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Abstract  

With the recovery of the European beaver (Castor fiber) and their capacity to 

engineer fluvial landscapes, questions arise as to how they influence sediment 

transport, including the spatio-temporal trends and patterns of sedimentation in 

beaver ponds. The Chevral river (Ardennes, Belgium) contains two beaver dam 

sequences which appeared in 2004. Volumes of sediment deposited behind the 

dams were measured and grain size distribution patterns were determined. Flow 

discharges and sediment fluxes were measured at the in- and outflow of each dam 

sequence. Between 2004 and 2011, 1710.1 m³ of sediment were deposited behind 

the beaver dams, with an average sediment thickness of 25.1 cm. The thickness of 

the sediment layer was significantly (p < 0.001) related to the area of the beaver 

ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal 

deposition pattern, in which ponds with thick sediment layers were preceded by a 

series of ponds with thinner sediment layers. A downstream textural coarsening in 

the dam sequences was also observed, probably due to dam failures subsequent to 

surges. Differences in sediment flux between the in- and outflow at the beaver 

pond sequence were related to the river hydrograph, with deposition taking place 

during the rising limbs and slight erosion during the falling limbs. The seven-

year-old sequences have filtered 190.19 tons of sediment out of the Chevral river, 

which is of the same order of magnitude as the 374.4 tons measured in pond 

deposits, with the difference between the values corresponding to beaver 

excavations (60.24 tons), inflow from small tributaries, and runoff from the valley 

flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar 
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in magnitude. The detailed analysis of sedimentation in beaver pond sequences 

confirms the potential of beavers to contribute to river and wetland restoration and 

catchment management. 

 

Key words: Castor fiber, sediment deposition, suspended sediment, 

zoogeography, headwaters, hydrograph  

 

1. Introduction 

The European beaver (Castor fiber) has recently reappeared in the northwest 

European fluvial landscape and has begun to exert a hydrologic impact. These 

rodents can attain 15-35 kg in body weight and are closely related to the North 

American beaver Castor canadensis (Lavrov and Orlov 1973). C. fiber was once 

widespread throughout the Eurasian continent, inhabiting river valleys in forested 

regions (Zharkov and Sokolov 1967; Djoshkin and Safonov 1972). At the end of 

the 19
th

 century, their population had declined to ca. 1200 beavers (Halley and 

Rosell 2003), mainly due to overhunting. Management measures (including strict 

hunting regulations) and reintroduction led to the recovery of the populations, 

allowing the beaver to recolonise much of its former habitat, including areas 

where it had been absent for centuries (Nolet and Rosell 1998; Halley and Rosell 

2003). In Belgium, Castor fiber was reintroduced in the 1990s (Huijser and Nolet 

1991; Libois 1993). 

Beavers have an important influence on their environment by creating dams, 

canals, and other structures to control water flow. They construct dams to 

guarantee a stable water level so that their lodge and burrow entrances stay below 

the water level without inundation of the nest chambers (Gurnell, 1998). These 

activities affect the hydro-geomorphology of catchments (Gurney and Lawton 

1996; Rosell et al. 2005). The construction of dams is their most remarkable 

activity (Butler 1991), as it influences the discharge flow and sediment flux of the 

stream. Beaver dams store water during peak flows so that in dry periods the 

stored water is released gradually, guaranteeing higher water levels during dry 

periods (Yeager and Hill 1954; Rutherford 1955; Parker 1986; Gurnell 1998; 

Nyssen et al. 2011). The capacity of the stream to transport sediment is also 

affected by beaver dams. Dams favour upstream sediment accumulation (Naiman 

et al. 1988; Butler and Malanson 1995) with the eventual development of 
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meadows (Ruedemann and Schoonmaker 1938; Kurstjens and Calle 2009). 

However, few beaver ponds undergo complete infilling since dam failures 

occurring during high flows cause outburst floods that erode beaver pond deposits 

(Butler 1989; Meentemeyer and Butler 1999; Green and Westbrook 2009). 

Few studies have examined sedimentation in beaver ponds, and they focused on 

C. canadensis (Naiman et al. 1986; Butler and Malanson 1995; Meentemeyer and 

Butler 1999; Pollock et al. 2007). Butler and Malanson (1995) correlated pond 

area and sediment volume with beaver dam age. They observed that sediment 

accumulation rate decreased with increasing age of the pond (Butler and 

Malanson 1995; Pollock et al. 2007). Beaver pond deposits not only contain 

sediment deposited from upstream, but also material of local origin mobilized by 

beaver activities (Butler 1991). By examining the grain size distribution, Butler 

and Malanson (1995) determined that the sediment in older ponds was finer than 

in younger ponds. An expected downstream sediment fining effect was not found 

by Bigler et al. (2001). Within a beaver pond, the surface layer sediment becomes 

finer downstream except near the dam, where coarser sediment is again deposited 

(Butler and Malanson 1995). Most of these studies concerned single beaver 

ponds, and sequences of dams have generally not been investigated. 

It has been suggested that C. fiber engineer fluvial landscapes differently that C. 

canadensis since they construct less extensive dams (Gurnell 1998). However, the 

hydrogeomorphic aspects of dams constructed by C. fiber have been studied only 

once (John and Klein 2004) and in that study the focus was on changes to 

floodplain morphology.  

Building upon earlier studies (Nyssen et al. 2011) related to the influence of 

beaver (C. fiber) dams on the flow regime of the Chevral river (Ardennes, 

Belgium), this research focuses on the influence of sequential dams on sediment 

fluxes. The main research questions concerned (1) the amount of sediment 

deposited upstream of the beaver dams, (2) spatio-temporal trends and patterns of 

sedimentation, and (3) the impact of the beaver dams on suspended sediment 

transport. 

