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ABSTRACT

Motivation:Thevalidityofperiodiccell cycle regulationstudies inplants

is seriously compromisedby the relatively poor quality of cell synchrony

that isachievedforplantsuspensioncultures incomparison toyeastand

mammals. The present state-of-the-art plant synchronization tech-

niques cannot offer a complete cell cycle coverage and moreover a

considerable loss of cell synchrony may occur toward the end of the

sampling. One possible solution is to consider combiningmultiple data-

sets, produced by different synchronization techniques and thus cov-

ering different phases of the cell cycle, in order to arrive at a better cell

cycle coverage.

Results:Weproposeamethod thatenablespastingexpressionprofiles

from different plant cell synchronization experiments and results in an

expression curve that spans more than one cell cycle. The optimal

pasting overlap is determined via a dynamic time warping alignment.

Consequently, the different expression time series aremerged together

by aggregating the corresponding expression values lying within the

overlap area. We demonstrate that the periodic analysis of the merged

expression profiles produces more reliable p-values for periodicity.

Subsequent Gene Ontology analysis of the results confirms that

merging synchronization experiments is a more robust strategy for

the selection of potentially periodic genes. Additional validation of

the proposed algorithm on yeast data is also presented.

Availability: Results, benchmark sets and scripts are freely available

at our website: http://www.psb.ugent.be/cbd/publications.php

Contact: elena.tsiporkova@ugent.be, fiher@psb.ugent.be

1 INTRODUCTION

Microarray profiling of highly synchronized cell cultures has been

widely employed in recent years for the identification of genes

which are periodically regulated during the cell cycle. Such studies

have turned out to be particularly successful for yeast and mammals

(Spellman et al., 1998; Cho et al., 2001; Shedden and Cooper,

2002a,b; Whitfield et al., 2002; Rustici et al., 2004; Peng et al.,
2005; Oliva et al., 2005), where a relatively high degree of cell

synchronization can be achieved that lasts for multiple cell cycles.

In contrast, periodic cell cycle regulation in plants has not been that

exhaustively explored, mainly due to the difficulties in achieving

a satisfactory degree of synchronization in plant cell suspension

cultures, and consequently, the inability of completing one full

cell cycle.

There are two commonly used cell suspensions in plants: tobacco

BY2 and Arabidopsis thaliana cells. Breyne et al. (1999) performed

a successful synchronization of the tobacco BY2 cell culture and a

subsequent cDNA–AFLP genome-wide expression analysis led to

the identification of 1340 periodically expressed genes. However,

the sequencing of the tobacco genome is not completed yet and the

efforts required for carrying out such studies limit considerably their

use for a wide-scale analysis of cell cycle regulation. Menges and

Murray (Menges and Murray, 2002a) developed Arabidopsis cell

suspensions, potentially suitable for synchronization with

two alternative methods, aphidicolin block/release or removing

and re-supplying sucrose to the growth media. In a subsequent

study, (Menges et al., 2003), subjected samples of aphidicolin-

synchronized cells and of sucrose-starved cells to transcript profil-

ing with Affymetrix microarrays and identified >1000 genes as cell

cycle regulated.

However, the validity of such studies is seriously compromised

by the relatively poor quality of cell synchrony that can be achieved

at present for plants in comparison to yeast and mammals. Neither

the tobacco BY2 cell culture, referred to in the plant community as

highly synchronizable, nor the Arabidopsis cell suspensions could
generate cell synchrony persisting beyond one complete cell cycle.

In reality hardly 80–90% of one cycle could be covered and a

considerable loss of cell synchrony occurred toward the end of

the sampling. Unfortunately, the present state-of-the-art plant syn-

chronization techniques cannot offer a better cell cycle coverage.

One possible solution is to consider merging multiple datasets pro-

duced by different synchronization techniques in order to arrive at a

better cell cycle coverage.

In this contribution, we describe a method that enables pasting

expression profiles from different plant cell synchronization experi-

ments and results in an expression curve that spans more than one

cell cycle. Initially, several sets of genes with well known and

experimentally confirmed cell cycle involvement and/or regulation

are identified. These are subsequently used to determine the optimal

pasting overlap for the entire dataset. Consequently, the different

expression time series are merged together by aggregating the

corresponding expression values lying within the overlap area.

