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Scope and purpose

Discrete-time queueing models are widely used to study the behavior of various types

of telecommunication and computer systems. Most of the existing studies of discrete-time

multiserver queueing models assume that the service times of the customers are constant.

Recently, however, there has been an increased interest in discrete-time models with non-

deterministic service times, due to the more and more complicated and irregular service

mechanisms in nowadays telecommunication networks. In view of this, this paper focuses on

a discrete-time queueing system with multiple servers and geometrically distributed service

times. We show that the queueing model can be analyzed by means of a generating-functions

approach. The results of the analysis are important to evaluate performance measures such

as packet loss and delay in communication and computer networks.
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Abstract

In this paper, a discrete-time multiserver queueing system with infinite buffer size and

general independent arrivals is considered. The service times of a packet served by one of the

servers are assumed to be independent and identically distributed according to a geometric

distribution. Each packet gets service from only one server. In the paper, the behavior of

the queueing system is studied analytically by means of a generating-functions approach.

This results in closed-form expressions for the mean values, the variances and the tail dis-

tributions of the system contents and the packet delay. Some numerical examples are given

to illustrate the analysis.

Keywords: Discrete-time queueing, multiserver system, geometric service times, system con-

tents, delay
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1 Introduction

Discrete-time queueing theory has received considerable attention during the last decades

because of its direct applicability in the study of many computer and communication systems

in which time is divided into fixed-length time intervals (“slots”). The reader is referred to

the books [1]-[6] and the references therein for an extensive treatment of a wide variety of

discrete-time queueing models. There are a number of analysis techniques for discrete-time

models, ranging from computer simulation to the numerical solution of the associated set

of linear balance equations and various types of analytical or semi-analytical methods. In

case of computer simulation, a program is built to simulate the behavior of the system in

software; a typical simulation technique is discrete event simulation ([7]). With respect to the

mathematical solution techniques, a distinction can be made between algorithms that allow

to efficiently calculate the performance measures numerically (e.g. matrix-analytic methods

([8], [9])) and analytical methods that lead to (exact or approximate) closed-form expressions

(e.g. probability generating functions based techniques ([4], [10]) or methods based on the

maximum entropy principle ([11])).

In this paper we focus our attention on the specific class of discrete-time queues with

multiple servers (or output channels). To the best of our knowledge, in most of the existing

literature on discrete-time multiserver queueing models, the service (or transmission) times

of customers (or packets) are assumed to be constant, equal to one slot (see [12]-[15]) or

multiple slots ([16]). These assumptions are appropriate when modeling for instance buffers

in ATM-based integrated-services digital networks, in view of the fixed packet (cell) length

used in these networks ([17]). Only a few authors have considered more general discrete-time

multiserver models with non-deterministic (variable) service times, although there are both

fundamentally theoretic as well as more practical motives to do this, given the more and

more complicated and irregular service mechanisms in the nowadays internet. We mention

[18], where the service times are assumed to be geometrically distributed; somewhat related

models with randomly interrupted servers are studied in [19] and [20]. Geometric service

times are also considered in [21] and [22], while [23]-[25] deal with general service times, but

only for the case of one single server.

In line with the above, we are concerned in this paper with generalizing the service-

time distribution. More specifically, as a first step, we consider a discrete-time queueing
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system with geometric service times and a general uncorrelated arrival process, and present

an analytical technique based on generating functions for the performance analysis of the

system. The model under study has also been treated in [18]. However, as opposed to [18],

we obtain explicit expressions for the probability generating functions (pgf’s) of not only

the system contents, but also the total delay experienced by customers. Furthermore, these

pgf’s are used to derive various additional performance measures. Specifically, expressions

are derived for the mean values, the variances and the tail probabilities of system contents

and delay.

The outline of the paper is as follows. In section 2, the queueing model under study is

described. In section 3, we focus on the system contents and derive expressions for the pgf,

the mean value, the variance and the tail probabilities of the system contents. The packet

delay is analyzed in section 4, and again the pgf, mean value, variance and tail probabilities

are obtained. In section 5, some special cases are considered in order to check the obtained

results. In section 6, some numerical examples are given and discussed. Finally, the paper

is concluded in section 7.

