
Citation: Shaygan, M.; Baumgartl, T.

Reclamation of Salt-Affected Land: A

Review. Soil Syst. 2022, 6, 61.

https://doi.org/10.3390/

soilsystems6030061

Academic Editor: Heike Knicker

Received: 9 June 2022

Accepted: 2 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Reclamation of Salt-Affected Land: A Review
Mandana Shaygan 1,* and Thomas Baumgartl 2

1 Centre for Water in the Minerals Industry, The University of Queensland, Brisbane, QLD 4072, Australia
2 Geotechnical and Hydrological Engineering Research Group, Federation University,

Churchill, VIC 3841, Australia; t.baumgartl@federation.edu.au
* Correspondence: m.shaygan@uq.edu.au; Tel.: +61-7-3346-4052

Abstract: Reclamation of salt-affected soil has been identified by the FAO as being critical to meet
the needs to increase agricultural productivity. This paper reviews commonly used reclamation
methods for salt-affected soils, and provides critical identifiers for an effective reclamation practice of
salt-affected soil. There are widely used methods to reduce salinity and sodicity of salt-affected soils,
including salt leaching, addition of amendments, revegetation using halophytes and salt scrapping.
Not all reclamation techniques are suitable for salt-affected land. The reclamation strategy must
be tailored to the site, and based on understanding the soil, plant and climate interactions. On
some occasions, a combination of techniques may be required for reclamation. This can include salt
scrapping to remove salts from the surface soil, the addition of physical amendments to improve soil
pore systems and enhance salt leaching, followed by amelioration of soil by chemical amendments
to preserve soil physical conditions, and then halophyte establishment to expand the desalinization
zone. This study reveals that soil hydro-geochemical models are effective predictive tools to ascertain
the best reclamation practice tailored to salt-affected land. However, models need to be calibrated
and validated to the conditions of the land before being applied as a tool to combat soil salinity.

Keywords: chemical soil amendments; physical soil amendments; modelling; salt leaching; salt
scrapping; soil ripping

1. Overview of Soil Salinity Problem

Approximately one billion hectares of soil in the world are estimated to be affected
by salinity [1,2]. Salinity can be either natural, or related to land use activities such as
land clearing, mining [3], oil extraction [4], agricultural activities and dry land salinity [5].
Soil salinization can be affected by climate, soil type, irrigation, depth to groundwater
and salinity of water sources, as well as land management practices [6,7]. Salinity is more
evident in arid and semi-arid climates as the amount of rainfall is not adequate to leach
salts from the surface soil [8], and in some instances, the leaching capacity of the soil is not
sufficient to leach salts from the surface soil [9].

Salt-affected soils are generally divided into three categories: soils with high electrical
conductivity from a saturation extract (ECe) > 4 dS m−1, pH < 8.5 and exchangeable
sodium percentage (ESP) and <15, which are considered saline soils [10], such as found
at a site near Seville, in Spain [11]. Saline-sodic soils, such as found at an oilfield near
Eromanga, Australia [12], are defined by ESP in high levels (>15), pH < 8.5 and high
electrical conductivity (ECe > 4 dS m−1), and if the soil has an ECe < 4 dS m−1, pH > 8.5
and ESP > 15, it is classified as a sodic soil [10], such as the research farm in Pindi Bhattian,
Pakistan [13].

Salinization significantly impacts soil, vegetation and ecosystem functions [1]. Al-
though some moderate to high salt-tolerant plants can grow and survive in highly saline
environments [14–16], salinity in the plant root zone will most likely result in the inhibition
of plant establishment and growth. The probability of survival for most plant species
due to the limitations in plant water uptake, resulting from osmotic implementation [17]
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and low soil water potential [18–21], will be highly impacted. Salinity can also result in
a water deficit and turgor loss in plant cells [15], and interfere with plant metabolism
through ion toxicity and ion imbalance [22–26]. Salt crust, which is an inhibiting factor for
plant germination and establishment in arid environments, can be created on soil surfaces
because of the high evaporation associated with the upward movement and precipitation
of soluble salts [27].

