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Abstract
We use entanglement to study shape transitions in two-electron axially symmetric parabolic
quantum dots in a perpendicular magnetic field. At a specific magnetic field value the dot
attains a spherical symmetry. The transition from the axial to the spherical symmetry manifests
itself as a drastic change of the entanglement of the lowest state with zero angular momentum
projection. While the electrons in such a state are always localized in the plane (x − y) before
the transition point, after this point they become localized in the vertical direction.

Besides its well-known role in the implementation of quantum
information technologies, entanglement is nowadays also
regarded as an essential ingredient for the analysis and
characterization of quantum many-body systems [1]. This
latter point of view is currently the focus of an increasing
research activity, establishing new connections between
quantum information theory and other branches of physics,
such as atomic, molecular and condensed matter physics
[1–15]. In particular, there is a growing interest in using
quantum entanglement measures for the study of quantum
correlations in topologically ordered systems [16]. The
analysis of these systems is a highly non-trivial task due
to the absence of the order parameter. The main stream of
such an analysis is focused on quantum-phase transitions in
many-particle one-dimensional systems [17]. It is noteworthy
that various phases are exhibited in quantum dots (QDs) at
different strengths of the applied perpendicular magnetic field
[18]. Two-electron QDs being realistic tractable nontrivial
systems are, in particular, attractive because their eigenstates
can be obtained very accurately, or in some cases, exactly
(cf [19, 20]). The objective of this paper is to demonstrate
that quantum entanglement can be used to trace a shape-phase
transition in excited states of two interacting electrons confined
in a three-dimensional (3D) QD in a magnetic field.

Our analysis is carried out by means of the exact
diagonalization of the Hamiltonian:

H =
2∑

j=1

[
1

2m∗
(

p j − e

c
A j

)2
+ U (r j)

]
+ k

|r1− r2| + Hspin.

(1)

Here k = e2/4πε0εr and Hspin = g∗μB(s1 + s2)·B describes
the Zeeman term, where μB = e�/2mec is the Bohr magneton.
As an example, we will use the effective mass m∗ = 0.067me,
the relative dielectric constant εr = 12 and the effective Landé
factor g∗ = −0.44 (bulk GaAs values). For the perpendicular
magnetic field, we choose the vector potential with gauge
A = 1

2 B × r = 1
2 B(−y, x, 0). The confining potential is

approximated by a 3D axially symmetric harmonic oscillator
U (r) = m∗[ω2

0 (x2 + y2) + ω2
z z2

]
/2, where �ωz and �ω0 are

the energy scales of confinement in the z-direction and in the
xy-plane, respectively.

By introducing the centre of mass (CM) and relative
coordinates: R = 1

2 (r1+r2) and r12 = r1−r2, the Hamiltonian
(1), in agreement with the Kohn theorem [21], separates into
the CM and relative-motion terms H = HCM + Hrel (see
details in [20]). The CM term is described by the oscillator
Hamiltonian with the mass M = 2m∗ and frequencies of
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the one-particle confining potential U . The Hamiltonian for
relative motion in cylindrical coordinates takes the form

Hrel = 1

2μ

(
p2

ρ12
+ l2

z

ρ2
12

+ p2
z12

)
+ μ

2

(
�2ρ2

12 + ω2
z z2

12

)

+ k

r12
− ωLlz, (2)

where μ = m∗/2 is the reduced mass, lz (→ −i�∂/∂ϕ12) is the
projection of angular momentum for relative motion and ρ12 =(
x2

12 + y2
12

)1/2
, ϕ12 = arctan(y12/x12) and r12 = (

ρ2
12 + z2

12

)1/2
.