2 Queueing Model

In this paper, we consider a discrete-time queueing system with multiple output channels

and an infinite storage capacity for packets. The number of output channels (servers) will

be denoted by c (c > 0). Packets arrive at the input of the system in a stochastic manner,

wait in a buffer for some time and are then transmitted via one of the c output channels,

after which they finally leave the system. The time axis is assumed to be divided into fixed-

length time intervals, referred to as slots and chronologically labeled. New packets enter

the buffer according to a general uncorrelated arrival process, i.e., the numbers of packets

arriving in the buffer during the consecutive slots are modeled as independent and identically

distributed (i.i.d.) random variables, with common pgf A(z).

The service process is modeled as follows. The service (or transmission) of a packet can

start or end at slot boundaries only. Hence, the service time of a packet always consists of

an integer number of full slots. This also implies that the service of a packet which arrives

in an empty system cannot start before the end of the packet’s arrival slot. One packet can

only get service from one of the servers. The service times of the packets are assumed to be
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i.i.d. random variables and geometrically distributed with parameter 1−µ (0 < µ ≤ 1), i.e.,

with common probability mass function (pmf)

g(n) = Prob[service of a packet takes n slots]

= µ(1− µ)n−1, n ≥ 1,
(1)

and corresponding pgf

G(z) =
∞∑

n=1

g(n)zn =
µ z

1− (1− µ) z
. (2)

Moreover, the service and arrival processes are assumed to be mutually independent. Packets

are served according to a first-come-first-served (FCFS) queueing discipline.

It is well known (see e.g. [2]) that a queueing system can reach a steady state if and only

if the average amount of “work” (expressed in slots of service time) entering the system per

slot is strictly less than what the system can handle per slot. In view of the above model

description, this equilibrium condition can be expressed as

A
′
(1) < cµ, (3)

where we have used primes to indicate derivatives. In the analysis that follows, we assume

that the condition (3) is satisfied.

3 System Contents

This section deals with the analysis of the system contents. First, we calculate the pgf of

the system contents and next, we use this pgf to derive the mean, the variance and the tail

probabilities of the system contents.

3.1 The pgf of the system contents

Let us denote by vk the system contents (i.e., the total number of packets in the queueing

system, including the ones being transmitted, if any) at the beginning of slot k, and by ak

the number of packet arrivals during slot k. Then, in view of the assumptions of the model

5



in section 2, we have

vk+1 = vk − tk + ak, (4)

where

tk =

(vk,c)−∑
j=1

tk,j, (5)

with (., .)−
4
= min(., .). The random variable tk denotes the total number of departures at

the end of slot k, i.e., the total number of packets whose service is completed at the end of

slot k.

Note that tk,j corresponds to the number of departures at the end of slot k via the j-th

output channel when there is a packet receiving service from this output channel. In view of

the geometric distribution of the packet service times, tk,j is a Bernoulli distributed random

variable with parameter µ, i.e.,

tk,j =





1 with probability µ,

0 with probability 1− µ.

We define the conditional pgf Ti(z) as

Ti(z)
4
= E[ztk |(vk, c)

− = i], i = 0, 1, ... , c,

where E[·] denotes the expected value of the expression between square brackets. Then,

from (5) we have

Ti(z) = (1− µ + µz)i. (6)

Now let Vk(z) denote the pgf of vk. Using standard z-transform techniques, we can trans-

late the system equation (4) into the z-domain, as follows:

6



Vk+1(z) =A(z) E
[
zvk−tk

]

=A(z)

{
Vk(z) Tc(

1

z
) +

c−1∑
i=0

Prob[vk = i]zi

[
Ti(

1

z
)− Tc(

1

z
)

]}
.

(7)

When the steady state is reached, the pgf’s Vk(z) and Vk+1(z) converge to their equilib-

rium version V (z), which is the pgf of the system contents v at the beginning of an arbitrary

slot in the steady state. Taking limits for k → ∞ in (7) and solving the resulting equation

for V (z), we then obtain the following expression:

V (z) =
A(z)

∑c−1
i=0 [ Ti(

1
z
)− Tc(

1
z
) ]v(i)zi

1− Tc(
1
z
)A(z)

=
A(z)zcH(z)c

∑c−1
i=0 [ H(z)i−c − zi−c ] v(i)

zc −H(z)cA(z)
,

(8)

where H(z) = µ + (1 − µ)z, and the constants v(i) are probabilities, defined as v(i)
4
=

Prob[v = i], i = 0, 1, ..., c− 1.

