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1 Introduction

Discussive logics (also called discursive logics) were introduced in 1948 by Sta-
nis law Jaśkowski and constitute the first family of formal paraconsistent logics.1

The basic mechanism behind discussive logics is as simple as ingenious.
Where L is some modal logic and Γ♦ = {♦A | A ∈ Γ}, a discussive logic
DL, associated with L, is obtained by specifying the language LD of DL and
by stipulating that, where A and the members of Γ are well-formed formulas of
LD, Γ `DL A iff Γ♦ `L ♦A.

It is easily observed that, given an appropriate choice of LD and of L, DL is
paraconsistent. This is the case, for instance, if LD is the language of Classical
Logic (henceforth CL) and L is S5 (in view of ♦A, ♦∼A 0S5 ♦B). Where “∧”
stands for the classical conjunction, discussive logics moreover do not allow to
infer A ∧ ∼A from A and ∼A (in view of ♦A, ♦∼A 0L ♦(A ∧ ∼A)).

Especially from the perspective of interpreting discussions, discussive logics
seem highly attractive. If two participants in a discussion contradict each other,
we tend to interpret their statements in a modal way: “Someone accepts A;
someone accepts ∼A”. From this, neither “someone accepts B” nor “someone
accepts both A and ∼A” follows. This is exactly what discussive logics allow
for.

There is, however, a drawback. If LD comprises the classical connectives,
the above mechanism leads to a system that is as rich as CL for single-premise
inferences, but that invalidates all interesting multiple-premise inferences of CL
(Adjunction, Modus Ponens, Modus Tollens, . . . ).

This is why Jaśkowski dismissed the idea to formulate discussive logics in
terms of the classical connectives (see [17, pp. 149–150]). Instead, he proposed

∗Research for this paper was indirectly supported by the Flemish Minister responsible
for Science and Technology (contract BIL01/80). The author is indebted to Leon Horsten,
João Marcos, Jerzy Perzanowski, Liza Verhoeven, and especially to the referee and to Diderik
Batens for comments and suggestions.

1The English translation of Jaśkowski’s 1948 paper dates from 1969, see [17].
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to define a number of “discussive connectives” that satisfy some or all of the
valid schemes and rules of the positive fragment of CL. For instance, the discus-
sive logic D2 is obtained by defining a discussive conjunction “∧d”, a discussive
implication “⊃d” and a discussive equivalence “≡d”:

A ∧d B =df A ∧ ♦B

A ⊃d B =df ♦A ⊃ B

A ≡d B =df (A ⊃d B) ∧d (B ⊃d A)

In addition to these three discussive connectives, the language of D2 contains
the classical negation “∼” and the classical disjunction “∨”. The definition of
D2 is completed by stipulating that, where S5d is S5 extended with the above
definitions and where A and the members of Γ contain at most the connectives
“∧d”, “⊃d”, “≡d”, “∼” and “∨”, Γ `D2 A iff Γ♦ `S5d ♦A.2

It is easily observed that, in D2, “⊃d” satisfies Modus Ponens (in view of
♦A, ♦(A ⊃d B) `S5d ♦B) and that “∧d” satisfies Adjunction (in view of ♦A,
♦B `S5d ♦(A ∧d B)). However, this way out seems to be inadequate with
respect to the intended application context. When interpreting a discussion, we
typically assume that a statement made by some participant is accepted by all
participants, unless and until this assumption turns out to be mistaken. This is
justified in view of the fact that participants are expected to object when they
do not agree with some of the statements made. Hence, even if we are willing to
‘isolate’ statements that contradict each other, we tend to conjoin them unless
and until they are proven to be inconsistent. Thus, if in a discussion A is
asserted by some participant and B by another, we assume that all participants
accept “A and B”, unless and until proven otherwise. However, the discussive
conjunction does not capture this. This is easily seen from the fact that, in D2,
A ∧d ∼A follows from A and ∼A.

The aim of this paper is to propose a different solution to the problem.
Instead of defining a series of discussive connectives, I shall design a discussive
system in which the multiple-premise rules of CL are validated ‘as much as
possible’. The resulting logic will be called Dr

2 and is meant as an alternative for
D2. Unlike what is the case for D2, Dr

2 will be defined both at the propositional
and the predicative level.

Like D2, Dr
2 incorporates the attractive properties of discussive logics (it is

paraconsistent and does not allow for the derivation of contradictions). However,
unlike D2, it is entirely formulated in the language of CL. As I shall show below,
this alternative solution leads to a more natural interpretation of discussions
than D2.

Another important difference between D2 and Dr
2 is that the latter is non-

monotonic. For instance, although p∧q is Dr
2-derivable from {p, ∼p, q}, it is not

Dr
2-derivable from {p, ∼p, q}∪{∼q}. As we shall see below, the non-monotonic

character of Dr
2 is related to the fact that it validates the multiple-premise rules

of CL ‘as much as possible’.
The techniques that led to Dr

2 derive from the adaptive logic programme.
The first adaptive logic was designed by Diderik Batens around 1980 (see [2])

2In the original version, the language of D2 does not include a discussive conjunction. The
latter was introduced in a later paper (see [18] for a translation). Axiomatizations of D2 are
presented in, for instance, [14], [19], and [15]; the axiomatization presented in [15] can also be
found in [1, p. 117]
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and was meant to interpret (possibly) inconsistent theories as consistently as
possible.3 Later the notion of an adaptive logic was generalized in different ways
(for instance, to capture ampliative forms of reasoning) and a whole variety of
adaptive logics was designed—see [5] for a survey. As we shall see below, the
importance of adaptive logics is that they enable one to study in a formally
exact way reasoning patterns that are non-monotonic and/or dynamic.4

I mentioned at the beginning of this section that a discussive logic DL is
defined in terms of a modal logic L. In line with this, Dr

2 will be defined in
terms of a modal adaptive logic (based on S5). The latter is called AJr.

I shall proceed as follows. After briefly explaining the basic ideas behind
adaptive logics (Section 2), I present an intuitive characterization of the logic
AJr (Section 3). The semantic and the (dynamic) proof theory of the proposi-
tional fragment of AJr is presented in Sections 4 and 5 and the extension to the
predicative level in Section 6. In Section 7, I prove some central metatheoretical
properties. The logic Dr

2 is presented in Section 8. I end with some conclusions
and open problems in Section 9.5

2 Some Basics of Adaptive Logics

One of the main characteristics of dynamic reasoning processes is that some
presupposition is maintained ‘as much as possible’, that is, unless and until
it is explicitly violated. When interpreting a discussion, for instance, one will
normally rely on the presupposition that a statement made by some participant
is accepted by all of them. However, when it is discovered that some participants
contradict each other with respect to one of the statements, the presupposition
will be abandoned for that particular statement. As a result, conclusions that
were previously drawn may be rejected.

Until quite recently, the existing formal systems were not suitable for reason-
ing processes like these. In most logics, the violation of some presupposition is
sanctioned with triviality. CL, for instance, presupposes consistency and turns
any theory that violates this presupposition into the trivial one.

In order to deal with theories that violate one or more CL-presuppositions,
a whole variety of non-classical logics was designed. Most of these are obtained
by simply dropping some CL-presuppositions and by restricting the inference
rules accordingly. Examples are Jaśkowski’s D2, da Costa’s C-systems, and
Priest’s LP. All of these drop the consistency presupposition, and restrict the
rules of inference in such a way that Ex Falso Quodlibet is invalidated. Also
these logics are inadequate for dynamic reasoning processes. Not only do they
fail to capture the dynamics involved, they are usually too poor to make sense
of actual reasoning processes (see [20] and [22] for examples from the history of
the sciences that illustrate this).

3Logics that satisfy this property are referred to as inconsistency-adaptive logics.
4A reasoning pattern is called dynamic if the mere analysis of the premises may lead to

the withdrawal of previously drawn conclusions. Not all dynamic reasoning patterns are non-
monotonic. In [7], for instance, Batens shows that the pure logic of relevant implication can
be characterized by a dynamic proof theory.