Plant establishment and growth can also be limited due to poor soil physico-chemical
properties from saline-sodic conditions [28,29]. High exchangeable Na+ concentrations
negatively affect soil structure. This is associated with a reduction in soil hydraulic con-
ductivity, infiltration and aeration [28–31], mostly as a result of increased swelling and
clay dispersion [30,32]. Reduction in infiltration and hydraulic conductivity in dry cli-
mates also leads to a reduced storage and provision of water to plants [33]. Poor soil
structure can also influence drainage and salt leaching [34] and restricts seed germination
and plant establishment.

Salinity issues can often be found associated with mining activities as a result of
a lack of availability of suitable substrate for reclamation. The rehabilitation of these
salt-affected lands appear necessary, as these lands can be (re-)used as agricultural re-
sources [1,35] such as producing fodder for livestock. It also provides an opportunity to
re-establish plants [12,36,37] and stabilise the landform. However, salinity and sodicity and
their consequences can limit plant establishment, revegetation and hence land rehabilita-
tion. Therefore, adapted soil reclamation strategies are required to firstly provide more
favourable conditions for plant establishment (revegetation), and enable conditions for
successful land rehabilitation.

The aim of this review is to highlight suitable techniques for the reclamation of salt-
affected land. This study firstly provides insight into common reclamation strategies
that have been widely used for saline land. This study then discusses an approach for
identifying an appropriate method for salt-affected soil reclamation.

2. Saline-Sodic Soil Reclamation Techniques
2.1. Reducing Salinity by Leaching

Leaching to obtain more favourable conditions for seed germination or plant estab-
lishment is an important strategy for reclamation of salt-affected land, almost notably for
arid and semi-arid environments. In natural ecosystems, the concentration of soluble salts
in surface soils increases with evaporation and increased arid conditions and may also lead
to salt precipitation. Without leaching, salts accumulate at the soil surface [33] and can
limit seed germination and plant establishment. The aim of salt leaching is to reduce the
solutes from the upper layers of the soil. Leaching of soluble salts in the soil may occur
from rainfall in the natural condition/ecosystem [38] where the soil has the potential for
deep drainage. In this context, the amount and distribution of rainfall play an important
role in salt leaching, as extended periods of dry conditions and reversing the direction of
solute flux can return salts to the surface soil [38].

Soils with layers or horizons of low hydraulic conductivity can limit downward water
movement and prevent adequate leaching [33,39,40]. Saline-sodic soils typically show poor
soil physical conditions which are associated with low hydraulic conductivity, infiltration,
and drainage [28–31]. Adapted practices are required to improve soil physical conditions
to enhance salt leaching and create more favourable conditions for seed germination.

Soil pores create a condition for the movement of water and air within the soil [34].
Among the different sizes of soil pores, macro-pores play an important role in water and
solutes movements [41]. Even though macro-pores may contribute only a very small
amount to the total porosity of a soil, they have a very significant effect on the overall
water movement through soils [41]. Macro-pores increase downward water flow and
allow higher infiltration into the soil. Increased volumes of water are able to transport
dissolved solutes deeper into the soil profile, and increase leaching [41]. Saline- sodic soils,
which are poorly aggregated and have an inadequate pore system (i.e., the lack of macro-
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pores or connectivity among the pores), cannot create the appropriate conditions for salt
leaching, particularly where there is insufficient and irregular rainfall such as in (semi-) arid
environments. Reclamation strategies will be beneficial to ameliorate the soil pore system
and assist with leaching salts and thus facilitate plant germination and hence revegetation.