 

2. Materials and methods 

2.1. Study area 
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The beaver dams studied in 2009-2011 were located in the valley of the Chevral, a 

sub-basin of the Ourthe Orientale (Fig. 1). This second order stream is a tributary 

to the Martin Moulin river, near Rensiwé, which flows as a third order stream into 

the Ourthe Orientale. The 317 km² Ourthe Orientale sub-basin (292 – 652 m a.s.l.) 

is part of the central Ardennes and largely located on Siegenian formations 

consisting of metamorphic schists (de Béthune and Brouckaert 1968; Goossens 

1984). The Chevral river originates in the northernmost part of the Chevral sub-

basin, which is located on Gedinnian rocks consisting of peat-covered slates and 

phyllades (Fig. 1). Major land uses are forest and permanent meadows. The 

alluvial plain adjacent to the stream is characterized by gleyification (Deckers et 

al. 1957). The average annual rainfall is 1016 (± 160) mm, which is evenly spread 

over the year (Nyssen et al. 2011). 

The first beaver dams in the Ourthe Orientale sub-basin were observed at the end 

of 2003. By 2010 there were approximately 120 beavers and 20 dam systems 

(Nyssen et al. 2011). Within the sub-basin, the Chevral river holds two sequences 

of beaver dams (Fig. 1), which were first observed in 2004. The first sequence 

consists of seven beaver dams, and its hydrology was studied by Nyssen et al. 

(2011). This sequence is located furthest downstream and the catchment area at 

the outflow is 14 km².  

*** Figure 1 approximately here *** 

 

2.2. Measurements of sediment deposition rates in beaver ponds 

The location of each dam was established based on GPS. Pond length and width 

were determined using a measuring tape. The volume and mass of pond deposits 

upstream of the beaver dams were measured during summer 2010. This was 

accomplished by wading through the ponds and using a graduated rod (resolution 

0.5 cm) to measure the depth from the water surface to the top of the sediment 

layer and the depth to the interface between the sediment layer and the underlying 

stream bed, soil A horizon, or buried bedrock at several points (Fig. 2). Because 

the transition from the unconsolidated sediment layer to the underlying layer is 

characterized by a marked difference in resistance, we could accurately determine 

when the stick reached the bottom of the sediment layer. The sediment thickness 

at that point was calculated from the difference between the two depths. The 

average measurement error was reasonably estimated at +/- 2 cm. The 
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measurements were performed in an upstream direction to avoid interference with 

the downstream sediment. 

*** Figure 2 approximately here *** 

The location of the measurement points was dependent on the shape of the beaver 

ponds. When the pond was elongated and clearly followed the old stream bed, the 

measurement points were located along a longitudinal transect and a few 

transverse transects (see further, Fig. 4). If the pond width was such that the old 

stream course could not be recognised, the measurement points were positioned 

according to a regular grid scheme laid out with the help of measuring tapes and 

stakes. If the old stream channel became evident at a certain distance upstream of 

the beaver dam, a combination of both methods was used. 

In sequence 1 there was one recent beaver dam that did not hold an upstream 

sediment layer, and in sequence 2 two ponds did not hold sediment. One of these 

was very small and one had burst. In total, sediment measurements were carried 

out in 34 beaver ponds (Table 1). 

*** Table 1 approximately here *** 

A few months after these sediment measurements, dam 2.16 burst and the 

upstream sediment layer surfaced. A discontinuous buried A horizon, ca. 5 cm 

thick, was observed beneath the sediment layer (Fig. 3). To verify whether the 

sediment measurements really measured the depth of the bottom of the sediment 

layer and not the bottom of the A horizon, control measurements were executed in 

the surfacing sediment layer together with a soil coring to determine which 

interface was measured. However, a clear soil profile could be obtained based on 

the soil coring for only two control measurements. In one control measurement 

the depth of the bottom of the sediment layer was sounded, but in the other control 

measurement the depth of the bottom of the A horizon was sounded. The possible 

error was within the range of the average estimated error of 2 cm, given that the A 

horizon was discontinuous and limited in thickness. In addition, this possible error 

only occurred in sediment measurements outside the old stream bed. Such errors 

are not possible in measurements within the old stream bed as the difference in 

resistance between the unconsolidated sediment and the stony stream bed is 

unequivocal.  

*** Figure 3 approximately here *** 
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Two sediment samples were collected in each of three ponds in sequence 1 and 

six ponds in sequence 2. The samples were obtained just upstream of the beaver 

dams, one at the centre and one at the side of the pond. The dry bulk density was 

determined, and the textures of samples from sequence 2 were determined by 

means of wet sieving and sedigraph (Micromeritics Sedigraph III).  

The areas of the beaver ponds and the volumes of the sediment layers were 

calculated in a GI-System (ArcMap 9.3) based on the field measurements. Rather 

than interpolating between the measurement locations, as for instance done by 

Westbrook et al. (2011), we chose to take into account the boundaries of the 

original river morphology, and the sediment volumes were calculated using a 

weighted mean based on Thiessen polygons created around the sediment 

measurement points (Fig. 4). For the creation of the Thiessen polygons, 

measurement points located in the old stream bed – considered 3 m wide – and 

points located outside the old stream bed were contrasted, as it was assumed that 

the deeper stream bed would produce a different sedimentation pattern. Of course, 

this distinction could only be made for beaver ponds where the old stream course 

was still observable; in locations where the measurement points were located on a 

regular grid, this distinction was not made. 

