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1. Introduction

The quantum field theory underlying the strong force of nature is widely accepted

as being quantum chromodynamics (QCD) which is a non-abelian generalization of

quantum electrodynamics. At large energy the constituent fields, the quarks and gluons,

behave as free particles which is a property known as asymptotic freedom. In this case

one performs calculations in QCD based on a vacuum which is empty and which is

known as the perturbative vacuum. However, it is accepted [1, 2, 3, 4] that the true

vacuum of QCD is more complicated and is not the perturbative one. An indication

of this is that in the true vacuum gauge invariant operators condense. Indeed the two

operators which receive wide attention are the operators αSG
a
µνG

aµν and ψ̄ψ, where Ga
µν

is the gluon field strength, ψ is the quark field and αS is the stong coupling constant.

Consequently, it is possible to incorporate the vacuum expectation values 〈αSGa
µνG

aµν〉
and 〈ψ̄ψ〉 into the operator product expansion in order to determine the effects they have

in the measurements of physical quantities and QCD sum rules, [5]. Indeed it is possible

to extract numerical estimates for them. Whilst these operators are the main ones of

interest, it has been pointed out more recently that additionally one can construct a

dimension two operator in QCD which is gauge invariant, [6, 7, 8]. However, this is also

believed to condense giving rise to O(1/Q2) power corrections in the operator product

expansion and other quantities, [9, 10, 11]. Specifically the operator is

Ã2
µ =

[

min
{U}

∫

d4x
(

AUµ
)2
]

V−1 (1)

where U represents the set of all gauge configurations and Ãaµ is constructed in

such a way that it is in fact gauge invariant. Consequently, unlike Ga
µνG

aµν and

ψ̄ψ, the operator is non-local but can be written in terms of the usual gluon

gauge field yielding a power series in g when evaluated explicitly. This dimension

two operator has been the subject of intense study in recent years, mostly from

the point of view of trying to estimate a value for its vacuum expectation value,

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Further, the role a non-

vanishing vacuum expectation value of a dimension two operator had on the estimate

of glueball masses in the Coulomb gauge had been discussed earlier in [27].

Having a non-zero vacuum expectation value for this operator has interesting

implications for trying to understand the properties of QCD and for phenomenology.

One area of study has been on the lattice where there appears to be numerical evidence

for 1/Q2 power corrections in a variety of quantities [9, 10, 11]. For example, an effective

strong coupling constant, αeff
S (Q2), requires a 1/Q2 correction to correctly fit lattice data

in the range 2-6 GeV, [28, 29]. This necessitates a dimension two object on dimensional

grounds. Another consequence is that such a dimension two condensate would imply

that the gluon has an effective mass which is generated dynamically, [13, 14]. Estimates

for the value of such a mass have been summarized in table 15 of Field’s article [30].

These have been extracted from phenomenology where one includes a gluon with a mass

in order to fit experimental data more accurately.
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However, one of the main interests in understanding gluon mass is its relationship

to the confinement mechanism. Whilst there are various ideas about what underlies this

property of QCD and the strong force, the actual situation has not been determined yet.

One point of view is that of abelian dominance [31, 32, 33]. Essentially this is based on

the premise that in the infrared the abelian sector of the gluon field dominates. It is then

believed that the infrared sector of QCD could be described by a dual superconductor,

whereby a monopole condensation would give rise to confinement via the dual Meissner

effect. Moreover, in the context of the generation of an effective gluon mass, one

viewpoint is that in the infrared the gluons associated with the centre of the colour

group remain massless whilst the off-diagonal gluons gain a mass dynamically. Indeed

there appears to be some preliminary lattice evidence for such a scenario, [34, 35]. To

investigate such a hypothesis in QCD from a field theory point of view requires both

a calculational technique to handle dimension two operator condensation as well as a

way of focusing on the centre gluon fields. For the former, the local composite operator

(LCO) method has been developed both for QCD, [8], and for models such as the two

dimensional Gross-Neveu model [36, 37], where one has the exact mass gap to justify

the approach. To examine the differing nature of the gluon field, one can choose to

fix in the maximal abelian gauge (MAG) where the gauge fixing differentiates between

centre and off-diagonal gluons. In the main in this article we review the procedures and

recent results in using the LCO method to study the consequences of the condensation

of a dimension two operator in QCD in various gauges, concentrating on those aspects

which relate to the renormalization group which underpins the technique.