2.1.1. Addition of Organic Amendments as Ameliorant

Organic matter is one of the fundamental factors in the soil structure/formation of
aggregates and the pore system, as well as the soil chemistry, due to its high specific surface
area with colloidal characteristics [34,42]. The presence of organic matter, as a binding agent
between and within aggregates [34,42,43] can increase the stability of soil aggregates [44]
and improve water holding capacity [45–47], infiltration, water passage [11,45,47] and
the soil pore system in general [9,43]. Improvement in salt leaching through the addition
of organic amendments has been reported by several authors [48–53]. The application
of organic amendments to saline soils is promising for soil chemical amelioration such
as Na+ leaching, which decreases the ESP and EC of the soil [11,45,47,54]. For instance,
Wahid et al. [47] concluded that an addition of 3% organic amendment (farm yard manure,
clover hay and wheat straw) was effective in the reduction of EC and pH in a saline-sodic
soil. However, in some instances, manures (i.e., cattle manure and poultry manure) and
composts contributed to an increase in soil salinity and sodicity, as they provided a source
of salt [55–57]. This suggests that not all manures and composts may be suitable for the
reclamation of salt-affected land.

Soil amelioration using organic amendment depends on the nature of organic mate-
rial [47]. For example, the addition of organic amendments, such as manure and compost,
may decrease pH (<1 pH-unit average decline) of the soil [47,49] and the application of
these organic amendments may not be beneficial for the reclamation of salt-affected soils
with a neutral pH condition. In some instances, soils that had high organic matter content
and low hydraulic conductivity due to the mobilization of organic colloids clogged the
soil pore system [58]. However, the reduction in the hydraulic conductivity could also be
affected by other intrinsic factors such as soil texture [58]. Although the addition of various
organic amendments such as compost, fertilizers, crop residue and manures, and their
success in the reclamation of saline-sodic soils has been documented [11,47–53,59], the type
and application rate of amendments to be used for soil depends on climate, soil biological
and chemical factors. It must be noted that salinity under arid conditions can reduce the
efficacy of the supplement materials on soil’s physico-chemical properties.

Plant residues can be used as an organic amendment for improving soil physical
conditions [11,51,52,60]. An application of hay to the surface of brine-contaminated soil,
in Osage County, USA, appeared to have made a significant impact on desalinization [50].
However, a two-step reclamation strategy was involved in the study. In one step, a
subsurface drainage system was installed, and in another step, hay was added and the
soil was irrigated [50]. Harris et al. [50] concluded that hay increased permeability and
enhanced salt leaching. Shaygan et al. [61] also concluded that the addition of 20% wood
chips to a saline-sodic soil can decrease soil salinity by approximately 5 dS m−1. The
addition of wood residue also increased the leaching of the bentonite mine spoil, through
improving the physical condition of the spoil which enabled vegetation establishment [62].
The addition of wood chips may be beneficial for ameliorating saline-sodic soil physico-
chemical conditions as it can reduce upward movement of salts as well as improve salt
leaching [63].

The longevity of organic ameliorants in soil should be considered when selecting the
ameliorant type. Some organic ameliorants such as compost decomposes in the soil quicker
than plant residues such as wood chips. This characteristic may make these ameliorants less
beneficial and/or less economically desirable particularly when the long-term effect on soil
physical improvement is sought. Therefore, from the literature review, it can be concluded
that the addition of plant residue (e.g., wood chips) is possibly a better option to improve
saline-sodic soil physico-chemical conditions and create conditions for seed germination.
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2.1.2. Soil Texture and Leaching Capacity

Soil texture determines soil physical properties such as pore system, water holding
capacity and drainage [64]. Most physico-chemical reactions of the soil are reliant on the
amount and type of clay minerals [34]. The colloidal nature, negative surface charge and
highly specific surface area of clay minerals creates high sorption capacity [64]. Aggre-
gation stability improves with an increase in clay content when the soil has high sand
content [42,65]. The type and amount of clay present in the soil are key factors in aggre-
gation development and/or stability [34,42] as low activity clays such as kaolinite tend to
decrease aggregate stability [42].

