, 2, 1) + 2λ2C(2α, 0, 1, 2, 1)− 2λ2C(2α, 0, 2, 2, 2)

Iθθ =
1

θ2
+ (α− 1)C(−2, 2, 0, 0, 0) + 2αλ(α− 1)C(α− 2, 2, 0, 0, 0)

− 2λα(α− 1)C(α− 2, 2, 1, 0, 1) + 2α2λ2C(2(α− 1), 2, 1, 0, 1)− 2α2λ2C(2(α− 1), 2, 2, 0, 2)

Iλα = −C(α, 0, 0, 1, 0) + 2λC(α, 0, 1, 1, 1)− 2λC(2α, 0, 1, 1, 1) + 2C(α, 0, 1, 1, 1)

− 2λC(α, 0, 2, 1, 2) + 2λC(2α, 0, 2, 1, 2)

Iλθ = αC(α− 1, 1, 0, 0, 0)− 2αλC(α− 1, 1, 1, 0, 1) + 2αλC(2α− 1, 1, 1, 0, 1)

− 2αC(α− 1, 1, 1, 0, 1) + 2αλC(α− 1, 1, 2, 0, 2)− 2αλC(2α− 1, 1, 2, 0, 2)

Iαθ = −C(−1, 1, 0, 0, 0) + 2λC(α− 1, 1, 0, 0, 0) + 2λC(α− 1, 1, 0, 1, 0)

− 2λC(α− 1, 1, 1, 0, 1)− 2λαC(α− 1, 1, 1, 1, 1) + 2λ2αC(2α− 1, 1, 1, 1, 1)

− 2αλ2C(2α− 1, 1, 2, 1, 2).

Proof. Follow from the regularity conditions stated in Cox and Hinkley (1979) and the lemma
3.4.

An 100(1 − ξ) asymptotic confidence interval for each parameter φr is given by ACIr =(
φ̂r − w ξ

2

√
Îrr, φ̂r + w ξ

2

√
Îrr

)
, where Îrr is the (r, r) diagonal element of I−1n for r = 1, 2, 3,

and w ξ
2

is the quantile 1− ξ
2 of the standard normal distribution.

3.2. Simulation

In this subsection, we assessed the proposed maximum likelihood estimation (MLE) by sim-
ulation studies. We generate a moderate sample 1000 of size n = (50, 100, 150, 200, 500) each
of which is randomly sampled from TIHLNH for some selected values of α, θ and λ. The bias
and mean square error (MSE) of the estimates are computed using R 3.5.2. The results are
presented in figure 6 to 10 indicated that the MLEs shows consistency in the estimation, and
the MSE and bias of the estimators decreases as the sample size increases.
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Figure 6: Simulation results from TIHLNH for parameter α = 0.3, β = 1.9, λ = 0.1
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Figure 7: Simulation results from TIHLNH for parameter α = 0.1, β = 1.7, λ = 0.3
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Figure 8: Simulation results from TIHLNH for parameter α = 0.5, β = 1.1, λ = 0.3
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Figure 9: Simulation results from TIHLNH for parameter α = 0.5, β = 0.9, λ = 0.5
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Figure 10: Simulation results from TIHLNH for parameter α = 1.1, β = 1.1, λ = 1.3

4. Applications

In this section, we illustrate the superiority of the new distribution as compared with some
other existing distributions using two real data applications. The models parameters are esti-
mated by maximum likelihood technique. The competing distributions include the Nadarajah-
Haghighi (NH) Nadarajah and Haghighi (2011), exponentiated Nadarajah-Haghighi (ENH)
Lemonte (2013); Abdul-Moniem (2015), Kumaraswamy Nadarajah-Haghighi (KwNH) Lima
(2015), generalized half logistic Poisson (GHLP) Muhammad (2017b), half logistic Poisson
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(HLP) Muhammad and Yahaya (2017), Beta Nadarajah-Haghighi (BNH) Ćıcero, Alizadeh,
and Cordeiro (2016), generalized exponential (GE) Gupta and Kundu (1999), beta exponen-
tial (BE) Nadarajah and Kotz (2006), beta Erlang-truncated exponential (BETE) Shrahili,
Elbatal, Muhammad, and Muhammad (2021), generalized half logistic (GHL) Kantam, Ra-
makrishna, and Ravikumar (2013).

We compare the fitted models by the model selection criteria known as the Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), consistent Akaike information
criterion (CAIC). Moreover, the goodness of fit statistics known as the Anderson-Darling (A),
Cramer-von Mises (W), and Kolmogorov Smirnov (KS) are used to identify which distribution
describes the data better. The model with the smallest value of these measures fit the data
better than the other models.