5Readers familiar with adaptive logics will see that I rely on insights and proof techniques
from [2], [3], [4] and [9]. The proofs of Lemma 1 and Theorem 10 rely on proof techniques
first presented in [3], the proof of Theorem 5 on a technique from [4].
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Adaptive logics are designed along a completely different line. An adaptive
logic AL that can handle violations of some particular presupposition P is
obtained, not by dropping P, but by ensuring that AL ‘adapts’ itself to specific
violations of P. Whenever P is violated, AL restricts the rules of inference that
depend on P (in such a way that triviality is avoided). However, where this is not
the case, the same inference rules are applicable in their full strength. As a result
of this ‘adaptation’, adaptive logics do not invalidate a set of inference rules,
but invalidate specific applications of such rules. Inconsistency-adaptive logics,
for instance, ‘localize’ the specific inconsistencies that follow from a possibly
inconsistent theory and adapt their inference rules to these. In inconsistent
contexts, they invalidate the application of some inference rules of CL. In
consistent contexts, however, the application of these same rules is validated.

The mechanism by means of which this contextual validation of inference
rules is realized will become clear below. At the moment, it suffices to note
that a rule may be validated with respect to some ‘parts’ of a theory, but in-
validated with respect to other ‘parts’ of that same theory. For instance, where
Γ = {p, ∼p, p ∨ q, ∼r, r ∨ s}, the inconsistency-adaptive logics ACLuN1 and
ACLuN2 (see [3]) invalidate the application of Disjunctive Syllogism to ∼p and
p ∨ q, but validate it with respect to ∼r and r ∨ s. This is why inconsistency-
adaptive logics lead (in general) to a much richer consequence set than the
paraconsistent logics mentioned above. Note also that, because of this contex-
tual validation of inference rules, adaptive logics tend to be non-monotonic. For
instance, in the above example, s is ACLuN1-derivable from Γ, but not from
Γ ∪ {r}.

Formally, an adaptive logic is defined in terms of three elements: a ‘lower
limit logic’ (some monotonic logic), a set of ‘abnormalities’ (a set of formulas
characterized by a possibly restricted logical form), and an ‘adaptive strategy’.
Two important restrictions on the first two elements are (i) that any abnor-
mality should be verified in some model of the lower limit logic, and (ii) that
extending the lower limit logic with the requirement that none of the abnormal-
ities is logically possible should result in a monotonic logic (called the ‘upper
limit logic’). In view of these restrictions, the upper limit logic incorporates a
presupposition that is absent in the lower limit logic, namely that all abnormal-
ities are false. This is the presupposition that is defeasible in the adaptive logic:
it is maintained ‘as much as possible’, but abandoned when necessary to avoid
triviality. Thus, in an adaptive logic, abnormalities are supposed to be false,
unless and until proven otherwise.6

An example may help to clarify the matter. Where ∃A abbreviates A pre-
ceded by a sequence of existential quantifiers (in some preferred order) over the
variables that occur free in A, the set of abnormalities of the inconsistency-
adaptive logics ACLuN1 and ACLuN2 consists of all formulas of the form
∃(A∧∼A). The lower limit logic of ACLuN1 and ACLuN2 is the paraconsis-
tent system CLuN (full positive CL plus the axiom A∨∼A). As ∼(A∧∼A) is
not valid in CLuN, any formula of the form ∃(A∧∼A) is true in some CLuN-
model. Extending CLuN with the requirement that no formula of the form
∃(A ∧ ∼A) is true (for instance, by extending it with the axiom ∼(A ∧ ∼A))
results in CL, which is the upper limit logic of ACLuN1 and ACLuN2. The

6Note that the term “abnormality” does not refer to the purported standard of reason-
ing, say CL. It refers to properties of the application context—to presuppositions that are
considered desirable, but that may be overruled.
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only difference between ACLuN1 and ACLuN2 concerns their adaptive strat-
egy (see below).

In all currently available adaptive logics, the abnormalities are delineated
by a certain logical form. For some adaptive logics, however, the set of abnor-
malities does not comprise all formulas of the form at issue, but only those that
satisfy some restriction. For instance, in some inconsistency-adaptive logics, a
formula of the form ∃(A∧∼A) only counts as an abnormality if A is a sentential
letter. A similar restriction will be introduced for the adaptive logic presented
below.

From what is said in the previous paragraphs, it may seem that abnormalities
are assumed to be false, unless they are derivable (by the lower limit logic)
from the set of premises. Although this holds true for some adaptive logics,
the situation is usually a bit more complicated. This is related to the fact
that, for most lower limit logics, a set of premises may entail a disjunction
of abnormalities, without entailing any of its disjuncts. For instance, most
inconsistency-adaptive logics are based on a paraconsistent logic according to
which (p ∧ ∼p) ∨ (q ∧ ∼q) is entailed by {p ∨ q, ∼p, ∼q}, without p ∧ ∼p and
q ∧ ∼q being entailed by it.

In line with the conventions from [8], disjunctions of abnormalities will be
called Dab-formulas and an expression of the form Dab(∆) will refer to

∨
(∆),

in which ∆ is a (finite) subset of the set of abnormalities. The Dab-formulas
that are derivable by the lower limit logic from the set of premises Γ are called
the Dab-consequences of Γ. Dab(∆) is called a minimal Dab-consequence of Γ if
and only if there is no ∆′ ⊂ ∆ such that Dab(∆′) is a Dab-consequence of Γ. If
Dab(∆) is a minimal Dab-consequence of Γ, it can be inferred from Γ that some
member of ∆ behaves abnormally, but it cannot be inferred which one. Hence,
except for the case where ∆ is a singleton for every minimal Dab-consequence
of Γ, there are different ways to interpret abnormal theories ‘as normally as
possible’.

It is in view of this fact that an adaptive strategy is needed. Intuitively, the
adaptive strategy specifies what it means that the abnormalities are supposed
to be false unless and until proven otherwise. The two basic strategies are
the Reliability strategy and the Minimal Abnormality strategy. The difference
between the two is most easily explained after discussing the semantics.

Given some set of premises Γ, the semantics of an adaptive logic is obtained
by selecting a subset of the models of the lower limit logic that verify Γ. In-
tuitively, those models are selected that, in view of the adaptive strategy, are
as normal as possible. Note especially that the intended selection can only be
defined by referring to some set of premises. Hence, it does not make sense to
say that some model of the lower limit logic is an adaptive model. It only makes
sense to say that it is an adaptive model of the set of premises at issue.

In order to see how the semantic selection is realized for the different adaptive
strategies, we need some further definitions. Where M is a model of the lower
limit logic, the abnormal part of M is denoted by Ab(M) and consists of all
the abnormalities that are verified by M . Where Dab(∆1), Dab(∆2), . . . are the
minimal Dab-consequences of Γ, the set U(Γ) = ∆1 ∪∆2 ∪ . . . stands for the set
of formulas that are unreliable with respect to Γ.

Whether or not some model of the lower limit logic is an adaptive model
of Γ depends on its abnormal part and on the adaptive strategy. According
to the Reliability strategy, for instance, a model M of the lower limit logic is
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an adaptive model of Γ iff M � Γ and Ab(M) ⊆ U(Γ). So, on this strategy
an abnormality is assumed to be false unless it is unreliable. The Minimal
Abnormality strategy is a bit less cautious: it selects those models that verify
(in a set-theoretical sense) a minimal number of abnormalities. Put in somewhat
more precise terms, a model M of the lower limit logic is selected by the Minimal
Abnormality strategy iff M � Γ and there is no model M ′ of the lower limit
logic such that M ′ � Γ and Ab(M ′) ⊂ Ab(M).

The proof theory of an adaptive logic is obtained by formulating a set of
unconditional rules and a set of conditional rules. The former comprises the rules
that are validated by the lower limit logic, the latter those that are validated
by the upper limit logic, but not by the lower limit logic. In addition to these
rules, the proof theory contains a ‘marking definition’ (see below).

The proof theory of adaptive logics is dynamical in a strong sense: conclu-
sions accepted at some stage of the proof may at a later stage be rejected. The
mechanism by which this is realized is quite simple. If a formula is added by
the application of a conditional rule, a ‘condition’ (a set of abnormalities) is
written to the right of the line. If a formula is added by the application of
an unconditional rule, no condition is introduced, but the conditions (if any)
that affect the premises of the application are conjoined for its conclusion. The
idea is that the condition specifies the abnormalities that are, in that particular
inference, assumed to be false. At each stage of the proof—with each formula
added—the marking definition is applied: for each line that has a (non-empty)
condition attached to it, it is checked whether the underlying assumption can
be maintained or not. If it cannot, the line at issue is marked and the formula
that occurs on it is no longer considered to be derived.