Clay minerals can affect the creation of moderate to large pores [66]. Macro-pores,
which are preferable for drainage/leaching, are normally formed by roots, fauna and by
soil swelling and shrinking as the soil wets and dries [41,67,68]. Expanding clay acts as
a key factor in soil physical properties as it swells in wet conditions, and it shrinks as it
dries [69,70]. Shrinkage creates cracks, breaking the soil mass into fragments of various
sizes, from small aggregates to large blocks [69]. Aggregate size and its distribution is
controlled by its soil properties [71]. Cracks can provide paths for water infiltration [72].
Creation of cracks may ameliorate the poor soil physical condition in low porosity soils
as they create drainable pore space in the soil [73]. Cracks can assist water movement
through the soil profile and enhance salt leaching. However, water flow through the soil
cracks may limit salt leaching from the soil matrix [73] since water may be distributed in
the soil profile through the cracks and dependent on the type of rainfall event may not
wet uniformly the whole soil matrix [68]. However, the limitation in salt leaching through
cracks depends on the geometry (depth and width) of the created cracks [74]. Furthermore,
the flow may confine the salt leaching to cracks only, but is also affected by rain quantity
and intensity, the surface soil moisture content and soil texture [74]. In a study on the
effect of clay (bentonite) on salt leaching, Shaygan et al. [61] found that the addition of
2.5% bentonite (wt/wt) to a saline-sodic soil resulted in a 92% reduction in soil Na+ content
under the specific environmental conditions.

Alteration of a fine textured substrate by incorporating coarse particles such as sand
improves conditions for the migration of water through the profile, as they can alter the
pore size distribution towards a larger proportion of coarse pores [34]. During leaching,
water does not flow uniformly through a soil profile, but preferentially through coarse
or macro-pores [75]. As a result, soils with high coarse particle or sand content, which
is linked with a higher proportion of coarse pores, are known to be preferable for solute
transport and salt leaching [54,76]. However, Hartmann et al. [77] reported that an increase
in water flow/hydraulic conductivity reduced cation exchange in the soil due to a reduction
in percolation time and the concentration to preferential pathways. Hartmann et al. [77]
concluded that with increasing the percolation time, the accessibility of exchange surfaces
increases and the time for chemical reactions is reduced. This can affect the success of salt
leaching in the soil profile since high rates of cation exchange can result in the leaching of
large amounts of salts from the soil. Ghafoor et al. [78] also reported that reclamation is
more effective in saline-sodic soil with a high CEC. Addition of sand as a soil supplement to
improve water movement has been studied for turfgrass establishment [79–81]. A few stud-
ies have also noted that sand can affect salt leaching [54,82]. For instance, Rahman et al. [54]
reported that sand amendment significantly promoted the desalinization zone when com-
pared to organic and chemical amendments (chicken manure, gypsum, farm yard manure,
dry sludge, water hyacinth). Shaygan et al. [61] also showed an addition of 40% fine
sand (wt/wt) to a saline-sodic soil can reduce salinity and sodicity by approximately 70%
and 40%, respectively, through improving the pore system (increasing total porosity and
connectivity among pores) and ion exchange.

2.1.3. Addition of Chemical Amendments

Saline-sodic soils can be reclaimed by using chemical amendments. The typical chemi-
cal amendments are gypsum (CaSO4), lime (CaCO3), sulphuric acid (H2SO4), hydrochloric
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acid (HCl) and nitric acid (HNO3) [83]. Gypsum and lime containing calcium (Ca2+) can
substitute sodium ions at the cation exchange sites during leaching [84,85]. This process
can result in flushing out of the sodium from the root zone. The beneficial use of gypsum
and lime for the reduction of salinity and improving soil structure has been shown in
several studies [49,84,86–90]. For instance, Goncalo Filho et al. [84] concluded that applying
38.7 t ha−1 gypsum can substitute 20% of the ESP in a saline-sodic soil (pH: >8.5; ESP:
>22.2%; EC: >4 dS m−1) located in semi-arid regions of northern Brazil.

Chemical amendments such as sulphuric acid [89,91–94] and hydrochloric acid [95–97]
have been applied to dissolve calcite and thus activate calcium (Ca2+) to be exchanged
with sodium (Na+) in calcareous saline-sodic soils. As an example, Amezketa et al. [93]
indicated that the addition of sulphuric acid was the most effective treatment in leaching
and reducing salinity in comparison with gypsum amendments. However, the application
of acidic amendments can lower soil pH, thus, their applications need some consideration.