4.1. First real data

The first data consist of the daily new deaths due to COVID-19 in the California, USA from
March 12, 2020 to September 30, 2020, extracted from https://www.worldometers.info/

coronavirus/usa/california/: 1, 1, 1, 5, 4, 3, 4, 1, 10, 6, 11, 14, 17, 12, 25, 12, 14, 35, 30,
24, 41, 44, 28, 33, 54, 64, 61, 25, 46, 44, 53, 55, 80, 86, 89, 105, 28, 48, 73, 120, 103, 71, 91,
32, 58, 85, 75, 89, 80, 75, 24, 71, 92, 74, 81, 91, 64, 26, 61, 97, 89, 80, 104, 55, 79, 32, 103, 86,
106, 69, 71, 31, 19, 43, 102, 82, 97, 74, 27, 47, 72, 61, 63, 72, 66, 29, 23, 95, 97, 71, 47, 72, 27,
30, 85, 79, 74, 65, 67, 24, 48, 69, 96, 79, 64, 33, 32, 42, 104, 82, 98, 63, 29, 19, 75, 118, 150,
137, 102, 73, 26, 46, 138, 125, 127, 121, 91, 12, 57, 119, 155, 156, 134, 90, 27, 92, 169, 175,
113, 191, 136, 38, 108, 196, 169, 148, 188, 103, 67, 87, 182, 160, 186, 151, 75, 19, 98, 179, 164,
134, 166, 146, 18, 104, 149, 142, 140, 144, 67, 35, 80, 144, 157, 167, 152, 65, 22, 33, 72, 154,
99, 172, 71, 52, 75, 152, 105, 90, 99, 73, 31, 53, 123, 117, 88, 132, 51, 21, 34, 150, 107.

The MLEs with their standard error in parenthesis and these measures based on each model
are provided in the table 3, an approximate information matrix (In) for the TIHLNH of the
first data is obtained using the first five hundred terms of each C(., ., ., ., .); the computation of
the C(., ., ., ., .) required numDeriv, matlib and Rmpfr packages in R 3.5.3. The results show
that TIHLNH provides a better representation of the data better than the other distributions.
Thus, TIHLNH can be considered as an alternative model for studying COVID-19 data and
other statistical analysis in various fields of applied statistics. Figure 11 shows the plots of the
histogram with the fitted TIHLNH , ENH and NH models (left), and empirical cdf with fitted
TIHLNH , ENH and NH cdfs (right) for the California data. Figure 12 is quantile-quantile
plots of the TIHLNH , ENH and NH model for the California COVID-19 data.

Table 3: MLEs, model selection measures and goodness of fit measures of the competing models for
the first data

Model α̂ β̂ θ̂ λ̂ â b̂ L AIC BIC CAIC KS AD CVM

TIHLNH 8.0991(2.1267) - 0.0012(0.0005) 1.0509(0.3450) - - -1046.4 2098.8 2108.71 2098.92 0.0480 0.5921 0.0923
ENH 40.1720(1.8230) 1.2320(0.1017) - 2.097×10−4(1.35× 10−5) - - -1047.51 2101.02 2110.93 2101.14 0.0712 0.6834 0.1114
NH 50.3370(5.089) - - 1.535×10−4(1.63× 10−5) - - -1050.45 2104.90 2111.51 2104.96 0.1162 0.6971 0.1137
KwNH 5.2740(0.0202) 0.0039(0.0006) - - 0.9396(0.0176) 0.2392(0.0702) -1046.02 2100.04 2113.25 2100.24 0.0518 0.6110 0.0983
BNH 7.5441(0.2219) 0.0023(0.00045) - - 0.9700(0.1514) 0.2988(0.1259) -1045.97 2099.95 2113.16 2100.15 0.0536 0.6261 0.1022
GHLP 2.11×10−2(1.26× 10−3) 1.3990(0.1252) - 1.236×10−7(2.480× 10−3) - - -1055.73 2117.46 2127.37 2117.58 0.0952 1.6335 0.2674
HLP 5.926×10−4(5.805× 10−5) - - 42.9800(2.906) - - -1078.06 2160.12 2166.72 2160.18 0.1812 2.4722 0.4088
GE 1.7752(0.1760) - - 0.0178(0.0014) - - -1062.81 2129.62 2136.23 2129.69 0.1218 2.6975 0.4472
BE - - - 0.0028(0.0005) 1.7861(0.1663) 7.6492(1.1412) -1060.93 2127.86 2137.77 2127.98 0.1157 2.4367 0.4032
BETE 0.0348(2.7391) - 0.0883(7.2763) - 1.7875(0.1675) 7.3683(1.6036) -1060.93 2129.89 2143.08 2130.07 0.1146 2.4375 0.4033

In =

(
0.69837072 455.9375 −0.08891666

455.93750965 3252307.3777 235.66760974
−0.08891666 235.6676 1.79285964

)
,

and

I−1n =

(
1.59724534 −0.00023186 0.10969332
−0.00023186 0.00000034 −0.00005673
0.10969332 −0.00005673 0.57066530