The optimal pasting overlap is determined via a dynamic time

warping (DTW) alignment. The DTW alignment algorithm was

developed originally for speech recognition (Sakoe and Chiba,

1978; Sankoff and Kruskal, 1983), and it aims at aligning two

sequences of feature vectors by warping the time axis iteratively

until an optimal match (according to a suitable metric) between the

two sequences is found. Thus, the DTW is a much more robust

distance measure for time series than classical distance metrics as

Euclidean or a variation thereof since it allows similar shapes to

match even if they are out of phase in the time axis. The DTW�To whom correspondence should be addressed.
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alignments in this work are performed with our in-house gene

time expression DTW warping tool GenTxWarper (Criel

and Tsiporkova, 2006), a Java-based program implementing the

original symmetric DTW algorithm (Sakoe and Chiba, 1978) and

providing some additional features, as for instance the possibility

for defining an offset and thus performing partial alignments by

sliding the time series against each other along the time axis.

The identification of periodically expressed genes employs a

permutation-based method, which utilizes a combination of a

p-value for regulation and a p-value for periodicity.

2 METHODS

2.1 DTW alignment algorithm

Let us first summarize the important features of the original symmetric DTW

algorithm as proposed by Sakoe and Chiba, 1978. Consider two sequences

of feature vectors A ¼ [a1, a2 , . . . , an] and B ¼ [b1, b2 , . . . , bm]. These can

be arranged on the sides of a grid, with one on the top and the other on the

left hand side (Fig. 1). Both sequences start at the bottom left of the grid.

Inside each cell a distance measure can be placed, comparing the corres-

ponding elements of the two sequences. To find the best match or alignment

between these two sequences one needs to find a path through the grid

P ¼ p1, . . . , ps, . . . , pk [where ps ¼ (is, js)], referred to as the warping func-

tion, which minimizes the total distance between A and B (Fig. 1). Thus, the

procedure for finding the best alignment between A and B involves finding all

possible routes through the grid and for each one compute the overall dis-

tance, which is defined as the sum of the distances between the individual

elements on the warping path. Consequently, the final DTW distance

between A and B is the minimum overall distance over all possible warping

paths:

dtwðA‚BÞ ¼ 1

nþ m
min
P

Xk
s¼1

dðis‚ jsÞ
 !

:

It is apparent that for any pair of considerably long sequences the number

of possible paths through the grid will be very large. The major optimizations

or constraints of the DTW algorithm arise from the following observations

on the nature of acceptable paths through the grid:

� Monotonic condition: is�1 � is and js�1 � js, i.e. the alignment path will

not turn back on itself. Both the i and j indexes either stay the same or

increase, they never decrease.

� Continuity condition: is� is�1� 1 and js� js�1�1, i.e. the path advances

one step at a time. Both i and j can only increase by at most 1 on each step

along the path.

� Boundary condition: i1¼ 1, ik¼ n and j1¼ 1, jk¼m , i.e. the path starts at

the bottom left and ends at the top right.

The foregoing constraints allow to restrict the moves that can be made

from any point in the path and so limit the number of paths that need to be

considered. The power of the DTW algorithm resides in the fact that instead

of finding all possible routes through the grid which satisfy the above con-

ditions, the DTW algorithm makes use of dynamic programming and works

by keeping track of the cost of the best path at each point in the grid:

gð1‚1Þ ¼ dð1‚1Þ
gði‚1Þ ¼ dði‚1Þ þ gði � 1‚1Þ
gð1‚ jÞ ¼ dð1‚ jÞ þ gð1‚ j � 1Þ
gði‚ jÞ ¼ dði‚ jÞ þ minðgði‚ j � 1Þ‚gði � 1‚ j � 1Þ‚gði � 1‚ jÞÞ:

Consequently, dtw(A, B) ¼ g (n, m)/(n + m). During the calculation pro-

cess of the DTW grid, it is not actually known which path minimizes the

overall distance, but this can be traced back when the end point is reached.

Our DTW warping tool GenTxWarper (Criel and Tsiporkova, 2006)

implements the classic DTW algorithm as described in this section. In

addition, we have extended the core algorithm with several new features:

data adjustment, metric, warping window, offset and anchor point. The most

important one for our present task is the possibility for applying an offset, i.e.

for performing partial alignments by sliding the time series against each

other along the time axis. To our knowledge such a feature has never been

used before in combination with the DTW algorithm.