In order to determine V (z) completely, we need to find the c unknown constants v(i),

i = 0, 1, ..., c − 1. These can be obtained by invoking the analyticity of the pgf V (z) inside

the unit disk (z : |z| < 1) of the complex z-plane and the normalization condition V (1) = 1.

Specifically, by means of Rouché’s theorem ([26]), it can be shown that the denominator of

the right-hand side of (8) has exactly c− 1 roots inside the unit disk. We denote these roots

by zj, j = 1, 2, ..., c− 1. Since V (z) is analytic for |z| < 1, the numerator of the right-hand

side of (8) must also be zero at these points. Hence, we have

c−1∑
i=0

[ H(zj)
i−c − zi−c

j ] v(i) = 0, j = 1, 2, ..., c− 1. (9)

From the normalization condition V (1) = 1 and equation (8), we find that

µ

c−1∑
i=0

(c− i) v(i) = cµ− A
′
(1). (10)

Note that whenever the condition (3) for the existence of a steady state is fulfilled, the

right-hand side of (10) is strictly positive. From equations (9) and (10), the constants v(i)
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(i = 0, 1, ..., c−1) can be calculated. Once V (z) is determined, some important performance

measures of the queueing system can be obtained, for instance the mean value, the variance

and the tail distribution of the system contents.

3.2 Mean value and variance of the system contents

The mean system contents can be obtained by taking the first-order derivative of equation

(8) with respect to z in z = 1. By applying the rule of de l’Hospital twice to (8), we get

E[v] = V
′
(1)

=
µ(2− µ)

2 [ cµ− A′(1) ]

c−1∑
i=0

(c2 − i2) v(i)

+
A∗ + 2cA

′
(1)− (2− µ) [ c2µ− A

′
(1) ]

2 [ cµ− A′(1) ]
,

(11)

where A∗ = A
′′
(1)−2A

′
(1)2 and A

′′
(1) is the second-order derivative of A(z) with respect to z

at z = 1. With equation (11), the calculation of the mean system contents is straightforward,

once the unknown probabilities v(i) (i = 0, 1, ..., c − 1) have been obtained. Higher-order

moments of the system contents can be derived in a similar way. For instance, taking the

second-order derivative of equation (8) with respect to z at z = 1 and using (10) and (11),

we find

V
′′
(1) =− 1

3

µ µ[3]

cµ− A′(1)

c−1∑
i=0

(c3 − i3) v(i)

− (µ[3] + c) [ 2A
′
(1)V

′
(1) + A∗ ]− c(c + 1) µ[2] [ µV

′
(1)− A

′
(1) ]

(2− µ)[ cµ− A′(1) ]

+
µ[3] [ c3µ− A

′
(1) ]− 3 A∗ [ V

′
(1)− 2A

′
(1) ] + 6A

′
(1)3 − A

′′′
(1)

3 [ cµ− A′(1) ]
,

(12)

where µ[ζ] = µ2−ζµ+ζ. Expression (12) can be used to calculate the variance of the system

contents through the relation

V ar[v] = V
′′
(1) + V

′
(1)− V

′
(1)2. (13)
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3.3 Tail probabilities of the system contents

Another important performance characteristic for a queueing system is the tail distribution

of the system contents. This can be used to estimate the packet loss probability that would

be observed in case of a buffer with finite storage capacity, namely by approximating the

packet loss probability for a system of size N by the probability that the system contents in

the corresponding infinite system exceeds N (see e.g. [27]). We will use here the technique

presented in [15] and [28] to derive the tail distribution of the system contents. Specifically,

we have that for sufficiently large values of N , the tail distribution of the system contents

can be approximated as

Prob[v > N ] ≈ −Cv
z−N−1

v

zv − 1
. (14)

In the above expression, zv is the real positive pole of V (z) with the smallest modulus out-

side the unit disk, i.e., the dominant pole of V (z), and Cv is the residue of V (z) at z = zv.

From equation (8), it follows that zv is a real positive zero of the denominator of V (z). The

residue Cv can be calculated from (8) as

Cv = −zvH(zv)A(zv)
2

Y

c−1∑
i=0

[
H(zv)

i − zi
v

A(zv)

]
v(i), (15)

where Y = zvH(zv) A
′
(zv)− cµ A(zv).