3 Intuitive Characterization of AJr

As AJr is meant to function as the basis for a discussive logic, it will only be
defined for sets of premises of the form Γ♦, where Γ is a set of non-modal wffs.
Intuitively, and in line with the intended application context, each member of
Γ can be taken to correspond to the conjunction of statements made by some
participant in a discussion.

The idea behind AJr is to presuppose that a statement made by some par-
ticipant in a debate is accepted by all of them—that �A (everybody accepts A)
is derivable from ♦A (somebody accepts A) or, what comes to the same, that
♦A ∧ ♦∼A (somebody accepts A and somebody accepts ∼A) is false—unless
and until proven otherwise. Let us call this the unanimity presupposition.

Where this presupposition is violated, AJr should behave like S5. This is
motivated by the fact that, even if ♦A ∧ ♦∼A holds true for some statement
A, it should still be possible to derive all CL-consequences from A and ∼A
separately. So, S5 is chosen as the lower limit logic of AJr.

The unanimity presupposition also enables us to define the set of abnor-
malities. At the propositional level, it consists of all formulas of the form
♦A∧♦∼A in which A is a sentential letter—note that ♦A∧♦∼A is S5-equivalent
to ∼(♦A ⊃ �A). The reason why a formula of the form ♦A∧♦∼A only counts
as an abnormality if A is primitive will be explained in the next section.

Extending S5 with the requirement that all abnormalities are false—for
instance, by extending it with the axiom ∼(♦A∧♦∼A)—gives us the logic Triv
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(see [16, p. 65]). This is the upper limit logic of AJr.7

As was mentioned in the previous section, a set of premises may entail a
disjunction of abnormalities without entailing any of its disjuncts. This is also
the case here. Consider, for instance, Γ♦ = {♦(p ∨ q), ♦∼p, ♦∼q}: neither
♦p ∧ ♦∼p nor ♦q ∧ ♦∼q is S5-derivable from Γ♦, but (♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q)
is.

This brings us to the choice of the adaptive strategy. As I mentioned above,
the idea behind AJr is to assume that the statements made in a debate are
shared as much as possible. Central in the decision on the adaptive strategy is
how this “as much as possible” should be interpreted in the case of disjunctions
of abnormalities. Suppose, for instance, that there are three participants in a
debate (A, B, and C), and that they make the following statements:

A: p ∧ r

B: q ∧ s

C: ∼p ∨ ∼q

Where Γ is the set of these three statements, Γ♦ entails (♦p∧♦∼p)∨(♦q∧♦∼q).
So, we are able to infer that there is a disagreement with respect to p or a
disagreement with respect to q. Now, what does it mean that the different
statements are shared ‘as much as possible’?

One possible interpretation would be that the differences in opinion are
minimized—that the participants disagree with respect to p or with respect
to q, but not with respect to both. This is the interpretation offered by the
Minimal Abnormality Strategy. On this strategy, it is assumed that either
all three participants accept p or all of them accept q. This seems intuitively
unjustified. A realistic interpretation of the discussion requires that we also
take into account situations in which, for instance, all three participants accept
the statement made by C. In such a situation, A would accept both p and ∼q
and B would accept both q and ∼p. Hence, there would be a disagreement
with respect to both p and q. This is what the Reliability Strategy allows for.
On this strategy, it is assumed that the participants maximally agree with one
another with respect to reliable statements, but not necessarily with respect to
unreliable ones.

This is the strategy AJr will be based on. As mentioned above, the Re-
liability Strategy leads to a slightly poorer consequence set than the Minimal
Abnormality Strategy. For instance, where Γ♦ = {♦p, ♦q, ♦(∼p ∨∼q), ♦(∼p ∨
r), ♦(∼q∨r)}, ♦r follows from Γ♦ according to the Minimal Abnormality Strat-
egy, but not according to the Reliability Strategy. This is related to the fact
that, also in this case, the Minimal Abnormality Strategy assumes that either
all participants accept p or all of them accept q.

4 Semantics of AJr

In this Section and the next one, I present the propositional fragment of AJr.
The extension to the predicative level will be discussed in Section 6.

7Triv is an analogue of CL: its language is modal, but A, ♦A and �A are logically
equivalent.
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Let Lp be the standard propositional language and L♦
p the propositional

fragment of the standard modal language. The sets Wp and W♦
p will refer,

respectively, to the wffs of Lp and of L♦
p . In this section and the next one, an

expression of the form Γ♦ will always refer to the set {♦A | A ∈ Γ} in which Γ
is a subset of Wp.

As explained above, the lower limit logic of AJr is S5 and its upper limit
logic is Triv. For the propositional case, one may consider any of the usual
formulations of S5 and of Triv (for instance, the ones from [16]).

Semantically, AJr is obtained from the S5-models of Γ♦ by the Reliability
Strategy. The idea is that any Γ♦ defines a set of unreliable formulas and
that those models are selected in which an abnormality is verified only if it is
unreliable. If the set of unreliable formulas defined by Γ♦ is empty, the AJr-
models of Γ♦ are its Triv-models.

At the propositional level, the set of abnormalities Ω consists of all formulas
of the form ♦A ∧ ♦∼A in which A is a sentential letter. Let Dab(∆) refer to∨

(∆), in which ∆ is a (finite) subset of Ω and let Dab-formulas and (minimal)
Dab-consequences be defined as in Section 2. For the sake of generality, A ∨
Dab(∅) will denote A.

I first define the abnormal part of an S5-model of Γ♦:

Definition 1 For any S5-model M of Γ♦, Ab(M) = {A | A ∈ Ω; vM(A) = 1}.

The set of formulas that are unreliable with respect to Γ♦ is defined as:

Definition 2 U(Γ♦) =
⋃
{∆ | Dab(∆) is a minimal Dab-consequence of Γ♦}.

Given these definitions, the semantic selection can be defined. An S5-model
of Γ♦ is reliable iff all abnormalities verified by it are unreliable:

Definition 3 An S5-model M of Γ♦ is reliable iff Ab(M) ⊆ U(Γ♦).

The AJr-models of Γ♦ are the reliable models of Γ♦ and the semantic con-
sequence relation is defined with respect to these:

Definition 4 For any A ∈ W♦
p , Γ♦ �AJr A iff all reliable models of Γ♦ verify

A.

To see what the AJr-semantics comes to, consider again the example from
the previous section where Γ♦ = {♦(p ∧ r), ♦(q ∧ s), ♦(∼p ∨ ∼q)}. The only
minimal Dab-consequence that follows from Γ♦ is (♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q).
Hence, in this case, U(Γ♦) = {♦p∧♦∼p, ♦q∧♦∼q}. In view of Definition 3 and
the fact that all S5-models of Γ♦ verify (♦p∧♦∼p)∨ (♦q ∧♦∼q), some reliable
models of Γ♦ verify ♦p ∧ ♦∼p (and hence, falsify �p), others verify ♦q ∧ ♦∼q
(and hence, falsify �q). As a consequence, neither �p nor �q is AJr-derivable
from Γ♦ (in view of Definition 4).

Consider now the abnormality ♦r ∧ ♦∼r. As is easily observed, some S5-
models of Γ♦ verify ♦r∧♦∼r. However, as ♦r∧♦∼r 6∈ U(Γ♦), all reliable models
of Γ♦ falsify ♦r ∧ ♦∼r, and hence, verify �r (in view of the fact that all S5-
models of Γ♦ verify ♦r). For analogous reasons, all reliable models of Γ♦ falsify
♦s ∧ ♦∼s, and hence verify �s. But then, all reliable models verify �(r ∧ s).
Hence, in view of Definition 4, �r, �s, and �(r ∧ s) are AJr-consequences of
Γ♦.

8



All this is exactly as it should be. From Γ♦, it follows that there is a
disagreement with respect to p or with respect to q. Hence, it should neither
be possible to derive that everybody accepts p nor that everybody accepts q.
However, as there is no explicit disagreement with respect to either r or s, it
should be possible to derive that the statements r and s are accepted by all
participants, and hence, that also r ∧ s is accepted by all of them.