2.1.4. Soil Ripping

If soil compaction is a problem, which is normally a consideration in sodic soils,
ripping can be used as a method to reduce the compaction and assist with salt leaching
and thus reclamation [12,98]. Soil ripping up to a depth of 15 cm has been reported by
Shaygan et al. [99] as a successful method of saline-sodic land reclamation. However, to
achieve long-term improvement in soil physical conditions, particularly in macroporosity,
ripping should be combined with chemical ameliorates (i.e., Ca2+ amendments), particu-
larly for sodic soils [100] to stabilize the newly formed pore structure. The soil also requires
protection from re-compaction during irrigation [100].

2.2. Halophytes for Phytoremediation

Saline-sodic soils can be reclaimed through revegetation, which uses a plant-assisted
approach to ameliorate the soil [101]. This approach relies on plant, soil and hydro-
logical interactions. The rehabilitation through plants (phytoremediation) can also be
managed productively, as the plants can often be used as fodder [102]. In some instances,
phytoremediation of saline-sodic land can result in improvements comparable with en-
gineering methods [103]. Qadir and Oster [103] compared the results from 14 experi-
ments [53,83,86,88,104–111] and concluded that applying gypsum reduced sodicity but
was only effective in the surface layer. However, phytoremediation resulted in amelioration
throughout the whole plant root zone and was more effective [103]. It should be noted
that the application of gypsum can increase the soil salinity initially. However, the increase
in soil hydraulic conductivity resulting from the application of gypsum allows salt to be
leached and reduces salinity.

Saline-sodic soils can be remediated through revegetation using halophytes [101].
Halophytes, which represent approximately 1% of global flora biodiversity [1], can sur-
vive, live and complete their life cycle in high concentrations of salt (at least 200 mmol
NaCl) [112,113]. Some species of halophytes (e.g., Salicornia europaea and Salicornia bigelowii)
would not grow adequately in the absence of added NaCl [114], and the growth of
some species of halophytes is stimulated by moderate salinity conditions (50–250 mmol
NaCl) [112]. Several researchers have reported the success of saline-sodic soil reclamation
using halophytes [27,110,115–123]. Species such as Suaeda maritima, Suaeda portula-castrum,
Suaeda salsa, Suaeda fruticosa, Atriplex nummularia and Atriplex prostrata have been reported
to tolerate high levels of Na+ and accumulate high concentrations of Na+ in their tissues,
making these species effective for the revegetation and reclamation of saline lands [124].
For instance, Suaeda salsa removed 3090–3860 kg ha−1 Na+ from soil with 15 plants per m2

density after a period 120 days of growth [118]. Halophyte roots can also ameliorate the
soil structure through the creation of pores, which results in improving the water and air
flow [123,125].

Typical improvements resulting from reclamation through revegetation of halop-
hytes include:
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• Improvement of soil aggregation stability and soil hydraulic properties;
• Deeper reclamation zone compared with other reclamation methods (i.e., gyp-

sum application);
• Improvement of chemical and physical properties of the soils;
• Financial benefits due to a reduction in application of chemical amendments or leach-

ing [103].

Species from the Chenopodiaceae family, which has the highest proportion of halo-
phytic genera with 312 salt tolerant species [112], are considered suitable for revegetation
and reclamation as they adjust to and tolerate salt stress better than halophytes from other
families such as Poaceae [126]. Halophytic species within the Chenopodiaceae family are
widely used for revegetation and land reclamation [27,110,115–123]. In saline conditions,
species of the Chenopodiaceae family adjust their shoot osmotic pressure and accumulate
large amounts of Na+ and Cl−, and so a large proportion of the dry weight of these plants
consists of inorganic ions [127]. Some genera of the Chenopodiaceae, including Atriplex,
which are extremely salt tolerant, have been well studied for their revegetation and land
reclamation potential [27,115,117,128]. The potential of Atriplex species for revegetation
of salt-affected soils has been noted in several studies because of accumulation of salts in
their aboveground tissues, particularly in their leaves [26,115,117,129–134]. For example,
Atriplex halimus accumulated up to 3137 meq kg−1 dry wt Na+ in the shoot tissues after one
year of planting [115]. In a study on different species of Chenopodiaceae, Shaygan et al. [12]
reported an average of 38.5% and 33% reduction in salinity and sodicity, respectively, for
the top 10 cm of saline-sodic soil located in a semi-arid environment.