4 Packet Delay

In this section, we derive the pgf of the delay experienced by packets in the queueing system.

The delay of a packet is defined as the total number of slots between the end of the slot

during which the packet arrived in the system and the end of the slot where the packet’s

transmission finishes and the packet leaves the system. From the pgf of the delay, we will be

able to calculate various performance measures, such as the mean value, the variance and

the tail distribution of the packet delay.
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4.1 The pgf of the delay

Let us consider an arbitrary packet, denoted by P (called the tagged packet). Upon arrival,

it will find a number of other packets in the queueing system. Just after the end of the

arrival slot of P, all packets that arrived in the previous slots, but have not been taken into

service yet, and all packets that arrived in the same slot as the tagged packet, but before this

packet, are waiting in the queue in front of the tagged packet (due to the FCFS queueing

discipline). Whenever there are output channels available for transmission at the beginning

of a slot, the packet at the head of the queue is selected for service, until eventually the

tagged packet itself is served and in the end leaves the system. We now assume that the

packet P arrives in the system during slot k. Let us denote by τk its arrival instant, by vk the

number of packets present in the system at the beginning of slot k, and by qk the number of

packets staying in the system at τk, except the tagged packet itself and the ones that leave

the system at the end of slot k, if such packets exist. Then qk can be expressed as follows:

qk = vk − tk + fk, (16)

where fk denotes the number of packets arriving during slot k before P. It can be shown (see

[2]) that the pgf F (z) of fk is given by

F (z) =
A(z)− 1

A′(1)(z − 1)
. (17)

Owing to the independent nature of the arrival process, we have (i) that vk has the same

probability distribution as v, which denotes the system contents at the beginning of a ran-

dom slot in the steady state, and (ii) that vk and fk are statistically independent of each

other. From equations (16) and (4), we can derive the pgf Q(z) of qk when the steady state

is reached as

Q(z) =
F (z)V (z)

A(z)
. (18)

We now first consider the waiting time experienced by the tagged packet P. The waiting
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time of a packet is defined as the number of slots between the end of the packet’s arrival

slot and the beginning of the slot when the packet’s transmission starts. We define wk as

the waiting time that P experiences if it arrives during slot k. In order to derive the pgf of

wk, let us briefly discuss a close relationship between the waiting time wk and the random

variable qk (i.e., the number of packets present in the system right after the arrival slot of

the tagged packet P, that have been or will be selected for service before P).

Let us observe the slots following the k-th slot. During the (k + 1)-th slot, there will be

t̃k+1 (=
∑c

j=1 tk+1,j) packets leaving the system at the end of slot k + 1, if qk ≥ c (i.e., just

after the end of that slot or at the beginning of slot k + 2, there will be qk − t̃k+1 packets in

the system with priority over the tagged packet P to be taken into service), or the tagged

packet will get into service, if qk < c (i.e., the tagged packet stops waiting). If the tagged

packet didn’t get into service, then a similar remark can be made for the (k + 2)-th slot:

either there will be qk − t̃k+1 − t̃k+2 packets with service priority over the tagged packet at

the end of slot k + 2, if qk − t̃k+1 ≥ c, or the packet P will get into service, if qk − t̃k+1 < c.

We observe that the tagged packet will still be waiting for service during the (k + i + 1)-th

slot only if qk − t̃k+1 − t̃k+2 − ...− t̃k+i ≥ c. This leads to the following relationship between

wk and qk:

wk > i ⇔ qk − t̃k+1 − t̃k+2 − ...− t̃k+i ≥ c.

If we introduce the following random variables :

sk,0
4
= c; sk,i

4
= t̃k+1 + t̃k+2 + ... + t̃k+i + c, i ≥ 1,

then the above equation for the waiting time can be rewritten as

wk > i ⇔ qk ≥ sk,i. (19)

Note that since the variables t̃k are i.i.d. random variables, the pgf of sk,i can be expressed as

Sk,i(z)
4
= E[zsk,i ] = zcTc(z)i. (20)
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We now begin with the derivation of the pgf Wk(z) of the waiting time wk. From equation

(19) and the easily proven identity

Wk(z)− 1

z − 1
=

∞∑
i=0

ziProb[wk > i],

we can write

Wk(z)− 1

z − 1
=

∞∑
i=0

ziProb[qk ≥ sk,i]

=
∞∑
i=0

∞∑
j=0

ziProb[qk = j] Prob[qk ≥ sk,i|qk = j].