Here, ωL = eB/2m∗c is the Larmor frequency, and the effective
lateral confinement frequency � = (

ω2
L + ω2

0

)1/2
depends

through ωL on the magnetic field.
The total two-electron wavefunction 	(r1, r2) =

ψ(r1, r2)χ(σ1, σ2) is a product of the orbital ψ(r1, r2) and
spin χ(σ1, σ2) wavefunctions. Due to the Kohn theorem, the
orbital wavefunction is factorized as a product of the CM and
the relative motion wavefunctions

ψ(r1, r2) = ψCM(R) ψrel(r12). (3)

According to the Pauli principle, the orbital wavefunction must
be symmetric (or, equivalently, ψrel(r12) must be even) for the
antisymmetric (singlet: S = MS = 0) spin state, and it must
be antisymmetric (ψrel(r12) must be odd) for the symmetric
(triplet: S = 1, MS = 0,±1) spin states. Thus, for the relative
motion the parity of ψrel(r12) is a good quantum number as
well as the magnetic quantum number m, since lz is the integral
of motion.

The CM eigenfunction is a product of the Fock–
Darwin state (the eigenstate of electron in an isotropic 2D
harmonic oscillator potential in a perpendicular magnetic field)
[22] in the (X,Y )-plane and the oscillator function in the
Z-direction (both sets for a particle of mass M). In this
paper, we consider the lowest CM eigenstate which has the
form ψCM(R) = ψ

(xy)

CM (X,Y ) ψ
(z)
CM(Z), where ψ

(xy)

CM (X,Y ) =√
2�̄/π e−�̄(X2+Y 2) and ψ

(z)
CM(Z) = (2ω̄z/π )1/4e−ω̄zZ2

(i.e.
zero-principle quantum numbers), with �̄ = m∗�/� and
ω̄z = m∗ωz/�.

Since the Coulomb interaction mixes the eigenstates
of non-interacting electrons, the eigenfunctions of the
Hamiltonian for relative motion (2) are expanded in the basis of
the Fock–Darwin states n,m(ρ12, ϕ12) and oscillator functions
in the z12-direction φnz (z12) (for a particle of mass μ), i.e.

ψrel(r12) =
∑
n,nz

c(m)
n,nz

n,m(ρ12, ϕ12) φnz (z12). (4)

The coefficients c(m)
n,nz

can be determined by diagonalizing the
Hamiltonian (2) in the same basis. Evidently, in numerical
analysis the basis is restricted to a finite set {n,m φnz | n =
0, . . . , nmax; nz = 0, . . . , nmax

z }. It must be, however, large
enough to provide a good convergence for the numerical
results. Since the function ψrel(r12) has a definite parity and
the parity of the functions n,m φnz is (−1)m+nz , the index nz

in expansion (4) takes either even or odd values.
For non-interacting electrons (k = 0) the eigenfunctions

ψrel are simply the basis functions n,m φnz , and, therefore, the
ground state is described by the wavefunction ψrel = 0,0 φ0.
When two interacting electrons move in the external field

created by the confining potential and the applied, varying
steadily, magnetic field, the quantum number m of the ground
state (in the form (4)) evolves from zero to higher values as
the magnetic field strength increases. It results in the well-
known singlet–triplet transitions [23]. Namely for a given m
the dominant term in expansion (4) will be 0,m φ0 (⇒ all nz

are even) and the parity of the ground state is (−1)m, which
determines the total spin to be S = 1

2 [1 − (−1)m]. Note that
the quantum number MS associated with the spin wavefunction
evolves as follows: for even m the total spin S = 0 and, thus,
MS = 0; for odd m the total spin S = 1 and MS can be −1, 0 or
1. The Zeeman splitting (with g∗ < 0) will lower the energy of
the MS = 1 component of the triplet states while leaving the
singlet states unchanged. As a consequence, the ground state
will be characterized by MS = S. With the increasing magnetic
field the intervals of the triplet states will increase at the cost
of the singlet ones, and eventually, the singlet ground states
will be totally suppressed. The increase of the magnetic field
leads to the formation of a ring and a torus of maximal density
in 2D and 3D densities, respectively (see figure 4 in [24]).