2. Background

Before detailing the LCO approach it is worth recalling the background to the problem

of gluon mass in Yang-Mills theories. One early study was that of Curci and Ferrari in

[38] where they constructed a Lagrangian with a gluon and ghost mass with a nonlinear

gauge fixing. In particular the Lagrangian is

L = − 1

4
GA
µνG

Aµν − 1

2α
(∂µAAµ )2 +

m2

2
AAµA

Aµ

+ ∂µc̄
A∂µcA − αm2c̄AcA − g

2
fABCAAµ c̄

B
↔

∂µ cC

+
αg2

8
fEABfECDc̄AcB c̄CcD + iψ̄D/ψ − mqψ̄ψ (2)

where AAµ , cA and ψiI are the respective gluon, ghost and quark fields, 1 ≤ A ≤ NA,

1 ≤ I ≤ NF and 1 ≤ i ≤ Nf with NA and NF the respective dimensions of the adjoint

and fundamental representations, Nf is the number of quarks, TA are the generators of

the colour group whose structure constants are fABC and the field strength is given by

GA
µν = ∂µA

A
ν − ∂νA

A
ν − gfABCABµA

C
ν where g is the coupling constant. In the case when

the gluon mass m is zero, the Lagrangian is regarded as QCD fixed in the Curci-Ferrari

gauge. It gives rise to a different gluon-ghost interaction from that of the usual linear
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covariant gauge fixing. In addition there is a quartic ghost interaction which does not

invalidate the renormalizability of the Lagrangian. When m is non-zero one has a mass

for both the gluon and the ghost where the respective gluon and ghost propagators are

− δAB

(k2 +m2)

[

ηµν − (1 − α)kµkν

(k2 + αm2)

]

and
δAB

(k2 + αm2)
. (3)

Whilst the Lagrangian is no longer invariant under gauge transformations, it is in fact

(on-shell) BRST invariant for non-zero m, [38]. This latter property suggests it is

a reasonable candidate for studying models with gluon mass. However, the initial

interest in this model had to be tempered with the realization that whilst one has

BRST invariance the BRST charge is not nilpotent since its square is propotional to

m2. Consequently one does not have a unitary theory and negative norm states can

be constructed to demonstrate this [39, 40]. Aside from these limitations the Curci-

Ferrari model has several important properties. One is that the presence of a mass

for the gluon provides a natural infrared regulator in the theory. Indeed it has been

renormalized explicitly at two loops, [41, 42]. Therefore, it could be a useful tool in

extracting renormalization constants where there are potential infrared problems. More

importantly though the resurgence of interest in this model rests in its relationship to

other gauges. In the case where α = 0, the Curci-Ferrari gauge reduces to the usual

Landau gauge, [38]. However, if one examines the off-diagonal sector of QCD fixed

in the maximal abelian gauge (MAG), it transpires that that sector is precisely QCD

fixed in the Curci-Ferrari gauge, [13]. Therefore, the Curci-Ferrari model can be used

as a laboratory for investigating the problem of abelian dominance in QCD and the

dynamical generation of mass for the off-diagonal gluons. Whilst the main disadvantage

of the Curci-Ferrari model is the presence of a classical gluon mass leading to loss of

unitarity, if a mass was generated dynamically by the condensation of a dimension two

(BRST or gauge invariant) operator, then the unitarity issue may be circumvented.

3. LCO method

The LCO method is a procedure for including low dimension operators, such as 1
2A

A
µA

Aµ,

in the underlying quantum field theory and determining its effective potential. In this

way one can examine to what extent the operator condenses by calculating whether

the energy of the true vacuum when the operator is present is less than that of the

true vacuum in its absence. For QCD it turns out that it leads to a modification of

the Lagrangian so that new interactions are introduced which lead to an effective gluon

mass. Part of the justification in applying the LCO method to QCD in a variety of

gauges, such as the Landau, Curci-Ferrari or MAG, lies in the treatment of the two

dimensional O(N) Gross-Neveu model. There the mass gap is known exactly and the

LCO approach obtains values for the mass gap to a few percent for a large range of N ,

[36, 37].