Remark that if the set of abnormalities would comprise all formulas of the
form ♦A∧♦∼A, the intended selection would not be possible. This is illustrated
by the following example. Consider Γ♦ = {♦p, ♦∼p, ♦q}. From an intuitive
point of view, there is a disagreement with respect to p but not with respect
to q. Hence, we want all selected models to falsify ♦q ∧ ♦∼q, and accordingly,
to verify �q. However, if all formulas of the form ♦A ∧ ♦∼A would count
as abnormalities, one of the minimal disjunctions of abnormalities would be
(♦(∼p ∧ q) ∧ ♦∼(∼p ∧ q)) ∨ (♦q ∧ ♦∼q). Hence, ♦q ∧ ♦∼q would be unreliable,
and S5-models of Γ♦ that verify ♦q∧♦∼q would be reliable. As a consequence,
�q would be falsified in some reliable models of Γ♦ and �q would not be an
AJr-consequence of Γ♦.

5 Dynamic Proof Theory of AJr

In view of the results on other adaptive logics, the design of the proof theory
for AJr is straightforward. As is usual for adaptive logics, lines of a proof have
five elements: (i) a line number, (ii) the formula A that is derived, (iii) the line
numbers of the formulas from which A is derived, (iv) the rule by which A is
derived, and (v) a condition . The condition contains those abnormalities that,
in the inference at issue, are supposed to be false.

Following the generic proof format for adaptive logics from [8], I introduce
a premise rule PREM, an unconditional rule RU and a conditional rule RC. As
is usual, both RU and RC refer to derivability by the lower limit logic—in this
case S5. In addition to the inference rules, there is a marking definition (that
specifies which lines in the proof have to be marked).

The premise rule requires little explanation. Note only that, as it should be,
premises are introduced on the empty condition:

PREM At any stage of a proof, and for any A ∈ Γ♦, one may add to the proof
a line consisting of

(i) an appropriate line number,
(ii) A,
(iii) a dash,
(iv) “PREM”, and
(v) “∅”.

The unconditional rule RU allows one to add all S5-consequences of formulas
that already occur in the proof. As it name implies, the rule RU does not lead
to the introduction of any new condition. However, if the formulas to which RU
is applied occur themselves on a non-empty condition, then these conditions are
conjoined for the conclusion:

RU For any B ∈ W♦
p , if A1, . . . , An `S5 B, and A1, . . . , An (n ≥ 0) occur
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in the proof on the conditions ∆1, . . . , ∆n respectively, then one may
add to the proof a line consisting of

(i) an appropriate line number,
(ii) B,
(iii) the line numbers of the Ai,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪∆n.

The conditional rule RC requires a bit more explanation. As will be proven
in the next section, there is a special relation between derivability by the lower
limit logic of AJr and its upper limit logic, namely A1, . . . , An `Triv B iff,
for some ∆ ⊂ Ω, A1, . . . An `S5 B ∨ Dab(∆). Thus, it is warranted that,
whenever B is Triv-derivable from A1, . . . , An, there is a (possibly empty) set
of abnormalities ∆ such that B is S5-derivable from A1, . . . , An or one of the
members of ∆ holds true. The following examples illustrate this relation:

(1) ♦p `S5 �p ∨ (♦p ∧ ♦∼p)
(2) ♦(p ∧ q) `S5 �(p ∧ q) ∨ ((♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q))
(3) ♦(p ∨ q), ♦∼q `S5 ♦p ∨ (♦q ∧ ♦∼q)
(4) ♦(p ∨ q), ♦∼q `S5 �p ∨ ((♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q))

The rule RC is based on this relation. Whenever B ∨ Dab(∆) is S5-derivable
from some A1, . . . , An that occur in the proof, RC allows one to derive B on
the assumption that all members of ∆ are false. Technically, this is realized by
introducing ∆ as a new condition. Evidently, if some of the Ai occur themselves
on a non-empty condition, then these conditions are conjoined to ∆:

RC For any B ∈ W♦
p , if A1, . . . , An `S5 B ∨ Dab(∆), and A1, . . . , An

(n ≥ 0) occur in the proof on the conditions ∆1, . . . , ∆n respectively,
then one may add to the proof a line consisting of

(i) an appropriate line number,
(ii) B,
(iii) the line numbers of the Ai,
(iv) “RC”, and
(v) ∆ ∪∆1 ∪ . . . ∪∆n.

The following conditional rule is (obviously) derivable from RU and RC and
leads to proofs that are more interesting from a heuristic point of view; ω(A)
stands for the set {♦B ∧ ♦∼B ∈ Ω | B occurs in A}:

RD For any A ∈ W♦
p , if ♦A occurs in the proof on the condition ∆, then

one may add to the proof a line consisting of

(i) an appropriate line number,
(ii) �A,
(iii) the line number of ♦A,
(iv) “RD”, and
(v) ω(A) ∪∆.

Let us now turn to the marking definition. Given a dynamic proof, Dab(∆)
will be said to be a minimal Dab-formula at stage s of a proof iff, at that
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stage, Dab(∆) occurs in the proof on the empty condition and, for any ∆′ ⊂ ∆,
Dab(∆′) does not occur in the proof on the empty condition. The set Us(Γ♦)
comprises the unreliable formulas at stage s:

Definition 5 Us(Γ♦) =
⋃
{∆ | Dab(∆) is a minimal Dab-formula at stage s}.

The marking of lines is governed by the following definition:

Definition 6 Line i is marked at stage s iff, where ∆ is its condition, ∆ ∩
Us(Γ♦) 6= ∅.

If, at stage s of a proof from Γ♦, a formula A occurs on a line that is not
marked, then A is said to be derived from Γ♦ at that stage of the proof. Whenever
a line is added to the proof, lines that were previously marked may be unmarked
and vice versa. However, the notion of final derivability is independent of the
way in which the proof proceeds:

Definition 7 A is finally derived in a proof from Γ♦ iff A is derived on a line
that is not marked, and any extension of the proof in which A is marked may
be further extended in such a way that A is unmarked.

As may be expected, the derivability relation is defined with respect to final
derivability:

Definition 8 For any A ∈ W♦
p , Γ♦ `AJr A (A is finally derivable from Γ♦) iff

A is finally derived in an AJr-proof from Γ♦.

To end this section, I present a simple example of an AJr-proof from Γ♦ =
{♦(p∧r), ♦(q∧(∼r∨s)), ♦(∼p∨∼q)}. Let us begin by introducing all premises:

1 ♦(p ∧ r) – PREM ∅
2 ♦(q ∧ (∼r ∨ s)) – PREM ∅
3 ♦(∼p ∨ ∼q) – PREM ∅

From these, we can derive each of the following by means of RU:

4 ♦p 1 RU ∅
5 ♦r 1 RU ∅
6 ♦q 2 RU ∅
7 ♦(∼r ∨ s) 2 RU ∅

From 4, we can derive, by means of RD, that everybody accepts p, on the
condition that “somebody accepts p and somebody accepts ∼p” is false:

8 �p 4 RD {♦p ∧ ♦∼p}

By an analogous reasoning, we can also add each of the following:

9 �r 5 RD {♦r ∧ ♦∼r}
10 �q 6 RD {♦q ∧ ♦∼q}
11 �(∼r ∨ s) 7 RD {♦r ∧ ♦∼r, ♦s ∧ ♦∼s}

Suppose, however, that, at this stage of the proof, we realize that the following
Dab-formula is derivable from 3, 4 and 6:
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12 (♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q) 3, 4, 6 RU ∅

As soon as the formula on line 12 is added to the proof, the conditions of lines 8
and 10 are no longer satisfied. Hence, the marking definition forces us to mark
these lines. This is how the proof looks like at stage 12 (lines 1 to 7 are as
before):

. . .
8 �p 4 RD {♦p ∧ ♦∼p} X12

9 �r 5 RD {♦r ∧ ♦∼r}
10 �q 6 RD {♦q ∧ ♦∼q} X12

11 �(∼r ∨ s) 7 RD {♦r ∧ ♦∼r, ♦s ∧ ♦∼s}
12 (♦p ∧ ♦∼p) ∨ (♦q ∧ ♦∼q) 3, 4, 6 RU ∅

At this stage of the proof, the formulas that occur on lines 8 and 10 are no
longer considered to be derived in the proof. Note, however, that the formulas
on lines 9 and 11 are still derivable, despite the fact that, at the level of the
premises, r as well as ∼r ∨ s are conjoined to statements about which there is
a disagreement. This is as it should be: it is not because one of the statements
of a participant turns out to be problematic, that all statements made by this
participant should be considered as problematic. (Remember that each of the
premises stands for a conjunction of statements made by some participant in
the debate.)