At the value ω
sph
L = (

ω2
z − ω2

0

)1/2
, the magnetic field

gives rise to the spherical symmetry (ωz/� = 1) (with
ωz > ω0) in the axially symmetric two-electron QD [25, 26].
This phenomenon was also recognized in the results for
many interacting electrons in self-assembled QDs [27]. In the
latter case, it was interpreted as an approximate symmetry
that had survived from the non-interacting case due to the
dominance of the confinement energy over a relatively small
Coulomb interaction energy. However, the symmetry is not
approximate but exact even for strongly interacting electrons,
because the radial electron–electron repulsion does not break
the rotational symmetry. A natural question arises: how to
detect such a transition looking on the density distribution
only? A related question is: if such a transition occurs, what
are the concomitant structural changes?

To this end, we employ the entanglement measure based
on the linear entropy of reduced density matrices (cf [28]):

E = 1 − 2 Tr
[
ρ(orb)

r
2]

Tr
[
ρ(spin)

r
2]

, (5)

where ρ(orb)
r and ρ

(spin)
r are the single-particle-reduced density

matrices in the orbital and spin spaces, respectively. This
measure is quite popular for the analysis of the entanglement
of two-fermion systems, in particular, two electrons confined
in the parabolic potential in the absence of the magnetic field
[10, 15, 29]. Note that the measure (5) vanishes when the global
(pure) state describing the two electrons can be expressed as
one single Slater determinant.

The trace Tr
[
ρ

(spin)
r

2]
of the two-electron spin states with a

definite symmetry χS,MS has two values: (i) 1/2 if MS = 0 (anti-
parallel spins of two electrons); (ii) 1 if MS = ±1 (parallel
spins). The condition MS = S = 1

2 [1 − (−1)m] yields

Tr
[
ρ(spin)

r
2] = 1

2 (1 + |MS|) = 3 − (−1)m

4
. (6)

The trace of the orbital part Tr
[
ρ(orb)

r
2]

Tr
[
ρ(orb)

r
2] =

∫
dr1 dr ′

1 dr2 dr ′
2 ψ(r1, r2) ψ∗(r ′

1 , r2
)

ψ∗(r1, r ′
2

)
ψ

(
r ′

1 , r ′
2

)
(7)

2
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Figure 1. (a) Entanglement of the lowest state with m = 0 at
RW = 2 and various ratios ωz/ω0 as functions of the parameter
ωL/ω0. The circles denote the values of ωL/ω0 when QDs with
given ratios ωz/ω0 become spherically symmetric. (b) The relative
strength of the Coulomb interaction R(2D)

� /RW (solid line) and
R(1D)

� /RW (dash-dotted line) for the lowest state with m = 0 at
various ratios ωz/ω0 as functions of the parameter ωL/ω0.

is more involved. Indeed, in virtue of equations (3) and (4),
one obtains

Tr
[
ρ(orb)

r
2] =

nmax∑
n1=0

nmax∑
n2=0

nmax∑
n3=0

nmax∑
n4=0

nmax
z∑

nz1=0

nmax
z∑

nz2=0

nmax
z∑

nz3=0

nmax
z∑

nz4=0

c(m)
n1,nz1

c(m)
n2,nz2

c(m)
n3,nz3

c(m)
n4,nz4

(8)

I(n1, n2, n3, n4; m) J(nz1 , nz2 , nz3 , nz4 ),

where

I(n1, n2, n3, n4; m) =
∫

dr1 dr ′
1 dr2 dr ′

2

ψ
(xy)

CM

( r1+r2
2

)
ψ

(xy)

CM

∗( r ′
1+r2

2

)
ψ

(xy)

CM

∗( r1+r ′
2

2

)
ψ

(xy)

CM

( r ′
1+r ′

2
2

)
(9)

n1,m(r1−r2)
∗
n2,m

(
r′

1−r2
)
∗

n3,m

(
r1−r′

2

)
n4,m

(
r′

1−r′
2

)
(here ri are vectors in the xy-plane) and

J(nz1 , nz2 , nz3 , nz4 ) =
∫

dz1 dz ′
1 dz2 dz ′

2

ψ
(z)
CM

( z1+z2
2

)
ψ

(z)
CM

∗( z ′
1+z2

2

)
ψ

(z)
CM

∗( z1+z ′
2

2

)
ψ

(z)
CM

( z ′
1+z ′

2
2

)
(10)

φnz1
(z1−z2)φ

∗
nz2

(
z′

1−z2
)
φ∗

nz3

(
z1−z′

2

)
φnz4

(
z′

1−z′
2

)
.