Since qk and the sk,i’s are statistically independent, this can be rewritten as

Wk(z)− 1

z − 1
=

∞∑
j=0

Prob[qk = j]

j∑
n=c

∞∑
i=0

Prob[sk,i = n]zi. (21)

Next, by using (20) and the probability generating property of pgf’s, i.e.,

Prob[sk,i = n] =
1

n!

dn

dxn
Sk,i(x)

∣∣∣
x=0

=
1

n!

dn

dxn

[
xcTc(x)i

] ∣∣∣
x=0

,

and working out the sum over i, we find

Wk(z)− 1

z − 1
=

∞∑
j=0

Prob[qk = j]

j∑
n=c

∞∑
i=0

1

n!

∂n

∂xn

(
xc [ Tc(x)z]i

) ∣∣∣
x=0

=
∞∑

j=0

Prob[qk = j]

j∑
n=c

1

n!

∂n

∂xn

(
xc

1− zTc(x)

) ∣∣∣
x=0

.

(22)

Note that working out the sum over i requires that |zTc(x)| < 1 in the neighborhood of

x = 0. This condition will always be fulfilled for |z| ≤ 1, since |Tc(x)| < 1 for |x| < 1. In

order to derive the partial derivatives in (22), we replace the argument by its partial fraction

expansion. Considering z to be a constant and x the variable of interest, we find
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xc

1− zTc(x)
= − 1

µcz
+

c−1∑
p=0

−xc
p

zT ′
c(xp) (x− xp)

, (23)

where the xp’s are the solutions of the equation

1− zTc(x) = 0. (24)

Clearly, the xp’s are functions of z. However, to ease the notation, we write xp instead

of xp(z). Since Tc(x) is a polynomial of degree c, equation (24) has c solutions, which we

assume to be distinct. Notice that (24) has a solution at x = 1, when z = 1. We denote this

solution as x0. Since T
′
c(1) > 0, this solution is unique. Substituting (23) in equation (22),

we find after some manipulations that

Wk(z)− 1

z − 1
=

c−1∑
p=0

−xc
p

zT ′
c(xp) (1− xp)

∞∑
j=c

Prob[qk = j](x−c
p − x−1−j

p ).

When the steady state is reached, Wk(z) becomes independent of k and converges to a

limit function W (z). By using the definition of the pgf Q(z), we then get

W (z)− 1

z − 1
=

c−1∑
p=0

−xc
p

zT ′
c(xp) (1− xp)

[
x−c

p − 1

xp

Q(
1

xp

)

]

+
c−1∑
j=0

Prob[q = j]
c−1∑
p=0

1− xc−j−1
p

zT ′
c(xp) (1− xp)

.

Using the partial fraction expansions

1

1− zTc(x)
=

c−1∑
p=0

−1

zT ′
c(xp) (x− xp)

;

1− xc−j−1

1− zTc(x)
=

c−1∑
p=0

−(1− xc−j−1
p )

zT ′
c(xp) (x− xp)

at x = 1, we finally find the following expression for the pgf of the packet waiting time:
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W (z) = (z − 1)
c−1∑
p=0

xc−1
p

zT ′
c(xp) (1− xp)

Q(
1

xp

). (25)

Next, we derive the expression for the pgf of the packet delay. Let the random variable d

indicate the delay experienced by the tagged packet P (when the system has reached equilib-

rium), and let D(z) denote the corresponding pgf. Note that the packet delay is equal to the

sum of the packet waiting time and the packet transmission time. From (2) and (25), we have

D(z) = W (z) ·G(z)

=
µ(z − 1)

1− (1− µ)z

c−1∑
p=0

xc−1
p

T ′
c(xp)(1− xp)

Q(
1

xp

).
(26)

We now proceed with calculating some performance measures related to the delay.