We now summarise the application of the method in the case of QCD in the Landau

gauge. One of the advantages of this gauge is that the gauge invariant non-local operator
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(1) truncates to a single term local composite operator 1
2A

A
µA

Aµ, [8]. In this instance

one couples the operator to a source J yielding the energy functional W [J ]

e−W [J ] =
∫

D[Aµψψ̄cc̄] exp
[
∫

ddx
(

Lgf −
1

2
ZmJA

A 2
µ +

1

2
(ξ + δξ)J2

)]

.

(4)

From this, W [J ] satisfies a renormalization group equation
[

µ
∂

∂µ
+ β(g)

∂

∂g2
− γm(g)

∫

J
∂

∂J
+ η(g, ξ)

∂

∂ξ

]

W [J ] = 0 (5)

where γm(g) is the anomalous dimension of the operator derived from the corresponding

renormalization constant Zm and µ is the renormalization scale introduced when one

uses dimensional regularization in d = 4 − 2ǫ dimensions which is the regularization

employed here. To ensure renormalizability one requires the additional term quadratic

in J . This is because the vacuum energy in the presence of the operator is divergent

with divergences proportional to J2 appearing. The coefficient of J2 is defined as ξ

where δξ is the counterterm and is at present not fixed, [8]. However, one can define a

renormalization group function for the infinities associated with the J2 term which are

encoded in the related quantities η(g, ξ) and δ(g) by

η(g, ξ) = µ
∂ξ

∂µ

∣

∣

∣

∣

∣

= 2γm(g)ξ + δ(g)

δ(g) =

(

2ǫ+ 2γm(g) − β(g)
∂

∂g2

)

δξ . (6)

In order to have a homogeneous renormalization group equation for W [J ] the as yet

undetermined parameter ξ must satisfy

β(g)
dξ

dg2
= 2γm(g)ξ + δ(g) (7)

whence
[

µ
∂

∂µ
+ β(g)

∂

∂g2
− γm(g)

∫

J
∂

∂J

]

W [J ] = 0 . (8)

Therefore solving (7) will determine ξ(g) once γm(g) and δ(g) are known and this ensures

that ξ(g) runs as g(µ) runs. More importantly the homogeneity of (8) ensures that

one retains an energy interpretation so that an effective action and thence an effective

potential can be constructed for the operator in question, [8, 36, 37].

For practical calculations it would be more appropriate to have a functional with

a linear source. This can be achieved by a Hubbard-Stratonovich transformation which

introduces a scalar field σ via

1 =
∫

Dσ exp
(

−
∫

[

a1σ + a2A
A 2
µ + a3J

]2
)

(9)

where the coefficients ai are chosen appropriately to cancel the J2 term. Consequently

in the Landau gauge one obtains the renormalizable Lagrangian for σ, and therefore the

operator 1
2A

A
µA

Aµ as

Lσ = Lgf −
σ2

2g2ξ(g)Zξ
+

Zm
2gξ(g)Zξ

σAAµA
Aµ − Z2

m

8ξ(g)Zξ

(

AAµA
Aµ
)2

. (10)
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Once the expressions for γm(g) and ξ(g) are known then the effective potential can be

constructed. Though for a two loop potential one requires the renormalization group

functions at three loops.