2.3. Salt Scraping

Saline land can be physically reclaimed by salt scraping to remove the salt crust so
that plants can be re-established [128,129]. This must be typically followed by leaching to
remove salts including Na+ from the root zone, and in moderate saline-sodic conditions,
applying Ca2+ amendments to displace exchangeable Na+ [33,135–137]. The dynamics of
salt precipitation should be considered when salt scraping is considered as a method of
saline soil remediation, as a high evaporation rate can move salts upward towards the soil
surface and a high rainfall event can leach the salts to deeper depths of the soil profile
where salts may not return to the surface soil [99]. Therefore, without interfering with a
possible principal cause for the occurrence of a salt crust, this strategy may be limited to
specific land and climatic conditions.

3. Identification of the Most Suitable Strategy for Salt-Affected Soil Reclamation

Application of mentioned strategies (leaching, amendments, soil ripping, halophytes,
salt scraping) requires a range of resources and conditions, and hence may not be tailored
to all salt-affected lands due to a shortage of water and energy resources, high cost as
well as climatic conditions. For example, water shortage is of particular importance for
reclamation of salt-affected lands in mine sites, as most mine sites are located in remote
areas of semi-arid and arid environments [138]. Therefore, the reclamation of most post-
mine land mainly relies on natural climatic conditions, rainfall depth and distribution as
well as evaporation.

Rapid changes in saline habitat can be caused by climatic conditions. In the presence
of sufficient rainfall, a high leaching rate can be created, leading to low concentrations of
salts in the root zone [139]. Under arid and semi-arid conditions, evaporation from the soil
surface is one of the factors which controls soil salinization, as it can result in returning salts
to the surface soil [140]. Upward movement of salts in soils is caused by capillary rise due to
evaporation from the soil surface and accumulates salts if no counter balance of downward
movement of water exists [140]. The capillary rise, influenced by soil hydraulic parameters,
determines the amount of solutes that can be transported [141,142]. Many salt-affected
soils are located in (semi-)arid regions where leaching/irrigation is infeasible/limited and
high evaporation rates may restore the saline impacts [132]. Therefore, seed germination in
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arid and semi-arid regions usually occurs after rainfall because of a reduction in the surface
soil salinity [113]. Such a pattern results in seed germination and seedling establishment
prior to the period of salt stress [27]. Under (semi-)arid climatic conditions, rain events
do not occur frequently, so germination may be successful once every several years [143].
Therefore, the relationship (i.e., interaction/overlap) between soil, plant and climate must
be considered for identifying the suitability of each remediation strategy (Figure A1).

Leaching is the main remediation technique for salt-affected lands. However, the
efficiency of leaching can be restricted by poor soil physical conditions that limit downward
water and solute movement into deeper depths of the soil profile. Therefore, the addition
of amendments to improve soil physical conditions and thus enhance salt leaching may
be required. The type of amendments to be used for improving soil physical conditions
depends on the soil chemical conditions, resource availability and cost, as well as climatic
conditions. This is particularly important for the reclamation of salt-affected land located
in remote areas. To further expand the desalinization zone, phytoremediation using
halophytes may be used. Halophytes can increase both the desalinization depth and
longevity of the salt extraction rate [144]. However, sometimes the high level of soil salinity
as well as inappropriate climatic conditions restrict halophyte establishment [12]. When the
climatic conditions and soil conditions are barriers to success for reclamation, a combination
of different practices may be required for reclamation. For instance, first salt scrapping, and
then the addition of amendments and using soil ripping could be an option to improve the
soil physical conditions, thus enhancing salt leaching under natural climatic conditions and
providing conditions for halophyte establishment (Figures 1 and 2), which can function as
a phytoameliorant by altering the moisture and flux conditions and reduce the transport of
slats to the surface. Examples of integrated management of salt-affected soil, which combine
amendments and/or reclamation techniques, can be found in the literature [84,99,145–148].
These studies [84,99,145–148] concluded that integrated management of salt-affected soils
strengthens soil salinity and sodicity mitigation.
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3.1. Models as Predictive Tools to Identify Effective Reclamation Practices