4.2 Mean value and variance of the delay

In a similar way as for the mean system contents, the mean delay experienced by packets

can be found by calculating the first derivative of D(z) at z = 1. From equation (26), we find

E[d] = D
′
(1) = W

′
(1) + G

′
(1). (27)

Clearly, the derivation of W
′
(1) is a major contribution to get the mean delay. In order to

calculate W
′
(1), we take the first-order derivative of W (z) in (25) with respect to z at z = 1,

using the rule of de l’Hospital twice because for the term where p = 0, x0 = 1 if z = 1. With

the following derivative, found by differentiating (24) with respect to z:

dxp(z)

dz
= − 1

z2 T ′
c(xp(z))

,

we find

W
′
(1) =

1

cµ

[
(c− 1)(µ− 2)

2
+ Q

′
(1)

]
+

c−1∑
p=1

xc−1
p

T ′
c(xp) (1− xp)

Q(
1

xp

)
∣∣∣
z=1

, (28)
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where Q
′
(1) is the first-order derivative of Q(z) evaluated at z = 1. Combining (8), (17) and

(18), the second part of equation (28) can be expressed as:

c−1∑
p=1

xc−1
p

T ′
c(xp) (1− xp)

Q(
1

xp

)
∣∣∣
z=1

=
1

A′(1)

c−1∑
i=0

v(i)
c−1∑
p=1

xc−i
p [ 1− (1− µ + µxp)

i ]

T ′
c(xp) (1− xp)2

∣∣∣
z=1

. (29)

Using partial fraction expansion again, we have:

xc−i [ 1− (1− µ + µx)i ]

1− Tc(x)
= µi−c +

c−1∑
p=0

−xc−i
p [ 1− (1− µ + µxp)

i ]

T ′
c(xp) (x− xp)

∣∣∣
z=1

. (30)

Taking the derivative on both sides of (30) with respect to x, moving the term with p = 0

to the left-hand side and then taking the limit for x → 1, we find (by using the rule of de

l’Hospital several times) that

c−1∑
p=1

xc−i
p [ 1− (1− µ + µxp)

i ]

T ′
c(xp) (1− xp)2

∣∣∣
z=1

=
2− µ

2c
i(c− i). (31)

Combining (31), (29), (28), (11) and (10), we finally have

W
′
(1) =

E[v]

A′(1)
− 1

µ
.

It is clear from the above equation and (27) that the mean packet delay and the mean system

contents are related through Little’s theorem ([26]), which is a check for the correctness of

our analysis.

Calculation of the second-order derivative of D(z) at z = 1 yields the variance of the

delay through the relation

V ar[d] = D
′′
(1) + D

′
(1)−D

′
(1)2, (32)

which is also called the delay jitter. From (26), we have

D
′′
(1) = W

′′
(1) + 2 W

′
(1) G

′
(1) + G

′′
(1). (33)
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Taking the second-order derivative of (25) and applying the rule of de l’Hospital to the term

for p = 0, we have

W
′′
(1) =

2

A′(1)

c−1∑
p=1

−T1(xp(1))xp(1)c−3

{
T1(xp(1)) S1

c3µ3X2
p1

+

[
1− 1

µ
+

xp(1)

A( 1
xp(1)

)− 1

+(1− c)xp(1)2 +
T1(xp(1))

cµXp1

+
xp(1)3

Xp1T1(xp (1))

]
T1(xp(1)) S2

c2µ2X2
p1

}

+
1

c2µ2

{
V
′′
(1) +

2ξA
′
(1) + A∗

A′(1)
V
′
(1) +

ξ − A
′
(1)

A′(1)
A∗ +

A
′′′
(1)

3A′(1)

−A
′′
(1)− (c− 1)

[ (c + 1)µ2

6
+ ξ − µ

]}
,

(34)

where

S1 =
c−1∑
i=0

{
[(c + i)(µ− 1)− cµxp(1)]

[T1(xp(1))

xp(1)

]i

+ [(c + i)(µ− 1)− iµ xp(1)]
[ 1

xp(1)

]i
}

v(i),

S2 =
c−1∑
i=0

{[T1(xp(1))

xp(1)

]i

−
[ 1

xp(1)

]i
}

v(i),

Xp1 = xp(1)− 1,

ξ = 2− µ− c.

From the analysis above, an explicit expression for the packet delay jitter or the variance of

the packet delay can be obtained.