In order to facilitate the correct interpretation of our DTW alignments for

non-zero offsets, let us give a brief description of the essential details of the

offset implementation (Fig. 2), since the latter has not been published else-

where. It is assumed that a virtual sliding window is positioned on the top of

the DTW grid in such a way that the left bottom corners of the DTW grid and

the sliding window coincide. The sliding window is a square of a size the

length of the longer time series on the DTW grid. Applying a positive offset

then corresponds to sliding the windowwith the offset value at the same time

to the left and up from the left bottom corner of the DTW grid. The inter-

section between the DTW grid and the sliding window determines the new

DTW grid. This effectively results in shifting the time series, which is on the

left hand side of the DTW grid, to the left with respect to the one on the top

of the grid (see the middle graph of Fig. 2). Analogously, a negative offset

will mean that the sliding window moves with the offset value right and

down, which in its turn causes that the time series on the left hand side of the

DTW grid is slided to the right with respect to the one on the top of the grid

(see the most right plot in Fig. 2).

2.2 Merging expression profiles from different plant

cell synchronization experiments

One possible way to overcome the limitation of incomplete cell cycle cov-

erage imposed by the poor synchronization in plant suspensions is to paste

together the expression profiles from synchronization experiments that cover

different parts of the cell cycle.We propose to initially determine the optimal

pasting overlap between the experiments via a DTW alignment using robust

cell cycle genes, and consequently, merge the different expression time

series together by aggregating the corresponding expression values lying

within the overlap area.

Initially, several sets of genes with well known and experimentally

confirmed cell cycle involvement and/or regulation need to be identified.

These will be used to determine the optimal pasting overlap for the entire

dataset. Then a pairwise DTW alignment of the time series coming from the

different synchronization experiments can be performed for the selected set

Fig. 1. The DTW grid with different warping paths through it. The optimal

warping path is depicted in grey.
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of genes and for a varying offset value. Applying an offset means sliding the

time series against each other along the time axis. Due to the fact that cell

cycle progression is a periodic process, any pair of cell synchronized expres-

sion time series can be aligned against each other in the following two ways:

(1) With a positive offset: the expression profiles corresponding to the

first synchronization experiment are shifted to the right of time

zero of the profiles from the second experiment;

(2) With a negative offset: the expression profiles corresponding to the

second synchronization experiment are slided to the right of time

zero of the profiles from the first experiment.

The range of offset values for which the DTW alignment is performed

could be determined from some prior information about the possible time

shift between the different synchronizations. The DTW alignment is per-

formed only on the parts of the profiles that overlap.

Finally, for any pair of synchronization experiments, a pair of optimal

offset parameters (positive and negative) corresponding to the lowest nor-

malized DTW distance will be determined. Each optimal offset parameter

will entail a specific DTW alignment between the two differently synchron-

ized groups of expression profiles. The DTW alignment obtained for the

union of all selected cell cycle-associated gene sets is the one that is applied

on the entire dataset. Subsequently, the corresponding expression values of

the overlapping regions are merged together via a weighted mean aggrega-

tion. Each synchronized dataset can be assigned a weight reflecting the

quality of synchronization or the degree of cell cycle coverage.

Bear in mind that, the DTW alignments discussed above need to be

preceded by some data standardization, as for instance z-transform or

log2-transform. The different expression time series have been generated

in different experimental conditions and therefore the comparison of their

absolute expression values will not be very meaningful.

2.3 Identification of periodically expressed genes

In a recent study de Lichtenberg et al. 2004, have used Saccharomyces

cerevisiae expression data for benchmarking several computational methods

for the identification of periodically expressed genes. In addition to already

published methods, they have also proposed a new permutation-based

method quantifying separately both the periodicity and the amplitude of

variation, and have shown that amplitude-dependent methods perform better

than the amplitude independent ones. Taking into account these findings, we

consider here a method for the identification of periodically expressed genes,

which utilizes a combination of a p-value for regulation and a p-value for

periodicity.

The p-value for regulation, referred to as preg, has been obtained as

described by de Lichtenberg et al. 2004. Namely, a p-value for regulation

for a particular gene is resulting from the comparison of the gene expression

variance with a randomly generated variance distribution, constructed by

selecting at each time point the log ratio value of a randomly chosen gene.