*** Figure 4 approximately here *** 

The sediment volume (V) in each beaver pond was calculated from: 

         (1) 

where n is the number of Thiessen polygons within the pond, Ai is the area of 

Thiessen polygon i [m²], and ti is the thickness of the sediment for Thiessen 

polygon i [m]. 

The average sediment thickness per beaver pond was calculated as: 

         (2) 

To gain insight into the variability of the sediment thickness within a particular 

pond, it was necessary to normalize it for the length of the beaver ponds. 

Therefore, a grid with pixels of 2 m by 2 m was created for each pond, and a value 

for the sediment thickness was attributed to each pixel corresponding to that of the 

nearest measurement. The average sediment thickness was calculated every 2 m 

upstream of the beaver dam (Fig. 5). After converting the length to 100%, an 
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average sediment thickness was obtained for every 5% of the pond length based 

on the nearest value. As this value for the sediment thickness was obtained at 

twenty locations for each pond, regularly spread along their length, these 

thicknesses could be converted into relative values:  

Ti = ti /          (3) 

in which Ti is the dimensionless sediment thickness parameter at location i, ti is 

the sediment thickness at location i [m], and i is the sequential number of the 

location along the pond, every 5% of its length (projected on a straight line 

between the centre of the downstream dam and the inflow location or centre of the 

bordering upstream dam). 

Using this approach, only the relative variability of sediment thickness within the 

beaver ponds is represented, enabling the variability within all ponds to be 

compared. 

*** Figure 5 approximately here *** 

In addition to sedimentation in the beaver ponds, deposition took also place in 

periodically flooded areas along the ponds. The presence of deposited sediment in 

these areas was locally observed, but no suitable method was devised to measure 

the volume of these deposits. Beavers also cause erosion, and canals excavated by 

beavers were observed in the periodically flooded alluvial plains (Fig. 6). The 

volume of these canals was quantified in order to assess erosion by beaver 

activity: canal lengths, widths, and depths were measured at two to five locations. 

Other forms of erosion such as bank slides and burrows were not observed. Dam 

failures occurring during periods of high flow in the winter of 2010-11 were also 

recorded. 

*** Figure 6 approximately here *** 

 

2.3. Hydrological monitoring of the Chevral river 

Hydrological measurements were executed on six days between October 2010 and 

March 2011 at four straight stream segments, located for sequence 1 at 100 m 

upstream of the uppermost dam (inflow) and 300 m downstream of the lowermost 

dam (outflow), and for sequence 2 at 600 m upstream of the uppermost dam and 

100 m downstream of the lowermost dam. Between the in- and outflow point of 

sequence 2, two tributaries flow into the Chevral R., whereas sequence 1 has no 
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tributaries. Discharges at the in- and outflow locations were calculated using the 

river flow continuity equation, 

Q = v S         (4) 

in which Q is the discharge flow [m
3 

s
-1

], v is the mean flow velocity [m s
-1

], and 

S is the cross-sectional area [m
2
]. The float method was used to measure the reach 

average flow velocity with ten individual floats of wine corks for each 

measurement. The measurements were performed over a predefined stream length 

and the geometry of a representative cross-section of each reach was measured. 

Measurements in which the float was obstructed by rocks or was trapped in small 

swirls were discarded and repeated. The float method is commonly restricted to 

straight reaches with a uniform cross-section and assumes a logarithmic 

distribution of velocity through depth. The calculations incorporate a correction 

factor of approximately 0.84 depending on the float shape and its submerged 

fraction (Linsley et al, 1988). This is correct for relatively deep (1 - 2 m) and 

smooth channels. Due to the very shallow flow depth (typically 10 - 40 cm), the 

rough bed with protruding boulders, a turbulent, highly-mixed flow, and the 

common occurrence of downward flow and upcurrent surface swirls, no 

correction coefficient was applied to the surface velocity measurements in order 

to prevent underestimation of the discharge flow. 

The suspended sediment concentration was obtained by centrifugation of a depth-

integrated water sample. The concentration was used to calculate the suspended 

sediment flux: 

Qs = CQ         (5) 

where Qs is the suspended sediment discharge [g s
-1

] and C is the suspended 

sediment concentration [mg l
-1

]. 

In addition, the same hydrological measurements had previously been performed 

on seven days between September 2009 – March 2010 at sequence 1 (Nyssen et 

al. 2011), making the observation periods 13 months at sequence 1 and 6 months 

at sequence 2.  

The 13 days of on-site flow discharge measurements at the outflow point of 

sequence 1 were correlated with data from the Rensiwé flow gauge located 4 km 

downstream on the Martin Moulin R. (Aqualim 2011); the high determination 

coefficient (r² = 0.86) indicates that our discharge measurements were consistent. 

The established relationship between these measurements permitted interpolation 
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of the discharge flow (Qout) at sequence 1 for each day of the study period. The 

same was done for the six days of on-site flow measurements at the outflow point 

of sequence 2. The daily discharges (Qout) were obtained based on regression (r² 

= 0.92) with the flow gauge data. 

 

3. Results 

3.1. Situation and dynamics of the beaver ponds 

Beaver dam systems comprise beaver ponds, areas along the ponds that are 

periodically flooded, and beaver canals (Fig. 7). The pond numbers used in this 

article are composed of the sequence number (1 or 2) and a number for the pond. 

The average pond area in sequence 1 was 345.2 m² (± 368.6 m²), with the smallest 

being pond 1.5 (131 m²) and the largest being pond 1.4 (1 092 m²). In sequence 2, 

the average pond area was 169.4 m² (± 209.8 m²). Pond 2.30 (8 m²) was the 

smallest and pond 2.21 (941 m²) the largest. Periodic flooding was induced by the 

beaver dams over an area of 4812 m² along sequence 1 and 8192 m² along 

sequence 2. 