4.3 Tail probabilities of the delay

The tail distribution of the packet delay, for a sufficiently large value of T , can be expressed as

Prob[d > T ] ≈ −Cd
z−T−1

d

zd − 1
, (35)

when D(z) has a singular dominant pole zd, and where Cd is the residue of D(z) at z = zd, or

Prob[d > T ] ≈ −
[
C1d −

(
2 + T +

1

zd − 1

)
C2d

zd

]
z−T−1

d

zd − 1
, (36)
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when D(z) has a dominant pole zd with multiplicity 2, and where C1d and C2d are determined

by

C1d = lim
z→zd

d

dz

[
(z − zd)

2D(z)
]
, C2d = lim

z→zd

(z − zd)
2D(z). (37)

In order to find the dominant pole zd, note that from (2), (25) and (26), it follows that

poles of D(z) are to be found among the following z’s:

• z so as to make 1− (1− µ)z = 0. This requires z = 1/(1− µ).

• z so as to make 1/xp(z) (for some p) a pole of Q(z). This requires z = 1/Tc(
1
z∗

), where

z∗ is a pole of Q(z).

• z so as to make xp(z) − 1 = 0 (for some p). This case, however, does not yield a pole

since it requires z = 1 (see (24)).

As in [20], it can be shown that if z∗ is a pole of Q(z) with z∗ 6= zv, then |1/Tc(
1
z∗

)| >

|1/Tc(
1
zv

)|, and hence a pole of D(z) given by z = 1/Tc(
1
z∗

) cannot be the dominant pole.

Thus, in order to find zd, we need to compare the modulus of 1/(1− µ) and 1/Tc(
1
zv

). As a

result, we have to distinguish the following three cases:

Case 1. When 1/Tc(
1
zv

) < 1/(1−µ), there is a dominant pole zd with multiplicity 1, given by

zd =
1

Tc(1/zv)
= A(zv),

and the tail distribution of the delay is given by the geometric form (35), where

Cd = Cv
G(A(zv)) [A(zv)− 1]2

A′(1) zc
v (zv − 1)2

.

We notice that this is always valid for c = 1 because of the monotonically increasing

character of Tc(z) along the positive real axis, i.e. 1/T1(
1
zv

) < 1/T1(0) = 1/(1−µ).

Case 2. When 1/Tc(
1
zv

) > 1/(1− µ), the dominant pole zd also has a multiplicity 1 and is

equal to

17



zd =
1

1− µ
. (38)

Hence, in this case, we also have a tail distribution of the form (35), where

Cd = − µ

(1− µ)2
W (

1

1− µ
).

Case 3. When 1/Tc(
1
zv

) = 1/(1− µ), we get a dominant pole zd of multiplicity 2, given by

zd =
1

1− µ
= A(zv) = 1/Tc(

1

zv

), (39)

and the tail distribution of the delay has the form (36), where C1d and C2d are

obtained from (26) and (37) as

C1d =
µ [1− A(zv)]

1− µ

{
Cv [A(zv)− 1]

c2µ2A′(1)zc
v (zv − 1)2

[
−zvH(zv)

cµCv

c−1∑
i=0

[
[ cµ− iH(zv) ] zi

v

+ (1− µ)zvA(zv) i H(zv)
i
]
v(i) +

zvH(zv)

2Y

[
− [ µ + cµ− 2H(zv) ]A

′
(zv)

+ zvH(zv)A
′′
(zv)

]
− Y

cµA(zv)

[ (3c− 1)zv − (1 + 2c + czv)H(zv)

zv − 1

+
cµ + zvH(zv)A

′
(zv)

A(zv)− 1

]]
+

∑
p

xc−1
p Q(1/xp)

T ′
c(xp)(1− xp)

}
,

C2d = −Cv
µ A(zv)

(1− µ)A′(1)zc
v

[A(zv)− 1]2

(zv − 1)2
.

In the last term of the expression for C1d, xp is decided by Tc(xp) = 1/A(zv), except

the term for 1/xp = zv.

5 Special Cases

In this section, we consider some special cases (c = 1 and µ = 1) in order to check the results

obtained above.
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When c = 1, i.e., for a discrete-time queueing system with one output channel and geo-

metric service times, the pgf of the system contents can be derived from (8) as

V (z) =
[ µ− A

′
(1) ] (z − 1)A(z)

z −H(z)A(z)
. (40)

From (26) and considering the fact that x0 is the root of the equation 1 − zT1(x) = 0, the

pgf of the packet delay can be expressed as

D(z) =G(z) Q (G(z))

=
[µ− A

′
(1)] z [ A(G(z))− 1]

A′(1) [ z − A(G(z)) ]
.