4. Three loop renormalization

As the LCO method relies on requiring explicit values of the renormalization group

functions at large loop order it is important to study the renormalization of QCD in

the context of the operator 1
2A

A
µA

Aµ and in various gauges. For the Landau gauges all

the information to construct γm(g) in fact is in place. This is due to an observation

from explicit calculations and the general formalism of algebraic renormalization which

demonstrate that to all orders in perturbation theory the anomalous dimension of
1
2A

A
µA

Aµ is not independent, [43]. More specifically

γm(g) = γA(g) + γc(g) (11)

in the Landau gauge. This curious property is not restricted to this gauge as in the

MAG the anomalous dimension of the analogous dimension two operator, based on off-

diagonal fields, involves the anomalous dimensions of the diagonal gluon and diagonal

ghost, [26]. In the more general Curci-Ferrari gauge we have observed a generalization

of (11) in an explicit three loop MS renormalization, [44], which is

γm(g) = γA(g) + γc(g) − 2γα(g) (12)

where we note that unlike the linear covariant gauges the anomalous dimension

corresponding to the renormalization of the gauge parameter, γα(g), is non-zero.

Unfortunately it has not been established whether this latter relation remains valid

beyond three loops.

One issue which arises when one is working with the renormalization of operators

and this is the question of operator mixing. The BRST invariant mass operator involves

the two terms 1
2A

A
µA

Aµ and c̄AcA. In principle it could be the case that the combination

O = 1
2A

A
µA

Aµ − αc̄AcA does not renormalize multiplicatively. However, in linear

covariant gauges it turns out that the mixing matrix is triangular, [45], but not in the

Curci-Ferrari gauge. Indeed in [46] the one loop mixing matrix for Oi was determined

where O1 = 1
2A

A
µA

Aµ and O2 = c̄AcA. We have extended that calculation to two loops

for potential future extensions of the operator product expansion analysis of [46]. If we

set

Oo i = ZijOj (13)

where Zij is the mixing matrix of renormalization constants. With

γij(g) = µ
∂

∂µ
lnZij (14)

then we have

γ11 =
(

35

12
+
α

4

)

CAa +

(

449

48
+

11α

16
+

3α2

16

)

C2
Aa

2 + O(a3)
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γ12 = − α2

4
CAa −

(

5α2

16
+
α3

8

)

C2
Aa

2 + O(a3)

γ21 =
α

2
CAa −

(

11

8
+
α

4

)

C2
Aa

2 + O(a3)

γ22 =
(

3

4
− α

4

)

CAa +

(

95

48
+
α

16
− α2

8

)

C2
Aa

2 + O(a3) (15)

where a = g2/(16π2), TATA = CF I, f
ACDfBCD = CAδ

AB and Tr
(

TATB
)

= TF δ
AB.

These results were obtained by renormalizing the operators in the Curci-Ferrari model

where there is a non-zero infrared regulating mass, by inserting them into gluon

and ghost two-point functions. The Curci-Ferrari model has the advantage that

external momenta can be nullified without introducing spurious infrared infinities as

a consequence. It remains merely to extract the infinities from the resultant vacuum

bubbles. Not only did we reproduce the one loop matrix of Kondo, [46], but we obtained

the result that

γm(g) = γ11(g) − αγ21(g) (16)

at two loops, thus verifying that O is multiplicatively renormalizable at this order.

For three loop calculations the massive propagator approach is tedious and we

produced an equivalent method based on the Mincer algorithm, [47, 48], which is

implemented in the symbolic manipulation language Form, [49]. For example, one can

determine δξ by treating the term 1
2JA

A
µA

Aµ of (10) as an interaction and computing

the divergence structure of the J two-point function with massless internal fields

but not internal J propagators, [24]. The explicit Feynman diagrams are generated

automatically with the Qgraf package, [50]. The Mincer algorithm was especially

appropriate for the three loop renormalization of QCD in the MAG, [51], which is

necessary for the construction of the two loop effective potential for the analogous

dimension two BRST invariant operator. Unlike the linear covariant gauges the full three

loop renormalization was determined only recently, [51]. Moreover, it was a significantly

large computation requiring the evaluation of 37322 Feynman diagrams compared with

of the order of 1000 for a linear covariant gauge three loop renormalization.