*** Figure 7 approximately here *** 

A comparison of the state of the beaver ponds in April 2011 with their state 

during summer 2010 (Fig. 7) revealed that several dams had failed over the winter 

due to high flows. During the earliest high-flow period (November 2010), no dam 

failures were observed, only dam overflows. The failures occurred during a 

second period in January 2011 (Fig. 8). 

*** Figure 8 approximately here *** 

In sequence 2, the dam failures were mainly located in the middle of the sequence 

(Fig. 7), and all dams from 2.12 to 2.18 were burst. This series of dam failures is 

possibly due in part to the removal of dams 2.16 and 2.17 by municipal workers to 

protect a road from flooding (Fig. 9). This may have led to a cascade effect 

(Butler 1989) destroying dams 2.15 to 2.12. 

*** Figure 9 approximately here *** 

 

3.2. Sediment in dam systems 

The addition of pond deposits resulted in sediment volumes of 419.2 m³ in 

sequence 1 and 1290.9 m³ in sequence 2, for a total of 1710 m³ and an average 

sediment thickness in the ponds of 25.1 cm (Table 2). As the beaver dams were 
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first observed in 2004, the average sediment deposition rate over seven years was 

2.9 cm yr
-1

 in sequence 1, 3.9 cm yr
-1

 in sequence 2, and 3.6 cm yr
-1

 on average. 

The sediment mass was calculated using the average dry bulk density of 0.29 (± 

0.02) g cm
-
³ obtained from all sediment samples – no significant difference (p > 

0.05) was observed between the bulk densities of sequence 1 and sequence 2. The 

total sediment mass deposited in both dam sequences was 495.9 tons. As a result 

of the sediment sampling method, only the bulk density of the upper sediment 

layer was determined. However, Marsh et al. (1999) found an increasing bulk 

density with increasing sediment depth, and our sediment mass is probably 

slightly underestimated.  

*** Table 2 approximately here *** 

A portion of the deposited sediment was generated by the beavers themselves 

through canal excavation (Fig. 6). In the study area, 37 canals were observed and 

measured, 9 in sequence 1 and 28 in sequence 2 (Fig. 7). On average, these canals 

were 11.6 m long, 28.9 cm deep, and 49.1 cm wide. For each pond we calculated 

the sediment mass that was transported into it from the adjacent canals (Table 3). 

A total of 14.73 m³ of sediment was excavated along sequence 1 (40 m³ km
-1

) and 

42.43 m³ along sequence 2 (35 m³ km
-1

). Assuming a bulk density of 1.42 g cm
-3

 

in the alluvial plain (Rommens et al. 2006) the total mass of excavated alluvium 

amounted to 81.16 tons. 

*** Table 3 approximately here *** 

 

3.3. Sediment deposition patterns  

Sediment deposit volumes varied widely between beaver ponds. In sequence 1, 

the average sediment thickness varied between 7.3 cm (pond 1.2) and 27.1 cm 

(pond 1.4) and in sequence 2, from 1.2 cm (pond 2.25) to 50.7 cm (pond 2.11), 

excluding beaver pond 2.26. A similar variability occurred in the volume of the 

sediment, which in sequence 1 varied between 10.9 m³ (pond 1.5) and 296.4 m³ 

(pond 1.4), and in sequence 2 between 0.4 m³ (pond 2.30) and 411.0 m³ (pond 

2.21). 

Based on field observations, the variability in average sediment thickness between 

the beaver ponds was due to four factors: (1) the area of the beaver pond (as a 

proxy for sediment trapping efficiency), (2) the sediment volume released into the 

pond from the excavated canals, (3) the distance between the beaver dam and the 
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inflow point into the dam sequence, and (4) the quality of the beaver dams, which 

could only be qualitatively assessed. Beaver ponds 2.9, 2.10, 2.11, and 2.22 were 

fed by tributaries of the Chevral R. and water diverted by upstream beaver dams. 

Because they were not situated in the old stream bed, their position compared to 

the beginning of the sequence could not be determined. As a result, these ponds 

were not included in this analysis. Based on Kolmogorov-Smirnov tests, all 

observations were normally distributed, except for the sediment volumes 

delivered into the ponds from the canals. Pearson’s correlation coefficients 

between the average sediment thickness and the other three factors were 

calculated. The area of the beaver pond was the only factor with a significant 

correlation with the average sediment thickness (r² = 0.53; p < 0.001) (Fig. 10). 

Correlations with the location of the pond in the sequence and with beaver 

excavations in the adjacent alluvial plain were weak and insignificant (p > 0.05). 

*** Figure 10 approximately here *** 

It is possible a more complex sinusoidal relationship exists between the thickness 

of the sediment layer and the location of the beaver pond within the dam sequence 

(Fig. 11), in which ponds with a thick sediment layer are preceded by ponds with 

a thin sediment layer. 

*** Figure 11 approximately here *** 

The longitudinal variation in sediment thickness within beaver ponds (shown by 

means of the average values of the sediment thickness parameter Ti – eq. 3) was 

assessed by comparing the actually computed value to the expected value of this 

parameter in the case of evenly distributed sediment thickness, normalized to 100. 

An analysis of all beaver ponds (Fig. 12, curve (a)) revealed that the sediment 

layer was thinner than average at the upstream end of the pond and became 

increasingly thicker close to the dam. A t-test indicated that the relative sediment 

thickness was significantly different (p < 0.05) from 100 at the lower and upper 

ends of the beaver pond. 

The average pattern corresponded well to the pattern of sediment thickness in 

ponds connected to a stream section at the upper end (Fig. 12, curve (b)). Ponds 

bordered both upstream and downstream by beaver dams (Fig. 12, curve (c)) had 

more constant sediment thickness, and a significant difference (p < 0.05) from 100 

occurred at only 1 of the 20 locations examined. 