The p-value for periodicity is obtained in a similar way. As previous

microarray analysis has shown (Shedden and Cooper, 2002a), periodic

expression patterns can arise from random fluctuations. In order to exclude

such cases from the list of genes identified as periodic, a set of artificial

expression profiles is generated for each gene by permuting the time points in

a randomway. Thus, the variances of the artificial expression profiles remain

unchanged with respect to the variance of the original gene expression

profile. Consequently, some periodicity score is estimated for each observed

gene expression profile and then compared with the periodicity scores res-

ulting from the random permutations of the same gene. The p-value for

periodicity is calculated as the fraction of artificial profiles with periodicity

score equal to or greater than the score of the real expression profile.

The periodicity score is based on a slightly adapted version of the

method used by Menges et al. 2002b, 2003, described originally by

Shedden and Cooper, 2002a. The observed expression profile of each

gene i is fit to a periodic component consisting of a sine, a cosine and an

amplitude offset:

ZiðtÞ ¼ aiSðtÞ þ biCðtÞ þ ci‚

where S(t) ¼ sin(2pt/T), C(t) ¼ cos(2pt/T) and T is the assumed cell cycle

period. The parameters ai, bi and ci can be estimated by means of a linear

least squares procedure. Consequently, each gene expression profile will be

decomposed into Yi(t)¼ Zi(t) + Ri(t), where Ri(t) represents the component of

expression that is either aperiodic or that has a period substantially different

from T. Then the ratio PVEi ¼ var(Zi(t))/var(Yi(t)), referred to as the pro-

portion of variance explained by the Fourier basis, determines an estimation

for periodicity ranging from 0 to 1. The p-values for periodicity derived with

the PVE score will be referred to as pper.

As already mentioned above, the latter method for periodicity estimation

is a variation of the one used byMenges et al. 2002b, 2003. The new element

is the introduction of an amplitude (vertical) offset parameter to the peri-

odicity component Zi. The underlying motivation is that when estimating

the periodicity of an expression profile one is only interested in the shape

of the curve and not in its absolute position and therefore the regression

procedure should be robust against vertical offset. This can be partially

achieved by applying some kind of normalization. The only exact vertical

translation, however, is the one where the mean of the fitted sine curve is

(approximately) the same as the mean of the normalized data. This trans-

lation is non-zero for synchronized plant expression data even after

performing z-transformation on the original data due to the fact that not

an entire (multitude of) period(s) is covered. Hence, the introduction of an

explicit amplitude offset parameter makes the sine and cosine parameters

independent of vertical translations as long as the regression procedure is

linear in its coefficients. In fact, it can be shown that the periodicity score will

be invariant for all transformations that are member of the two-parameter

(a, b) family ~XX
0 ¼ a~XX þ b.

In the benchmark study of de Lichtenberg et al. 2004, a combined p-value

was obtained by simply multiplying the p-value for regulation and the

p-value for periodicity. This definition entails the negative side effect

that the total p-value could become very low due to only one of the individual

p-values. Therefore, de Lichtenberg et al. (de Lichtenberg et al., 2004) had to
further introduce two, not really intuitive, penalty terms. We have taken a

more straightforward approach to combine the individual p-values for regu-

lation and periodicity, namely through their geometric mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
preg · pper

p
‚

with values always ranging betweenmin(preg, pper) and max(preg, pper). Thus,
the combined p-value could be seen as a sort of trade-off between the

individual p-values.

Two separate significance conditions need to be verified. For a given

significance threshold thr and an individual significance trade-off l � 1:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
preg · pper

p
< thr and maxðpreg‚pperÞ < l · thr:

Fig. 2. Illustration of the essential implementation details behind the offset

feature. The leftmost figure corresponds to a classicalDTWalignment, i.e. no

offset applied. The middle and the right graphs show how the new DTW grid

is determined, as the intersection of the original DTW grid and a virtual

sliding window (nxn square). The latter is shifted left and up for a positive

offset (in the middle) and right and down for a negative offset (most right).
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Consequently, a gene will be qualified as a significantly periodic if the

p-values associated with it fulfill both conditions. The parameter l is called

an individual trade-off since it determines the degree to which one is pre-

pared to tolerate a violation of the significance threshold by one of the

individual p-values (either for regulation or for periodicity) as a compensa-

tion for a very significant second individual p-value. The latter can be refined

further by introducing two separate parameters lreg and lper, one for each of

the individual p-values (Fig. 3).

3 RESULTS

In this section, we evaluate the added value of combining time series

microarray experiments, originating from different synchronization

methods, for a more accurate identification of periodically regulated

genes. This issue is particularly important for cell cycle studies in

plants, considering that plant sychronization data are characterized

with a relatively low cell synchrony which, moreover, persists for

less than one complete cell cycle.