Briefly, the MAG involves the decomposition of the gauge field AAµ into diagonal

and off-diagonal sectors

AAµT
A = AaµT

a + AiµT
i (17)

where 1 ≤ a ≤ No
A and 1 ≤ i ≤ Nd

A and Nd
A is the dimension of the centre of the colour

group and No
A is the dimension of the remainder with Nd

A + No
A = NA. Notationally

we will reserve i, j, k and l for indices on objects which lie in the centre of the group

and the remaining lower case Roman letters for off-diagonal objects. Consequently, the

MAG gauge fixing term is, [26],

LMAG
gf = δδ̄

[

1
2A

a
µA

a µ + 1
2αc̄

aca
]

+ δ
[

c̄i∂µAiµ
]

(18)

where δ and δ̄ are the BRST and anti-BRST transformations. The remaining gauge

freedom associated with the diagonal gluons is fixed by using a Landau gauge. Further,
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the analogous mass operator to O is

OMAG = 1
2A

a
µA

a µ − αc̄aca . (19)

To renormalize the resultant Lagrangian

LMAG
gf = − 1

2α

(

∂µAaµ
)2 − 1

2ᾱ

(

∂µAiµ
)2

+ c̄a∂µ∂µc
a + c̄i∂µ∂µc

i

+ g
[

fabkAaµc̄
k∂µcb − fabcAaµc̄

b∂µcc

− 1

α
fabk∂µAaµA

b
νA

k ν − fabk∂µAaµc
bc̄k

− 1

2
fabc∂µAaµc̄

bcc − 2fabkAkµc̄
a∂µc̄b − fabk∂µAkµc̄

bcc
]

+ g2
[

facbdd AaµA
b µc̄ccd − 1

2α
fakblo AaµA

b µAkνA
l ν

+ fadcjo AaµA
j µc̄ccd − 1

2
fajcdo AaµA

j µc̄ccd

+ fajclo AaµA
j µc̄ccl + falcjo AaµA

j µc̄ccl − f cjdio AiµA
j µc̄ccd

− α

4
fabcdd c̄ac̄bcccd − α

8
fabcdo c̄ac̄bcccd

+
α

8
facbdo c̄ac̄bcccd − α

4
fabclo c̄ac̄bcccl

+
α

4
facblo c̄ac̄bcccl − α

4
falbco c̄ac̄bcccl +

α

2
fakblo c̄ac̄bckcl

]

where

fABCDd = f iABf iCD , fABCDo = f eABf eCD (20)

one introduces renormalization constants via, [26, 52, 53, 54, 55, 56],

Aaµo =
√

ZAA
a µ , Ai µo =

√

ZAi Ai µ

cao =
√

Zc c
a , c̄ao =

√

Zc c̄
a

cio =
√

Zci c
i , c̄io =

c̄i√
Zci

, ψo =
√

Zψψ ,

go = µǫZg g , αo = Z−1
α ZA α , ᾱo = Z−1

αi ZAi ᾱ . (21)

However, it is crucial to note that this choice is determined by the application of the

algebraic renormalization method, [26]. This shows, for example, that the diagonal ghost

two-point function is finite to all orders and implies that its anomalous dimension must

be deduced from another Green’s function such as the Aaµc̄
icb vertex. Also, the diagonal

gluon anomalous dimension is not independent since its associated renormalization

constant is equivalent to that for the coupling constant, [26]. A similar feature occurs

in the background field gauge, [57, 58, 59, 60]. Whilst the application of the Mincer

algorithm is straightforward to extract all the necessary renormalization constants, the

bulk of the work lies in symbolically implementing the underlying group theory relations

founded upon the elementary equations

f ijk = fajk = 0 , fabk 6= 0 , fabc 6= 0 . (22)



RGE and the LCO method 9

Consequently one obtains representative anomalous dimensions of the following form in

the MS scheme

γci(a) =
1

4No
A

[

No
A ((−α − 3)CA) +Nd

A ((−2α− 6)CA)
]

a

+
1

96No
A

2

[

No
A

2
(

(− 6α2 − 66α− 190)C2
A + 80CATFNf

)

+ No
AN

d
A

(

(− 54α2 − 354α− 323)C2
A + 160CATFNf

)