*** Figure 12 approximately here *** 
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The twelve sediment samples collected at sequence 2 were characterized by a 

small clay fraction: 5.6% (± 1.8%). A greater variability was observed in the silt 

and sand fractions of the sediment samples with an average silt fraction of 59.3% 

(± 17.4%) and an average sand fraction of 35.1% (± 18.7%). The cumulative grain 

size distribution curves for all of the sediment samples (Fig. 13) indicate that the 

sediment within the dam sequence becomes coarser when it is deposited further 

downstream in the sequence. Sediment samples from ponds 2.1, 2.6, and 2.13 had 

larger sand fractions than samples from ponds 2.15, 2.21, and 2.28, which were 

predominantly silt. 

*** Figure 13 approximately here *** 

We found no significant differences between the texture of sediment deposited at 

the centre and sediment deposited at the side of the ponds. Further, no significant 

difference was found between the sediment texture in large and small ponds, or 

between the texture of thick and thin sediment layers (all p > 0.05).  

 

3.4 Flow discharge and sediment flux 

To study the impact of the beaver dams on suspended sediment transport, 

hydrological measurements were carried out on the Chevral river. (Table 4). 

There were two days of high flow discharge (14 November 2010 and 12 January 

2011). The first high flood occurred just after a period of heavy rainfall and the 

second during a period of snowmelt. On both days, greater flow was also recorded 

at the lower measurement stations. A similar downstream increase in flow was 

observed on most measurement days and may be explained by the two tributaries 

flowing into the Chevral R. between the inflow and outflow point of sequence 2 

and the three tributaries situated between the two dam sequences. On average no 

significant differences (p > 0.05) were observed between the incoming and 

outgoing suspended sediment concentration or sediment flux. However, a 

significant difference (p = 0.020) was noted between the suspended sediment 

concentrations in September 2009 to March 2010 and those in October 2010 to 

March 2011. This is probably due to forest management activities in the Chevral 

R. basin during these periods. Greater sediment concentrations and fluxes at the 

inflow point than at the outflow point were recorded for sequence 1 on 17 

November 2009 and for sequence 2 on 6 November 2010. These two days were 

also the only field days in which measurements were carried out during rainfall. 
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Low sediment fluxes were observed (around 5 g s
-1

) on other days except those 

with high flow discharge (14 November 2010 and 12 January 2011). 

*** Table 4 approximately here *** 

A logarithmic regression was established between daily average flow values 

measured at the downstream Rensiwé flow gauge on the Martin Moulin R. for the 

thirteen days of field measurements and our own instantaneous measurements at 

the outflow point of sequence 1 (r² = 0.86), which enabled interpolation of the 

outflow of sequence 1 over the period September 2009 – March 2011 (Fig. 14). 

The same process was performed for the outflow of sequence 2 (r² = 0.92) based 

on six instantaneous field measurements, permitting interpolation of outflow 

measurements at sequence 2 between October 2010 and March 2011 (Fig. 15a). 

Due to the occurrence of high flow on two of the field days, nearly the entire flow 

range was included in these analyses, which strengthened both regressions and 

interpolations. 

*** Figure 14 approximately here *** 

*** Figure 15 approximately here *** 

The hydrological measurements were also analyzed with regard to position on the 

hydrograph (Fig. 16). When the flow was in a rising phase, suspended sediment 

was deposited in the ponds of sequence 2, while in the falling limbs, slight 

removal of sediment occurred.  

*** Figure 16 approximately here *** 

Using the trends established for sequence 2, the sediment deposited in this 

sequence during the study period could be estimated. The average sedimentation 

during the rising phases of the flow was 12.44 g s
-1

 and the average erosion during 

the declining phases was 1.21 g s
-1

 (Fig. 15b). For undetermined phases and also 

for minima and maxima in the flow (occurring at transitions between rising and 

declining phases) the sedimentation rate was equalled to 0 g s
-1

. By plotting and 

integrating the cumulative sedimentation in sequence (Fig. 15c) it was found that 

13.12 tons of suspended sediment was filtered from the Chevral R. during the six-

month study period. Extrapolation back to 2004 when the beaver dams were 

constructed reveals that 190.19 tons of sediment transported by the Chevral R. 

would have been deposited in sequence 2. 

 

4. Discussion 
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4.1. Spatial trends and patterns in deposited sediment 

The average annual beaver pond sedimentation rate of 3.6 cm yr
-1

 in this river 

draining a forested catchment is within the range measured in North America 

(Butler and Malanson 2005). The significant correlation between average 

sediment thickness in beaver ponds and pond area (r² = 0.73; p < 0.001) (Fig. 10) 

may be explained by the relationship between the area of a beaver pond and the 

age of the dam, as described by Butler and Malanson (1995). Richard (1967) 

reported that beavers progressively enlarge their dams both in height and laterally 

across the adjacent floodplain. As the dam is enlarged, not only is more water 

stored, but also more sediment is deposited. Furthermore, after building their 

dams with branches the beavers use mud to fill the gaps between the branches 

(Richard 1955). These gaps become better filled over the years until the dam is 

abandoned (Woo and Waddington 1990), strengthening the dam and resulting in 

higher sediment deposition.  