For this simple propositional example, it is easily observed that the formulas
on lines 9 and 11 are finally derivable from Γ♦. So are the following formulas:

13 �s 9, 11 RU {♦r ∧ ♦∼r, ♦s ∧ ♦∼s}
14 ♦(p ∧ s) 4, 13 RU {♦r ∧ ♦∼r, ♦s ∧ ♦∼s}

As the formula on line 14 indicates, statements about which there is a disagree-
ment can be conjoined to statements that are accepted by all participants. Also
this is as it should be: if it is derivable that all participants accept s and that
somebody accepts p, it should also be derivable that somebody accepts p ∧ s.

6 The Predicative Version of AJr

In order to generalize AJr to the predicative level, I first need to present the
predicative version of its lower limit logic. In view of the metatheory, I shall rely
on a somewhat unusual version of S5 that was first presented in [9]. What is
peculiar about it is that the S5-models are characterized in terms of CL-models.

Let L be the standard language of CL, and let C, V, F , Fp and W be the sets
of individual constants, individual variables, formulas, primitive formulas and
wffs (closed formulas). A formula is considered as primitive if it is a sentential
letter or a primitive predicative formula. I shall use small Greek letters for
metavariables of individual variables and individual constants, small letters from
the beginning of the Latin alphabet for individual constants and small letters
from the end of the Latin alphabet for individual variables. From now on, Γ♦

will refer to the set {♦A | A ∈ Γ} in which Γ is a subset of W.
Let M = 〈D, v〉 be a standard CL-model, with D the domain and v the

assignment function. To simplify matters, quantifiers are handled in terms of

12



the pseudo-language L+. This is obtained by adding, to the set of constants
C, a set of pseudo-constants O that has at least the cardinality of the largest
model one wants to consider and by requiring that the assignment function
v : C ∪ O −→ D is surjective. W+ will refer to the set of wffs of L+.

Where L♦ is the standard modal language, L♦+ is obtained from the latter
by introducing the set of pseudo-constants O next to the set of constants C. Let
W♦ and W♦+ refer to the wffs of L♦ and L♦+.

An S5-model is a couple M = 〈Σ∆,M0〉, where ∆ is a set of wffs of L, Σ∆

is the set of all CL-models of ∆, and M0 ∈ Σ∆.
Let vM : W+ −→ {0, 1} be the valuation function determined by the CL-

model M . The valuation function vM : W♦+ × Σ∆ −→ {0, 1} determined by
the model M = 〈Σ∆,M0〉 is defined by:

C1 where A ∈ Fp, vM(A,Mi) = vMi
(A)

C2 vM(∼A,Mi) = 1 iff vM(A,Mi) = 0
C3 vM(A ∧B,Mi) = 1 iff vM(A,Mi) = vM(B,Mi) = 1
C4 vM((∀α)A(α),Mi) = 1 iff vM(A(β),Mi) = 1 for all β ∈ C ∪ O
C5 vM(�A,Mi) = 1 iff vM(A,Mj) = 1 for all Mj ∈ Σ∆.

The other logical constants are defined as usual. A modelM verifies A ∈ W♦

iff vM(A,M0) = 1. A is valid iff it is verified by all models. From now on, the
term “S5-model” will always refer to a model as defined here.

The following two theorems illustrate some interesting properties of the S5-
semantics.

Theorem 1 Where A is a wff of L+, vM(A,Mi) = vMi
(A).

Proof. By an obvious induction on the complexity of A, where the complexity of
a formula that contains defined logical symbols is identified with the complexity
of the formula it abbreviates. The basis of the induction is provided by C1; the
cases of the induction step are obvious in view of C2–C4.

Let the fully modal formulas of L♦+ be the formulas of the form �B and
♦B as well as all formulas obtained from these by the formation rules of L♦+,
and let the fully modal wffs of L♦+ be the closed fully modal formulas of L♦+.

Theorem 2 If M = 〈Σ∆,M0〉 is an S5-model, and M1,M2 ∈ Σ∆, then, for
all fully modal wffs A, vM(A,M1) = vM(A,M2).

Proof. By an obvious induction on the complexity of A. The complexity of
formulas that contain defined logical symbols is handled as in the proof for
Theorem 1. The basis of the induction is provided by C5; the cases of the
induction step are obvious in view of C2–C4.

The above semantics is rather peculiar. Each of the S5-models corresponds
to a standard worlds-model, but not vice versa. Nevertheless, it is proven in [9]
that the semantics is adequate with respect to a predicative version of S5 (with
the Barcan Formula, but without necessity of identity). Here is an axiomatiza-
tion (the α and β should be interpreted in such a way that all main formulas
are wffs):
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A1 A ⊃ (B ⊃ A)
A2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A3 ((A ⊃ B) ⊃ A) ⊃ A
A4 ∼∼A ⊃ A
A5 (A ⊃ B) ⊃ ((A ⊃ ∼B) ⊃ ∼A)
A6 (∀α)A(α) ⊃ A(β)
A7 α = α
A8 α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an occurrence

of α that occurs outside the scope of a modality by β
A9 �A ⊃ A
A10 �(A ⊃ B) ⊃ (�A ⊃ �B)
A11 ♦A ⊃ �♦A
A12 (∀α)�A(α) ⊃ �(∀α)A(α)

MP From A and A ⊃ B to derive B
NEC From ` A to derive ` �A
R∀ From ` A ⊃ B(β), to derive ` A ⊃ (∀α)B(α), provided β does not occur

in either A or B(α)

D∨ A ∨B = ∼A ⊃ B
D∧ A ∧B = ∼(∼A ∨ ∼B)
D≡ A ≡ B = (A ⊃ B) ∧ (B ⊃ A)
D∃ (∃α)A = ∼(∀α)∼A
D♦ ♦A = ∼�∼A

Definition 9 An S5-proof is a list of wffs of L♦ in which each member is an
axiom, or a premise, or obtained by an application of a definition or of MP from
previous members, or obtained by an application of NEC or R∀ from previous
members that do not have any premise in their paths.

Definition 10 Γ `S5 A iff there is an S5-proof of A in which only members of
Γ occur as premises.

The proof of the following theorem is standard:

Theorem 3 If A1, . . . , An `S5 A, then A1, . . . , An−1 `S5 An ⊃ A. (Deduction
Theorem)

For the Soundness and Completeness proof, I refer to [9]:

Theorem 4 Γ �S5 A iff Γ `S5 A.

Note that the semantics for the predicative version of Triv is easily obtained
from that for S5. The Triv-models are the S5-models M = 〈Σ∆,M0〉, such
that, for some maximal consistent subset Θ ⊂ W, Σ∆ = ΣΘ. An axiomatization
for Triv is obtained by adding the axiom ∼(♦A ∧ ♦∼A) to the axiomatization
for S5.

Given the predicative version of the lower limit logic of AJr, the general-
ization to the predicative level is absolutely straightforward. The only further
change concerns the set of abnormalities. This is most easily illustrated by an
example. Consider, for instance, Γ♦ = {♦(∀x)(Px∨Qx),♦(∃x)(∼Px∧∼Qx)}.
From this, no quantifier-free Dab-formula is S5-derivable, but (∃x)(♦Px ∧
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♦∼Px)∨(∃x)(♦Qx∧♦∼Qx) is. This gives us the desired generalization. Where
∃A is defined as before, the set of abnormalities Ω consists of all formulas of the
form ∃(♦A ∧ ♦∼A), in which A ∈ Fp. From now on, Ω will refer to this set.

The semantics and the proof theory are obtained in exactly the same way as
for the propositional case, except that all references to “Γ♦”, “Ω”, “Dab(∆)”,
“S5” and “AJr” should be interpreted at the predicative level, and that all
occurrences of W♦

p should be replaced by W♦.