The magnetic field dependence of the entanglementE naturally
occurs via inherent variability of the expansion coefficients.
The values of the I and J integrals for any choice of indices
can be determined analytically, which simplifies the numerical
calculations.

For our analysis, it is convenient to use the so-called
Wigner parameter RW = (k/l0)/�ω0 = l0/a∗, a measure of
the Coulomb interaction strength relative to the confinement
strength (cf [20]). Here, l0 = √

�/m∗ω0 is the oscillator
length and a∗ = �

2/km∗ is the effective Bohr radius. For
our choice of the parameters (GaAs) and for the confinement
frequency �ω0 ≈ 2.8 MeV we have RW ≈ 2. The numerical
analysis demonstrates a good convergency for the basis with
nmax = nmax

z = 4.
In the absence of the magnetic field (B = 0), the

entanglement decreases if the ratio ωz/ω0 decreases from
∞ (2D model) to 1 (spherically symmetric 3D model); see
figure 1(a) at ωL/ω0 = 0. This effect could be explained by
introducing the effective charge keff [25, 30] which determines

the effective electron–electron interaction VC = keff/ρ12 in
the QD. In the 3D dot the electrons can avoid each other
more effectively than in the 2D one. Therefore, the Coulomb
interaction has a smaller effect on the 3D spectrum (the ratio
keff/k ∼ 0.5) in contrast to the 2D case when keff/k = 1. Thus,
a decrease of the ratio ωz/ω0 yields an analogous effect as the
reduction of the electron–electron interaction.

Figure 1(a) shows the entanglement measure E of the
lowest angular momentum state m = 0 as a function of the
magnetic field (the parameter ωL/ω0) at a fixed value of RW

and for different ratios ωz/ω0. In the 2D case, the entanglement
decreases monotonically with the increase of the magnetic
field. The constant electron–electron interaction becomes
relatively weaker, since the effective lateral confinement
(��) increases with the magnetic field. If we introduce
the characteristic length of the effective confinement l� =√

�/m∗�, the parameter R� = l�/a∗ (which is equal RW at
B = 0) determines the relative strength of Coulomb interaction
at a given effective confinement. Evidently, R� decreases with
the increase of the magnetic field B (see figure 1(b), the line
labelled ‘2D’). In the 3D case, however, the entanglement
decreases until ωL = ω

sph
L , when the spherical symmetry

occurs. After this point the entanglement starts to increase
(see figure 1(a)).

This behaviour can be explained by the influence of the
magnetic field on the effective strength R�, which is twofold
here. Indeed, in the 3D case the magnetic field affects the
effective charge as well as the effective confinement. For the
quasi-2D system of electrons (� 
 ωz), the effective charge is
k(2D)

eff = 〈ρ12VC〉 (see equation (18) in [30]), where VC =
k/

√
ρ2

12 + z2
12 is the full 3D Coulomb interaction. The mean

value 〈ρ12VC〉 is calculated by means of the eigenstates
of Hrel in the approximation of non-interacting electrons.
Here, the eigenstate is 0,m φ0 (for explicit expressions see
equations (19) and (20) in [30]). Thus, for the quasi-2D case
the parameter R(2D)

� = (m∗/�
3�)1/2 k(2D)

eff can be used as a
measure for the relative strength of the Coulomb interaction.