+ Nd
A

2
(

(− 60α2 − 372α + 510)C2
A

)]

a2

+
1

6912No
A

3

[

No
A

3((− 162α3 − 2727α2 − 2592ζ3α− 18036α

− 1944ζ3 − 63268)C3
A + (6912α+ 62208ζ3 + 6208)C2

ATFNf

+ (− 82944ζ3 + 77760)CACFTFNf + 8960CAT
2
FN

2
f )

+ No
A

2Nd
A((− 2754α3 + 648ζ3α

2 − 28917α2 − 4212ζ3α

− 69309α+ 37260ζ3 − 64544)C3
A

+ (25488α+ 103680ζ3 − 13072)C2
ATFNf

+ (− 165888ζ3 + 155520)CACFTFNf + 17920CAT
2
FN

2
f )

+ No
AN

d
A

2
((− 7884α3 + 22680ζ3α

2 − 84564α2 + 97524ζ3α

− 47142α+ 433836ζ3 − 56430)C3
A

+ (25056α− 124416ζ3 − 18144)C2
ATFNf)

+ Nd
A

3
((− 6480α3 + 34992ζ3α

2 − 70092α2 + 8424ζ3α

+ 114912α+ 77112ζ3 − 161028)C3
A)
]

a3 + O(a4) (23)

and

γO(a) =
1

12No
A

[

No
A ((− 3α + 35)CA − 16TfNf) +Nd

A ((− 6α− 18)CA)
]

a

+
1

96No
A

2

[

No
A

2
(

(− 6α2 − 66α+ 898)C2
A − 560CATfNf

− 384CFTfNf )

+ No
AN

d
A

(

(− 54α2 − 354α− 323)C2
A + 160CATfNf

)

+ Nd
A

2
(

(− 60α2 − 372α + 510)C2
A

)]

a2

+
1

6912No
A

3

[

No
A

3((− 162α3 − 2727α2 − 2592ζ3α− 18036α

− 1944ζ3 + 302428)C3
A

+ (6912α+ 62208ζ3 − 356032)C2
ATFNf

+ (− 82944ζ3 − 79680)CACFTFNf + 49408CAT
2
FN

2
f

+ 13824C2
FTFNf + 33792CFT

2
FN

2
f )

+ No
A

2Nd
A((− 2754α3 + 648α2ζ3 − 28917α2

− 4212αζ3 − 69309α+ 37260ζ3 − 64544)C3
A
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+ (25488α+ 103680ζ3 − 13072)C2
ATFNf

+ (− 165888ζ3 + 155520)CACFTFNf + 17920CAT
2
FN

2
f )

+ No
AN

d
A

2
((− 7884α3 + 22680α2ζ3 − 84564α2 + 97524αζ3

− 47142α+ 433836ζ3 − 56430)C3
A + (25056α− 124416ζ3

− 18144)C2
ATFNf ) +Nd

A

3
((− 6480α3 + 34992α2ζ3 − 70092α2

+ 8424αζ3 + 114912α+ 77112ζ3 − 161028)C3
A)
]

a3 + O(a4)

(24)

for the MAG mass operator where ζn is the Riemann zeta function, [51]. In addition

the three loop β-function correctly emerges from the diagonal gluon two-point function

which is a strong check on the programming and computation since not only must it

be independent of the gauge parameter α but also of the sector dimensions Nd
A and No

A .

Another useful check on this and the anomalous dimensions was the fact that the known

Curci-Ferrari gauge anomalous dimensions, [41, 42, 44], emerge in the limit Nd
A/N

o
A → 0.

This is consistent with the relation of the Curci-Ferrari gauge to the MAG, [13].