7 Some Metatheory

In this Section, I show some basic properties of the semantics and the proof
theory of AJr. All proofs are for the predicative version. A first series of
properties concerns the adequacy of the semantic selection.

If some Γ does not have S5-models, its set of consequences is trivial. Hence,
it is important to check whether any Γ that has S5-models also has AJr-models.
This property is called Reassurance and was first discussed in [24]. Where AL
is an adaptive logic and L is its lower limit logic, Reassurance holds in AL
iff there are AL-models for any set of premises that has L-models. In [4],
Batens discusses the related property Strong Reassurance: for every L-model
M , there is an AL-model M ′ such that Ab(M ′) ⊆ Ab(M).8 I now show that
both properties hold for AJr.

We first need some definitions. Let Φ◦(Γ♦) be the set of all sets that contain
one disjunct out of each minimal Dab-consequence of Γ♦. Let Φ?(Γ♦) contain,
for any φ ∈ Φ◦(Γ♦), the set CnS5(φ) ∩ Ω. Finally, let Φ(Γ♦) contain those
members of Φ◦(Γ) that are not proper supersets of other members of Φ◦(Γ♦).
It is easily observed that, for every φ ∈ Φ(Γ♦), if A is true in an S5-model M,
for every A ∈ φ, then every minimal Dab-consequence of Γ♦ is true in M.

Lemma 1 If Γ♦ has S5-models, then, for any φ ∈ Φ(Γ♦), Γ♦ has an S5-model
M such that Ab(M) = φ.

Proof. Suppose that Γ♦ has S5-models. Consider a denumerable O′ ⊂ O and
let L♦′

be obtained from L♦ by extending C to C ∪ O′. Let B1, B2, . . . be a
list of all wffs of L♦′

such that, if Bi = (∃α)C(α) then Bi+1 = C(β) for some
β ∈ O′ that does not occur in B1, . . . , Bi. Select some φ ∈ Φ(Γ♦). In view of the
definition of Φ(Γ♦), it is easily observed that, for every Σ ⊂ Ω, φ `S5 Dab(Σ) if
Γ♦ `S5 Dab(Σ). Define:

∆0 = CnS5(Γ♦ ∪ φ)

∆i+1 = CnS5(∆i ∪ {Bi+1})

if there is no Σ such that Dab(Σ) ∈ CnS5(∆i ∪{Bi+1}) and φ 0S5 Dab(Σ), and

∆i+1 = CnS5(∆i ∪ {∼Bi+1})

otherwise. Finally,

∆ = ∆0 ∪∆1 ∪∆2 ∪ . . .

8As explained in [4], adaptive logics for which Strong Reassurance fails lead to counter-
intuitive results.
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Consider a function h : C∪O −→ C∪O′ such that h(α) = α for all α ∈ C∪O′,
and extend it to wffs by defining h(A) as the result of replacing in A any
α ∈ C ∪ O by h(α). Finally, define ∆? = {A | h(A) ∈ ∆}. It is easily seen that
∆ ⊂ ∆? and that ∆? is closed under S5-derivability.

Define Θ = {A | A is a wff of L; �A ∈ ∆?}, and Λ = {A | A is a wff of L+;
A ∈ ∆?}. Let M0 be the unique CL-model—see (ii) below—defined by Λ. Let
M = 〈ΣΘ,M0〉.

Each of the following is easily proved:

(i) Θ ⊆ Λ (if �C ∈ ∆?, then C ∈ ∆?),
(ii) Λ defines a unique CL-model (for any wffs A and B of L+, ∼A ∈ Λ iff

A 6∈ Λ; A ∧B ∈ Λ iff A,B ∈ Λ; . . .; (∃α)A(α) ∈ Λ iff A(β) ∈ Λ for some
β ∈ C ∪ O),

(iii) M is an S5-model of ∆? and hence of ∆, and
(iv) M verifies Γ♦.

I now prove that Ab(M) = φ. As φ is an arbitrary element of Φ(Γ♦) this
proves that the theorem holds true.

In view of the construction of ∆, it suffices to show that, if there is a Σ
such that Dab(Σ) ∈ CnS5(∆i ∪{Bi+1}), and φ 0S5 Dab(Σ), then there is no Σ′

such that Dab(Σ′) ∈ CnS5(∆i ∪{∼Bi+1}), and φ 0S5 Dab(Σ′). To see that the
latter holds true, suppose that φ 0S5 Dab(Σ), φ 0S5 Dab(Σ′), ∆i ∪ {Bi+1} `S5

Dab(Σ), and ∆i ∪ {∼Bi+1} `S5 Dab(Σ′). Hence, by the Deduction Theorem,
the fact that Bi+1 ∨ ∼Bi+1 is an S5-theorem, Dilemma, and the fact that
Dab(Σ) ∨ Dab(Σ′) = Dab(Σ ∪ Σ′), it follows that ∆i `S5 Dab(Σ ∪ Σ′). But
then, φ `S5 Dab(Σ ∪ Σ′) by the definition of ∆. As φ is a set of formulas of
the form ∃(♦A ∧ ♦∼A), it follows that either φ `S5 Dab(Σ) or φ `S5 Dab(Σ′),
which contradicts the supposition. Hence, Ab(M) = φ.

Theorem 5 If M is an S5-model of Γ♦, then there is an AJr-model M′ of Γ♦

such that Ab(M′) ⊆ Ab(M). (Strong Reassurance)

Proof. Consider some S5-model M of Γ♦. Where D1, D2, . . . is a list of all
members of Ω, define:

∆0 = ∅

∆i+1 = ∆i ∪ {∼Di+1}

if there is an S5-model M′ of Γ♦ ∪∆i ∪{∼Di+1} such that Ab(M′) ⊆ Ab(M),
and

∆i+1 = ∆i

otherwise. Finally,

∆ = ∆0 ∪∆1 ∪∆2 ∪ . . .

If some S5-model verifies Γ♦, then some S5-model verifies Γ♦ ∪ ∆ (by the
definition of ∆). So, I only have to prove (i) that Ab(M′) ⊆ Ab(M), for each
S5-model M′ of Γ♦ ∪∆, and (ii) that each such model is reliable. As M is an
arbitrary model of Γ♦, this warrants that the theorem holds true.
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(i) Consider any S5-model M′ of Γ♦∪∆, and suppose that there is a member
of Ω, say Dj , such that Dj ∈ Ab(M′) − Ab(M). As Dj 6∈ Ab(M), M verifies
Γ♦ ∪∆j−1 ∪ {∼Dj}. Hence, ∼Dj ∈ ∆j ⊆ ∆. But then, as M′ is an S5-model
of Γ♦ ∪∆, Dj 6∈ Ab(M′). This contradicts the supposition.

(ii) Suppose that M′ verifies Γ♦ ∪ ∆, but that it is not reliable. Hence,
there is a member of Ω, say Dj , such that Dj ∈ Ab(M′) − U(Γ♦). But then,
for every minimal Dab-consequence Dab(Σ) of Γ♦, Dj 6∈ Σ. Hence, in view
of Lemma 1, there is an S5–model M′′ of Γ♦ such that Dj 6∈ Ab(M′′) and
Ab(M′′) ⊂ Ab(M′).

It follows that M′′ is an S5-model of Γ♦ ∪ ∆. If it were not, then, as M′′

is an S5-model of Γ♦, there is a ∼Dk ∈ ∆ such that M′ verifies ∼Dk and M′′

falsifies ∼Dk. But this is impossible in view of Ab(M′′) ⊂ Ab(M′).
As M′′ is an S5-model of Γ♦∪∆, it is an S5-model of Γ♦∪∆j−1. Moreover,

as Dj 6∈ Ab(M′′), M′′ verifies ∼Dj . Hence, M′′ is an S5-model of Γ♦ ∪∆j−1 ∪
{∼Dj}. As Ab(M′′) ⊂ Ab(M′) and, by (i), Ab(M′) ⊆ Ab(M), Ab(M′′) ⊂
Ab(M). It follows that ∆j = ∆j−1 ∪ {∼Dj}, and hence that ∼Dj ∈ ∆. But
then Dj 6∈ Ab(M′). So, the supposition of (ii) leads to a contradiction.