High flows can play an important part in the redistribution of sediment between 

beaver ponds in a dam sequence. These will cause gap flows and eventual dam 

failures (as observed in January 2011 in the study area), which can trigger a 

domino effect on downstream dams impacted by water-sediment surges (Marston 

1994). For rivers like the Chevral that are situated in a rather moderate relief, 

these outbursts will not have the catastrophic consequences (Harthun 2000) 

described by Butler (1989), and the domino effect may be stopped at larger ponds 

that will weaken the surge. Dam failure may explain the pattern in average 

sediment thickness for successive beaver ponds (Fig. 11). Ponds with a thin 

sediment layer would be located upstream of dams which are less resistant to high 

flows, while ponds with a thick deposit are located upstream of dams that are 

more resistant to surges and capable of retaining the sediment influx. This is 

consistent with our interpretation of the correlative relationship between sediment 

thickness and pond area (Fig. 7). On the other hand, visual interpretation of the 

locations of lateral inflow of water and sediment during storms does not show a 

link between these locations and the wave pattern of sediment deposition. 

Similarly to Bigler (2001), we did not observe downpond sediment fining. Dam 

failures are also a possible explanation for coarsening of the sediment texture in a 

dam sequence. The more downstream a dam is located within a sequence, the 

greater the chance that a dam failure occurred upstream in an earlier period, 
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causing a water-sediment surge and transporting coarser sediment mobilized from 

the stream bed into the pond. However, beaver ponds 2.21 and 2.28 had a thick 

sediment layer with a fine texture, demonstrating that factors other than dam 

failure may determine the spatial distribution of sediment in beaver dam 

sequences. 

There was also a systematic variation in the sediment thickness within the ponds. 

Overall, the sediment layer was thickest just behind the dams and became thinner 

upstream (Fig. 12, curve (a)). No evidence of deltas was present in the beaver 

pond intakes, possibly because of the large silt fraction in the sediment while 

deltas are mainly built up from sand. The variability in sediment thickness was 

different between ponds connected to a stream section at the upper side (Fig. 12, 

curve (b)) and ponds bordered by a beaver dam both upstream and downstream 

(Fig. 12, curve (c)). For the first group of ponds the sediment layer was thickest at 

the upper side of the beaver dams and gradually decreased in thickness upstream. 

Ponds enclosed within two beaver dams had a more even distribution of sediment 

thickness. Two differences between these pond types provide an explanation for 

the difference in sediment distribution. First, one may expect that the flow 

velocity in ponds bordered by only one dam will decrease gradually as the pond 

broadens, so most sedimentation will occur near the beaver dam, while for ponds 

bordered by dams at both ends, the inflowing water is already slowed by the 

upstream dam, yielding a more constant flow velocity and consequently more 

even sediment deposition. Secondly, in these latter ponds there are no fluctuations 

in pond length between dry and wet periods, in contrast to ponds that are bordered 

at one end by a stream section that expands or shrinks depending on the water 

level. In wet periods, the sedimentation in these ponds will begin further upstream 

from the dam than in dry periods because a fraction of the ponds will constantly 

fluctuate between stream and pond conditions. Hence, no thick sediment layer 

will accumulate in the most upstream portion of these ponds, as the sediment 

deposited during a wet period will be washed downstream during low pond 

stands. 

 

4.2. Temporal trends and patterns in suspended sediment flux 

In sequence 2, a net deposition (average of 12.44 g s
-1

) took place in the rising 

phase of floods, while an average net erosion of 1.21 g s
-1

 took place in the 
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declining phases. In contrast to what would be expected, beaver dams do not carry 

out constant sediment filtering, but instead have a similar effect on discharge as 

on suspended sediment flux. At high discharges water will be stored within a dam 

system and large fractions of the suspended sediment will be deposited, while 

during low flow discharges water will be released from the dam system, not only 

increasing downstream flow discharges (Gurnell 1998; Nyssen et al. 2011) but 

also remobilising sediment for transport out of the system. This relation was not 

observed in sequence 1, probably because the sediment fluxes at the inflow point 

of sequence 1 were already influenced by sequence 2. 

 

4.3 Sediment budget of the Chevral beaver dam system 

The relation between the suspended sediment fluxes and the position on the 

hydrograph provided an estimate for the amount of sediment filtered out of the 

Chevral R. by dam sequence 2 during the six-month study period of 13.12 tons. 

This could be extrapolated to 190.19 tons during the seven years the dams were in 

existence. The sediment mass obtained by this method could be compared with 

the deposited sediment mass of 374.4 tons (Table 2).  

The difference between sediment masses (Fig. 17) is assumed to result from (a)  

excavations by beavers, which were measured to be 60.24 tons (Table 3) at 

sequence 2, (b) the inflow of two tributaries of the Chevral R. as well as the 

incoming runoff from slopes and dirt roads along the 1.8 km length of sequence 2, 

and (c) differences in rainfall pattern and variability of the flow discharges 

between the study period and the preceding seven years as well as in dam 

retention capacities and in the intensity of forest management activities in the 

catchment. 

The fact that sequence 2 filtered 190.19 tons of sediment plus the sediment from 

the slopes of the Chevral R. in seven years may not be interpreted as an equivalent 

decrease in sediment inflow to the main river of the basin. The downstream effect 

of beaver dams is too complex for such a conclusion to be drawn. On one hand, it 

has been demonstrated that beaver dams reduce the flow velocity (Meentemeyer 

and Butler 1999), which diminishes the erosion capabilities of the river in 

downstream reaches. On the other hand, a clear water effect may occur due to 

sedimentation in the upstream beaver dams (Meentemeyer and Butler 1999) 

which could increase the erosive capacity of the stream. Consequently, there is a 
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need for further research into the downstream effect of beaver dams on the 

sediment fluxes of high order rivers.  