)

https://www.worldometers.info/coronavirus/usa/california/
https://www.worldometers.info/coronavirus/usa/california/
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Figure 11: Plots of the histogram with the fitted TIHLNH , ENH and NH (left), and empirical cdf
with fitted TIHLNH , ENH and NH cdfs (right) for the first data
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Figure 12: Quantile-quantile plots of the TIHLNH (left), ENH (middle) and NH (right) for the first
data

4.2. Second real data

The data set can be found in Cordeiro, dos Santos Brito et al. (2012) also studied by Jamal
and Chesneau (2019); Muhammad and Liu (2021a), it is the total milk production in the first
birth of 107 cows from SINDI race. 0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196,
0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927,
0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789,
0.4576, 0.3259, 0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823,
0.5912, 0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175,
0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285,
0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707,
0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 0.5349,
0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174,
0.6860, 0.0609, 0.6488, 0.2747.

The computed values of the MLEs (with their standard error in parenthesis), the model
selection and goodness of fit measures of each model are provided in the table 4, an approx-
imate information matrix (In) for the TIHLNH of the second data is obtained using the
first eight hundred terms of each C(., ., ., ., .) in similar way. The results show that TIHLNH
represent the data better than the other competing models. Figure 13 provides the plots
of the histogram with the fitted TIHLNH , ENH and NH models (left), and empirical cdf
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with fitted TIHLNH , ENH and NH cdfs (right) for the second data. Figure 14 shows the
quantile-quantile plots of the TIHLNH , ENH and NH model for the second data.

Table 4: MLEs, model selection measures and goodness of fit measures of the competing models for
the second

Model α̂ β̂ θ̂ λ̂ â b̂ L AIC BIC CAIC KS AD CVM

TIHLNH 21.120(1.93×10−4) - 0.2083(3.501×10−5) 0.1708(0.0137) - - 29.05 -52.10 -44.08 -51.87 0.0666 0.2220 0.0321
ENH 39.4540(6.2311) 2.3557(0.2884) - 0.0499(0.0085) - - 21.12 -36.23 -28.21 -35.99 0.1103 1.6526 0.2544
NH 1499.0(6.869) - - 0.0010(6.236×10−5) - - 0.77 2.47 7.82 2.58 0.2934 1.6667 0.2572
KwNH 33.5664(3.8162) 0.0133(0.0026) - - 2.5919(0.2197) 44.2524(10.3243) 21.10 -34.16 -23.46 -33.76 0.0875 1.5815 0.2419
BNH 11.400(1.122×10−4) 0.4185(1.790×10−6) - - 1.4460(0.3270) 0.1202(0.0123) 25.95 -43.89 -33.20 -43.50 0.0974 0.7453 0.1097
GHLP 4.7220(0.0174) 2.6520(0.2564) - 3.896× 10−7(0.0076) - - 10.32 -14.64 -6.62 -14.40 0.1282 3.4143 0.5515
GHL 4.7771(0.3662) - 2.7077(0.3851) - - - 10.33 -16.66 -11.32 -16.55 0.1291 3.4359 0.5552
GE 3.7139(0.5661) - - 4.2007(0.3731) - - 5.04 -6.08 -0.73 -5.96 0.1477 4.3696 0.7257
BE - - - 0.2231(0.0412) 3.6924(0.6496) 33.9775(0.1532) 9.41 -12.82 -4.80 -12.59 0.1364 3.6789 0.6014
BETE 0.1747(0.0171) - 9.0982(5.5931) - 3.6910(0.3261) 43.7567(0.6006) 9.42 -10.83 -0.14 -10.44 0.1364 3.6780 0.6013

In =

(
26.3351389 60.320096 −0.6639823
60.3200958 427.272417 1.0840329
−0.6639823 1.084033 0.1314848

)
,

and

I−1n =

(
0.07915026 −0.01244849 0.50233131
−0.01244849 0.00434828 −0.09871298
0.50233131 −0.09871298 10.95599680

)
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Figure 13: Plots of the histogram with the fitted TIHLNH , ENH and NH (left), and empirical cdf
with fitted TIHLNH , ENH and NH cdfs (right) for the second data
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Figure 14: Quantile-quantile plots of the TIHLNH (left), ENH (middle) and NH (right) for the second
data
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5. Conclusion

In this paper, we proposed and studied a new lifetime distribution called type I half-logistic
Nadarajah-Haghighi. We investigate some of its important mathematical and statistical prop-
erties such as the rth moment, quantile function, mean deviations, Bonferroni curve, and
Lorenz curve. The Shannon entropy and Renyi entropy are discussed; the Kullback-Leibler
divergence measure is computed. The model parameters estimation was conducted by the
maximum likelihood method. Simulation studies is used to highlight the consistency of the
MLEs using some adequate samples, we consider bias, and MSE of the estimators and the
result was satisfactory. Finally, we assessed the performance of the new model by fitting it
to two real data set in which one of them is a daily new deaths due to COVID-19 in the
California, USA. In all the two data set the TIHLNH provided better representation than
the other competing distributions.
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