The microarray pasting algorithm is applied on two different

Arabidopsis synchronization expression datasets, and consequently,
a set of periodically regulated genes is identified from the combined

dataset. An obvious choice of benchmarking data suitable for testing

our pasting algorithm is the Arabidopsis gene expression data of

Menges et al. (2003), since it is at present the only available

genome-wide synchronization data in plants. The Arabidopsis
cell suspensions were synchronized with two alternative methods,

aphidicolin block/release and sucrose starvation. The latter method

produced a partial synchrony from G0/G1 until S phase, with some

synchrony persisting until mitosis, while with the former a further

enhancement of synchrony in the S–G2–M phases was achieved.

Subsequently, 7 samples of sucrose-starved cells and 10 of

aphidicolin-synchronized cells, both taken at 2 h intervals starting

at time 0, were subjected to transcript profiling with Affymetrix

microarrays.

The raw data were downloaded [http://www.arabidopsis.org

(submission numbers ME00365 and ME00366)] and RMA pre-

processed in Bioconductor (http://www.bioconductor.org). Con-

sequently, p-values for regulation and p-values for periodicity

were calculated as described in Section 2.3.

3.1 Determining the optimal overlap

In order to determine the optimal pasting overlap between the

aphidicolin-synchronized expression profiles and the sucrose-

starved ones, five different sets of genes with well known cell

cycle association were composed. These are B-type cyclins,

A-type cyclins, all cyclins, all histones, and all cyclins and histones

together. The reasoning behind such choice is the fact that the

histones are known to have very consistent behavior during the

cell cycle. They are often used as markers for the S phase and it

is naturally to expected that their time expression profiles are very

conserved. The B-type cyclins, on the other hand, are known to

have a peak of transcription during the G2 to M phase transition and

it is believed that they are probably responsible for the mitotic

events in plants (De Veylder et al., 2003). Although the expression

of the B-type cyclins may be highly fluctuating in the cell cycle,

they all are expected to have a distinctive peak in early mitosis.

The range of the offset values for which the DTW alignment was

performed was determined from prior information about the pos-

sible time shift between the two synchronization methods. For

instance, the aphidicolin block/release method causes a synchron-

ous resumption of S phase, while the sucrose starvation results in

synchronous transit of G1 and entry into the first S phase. Thus, there

must be a time shift of �3 to 7 h between the start of the two

experiments. Analogously, the sucrose-starved cells were sampled

for 12 h until S/G2 phase, while the aphidicolin-synchronized ones

were sampled for a longer period of 19 h until M/G1 phase. The cell

cycle period was estimated at �22 h by flow cytometry of syn-

chronized cells. Therefore, one can derive that an �10–16 h time

shift exists between the two experiments at the end of the sampling.

Consequently, for the five gene sets, defined above, the aphidicolin-

synchronized expression profiles were aligned against the sucrose-

starved ones with the DTW algorithm for different offset values

ranging from�16 to 8 h. The normalized DTW alignment scores of

these alignments are reported in Table 1.

Figure 4 presents the DTW alignments, obtained with

GenTxWarper (Criel and Tsiporkova, 2006), of aphidicolin versus

sucrose expression profiles for cyclins and histones, respectively.

These correspond to the optimal (corresponding to the lowest DTW

score) positive and negative offsets.

Note that in both Figure 4b and d a second peak of expression can

clearly be detected. In addition, the DTW scores in Table 1 also

indicate that better alignment is achieved when the sucrose expres-

sion profiles are pasted after the aphidicolin ones, i.e. when applying

a negative offset 14 h. This is not surprising since the aphidicolin

cell synchronization is superior to the sucrose starvation one. Thus,

Fig. 3. Graphical illustration of the set of significance conditions.

