
Vol:.(1234567890)

Data Science and Engineering (2022) 7:120–135
https://doi.org/10.1007/s41019-022-00185-5

1 3

RESEARCH PAPERS

A New Dimensionality‑Unbiased Score for Efficient and Effective 
Outlying Aspect Mining

Durgesh Samariya1  · Jiangang Ma1

Received: 13 December 2021 / Revised: 9 March 2022 / Accepted: 5 April 2022 / Published online: 29 April 2022 
© The Author(s) 2022

Abstract
The main aim of the outlying aspect mining algorithm is to automatically detect the subspace(s) (a.k.a. aspect(s)), where a 
given data point is dramatically different than the rest of the data in each of those subspace(s) (aspect(s)). To rank the sub-
spaces for a given data point, a scoring measure is required to compute the outlying degree of the given data in each subspace. 
In this paper, we introduce a new measure to compute outlying degree, called Simple Isolation score using Nearest Neighbor 
Ensemble (SiNNE), which not only detects the outliers but also provides an explanation on why the selected point is an out-
lier. SiNNE is a dimensionally unbias measure in its raw form, which means the scores produced by SiNNE are compared 
directly with subspaces having different dimensions. Thus, it does not require any normalization to make the score unbiased. 
Our experimental results on synthetic and publicly available real-world datasets revealed that (i) SiNNE produces better or at 
least the same results as existing scores. (ii) It improves the run time of the existing outlying aspect mining algorithm based 
on beam search by at least two orders of magnitude. SiNNE allows the existing outlying aspect mining algorithm to run in 
datasets with hundreds of thousands of instances and thousands of dimensions which was not possible before.

Keywords Outlying aspect mining · Isolation based · Outlying degree · Subspace search

1 Introduction

Outliers (a.k.a anomalies) are data points that show dramati-
cally different behavior from the remainder of data points 
in the dataset. The process of finding such data points is 
known as Outlier Detection (OD). In the era of big data, 
OD is considered as one of the vital task of data mining 
with a wide range of application domains [21], i.e., (i) fraud 
detection—in this domain, outlier refers to the fraud that 
includes credit card frauds [6], insurance claim frauds [4]; 
(ii) Medical or public health—in this domain, outlier refers 
to an unusual health condition of patients that happens due 
to instrumental error or disease symptoms [14].

Recently, researchers have been interested in the explana-
tion of why the data point is considered as an outlier. The 

problem of finding these explanations leads to the Outlying 
Aspect Mining (OAM) [8, 22, 27, 28]. OAM is the task of 
identifying feature subset(s), in which a given data point is 
dramatically inconsistent with the rest of the data. In litera-
ture, the problem of OAM is also referred as outlying sub-
space detection [31], outlier explanation [9, 17, 18], outlier 
interpretation [7, 16, 29], outlying property detection [1] and 
outlying aspect mining [8, 22, 23, 26–28, 30].

In many application scenarios, it is required to find out in 
which set of feature(s), a given point is different than others. 
For example, in a bank, a fraud analyst collects informa-
tion about various aspects of credit card fraud, and he/she 
is interested to know in which aspects the fraud does not 
conform with the remainder of that set of data. Moreover, 
when evaluating job applications, a panel member wants to 
know the job applicant’s unique features. Another exciting 
application of OAM is in the medical domain [20]. Assume 
that you are a doctor and while treating a specific patient, 
you want to know, how this patient is different than others. 
Existing OD methods cannot answer all these questions.

To detect outlying aspects, OAM algorithms require a 
scoring measure to rank subspaces based on the outlying 
degrees of the given query. Existing OAM algorithms such 
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as HOSMiner [31], OAMiner [8], Density Z-Score [27] and 
sGrid [28] use a traditional distance or density-based outlier 
score as the ranking measure. Because distance or density-
based outlier scores depend on the dimensionality of sub-
spaces, they cannot be compared directly to rank subspaces. 
[27] proposed to use Z-Score normalization to make them 
comparable. It requires computing the outlier scores of all 
the data points in each subspace. It adds significant compu-
tational overhead making OAM algorithms infeasible to run 
in large and/or high-dimensional datasets. Also, we discover 
that Z-Score normalization is not appropriate for OAM in 
some cases.