5. Results

Having detailed the renormalization group aspects underlying the LCO formalism we

now briefly summarize recent results of determining estimates for the gluon mass in

various gauges, [8, 24, 26]. First, for the Landau gauge the effective potential for σ is,

[8, 24],

V (σ) =
9NA

2
λ1σ

′ 2

+

[

3

64
ln

(

gσ′

µ̄2

)

− CA

(

351

8
CFλ1λ2 −

351

16
CFλ1λ3

+
249

128
λ2 −

27

64
λ3

)

+ C2
A

(

− 81

16
λ1λ2 +

81

32
λ1λ3

)

+
(

− 13

128
− 207

32
CFλ2 +

117

32
CFλ3

)]

g2NAσ
′ 2

π2
+ O(g4)

where space has restricted us to the one loop expression and λ1 = [13CA − 8TFNf ]
−1,

λ2 = [35CA − 16TFNf ]
−1, λ3 = [19CA − 8TFNf ]

−1 and σ = 9NA

(13CA−8TFNf )
σ′. Examining

the solution to V ′(σ) = 0 there are two possibilities which are 〈σ〉 = 0 or 〈σ〉 6= 0.

For the former this is the original classical vacuum but the latter corresponds to a

new vacuum which has an energy lower than the former. Thus in the presence of

the 1
2A

A
µA

Aµ operator the effective potential produces a new vacuum which is stable

unlike the now unstable (perturbative) classical vacuum. Moreover, boundedness of

the potential requires that [13CA − 8TFNF ] needs to be positive, [24]. Interestingly

this corresponds to the Landau gauge one loop gluon anomalous dimension which has

been suggested as part of the necessary criterion underlying confinement when that

problem is considered from a renormalization group perspective, [61, 62]. Consequently

if one defines m2
eff = σ/(gξ(g)) as an effective gluon mass then for SU(3) Yang-Mills
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meff = 2.13ΛMS from the two loop potential [8, 24]. This is within 2% of the one

loop estimate indicating a degree of stability in the approach. As an alternative one

can compute the gluon pole mass by first redefining σ′ in terms of the pole mass and

demanding the alternative condition, [63, 64],

dV (mpole)

dmpole
= 0 . (25)

Interestingly at one loop this produces a Yang-Mills mass which is independent of the

renormalization scale, [63]. Though at two loops, like the effective mass of [8], the pole

mass derived from the effective potential is scale dependent.

For the MAG the analysis is not fully complete as only the one loop potential for

SU(2) has been determined, [26]. However, the situation there is encouraging in that for

pure Yang-Mills a mass is generated for the off-diagonal gluons which is meff = 2.25ΛMS.

This is not dissimilar to the Landau gauge SU(2) estimate of meff = 2.03ΛMS. In

addition the off-diagonal ghost and diagonal gluon remain massless. The appearance

of the potential diagonal gluon mass operator, 1
2A

i
µA

i µ, in the LCO action used for the

MAG, [26], is excluded by the diagonal U(1) Ward identity deriving from the algebraic

renormalization analysis, [26]. We are unable to prove the renormalizability of the action

supplemented with a mass term like 1
2JAiµAi µ. Indeed overall this mass generation

scenario appears to be consistent with SU(2) lattice studies in the maximal abelian

gauge, [34, 35, 65].

6. Conclusions

We conclude with various observations. First, we have given an overview of the current

status of the application of the local composite operator method to the condensation of

a renormalizable dimension two operator in QCD in various gauges, concentrating on

the underlying renormalization group aspects. One main feature is the construction of a

two loop effective potential for the operator which requires knowledge of the three loop

anomalous dimensions of QCD. Whilst these are known for linear covariant gauges,

to examine the abelian dominance hypothesis in the infrared, the more appropriate

maximal abelian gauge needs to be used. This has required the full three loop

renormalization of QCD in the MAG, which is a significantly larger computation from

the point of view of the number of Feynman diagrams to be evaluated. Moreover, it

opens up the possibility of examining the generation of a mass for the off-diagonal gluon

at the two loop level and for gauge groups other than SU(2). Whilst this may seem to

be a feature of this gauge, the issue of whether one can access abelian dominance in a

covariant gauge, where the properties of the centre of the group are not explicit in the

fields one uses, has recently been studied using the LCO formalism, [66]. In particular

the presence of ghost condensates in SU(2) appears to be central in the dynamical

generation of a mass for the off diagonal gluons which is different from that of the

diagonal gluons. Indeed there would appear to be evidence from a recent lattice study

to support this point of view, [67].
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