Table 1. Arabidopsis (aphidicolin versus sucrose synchronization):

normalized DTW alignment scores for different sets of genes and different

offset values

Offset B-cyclines A-cyclines All cyclines Histones All

�16 h 0.68 0.78 3.26 1.36 2.18

�14 h 1 0.68 1.36 1.15 1.79

�12 h 1.49 1.01 1.9 1.37 2.43

�10 h 1.82 1.48 2.39 2.32 3.63

�0 h 1.12 1.69 2.21 4.14 5.25

�2 h 1.05 1.46 2.10 4.03 4.91

�4 h 0.99 1.14 1.78 3.54 4.28

�6 h 0.82 0.98 1.61 2.91 3.60

�8 h 1.12 1.10 1.81 2.94 3.86

All alignments were performed on z-transformed expression profiles. Boldface table

entries denote the lowest DTW scores obtained for each dataset.
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the sucrose-starved profiles are best pasted at the end of the aph-

idicolin ones, where the sucrose level of synchrony better matches

the aphidicolin one, since the latter degrades considerably toward

the end of the sampling. The achieved cell cycle coverage for offset

�14 h is 26.5 h, i.e. �1.2 of a cycle.

The best DTW alignment of the sucrose profiles positioned before

the aphidicolin ones (Fig. 4a and c), i.e. with a positive offset 6 h,

is attained with a much larger overlap than for a negative offset.

Despite this larger overlap, this still results in a 22 h cell cycle

coverage (1.0 cycle).

3.2 Merging expression profiles from different

experiments

A pair of optimal alignment offsets (positive and negative) for the

aphidicolin and the sucrose expression profiles was determined

from the DTW scores in Table 1. Thus, the two sets of expression

profiles could be merged together in two different ways: (1) with a

positive offset 6 h or (2) with a negative offset 14 h. Each of these

offsets entails a specific DTW alignment between the two groups of

expression profiles. The DTW alignments obtained for the union of

all selected cell cycle-associated gene sets, i.e. the last dataset in

Table 1, are the ones that were applied on the entire dataset. These

can be consulted on the web site http://www.psb.ugent.be/cbd/

publications.php. The optimal alignment corresponding to an offset

�14 h does not involve time warping, while for an offset 6 hmultiple

warping of the time axis is required. Subsequently, the correspond-

ing expression values of the overlapping regions were merged

together via a weighted mean aggregation. Each synchronized data-

set was assigned a weight reflecting the extent of cell cycle coverage

achieved, i.e. 0.61 (19/31) for aphidicolin and 0.39 (12/31) for

sucrose.

In summary, two new merged expression datasets were con-

structed, one corresponding to a positive offset of 6 h between

the experiments and another to a negative offset of 14 h. Sub-

sequently, the combined profiles were assigned p-values for

regulation equal to the geometric mean of the p-values for regula-
tion associated with each of the experiments. The p-values for

periodicity were estimated as described in Section 2.3.

3.3 Identification of periodic genes

Hereafter, we compare the results from the periodicity analysis

performed on the four different expression datasets: aphidicolin

synchronization, sucrose starvation, aphidicolin and sucrose merged

with an offset 6 h, and aphidicolin and sucrose merged with an

offset �14 h.

The cumulative distributions of the p-values for periodicity for

each of the four datasets are given in Figure 5a. The latter clearly

illustrates that the higher the extent of cell cycle coverage is, the

lower the number of genes with p-values for periodicity below a

given significance threshold. Thus, for the sucrose-starved profiles,

which are covering a little bit more than half of the Arabidopsis

Fig. 4. The original aphidicolin-synchronized (blue) versus sucrose-starved

(red) expression profiles are presented in the top panel. Their counterparts

z-transformed and aligned with the DTW algorithm are visualized in the

bottom panel.

(a) Cumulative distributions of the p-values for periodicity

(b) The number of genes selected as periodic as a function of �reg
for a significance threshold 0.05 and �per = 1.

Fig. 5. Comparison of the results from the periodicity analysis performed

on the following four different expression datasets: aphidicolin synchron-

ization, sucrose starvation, aphidicolin and sucrose merged (6 h offset), and

aphidicolin and sucrose merged (�14 h offset).
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cell cycle, >35% of all genes have p-value for periodicity <0.05.
However, for the aphidicolin profiles only�18% of the genes have a

p-value for periodicity below this threshold and in the combined

with an offset �14 h dataset hardly 9% such genes are found. The

former profiles cover �85% of a cycle and the latter >120% of a

cycle.

The above phenomenon is due to the fact that an expression

profile with a partial cell cycle coverage could end up matching

very closely a particular part of a periodic curve, while the

same profile over a complete cell cycle is absolutely non-periodic.