The success of a reclamation practice relies on understanding the interaction between
plant, soil and climate. Numerical modelling is a meaningful tool to evaluate the interaction
of soil, plant and climatic conditions and its effects on the success of reclamation [149]. Field
experiments on solute transport are typically based only on simple functional relationships,
and cannot entirely cover the spatial and temporal variability at the field scale [63,150,151].
However, numerical models can perform complex scenarios and integrate observed climatic
conditions and soil (soil chemical and physical properties as well as soil hydrology) as
well as plant factors. Thus, the salt-affected soil reclamation practice/s can be evaluated
precisely, and so identified using modelling studies. This also reduces the unnecessary
costs associated with examining reclamation methods as well as their implementation
through field trials. In particular, modelling can be economically useful for exploring and
determining a reclamation technique for land in arid and semi-arid environments with
highly variable rainfall patterns, where a period of dry conditions can result in the upward
movement of solute to the surface soil and thus restrict plant establishment.

To identify an effective reclamation strategy, a model which can simulate solute
transport and compute cation exchange, mineral dissolution, precipitation and changes in
soil hydraulic conductivity in relation to the modification of the soil chemistry, as well as the
interrelations of all mentioned factors, is required [151–157]. There are several soil hydro-
geochemical models that can be used for simulation and projection of solute transport in
soil profiles (porous media) and thus the success of reclamation techniques. LEACHM [158],
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VADOSE/W or SEEP/W [159], UNSATCHEM [160–162] and HYDRUS [153,156] are among
these solute transport models. UNSATCHEM and HYDRUS are currently the only models
that can consider the effect of soil chemistry on hydraulic conductivity, which is essential
for the evaluation of land reclamation strategies [63,154]. Moreover, the major ion chemistry
and carbon dioxide modules of UNSATCHEM are included in the HYDRUS package [156],
making HYDRUS a more effective tool for assessing reclamation success.

Several studies demonstrated that models can be effective tools for evaluating salt
leaching and solute transport in the soil profile [151,163,164] as well as being applied for
designing the implementation of amelioration strategies [63,99,149,154,157,165]. For exam-
ple, studies on the application of a hydro-geochemical model (i.e., HYDRUS) in different
climates confirmed that the hydro-geochemical model can accurately predict water and
solute transport under different rainfall patterns and evaporation conditions [163,166,167].
Applicability of the hydro-geochemical model was also verified where the physical amend-
ments (plant residue and fine sand) were added to a salt-affected soil profile [63,99,149].
All the above suggests a hydro-geochemical model can be used as a predictive tool for
assessing a reclamation approach under natural climatic conditions before upscaling the
strategy to field conditions.

3.2. Model Verification to Identify Effective Reclamation Practices

A numerical model needs to be verified before its application to identify effective
reclamation strategies. This process includes the calibration and validation of the model.
Calibration is defined as a procedure to obtain a set of parameters that provide a statisti-
cally satisfying description of the soil system. Validation is the process of examining the
accuracy of the model for being representative of the system. The verification procedure is
required for any numerical model, even if good performance has already been verified in
other studies.