Corollary 1 If Γ♦ has S5-models, then it also has AJr-models. (Reassurance)

A second series of properties concerns the adequacy of the dynamical proof
theory. As was mentioned in the previous section, the proof theory of AJr

is based on a specific relation between derivability by the upper limit logic
Triv and derivability by the lower limit logic S5. I now prove the lemmas and
theorems that warrant this.

As before, ω(A) stands for the set of abnormalities that can be obtained
from the primitive formulas that occur in A. At the predicative level, this gives
us: ω(A) = {∃(♦B ∧ ♦∼B) ∈ Ω | B occurs in A}. Let σ◦(A) stand for the set
{B ∈ Fp | B occurs in A} and let σ(A) stand for the set of closed formulas
that can be obtained from the members of σ◦(A) by systematically replacing
all members of V (if any) by members of C ∪ O.

Lemma 2 For any S5-model M and any A ∈ W♦, if there is no B, such that
B ∈ ω(A) and M verifies B, then there is a Triv-model M′, such that M
verifies A iff M′ verifies A.

Proof. Suppose that the antecedent holds true for some S5-modelM = 〈Σ∆,M0〉
and some A. It follows that, for every C ∈ σ(A), and for every Mi,Mj ∈ Σ∆,
vMi(C) = vMj (C), and hence, that Mi verifies A iff Mj verifies A. Let ∆′ be the
set of all members of W that are verified by M ′, for some M ′ ∈ Σ∆. It is easily
observed that M′ = 〈Σ∆′ ,M ′

0〉 is a Triv-model (∆′ is a maximal consistent
subset of W) and that it verifies A iff M verifies A.

Theorem 6 For any A ∈ W♦, if �Triv A, then there is a ∆ ⊂ Ω such that
�S5 A ∨Dab(∆).

Proof. If �S5 A, the theorem obviously holds. So, suppose that �Triv A and
that 6�S5 A and let ∆ be ω(A). As ω(A) is finite, A ∨ Dab(∆) is a wff. To
prove that A ∨ Dab(∆) is S5-valid, consider an arbitrary S5-model M. If M
verifies B, for some B ∈ ω(A), then M verifies Dab(∆). If M falsifies B, for
all B ∈ ω(A), then M verifies A in view of Lemma 2 and the fact that, by the
supposition, all Triv-models verify A.
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Theorem 7 For any {A1, . . . , An, B} ⊂ W♦, if A1, . . . , An �Triv B, then there
is a ∆ ⊂ Ω such that A1, . . . , An �S5 B ∨Dab(∆).

Proof. Suppose that the antecedent holds true. It follows that �Triv (A1 ∧
. . . ∧ An) ⊃ B, and hence, by Theorem 6, that there is a ∆ ⊂ Ω such that
�S5 ((A1 ∧ . . . ∧ An) ⊃ B) ∨ Dab(∆). But then, A1, . . . , An �S5 B ∨ Dab(∆).

I now prove that the semantics of AJr is sound and complete with respect
to the dynamic proof theory.

Lemma 3 If, in an AJr-proof from Γ♦, A occurs as the second element and ∆
occurs as the fifth element of line i, then Γ♦ `S5 A ∨Dab(∆).

Proof. The proof proceeds by induction on the number of the line at which A
occurs. The lemma obviously holds if i = 1, for then, in view of the generic
rules, A ∈ Γ♦ or `S5 A ∨ Dab(∆). Suppose that the lemma holds for all lines
that precede i.

Case 1 : The third element of line i is empty. Analogous to the case where
i = 1.

Case 2 : The third element of line i is not empty. Suppose that the third
element of i is j1, . . . , jn (n ≥ 1) and that B1, . . . , Bn are the second elements
of lines j1, . . . , jn. RU and RC warrant that B1, . . . , Bn `S5 A ∨ Dab(∆), and
hence, that `S5 ((B1 ∧ . . . ∧Bn) ⊃ A) ∨Dab(∆). As the fifth elements of lines
j1, . . . , jn are subsets of ∆, the supposition warrants that Γ♦ `S5 Bi ∨ Dab(∆)
for every Bi, and hence, that Γ♦ `S5 (B1 ∧ . . . ∧ Bn) ∨ Dab(∆). But then,
Γ♦ `S5 A ∨Dab(∆).

Theorem 8 Γ♦ `AJr A iff there is a ∆ ⊂ Ω such that Γ♦ `S5 A ∨ Dab(∆),
and ∆ ∩ U(Γ♦) = ∅.

Proof. For the left-right direction, suppose that Γ♦ `AJr A. In that case, A
is finally derived at some line j of an AJr-proof from Γ♦. Hence, where ∆ is
the fifth element of line j, Γ♦ `S5 A ∨ Dab(∆) in view of Lemma 3. Suppose
now that ∆ ∩ U(Γ♦) 6= ∅. In that case, ∆ ∩ ∆′ 6= ∅, for some minimal Dab-
consequence Dab(∆′) of Γ♦. As S5 is compact, there is an extension of the proof
in which Dab(∆′) occurs unconditionally. But then, line j is marked in that
extension, and will remain marked in any further extension. This contradicts
that A is finally derived from Γ♦.

For the right-left direction, suppose that there is a ∆ such that (i) Γ♦ `S5

A∨Dab(∆), and (ii) ∆∩U(Γ♦) = ∅. In that case, some line j in an AJr-proof
from Γ♦ has A as its second element and ∆ as its fifth (in view of RC). In
view of (ii) any extension of the proof in which line j is marked can be further
extended in such a way that j is unmarked. But then, A is finally derived at
line j. Hence, Γ♦ `AJr A.

Theorem 9 If Γ♦ `AJr A, then Γ♦ �AJr A. (Soundness)

Proof. Suppose that Γ♦ `AJr A. In view of Theorem 8, there is a ∆ such that
Γ♦ `S5 A ∨ Dab(∆), and ∆ ∩ U(Γ♦) = ∅. Hence, Γ♦ �S5 A ∨ Dab(∆), in view
of Theorem 4. As ∆ ∩ U(Γ♦) = ∅, Dab(∆) is false in all reliable models of Γ♦.
But then, A is true in all reliable models of Γ♦, and Γ♦ �AJr A.
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Theorem 10 If Γ♦ �AJr A, then Γ♦ `AJr A. (Completeness)

Proof. Suppose that Γ♦ 0AJr A. Let B1, B2, . . . be the sequence from the proof
of Lemma 1, and define:

∆0 = CnS5(Γ♦ ∪ {C ⊃ A} | C ∈ Ω− U(Γ♦)})

∆i+1 = CnS5(∆i ∪ {Bi+1})

if A 6∈ CnS5(∆i ∪ {Bi+1}), and

∆i+1 = ∆i

otherwise. Finally,

∆ = ∆0 ∪∆1 ∪∆2 ∪ . . .

Each of the following is easily provable:

(i) Γ♦ ⊆ ∆ (by the definition of ∆).
(ii) A 6∈ ∆. Suppose that A ∈ ∆. By the definition of ∆, it follows that

A ∈ ∆0. It is easily observed that the latter is impossible. Suppose that
A ∈ ∆0. In that case, there is a ∆ ⊂ Ω−U(Γ♦) such that Γ♦∪{Dab(∆) ⊃
A} `S5 A. (In view of the fact that any proof is finite, and A ⊃ B,
C ⊃ B `S5 (A ∨ C) ⊃ B.) But then, by the Deduction Theorem,
Γ♦ `S5 (Dab(∆) ⊃ A) ⊃ A, and hence, Γ♦ `S5 Dab(∆)∨A. However, as
∆ ∩ U(Γ♦) = ∅, Γ♦ `AJr A (by Theorem 8). This contradicts the main
supposition.

(iii) For every D ∈ Ω − U(Γ♦), D 6∈ ∆. To see this, suppose that D ∈
Ω − U(Γ♦). In that case, D ⊃ A ∈ ∆0. Hence, if D ∈ ∆, then A ∈ ∆.
This contradicts (ii).

As in the proof of Lemma 1, let ∆ be extended to ∆?, and let an S5-model
M be defined from ∆?. In view of (i) and (ii), M verifies all members of Γ♦,
and falsifies A. In view of (iii), M is an AJr-model of Γ♦. Hence, Γ♦ 6�AJr A.

Corollary 2 Γ♦ �AJr A iff Γ♦ `AJr A.