For �  ωz (very strong magnetic field), the electrons
are pushed laterally towards the dot’s centre. The magnetic
field, however, does not affect the vertical confinement. As a
consequence, the electrons practically can move only in the
z-direction and the QD becomes a quasi-1D system. In this
case, a measure for the relative strength of the Coulomb
interaction can be defined as R(1D)

� = (m∗/�
3ωz)

1/2 k(1D)

eff ,
where the effective charge for a quasi-1D system is k(1D)

eff =
〈|z12|VC〉. It can be shown that for the lowest state with m = 0
one obtains k(1D)

eff /k = (1 + √
ωz/�)−1.

The quantities R(2D)
� and R(1D)

� for the lowest state with
m = 0, as functions of the parameter ωL/ω0 (in the domains
0 < ωL < ω

sph
L and ωL > ω

sph
L , respectively), are shown

in figure 1(b) for different ratios ωz/ω0. One observes that
the effective strength R(2D)

� decreases with the increase of the
magnetic field for different ratios ωz/ω0, similar to the 2D
case. The oppositely ordered confinement �(1D) (which is not
defined for the 2D case) increases with ωL and, therefore, the
effective strength R(1D)

� increases as well. In order to match
R(1D)

� = R(2D)
� at ωL = ω

sph
L (i.e. when � = ωz), the strength

R(1D)
� is scaled by the factor π/2. Although at this point the

3
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Figure 2. The probability density |ψ(r12)|2 of the lowest m = 0
state (top) and the contour plots of the potential surface (bottom) for
the QD with ωz/ω0 = 2 and RW = 10 shown in the (ρ12, z12)-plane
for the cases: (a), (d) ωL/ω0 = 0 (ωz/� = 2), (b), (e) ωL/ω0 =
ω

sph
L /ω0 = 1.732 005 (ωz/� = 1) and (c), (f) ωL/ω0 = 2.291 29

(ωz/� = 0.8).

3D system is far from the 2D model and from the 1D model
and, as a consequence, R(2D)

� and R(1D)
� do not match smoothly,

these two functions taken together give a qualitative picture
of how the effective electron–electron interaction in a 3D QD
changes with the magnetic field.

To get deep insight into this transition, we calculate
the probability density |ψ(r12)|2 and potential surfaces for
various values of the magnetic field (see figure 2). Since the
symmetry is exact for any strength of the electron–electron
interaction at the transition point, in order to illuminate the
effect, we use RW = 10. For the magnetic field ωL < ω

sph
L , the

density maximum is located in the (x12, y12)-plane (z12 = 0,
see figure 2(a)). For ωL > ω

sph
L , however, there are two

maxima located symmetrically along the z12-axis (ρ12 = 0,
see figure 2(c)). The analysis of the behaviour of the stationary
point of the potential V = 1

2μ
(
�2ρ2

12 + ω2
z z2

12

) + k/r12 as a
function of the magnetic field provides the explanation. For
ωL < ω

sph
L (� < ωz), the stationary point ρ12 = ρ0, z12 = 0

is the minimum of the potential surface (see figure 2(d)). Here
ρ0 = (k/μ�2)1/3 [31]. By increasing the magnetic field over
the value Bsph (� > ωz), the stationary point transforms to the
saddle point and two new minima appear, divided by a potential
barrier (see figure 2(f)). In other words, for m = 0 a bifurcation
of the stationary point located at (ρ0, 0) occurs at the value
of magnetic field when ωL = ω

sph
L (see figures 2(b) and (e)).

In the domain � > ωz, for m = 0, the minima are located at
z12 = ±z0 in the z12-axis (ρ12 = 0), where z0 = (

k/μω2
z

)1/3
.

Summarizing, we have shown that the 3D approach
provides a consistent description of the shape-phase transition
in excited states in two-electron QDs under the magnetic field.
The entanglement of the lowest state with m = 0, being first
a decreasing function of the magnetic field, starts to increase
after the transition point with the increase of the magnetic field.
This behaviour is understood as the transition from the lateral
to the vertical localization of the two-electron probability
density for this state in the QD.
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Rev. B 65 155307
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