 

5. Conclusion  

The two beaver dam sequences on the Chevral R. together retained 1710.1 m³ of 

sediment in seven years, with an average thickness for all pond deposits of 25.1 

cm. Variations in sediment thickness between ponds could be explained by the 

area of the beaver ponds (r² = 0.53) (Fig. 7), and a pattern in the average sediment 

thickness of successive ponds (Fig. 11) was also observed. Both findings might be 

linked to the solidity of the beaver dams; the more the gaps within a dam are filled 

with mud by the beavers, the more incoming sediment is retained. In addition, 

solid dams may be more resistant to surges and receive sediment from upstream 

ponds having less resistant dams. It is possible the downstream coarsening of 

sediments in a dam sequence is due to erosive surges arising after dam failures or 

breaching. 

Trends in sediment thickness within beaver ponds were also examined. It was 

striking that no deltas were observed and that the sediment layer was thickest just 

upstream of the beaver dams. It was also found that ponds bordered by two dams 

had a more even sediment thickness than ponds bordered by a beaver dam only on 

the downstream end. This may be attributed to the difference in flow velocities 

through these ponds and seasonal variations in pond area. 

In sequence 2, the difference between the in- and outflowing suspended sediment 

fluxes was linked to the hydrograph of the Chevral R.: during rising limbs, 

deposition (average 12.44 g s
-1

) occurred, while during the falling limbs slight 

erosion (average 1.21 g s
-1

) took place. Based on this, it was calculated that 

190.19 tons of sediment were filtered from the Chevral R. by the beaver dams of 

sequence 2 over seven years. The deposited sediment mass measured on-site in 

the beaver ponds was 374.4 tons. The difference between these values could be 

explained by erosion caused by beavers, inflow from small tributaries, and runoff 

from the valley flanks (Fig. 17).  

The findings in this study confirm the results of a recent study (Burchsted et al., 

2010) which stresses the potential for beavers to contribute to river and wetland 

restoration as well as for catchment management. Further, the study of dam 

sequences reinforces the fact that sediment inputs and outputs from one beaver 
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pond cannot be understood without studying the sequence as a whole. 

Quantitative measurements of sediment deposition will be more reliable if an 

entire sequence of ponds is considered rather than an individual beaver dam pond 

given the high variability of sediment trapping in these ponds (Fig. 11). Finally, a 

comparison of sediment deposition rates in ponds constructed by C. fiber and 

those constructed by C. canadensis suggests that there is little difference in how 

the two species influence the hydrogeomorphology of fluvial systems.    
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Figure captions 1 

Fig. 1. The Ourthe Orientale sub-basin, with location of flow gauge and beaver 2 

dam sequences on the Chevral R. 3 

 4 

Fig. 2. Measurement of sediment thickness in beaver ponds, in which a graduated 5 

stick was first inserted to the top of the sediment and then to the interface between 6 

the sediment and in situ material. 7 

 8 

Fig. 3. Soil profile in beaver pond 2.16, with a buried A horizon and soil with 9 

gleyic properties (observation after dam breaching). 10 

 11 

Fig. 4. Location of measurement points and examples of Thiessen polygons used 12 

in three scenarios: (a) in the course of the Chevral R. (e.g. pond 1.2); (b) regular 13 

grid used when the pond occupied the previous floodplain (e.g. pond 1.3); (c) 14 

combination of the two previous methods (e.g. pond 2.21). 15 

 16 

Fig. 5. Thickness of sediment layer (in cm) on 2 m x 2 m grid points (e.g. pond 17 

1.2) used for calculating average sediment thickness at 1 m, 3 m, 5 m, etc. 18 

upstream of beaver dams based on thickness measured at nearest measurement 19 

point. Darker grey tones indicate thicker sediment deposits. 20 

 21 

Fig. 6. Canals excavated by beavers in the floodplain near pond 1.1. 22 

 23 

Fig. 7. Situation of the surveyed beaver dam systems; all ponds were present in 24 

October 2010; ponds reduced in size or eliminated due to breaching in winter 25 

2010-2011 are indicated. Arrows mark locations of lateral inflows from 26 

(temporary) rivers and roads during storms. 27 

 28 

Fig. 8. Changes to beaver dam and pond 2.14. Clockwise: dam and pond were 29 

intact in August 2010; dam failure (circled) in January 2011 (the snow-free area 30 

indicates the maximum extent of the water, just before breaching); pond became 31 

empty by March 2011; breach repaired and pond filled in October 2011. 32 

 33 

Fig. 9. Failure of beaver dam 2.17 in January 2011; the wood pieces (middle) are 34 

remnants of dam material removed from the stream bed by municipal workers 35 

(recent traces of machinery) to protect a road (behind the photographer) from 36 

flooding. The dam was destroyed at a high water level (probably the maximum of 37 

the flood) as can be observed from the extent of the snow-free area and from 38 

humidity on standing trees. 39 

 40 

Fig. 10. Average sediment thickness as a function of pond area. Labels indicate 41 

pond number. Sequential numbers are displayed for ponds with a thick sediment 42 

layer as compared to the nearby ponds (Fig. 11) and/or ponds where sediment was 43 

sampled.  44 
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 45 

Fig. 11. Average sediment thickness per beaver pond vs. distance from the inflow 46 

point of sequence 2; labels indicate sequential number of ponds with a thick 47 

sediment layer compared to nearby ponds. Beaver dams without ponds and those 48 

located in the alluvial plain away from the main stream are not indicated. Large 49 

dots at the bottom of the graphs indicate locations with major lateral inflow of 50 

water and sediment during storms. 51 

 52 

Fig. 12. Average relative sediment thickness (eq. 3) in beaver ponds as a function 53 

of distance behind the dam: (a) for all ponds (n = 34), (b) for ponds bordered by a 54 

beaver dam at the lower side only (n = 26), and (c) for ponds bordered both 55 

downstream and upstream by a beaver dam (n = 8). The flow direction is from 56 

right to left on the diagram. Values that are significantly different from 100 (p < 57 