In this paper, we focus on the two issues of existing scores 
used in OAM: (i) dimensionality unbiasedness, and (ii) com-
putational complexity. It is worth noting that another com-
putational issue in OAM is to deal with the exponentially 
large number of subspaces. Current OAM methods perform 
a systematic search; which is computationally prohibitive 
when the number of dimensions is high. This paper does not 
deal with this computational issue. It still uses the existing 
systematic search approach but deals with computing the 
score in each subspace efficiently.

This paper makes the following contributions:

– Identify an issue of using Z-Score normalization of den-
sity-based outlier scores to rank subspaces and shows 
that it is biased towards a subspace having high-density 
variance.

– Propose a new simple measure called Simple Isolation 
score using Nearest Neighbor Ensemble (SiNNE), which 
is useful for detecting outliers from the dataset and outly-
ing aspects of the given outlier points.

– Provide an objective measure to assess the quality of dis-
covered outlying subspaces.

– Validate the effectiveness and efficiency of SiNNE in 
OAM. Our empirical results show that SiNNE can detect 
more interesting outlying aspects than the existing score, 
and it allows the OAM algorithm to run orders of magni-
tude faster than the existing scoring measure.

The rest of the paper is organized as follows. Section 2 
provides a summary of previous work on outlying aspect 
mining. The proposed outlier detector scoring measure is 
presented in Sect. 3. Experimental settings are provided 
in Sect. 4, and empirical evaluation results are provided in 
Sect. 5. Finally, conclusions are provided in Sect. 6.

2  Related Works

In this section, first, we fixed some notations for the rest of 
the paper, provided some basic definitions, and then dis-
cussed recent outlying aspect mining methods. The high-
level process pipeline of OAM is shown in Fig. 1.

Fig. 1  The high-level process 
pipeline

Table 1  Key symbols and notations

Symbol Definition

X A dataset with d attributes, where |X| = n

x A data point in X
F Set of features, where F = {F1,F2,… ,F

d
}

� A query point
� The set of all possible subspaces
� The number of sub-samples
t The number of sets
D A subset of X  , D ⊂ X  , |D| = �
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2.1  Basic Notations and Definitions

Let X = {x1, x2,… , xn} be a collection of n data points 
in an d-dimensional space ℜ , where ℜ is a real domain. 
Each data point x is represented as an d dimensional vec-
tor 

⟨
x(1), x(2),… , x(d)

⟩
 . Let F  be a full feature space and 

� = {S1,S2,… ,Sð} be a set of all possible subspaces, 
where ð = 2d − 1 is the number of possible subspaces. The 
key symbols and notations used in this paper are provided 
in Table 1.

The problem of outlier detection is to identify all xi 
which remarkably deviates from others in full feature set F  , 
whereas the problem of outlying aspect mining is to iden-
tify subspace Si ∈ � , where the given data point xi ∈ X  is 
significantly different from the rest of the data. That given 
data point xi ∈ X  is referred as a query �.

Definition 1 (Outlier) An outlier is a data instance that sig-
nificantly deviates from others in the full feature set F .

Definition 2 (Subspace) A subspace is a subset of the dimen-
sions d of dataset X .

Definition 3 (Query point) A query � is a data point of inter-
est, which is used to find outlying aspects.

Definition 4 (Problem definition) Given a set of n instances 
X  ( |X| = n ) in d dimensional space, a query � ∈ X  , a sub-
space S is called outlying aspect of � iff,

– outlying degree of � in subspace S is higher than other 
subspaces, and there is no other subspace with same or 
higher outlying degree.