Actually the observation that in comparison to the original (single

experiment) expression profiles, the merged (with an offset �14 h)

profiles generate a considerably lower number of genes with

p-values for periodicity below a given significance threshold

(�50% less than from the aphidicolin profiles) is a clear confirma-

tion that the pasting algorithm has produced meaningful expression

profiles. These seem to be a very good approximation of gene

expression profiles, as if these were produced by a single synchron-

ization experiment and spanning more than one cycle.

Another way of evaluating the periodicity analysis performance

of the four different sets of expression profiles is to compare the

number of periodic genes selected from each set as a function of the

p-value for regulation, according to the two significance conditions

as defined in Section 2.3. Figure 5b presents the results of such a

comparison for a significance threshold 0.05, lper ¼ 1 and lreg
taking values between 1 and 10. Once again the merged with an

offset �14 h profiles exhibit the lowest number of periodic genes.

Note that in both plots in Figure 5, the results produced with the

merged with an offset 6 h profiles are very comparable with the ones

obtained with the aphidicolin profiles. This is probably due to the

fact that for this offset value a rather minor extension of the cell

cycle coverage, originally obtained with aphidicolin synchroniza-

tion, is achieved.

Recall that for the merged expression profiles the p-values for

regulation were obtained as the geometric mean of the individual

p-values for regulation estimated separately for the original aph-

idicolin and sucrose profiles. Using the geometric mean guarantees

that any gene which is significantly regulated at least in one of

the two datasets will also be considered as significantly regulated

in the combined dataset. However, this implies that also genes with

preg¼ 1, i.e. absolutely not significantly expressed and hence having

a rather flat expression profile for one of the datasets and preg close
to zero for the other dataset, may also be considered. In order to

avoid this, the curves for the merged datasets in Figure 5b were

generated by imposing the additional constraint that each individual

p-value for regulation cannot exceed 0.5. According to the defini-

tion of the p-value for regulation (see Section 2.3), a p-value of

0.5 for a given expression profile means that maximum half of the

artificial profiles will have a variance greater than the variance of

the real profile. Thus, for a given lreg a gene will be considered

expressed with a significance level lreg · 0.05 in the merged datasets

if (1) the gene is significantly expressed in at least one of the

experiments; (2) there is at least 50% chance that it is expressed

in the other experiment; (3) its merged p-value for regulation does

not exceed lreg · 0.05.

3.4 Gene Ontology analysis of the results

Figure 6 presents the overlap between the periodic gene sets iden-

tified for each of the following four different expression datasets:

aphidicolin synchronization, sucrose starvation, aphidicolin and

sucrose merged (offset 6 h), and aphidicolin and sucrose merged

(offset �14 h). These were obtained for a significance threshold

0.05, lper ¼ 1 and lreg ¼ 1.5. The latter value implies that up to

50% violation of the significance threshold is allowed for the

p-values for regulation as a trade-off for very significant p-values
for periodicity.

Each subset of genes belonging to the Venn diagrams in Figure 6

was subjected to analysis with the BiNGO tool (Maere et al., 2005),
in order to determine which Gene Ontology (GO) categories are

statistically overrepresented in each list. The results for a cutoff

p-value of 0.05 and using Benjamini and Hochberg (False

Discovery Rate)multiple testing correction are presented on our web

site http://www.psb.ugent.be/cbd/publications.php. For each gene

set a table is generated consisting of four columns: (1) the GO

category identification (GO-id); (2) the multiple testing corrected

p-value (p-value); (3) the number of selected genes versus the total

GO number (selected/total); and (4) a detailed description of the

selected GO categories (description).

The GO categories selected for the intersection of the three dif-

ferent gene sets (aphidicolin, sucrose and merged) show consider-

able overrepresentation of cell cycle regulation and mitotic control

related genes. The same observation can be made for the GO

lists for each of the pairwise intersections (aphidicolin/merged,

sucrose/merged and aphidicolin/sucrose). However, the triple

intersection GO list clearly outperforms the pairwise intersection

lists both quantitatively (in terms of gene numbers selected, see

column 3 ‘selected/total’) and qualitatively (in terms of p-values,
see column 2 ‘p-value’).
The GO lists of each of the individual gene sets (aphidicolin,

sucrose and merged) contain various stress response gene categor-

ies as for instance, ‘response to abiotic stimulus’, ‘response to

osmotic stress’, ‘response to wounding’, ‘response to extracellular

stimulus’, ‘response to salt stress’, ‘response to oxidative stress’,

‘response to water deprivation’, ‘toxin catabolism and metabol-

ism’, ‘SOS response’, etc. Interestingly enough, most of these

stress response genes ended up in those gene sets of the Venn

diagrams which are specific for each dataset. In fact, in the class

of genes from the merged set that are not shared with the indi-

vidual aphidicolin or sucrose sets only stress-related genes are

overrepresented. The aphidicolin-specific gene lists still contain

some cell cycle-related GO categories, but they correspond to a

very small number of genes (in the range of tens) versus the high

total number of genes (in the range of a few hundreds) in these

gene lists.