0.05) are indicated by a small square. 58 

 59 

Fig. 13. Cumulative particle size distribution of all analyzed sediment samples 60 

(beaver pond sequence 2). Labels indicate pond number followed by c for centre 61 

and s for side of the pond. 62 

 63 

Fig. 14. Observed and calculated outflow at beaver pond sequence 1. 64 

 65 

Fig. 15. Calculation of sediment deposition in pond sequence 2 during the study 66 

period: (a) the flow (Q) at the outflow of sequence 2, (b) expected rate of 67 

sediment deposition or erosion (∆Qs) as a function of the rising and falling limbs 68 

of the hydrograph based on field measurements reported in Fig. 16. For 69 

undetermined phases and for minima and maxima in the flow discharge the 70 

sedimentation rate was set to 0 g s
-1

, (c) cumulative sedimentation based on eq. (5) 71 

or the product of (a) and (b). 72 

 73 

Fig. 16. Difference between suspended sediment flux at the in- and outflow points 74 

(∆Qs) of pond sequence 2 vs. the average flow discharge at these two 75 

measurement points. Observations were separated according to rising and falling 76 

limbs of the hydrograph. 77 

 78 

Fig. 17. Sediment budget for the beaver pond system 2 (2004 – 2011, in %), in 79 

which A = suspended sediment of the Chevral R. that was deposited (∆Qs), B = 80 

sediment originating from beaver canals (measured in situ), C = assumed input 81 

from side catchment, small tributaries, and adjacent rural roads, and D = possible 82 

errors in measurement and extrapolation. The sum of all fractions corresponds to 83 

the total mass of pond deposits in the dams of sequence 2 (374.4 tons).84 
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Tables 

 

 

Table 1. Deposited sediment thickness in beaver ponds. 

  Number of 

ponds with 

measurements 

Number of 

measurement 

points 

Average number of 

measurement points 

by pond 

Sequence 1 6 117 19.5 

Sequence 2 28 254 9.1 

Total 34 371 10.9 

 

 

 

Table 2. Mass and volume of beaver pond deposits. 

  n Average 

pond 

area (m²) 

Average sediment 

volume by pond 

(m³) 

Average 

sediment mass 

by pond (ton) 

Average 

sediment 

thickness (cm) 

Sequence 1 6 345.2 69.9 20.3 20.2 

Sequence 2 28 169.4 46.1 13.4 27.2 

Total 34 200.4 50.3 14.6 25.1 
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Table 3. Volumes of beaver excavations and estimated mass produced between 2004 and 2011, listed 

by beaver pond in which it was presumably deposited. 

Beaver pond Soil volume (m³) Soil mass (ton) 

Sequence 1   

Downstream of pond 1.1 2.09 2.97 

Pond 1.1 10.61 15.06 

Pond 1.5 1.50 2.13 

Unclear 0.53 0.75 

Total sequence 1 14.73 20.92 

Sequence 2   

Pond 2.3 4.37 6.21 

Pond 2.5 4.84 6.87 

Pond 2.6 3.73 5.30 

Pond 2.7 0.94 1.33 

Pond 2.12 3.41 4.85 

Pond 2.13 9.30 13.20 

Pond 2.14 9.35 13.28 

Pond 2.19 5.82 8.27 

Unclear 0.67 0.95 

Total sequence 2 42.43 60.24 

Total both sequences 57.16 81.16 
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Table 4. Measured stream and suspended sediment fluxes at the in- and outflow points of both 

sequences 

 Sequence 2 Sequence 1 

 Inflow point Outflow point Inflow point Outflow point 

Date 
Q  

(m³ s-1) 

C  

(mg l-1) 

Qs  

(g s-1) 

Q  

(m³ s-1) 

C  

(mg l-1) 

Qs  

(g s-1) 

Q  

(m³ s-1) 

C  

(mg l-1) 

Qs  

(g s-1) 

Q  

(m³ s-1) 

C  

(mg l-1) 

Qs  

(g s-1) 

30/09/2009       0.08 4.20 0.34 0.11 8.60 0.95 

9/10/2009       0.16 2.50 0.40 0.26 6.30 1.64 

12/10/2009       0.35 12.30 4.31 0.62 8.70 5.39 

1/11/2009       0.20 0.90 0.18 0.20 2.00 0.40 

17/11/2009       0.76 28.30 21.51 0.66 4.70 3.10 

24/01/2010       0.75 5.10 3.83 1.16 3.80 4.41 

26/03/2010       0.96 8.80 8.45 1.01 5.50 5.56 

9/10/2010 0.20 16.80 3.36 0.22 19.50 4.29 0.24 15.70 3.77 0.27 17.30 4.67 

23/10/2010 0.13 14.70 1.91 0.13 15.70 2.04 0.29 15.40 4.47 0.20 15.50 3.10 

6/11/2010 0.35 74.20 25.97 0.26 36.40 9.46 0.28 22.50 6.30 0.31 19.60 6.08 

14/11/2010 0.84 35.50 29.82 1.33 34.00 45.22 1.45 30.20 43.79 1.66 32.80 54.45 

12/01/2011 1.04 33.70 35.05 1.17 22.80 26.68 1.68 24.60 41.33 2.11 21.10 44.52 

12/03/2011 0.09 14.60 1.31 0.25 15.50 3.88 0.21 16.30 3.42 0.67 18.40 12.33 

Q = stream discharge; C = suspended sediment concentration; Qs = suspended sediment flux 