8 The Discussive Adaptive Logic Dr
2

The discussive adaptive logic Dr
2 is defined from the modal adaptive logic AJr

in the following way:

Definition 11 Where A ∈ W and Γ ⊆ W, Γ `Dr
2

A iff Γ♦ `AJr ♦A.

As is the case for other discussive logics, Dr
2 does not allow for the derivation

of contradictions (unless one of the premises is self-contradictory):

Theorem 11 For any A ∈ W and for any Γ ⊆ W such that Γ♦ has S5-models,
Γ 0Dr

2
A ∧ ∼A.
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Proof. Suppose that the antecedent holds true, for some Γ ⊆ W. It follows that
Γ♦ has AJr-models (in view of Corollary 1). But then, as ♦(A ∧ ∼A) is false
in any S5-model, there are AJr-models of Γ♦ that falsify ♦(A ∧ ∼A). Hence,
in view of Definition 11, Γ 0Dr

2
A ∧ ∼A.

Moreover, its consequence set is not closed under (classical) conjunction:

Theorem 12 For some Γ ⊆ W and some A,B ∈ W, Γ `Dr
2

A, Γ `Dr
2

B, and
Γ 0Dr

2
A ∧B.

Proof. Where Γ = {p, ∼p}, Γ `Dr
2

p and Γ `Dr
2
∼p, but Γ 0Dr

2
p ∧∼p (in view

of Theorem 11).

Still, Dr
2 enables one to conjoin a statement that behaves consistently to any

other statement:

Theorem 13 For any Γ ⊆ W and any A,B ∈ W, if Γ `Dr
2

A and Γ `Dr
2

B,
then Γ `Dr

2
A ∧B, if ω(A) ∩ U(Γ♦) = ∅ or ω(B) ∩ U(Γ♦) = ∅.

Proof. Suppose that the antecedent holds true and that ω(A) ∩ U(Γ♦) = ∅. It
follows that Γ♦ `AJr ♦A and Γ♦ `AJr ♦B. But then, as ω(A) ∩ U(Γ♦) = ∅,
Γ♦ `AJr �A (in view of the proof for Theorem 6 and the fact that `Triv ♦A ⊃
�A) and hence, Γ♦ `AJr ♦(A ∧B) and Γ `Dr

2
A ∧B.

Analogously for the case where ω(B) ∩ U(Γ♦) = ∅.

Thus, as was mentioned already in the introduction, Dr
2 validates Adjunction

‘as much as possible’. An important consequence of this property is that Dr
2 is

non-monotonic:

Theorem 14 For some Γ∪Γ′ ⊆ W and some A ∈ W, Γ `Dr
2

A and Γ∪Γ′ 0Dr
2

A. (non-monotonicity)

Proof. Let Γ = {p, q} and Γ′ = {∼p ∨ ∼q}. As U(Γ♦) = ∅, all AJr-models of
Γ♦ falsify ♦p∧♦∼p as well as ♦q∧♦∼q, and hence, verify each of the following:
�p, �q, �(p ∧ q), ♦(p ∧ q). But then, in view of Definition 11, Γ `Dr

2
p ∧ q.

Let M be an S5-model that verifies ♦p, ♦q and �(∼p∨∼q), but that verifies
no other formula of the form ∃(♦A∧♦∼A) than ♦p∧♦∼p and ♦q ∧♦∼q. It is
easily observed that M is an S5-model of Γ♦ ∪ Γ′♦, that it is reliable and that
it falsifies ♦(p ∧ q). Hence, in view of Definition 11, Γ ∪ Γ′ 0Dr

2
p ∧ q.

Another important consequence is that, for consistent sets of premises, the
consequence set of Dr

2 equals that of CL:

Theorem 15 If Γ is consistent, then CnDr
2
(Γ) = CnCL(Γ).

Proof. If Γ is consistent, U(Γ♦) = ∅. Hence, the AJr-models of Γ♦ are its
Triv-models (which are analogues of CL-models). But then, Γ `DLr A iff
Γ♦ `AJr ♦A iff Γ `CL A.

In view of these properties, the logic Dr
2 is an example of an inconsistency-

adaptive logic: it localizes the specific inconsistencies that follow from a set of
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premises, and adapts its rules of inferences to these. There are, however, some
important differences between Dr

2 and other inconsistency-adaptive logics, for
instance, ACLuN1 and ACLuN2 from [3], LPm from [24] and ANA from
[21]. A first one is that Dr

2 does not allow for the derivation of contradictions.
Another difference concerns the rules of CL that are turned into conditional
rules. In nearly all inconsistency-adaptive logics, the distinction between con-
ditional and unconditional rules is related to properties of the negation. For
instance, in ACLuN1 and ACLuN2 all positive rules of CL (Modus Ponens,
Adjunction, . . . ) are unconditionally valid and all negative rules (Double Nega-
tion, Disjunctive Syllogism, Modus Tollens, . . . ) are conditionally valid.9 Dr

2

proceeds along a completely different line. In Dr
2, the distinction between un-

conditional and conditional rules coincides with that between single-premise
rules and multiple-premise rules. Whereas the former are unconditionally valid
in Dr

2, the latter are only conditionally valid.
It is also interesting to compare Dr

2 to consequence relations that proceed
in terms of maximal consistent subsets. These consequence relations were first
presented in [26], and are today quite popular in handling inconsistent databases
(see, for instance, [12] and [13]).10

The idea behind these consequence relations is that conjoining is allowed up
to maximal consistency. The consequence relations differ from each other with
respect to the restrictions they impose on “to follow from”. For instance, the
so-called strong consequences of (a possibly inconsistent) Γ are those that follow
by CL from every maximal consistent subset of Γ; the weak consequences are
those that follow by CL from some maximal consistent subset of Γ.

Thus, where Γ = {p,∼p, r, s}, r∧s is a strong consequence of Γ, and the latter
as well as p∧ r, p∧ s, ∼p∧ r, and ∼p∧ s are weak consequences. For consistent
sets of premises, both consequence relations deliver the same consequence set
as CL. Still, the consequence relations are non-adjunctive: p ∧ ∼p is neither a
strong nor a weak consequence relation of Γ.

It may seem that the consequence relation of Dr
2 simply coincides with the

weak consequence relation. There are, however, two important differences. The
first is that the weak consequence relation is monotonic. Thus, p ∧ q is a weak
consequence of all possible extensions of Γ = {p, ∼p, q}. As we have seen,
this is not the case for Dr

2: although p ∧ q follows by Dr
2 from Γ, it does

not follow from Γ ∪ {∼q}. The second difference concerns the sensitivity with
respect to the formulation of the premises. The weak consequence relation (like
other consequence relations based on the idea of maximal consistent subsets)
only considers maximal consistent subsets of the premises. As a result, this
consequence relation is extremely sensitive to the formulation of the premises.
For instance, r is a weak consequence of Γ = {p ∧ q, p ⊃ r, ∼q}, but not of
Γ′ = {p ∧ q, (p ⊃ r) ∧∼q}. This is not the case for the consequence relation of
Dr

2. The latter is invariant under all classical transformations of the premises
that do not lead to formulas that are self-contradictory. Thus, in the previous
example r is not only a Dr

2-consequence of {p ∧ q, p ⊃ r, ∼q}, but also of
{p ∧ q, (p ⊃ r) ∧ ∼q} and {p ∧ ∼q, (p ⊃ r) ∧ q}.

9ANA is an exception. Its only conditional rules are constructive rules that are weakening
(for instance, A/A ∨B, and A/B ⊃ A) or paradoxical (for instance, A/A ∨ (B ∧ ∼B)).

10Interesting unifications of these consequence relations in terms of adaptive logics can be
found in [6] and [11].
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9 In Conclusion

Dr
2 is the first discussive logic that is adaptive. As compared to other discussive

logics, it has the enormous advantage that it conditionally validates all multiple-
premise rules of CL, without the introduction of discussive connectives. Dr

2 is
also the first inconsistency-adaptive logic that is based on a non-adjunctive
paraconsistent logic.

Dr
2 deserves further study. An important open problem concerns the design

of a direct proof theory for Dr
2—one that does not refer to S5, but proceeds

entirely in the language of CL. Another open problem concerns the comparison
of Dr

2 with other inconsistency-adaptive systems,11 for instance with respect to
applications in the history and philosophy of science.
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