(41)

Equations (40) and (41) correspond exactly to the results found in [2].

When µ = 1, i.e., for a queueing system with c output channels and deterministic service

times of one slot, the pgf of the system contents can be derived from (8) as

V (z) =
A(z)

∑c−1
i=0 (zc − zi) v(i)

zc − A(z)
. (42)

Considering the fact that the xp’s are the roots of the equation 1 − zxc = 0, the pgf of the

packet delay can be simplified from (25) and (26) as

D(zc) =
1

c

c−1∑
j=0

zc − 1

1− (αjz)−1
Q(αjz), (43)

where α = exp(2Πι/c) (ι is the imaginary unit). Equations (42) and (43) correspond exactly

to the results found in [14].

6 Numerical Examples

In order to illustrate the results obtained above, let us consider a number of numerical ex-

amples. Throughout this section, we assume that the number of output channels c equals

1, 2, 4 or 16. The number of packets that arrive during a slot has a geometric distribution, i.e.,

A(z) =
1

1 + λ− λz
.
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In Figure 1, the mean system contents (divided by c) is plotted versus the average carried

load ρ (= λ/cµ) for the four different numbers of output channels. All curves have the same

µ = 0.75. Note that the scaling of the mean system contents by a factor c is done to allow

a fair comparison between systems with dedicated or shared buffers. We observe that for a

given ρ, when one shared buffer with multiple output channels is used to transport a given

mean number of packets per slot, the equivalent mean system contents (per output channel)

is less than in case several dedicated buffers with a single output channel are used. This

also confirms the conclusion that the shared resource policy has an advantage over the non-

shared one. For a given number of output channels, the mean system contents increases with

increasing values of ρ. A similar figure can be plotted for the mean packet delay in terms of

ρ, in view of Little’s law.

In Figure 2, the variance of the packet delay is shown (for µ = 0.75 and c = 1, 2, 4, 16)

versus ρ. Clearly, for a given value of ρ, the delay jitter for the system with more output

channels is less than the jitter for systems with less output channels.

In Figures 3 and 4, we have plotted the tail distributions of the system contents and the

packet delay, for µ = 0.75 and ρ = 0.25. To fairly compare systems with dedicated or shared

buffers, the tail distribution of the system contents Prob[v > N ] is shown in Figure 3 as a

function of N/c. This can be used to approximate the equivalent packet loss probability in a

system with c output channels and a finite capacity N/c per output channel. Once again, we

observe that for a system with more output channels, its equivalent packet loss probability

is much less than for systems with less output channels. In Figure 4, the probability that

the delay exceeds some given threshold T is plotted versus T for the four different numbers

of output channels. Clearly, for a given T , the tail distribution of the delay decreases as the

number of the output channels increases.

In Figure 5, we have plotted the quantiles of the system contents, i.e., the amount of

buffer space required to yield a loss probability of 10−6 and 10−12, versus the value of ρ, for

µ = 0.75 and c = 4. For high values of ρ (near the limiting value ρ = 1.0), a large storage

capacity will be needed to keep the loss probability at an acceptable level.
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7 Concluding Remarks

In this paper, we have developed an analytical technique for the analysis of a discrete-time

multiserver queueing system with geometric service times and a general uncorrelated arrival

process. Our approach is based on the use of probability generating functions and leads

to closed-form expressions for the mean values, the variances and the tail distributions of

the system contents and the packet delay. The obtained expressions are easy to evaluate

numerically.

Several further generalizations of the model could be investigated. For instance, more

general non-geometric service-time distributions could be allowed or some degree of corre-

lation between the numbers of packet arrivals in different slots could be introduced in the

model. A first result in this direction is reported in [29], where our analytical technique has

been adapted to deal with the case of a correlated two-state Markovian arrival process.
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Figure captions

Figure 1. Mean system contents versus average carried load ρ.

Figure 2. Variance of the packet delay versus average carried load ρ.

Figure 3. Tail distribution of the system contents, Prob[v > N ], versus N/c.

Figure 4. Tail distribution of the packet delay, Prob[d > T ], versus T .

Figure 5. Buffer space N required to yield an overflow probability of 10−6 and 10−12, versus

the average carried load ρ.
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