Fig. 6. Set A represents the number of genes identified as periodic from the

merged (aphidicolin and sucrose) profiles: (a) 6 h offset (b) �14 h offset.

Set B represents the periodic genes found in the aphidicolin-synchronized

profiles and set C in the sucrose-starved ones. All the results are obtained for a

significance threshold 0.05, lper ¼ 1 and lreg ¼ 1.5.
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In summary, the GO analysis indicates that there is a higher

certainty that a gene is qualified as periodic if it was identified

as such in at least two datasets, i.e. it belongs to one of the gene

intersection lists (aphidicolin/merged, sucrose/merged, aphidicolin/

sucrose and aphidicolin/sucrose/merged). On the other hand, genes

specific for a particular dataset are most probably associated with

some stress response phenomena.

3.5 Additional validation in yeast

In order to have a fair estimate of the performance of the pasting

algorithm, we need to validate the algorithm on expression data

coming from another organism with well established synchroniza-

tion methods that are able to maintain the synchrony for multiple

cell cycles. Subsequently, by downsizing the synchronized expres-

sion data from multiple cycle coverage to �85% of a cycle, the cell

cycle coverage of plant synchronization data can be mimicked. One

of the obvious choices is Schizosaccharomyces pombe (fission

yeast) as there are synchronization methods reported that manage

to synchronize the cells for up to three cell cycles. We have selected

the elutriation A and cdc25 experiments from Oliva et al. (2005)
which are sampled approximately every 10 min for 406 min,

covering 2.6 cell cycles. On our web site http://www.psb.ugent.

be/cbd/publications.php, we present the results from the periodic

analysis performed on (1) the original 2.6 cell cycle coverage

expression profiles; (2) expression profiles that have been downs-

ized to 85% cell cycle coverage; and (3) expression profiles result-

ing from merging data coming from two different synchronization

experiments.

The accuracy of periodicity identification on the merged expres-

sion profiles has been validated on two different benchmark sets.

Following the procedures described in Section 2.3, the respective set

of periodic genes for each of the full (2.6 cell cycle coverage)

elutriation A and cdc25 experiments has initially been identified.

Consequently, two different benchmark sets of ‘truly’ periodic

genes have been constructed as follows: (1) the intersection of

the elutriation A and cdc25 periodic gene sets; and (2) the union

of the elutriation A and cdc25 periodic gene sets.

According to the results presented on the web site, the periodic

gene list coming from the merged profiles exhibits the lowest false

positive rate for both benchmark sets (2.2% for intersection and 1%

for union) in comparison to the lists associated with the elutriation A

and cdc25 experiments. Moreover, the merged list also outperforms

the elutriation A and cdc25 ones in terms of trade-off between true

positives and false positives. This is a very important feature in the

context of periodicity studies, which usually target identification of

potentially novel cell cycle genes. Ultimately, the hypotheses gen-

erated in such studies need to be validated experimentally. The latter

process can seriously be hampered by very high false positive rates.

4 CONCLUSION

We have proposed a method that is able of pasting datasets

from different synchronization experiments together. As long as

synchronization methods in plants will not be able to keep up

the synchrony beyond one cell cycle, methods like the one we

describe here will probably be the only way to identify periodically

regulated genes with some degree of certainty.

Note that the pasting algorithm presented here can easily be

extended to the unification of more than two datasets. For instance,

one can design and perform a set of multiple synchronization

experiments, which most optimally cover all the different phases

of the cell cycle. This will ultimately give us a possibility to span

several cell cycle periods. Another advantage is that the number of

genes that are picked up because of synchronization specific stress

responses will diminish.

In conclusion, combining different cell synchronization microar-

ray sets is far from trivial task. However, it may turn out to be useful

in a few aspects as follows: (1) provide additional evidence for cell

cycle regulation, and consequently, lead to a reduction of the num-

ber of false positives; (2) shed light on genes involved in stress

response phenomena.
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