The example of an approach on how to verify and use a soil hydro-geochemical
model for finding the best reclamation practice for a saline-sodic soil in semi-arid climates
can be found in a series of studies conducted by Shaygan et al. [37,61,63,99,149]. Firstly,
Shaygan et al. [61] determined the chemical and physical properties of saline-sodic soil
amended with 40% fine sand and 20% woodchips separately (as proposed reclamation
strategies to improve porosity and macro-pore volume and thus enhance salt leaching) as
well as non-amended soil. Then, a series of column studies were conducted to assess water
and solute movement in the amended and non-amended soil profiles [63]. The column
studies were used to simulate different rainfall events to amended and non-amended soil
profiles [63]. The monitored water flow and solute transport were then used to calibrate
the chemical and physical parameters of soil required for HYDRUS modelling [63]. When
the soil parameters were calibrated, another series of experiments with a different rainfall
series were conducted, followed by statistical analyses to validate the HYDRUS models [63].
Shaygan et al. [99] used the validated HYDRUS models, and applied ten years natural
climatic conditions of the study site to evaluate water flow and solute transport (salt
leaching) in different profiles. The modelling study for ten years showed that salt leaching
is higher in non-amended saline-sodic soil, and the addition of 40% fine sand or 20%
woodchips may not be an effective approach for the reclamation of saline-sodic soil to
provide improved conditions for revegetation [99]. This study also suggested that a
low soil bulk density is sufficient to provide suitable conditions for salt leaching under
natural climatic conditions by modifying the pore size distribution [99]. However, the
low bulk density or desirable pore system must be sustained. A field study on the saline-
sodic soil confirmed the obtained modelling findings, and showed soil ripping to a depth
of 15 cm increased the diversity and density of native species’ establishment [99]. The
series of studies that have been conducted by Shaygan et al. [37,61,63,99,149] suggested
that a numerical model can be used as predictive tool to assess the effectiveness of a
reclamation strategy by covering complex scenarios and the interaction of soil, plant
and climate, both spatially and temporally. Once a validated model has been confirmed
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and experimentally validated, any scenarios can be simulated by the model to predict
the outcome of reclamation strategies. The same modelling approach can be applied
to any porous media from non-soil like substrates as can be found in mining such as
tailings [168,169] and rocky and gravelly materials [170–172] to evaluate different scenarios
on their management strategies.

4. Conclusions

There are several methods to reclaim a salt-affected soil, including salt leaching, the
addition of amendments, soil ripping, salt scrapping and revegetation using halophytes.
Salt leaching is the most important method among the aforementioned strategies. However,
its efficacy depends on soil physico-chemical conditions and climatic conditions of the site.
Leaching may result in imbalanced ion content of the soil and thus negatively affect soil
conditions. Therefore, on some occasions, a combination of techniques may be required for
the reclamation of a salt-affected soil. As an example, a saline-sodic soil may be reclaimed
through revegetation using halophytes. However, in arid and semi-arid environments,
leaching is a critical factor for successful revegetation, even when salt-tolerant species
are used. As rainfall is often the only water source for salt leaching in semi-arid and
arid environments, the addition of amendments becomes critical to improve soil physical
conditions and hence enhance leaching during rain events, and reduce upward movement
of solutes during extended dry conditions. This review paper revealed that identifying a
suitable reclamation strategy for a salt-affected land requires understanding the interaction
of soil, plant and climate. Therefore, understanding this interaction is recommended before
selecting any reclamation techniques. Sustainable and long-term good performance of
a reclamation strategy must also be a consideration, as some reclamation techniques are
short-term solutions only. The field studies typically used to evaluate the suitability of
reclamation practices cannot cover complex spatial and temporal changes involved with
the success of reclamation. To close this gap, soil hydro-geochemical numerical models
are recommended to be used as decision-making tools to cover complex scenarios, both
spatially and temporally, and assist with assessing the effectiveness of a reclamation strategy
for salt-affected soils before implementing it. From a future perspective, reclamation of
salt-affected land should rely more on modelling techniques to increase the likelihood of
reclamation success.
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161. Šimůnek, J.; Suarez, D.L. Two-dimensional transport model for variably saturated porous media with major ion chemistry. Water
Resour. Res. 1994, 30, 1115–1133. [CrossRef]

162. Šimůnek, J.; Suarez, D.; Šejna, M. The UNSATCHEM software package for simulating one-dimensional variably saturated water
flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium
and kinetic chemistry. Res. Rep 1996, 141, 186.

163. Zeng, W.; Xu, C.; Wu, J.; Huang, J. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J.
Arid. Land 2014, 6, 44–58. [CrossRef]
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