2.2  Outlying Aspect Mining

To the best of our knowledge, [31] is the earliest work that 
defines the problem of OAM. They introduced a framework 
to detect an outlying subspace called HOS-Miner (stands 
for High-dimensional Outlying Subspace Miner). Therein, 
the author used a distance-based measure called Outlying 
Degree (OutD in short). The OutD of query � in subspace 
S is computed as:

where ℵk
S
(�) is a set of k-nearest neighbors of � in subspace 

S , dS(a, b) is an euclidean distance between a and b in sub-
space S , which is computed as dS(a, b) =

√∑
i∈S(ai − bi)

2.
In 2015, [8] introduced Outlying Aspect Miner (OAM-

iner in short). Instead of using distance, therein, authors 
employed a kernel density estimation [24]-based scoring 
measure to compute the outlyingness of query � in subspace 
S:

OutDS(�) =
∑

x∈ℵk
S
(�)

dS(�, x)

Fig. 2  The flowchart

Fig. 3  Data distribution in two three-dimensional subspaces 
of the Pendigits dataset. a f̃Si

(�) = 21.30,Z(f̃Si
(�)) = −2.10 ; b 

f̃Sj (�) = 1.20,Z(f̃Sj (�)) = −1.25
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where f̃S(�) is a kernel density estimation of � in subspace 
S , m is the dimensionality of subspace S ( m = |S| ), hi is the 
kernel bandwidth in dimension i.

[8] stated that f̃S is bias towards high-dimensional sub-
spaces—density tends to decrease as dimension increases. 
Thus, to remove the effect of dimensionality biasedness, they 
proposed to use the density rank of the query as a measure 
of outlyingness.

[27] proposed two outlying scoring metrics (i) density 
Z-Score and (ii) iPath score (stands for isolation Path).

Therein, the density Z-Score is defined as follows:

where 𝜇f̃S
 and 𝜎f̃S are the mean and standard deviation of 

the density of all data instances in subspace S , respectively.
The iPath score is motivated by Isolation Forest (iForest) 

anomaly detection approach [15]. The process of calculating 
the iPath score in subspace S of query � w.r.t. sub-samples 
� of the data is:

where li
S
(�) is path length of � in ith tree and subspace S.

[27] were the first to coin the term dimensionality unbi-
asedness, i.e., “A dimensionality unbiased outlyingness 
measure (OM) is a measure of which the baseline value, 
i.e., average value for any data sample X = {x1, x2,… , xn} 
drawn from a uniform distribution, is a quantity independent 
of the dimension of the subspace S.”

[28] introduced a simple grid-based density estimator 
called sGrid. sGrid is a smoothed variant of a grid-based 
density estimator [24]. Let X  be a collection of n data objects 
in d-dimensional space, x.S be a projection of a data object 
x ∈ X  in subspace S . The sGrid density of point � is com-
puted as the number of points that falls into a bin that covers 
point � and its surrounding neighbors. In their work, they 
show that the proposed density estimator has advantages 
over the existing kernel density estimator in outlying aspect 
mining by replacing the kernel density estimator with sGrid.

In recent work, [30] proposed a reconstruction-based 
method using completely random trees (RecForest in short). 
Therein, reconstruction has been done using the intersec-
tion of the bounding boxes in the completely random forest 
for each data point. The outlying score OS of each feature 
i = 1, 2,… , d for query � is defined as:

f̃S(�) =
1

n(2𝜋)
m

2

∏
i∈S hi

�

x∈X

e
−
∑

i∈S

(�i−xi)
2

2h2
i

Z-Score(f̃S(�)) ≜
f̃S(�) − 𝜇f̃S

𝜎f̃S

iPathS(�) =
1

t

t∑

i=1

li
S
(�)

where �rec is a reconstructed sample of �.
[29] proposed an Attention-guided Triplet deviation net-

work for Outlier interpretatioN (ATON). Instead of search-
ing subspaces, ATON learns an embedding space and learns 
how each dimension is contributing to the outlyingness of 
the query.

3  The Framework

We first outline the motivation for our method, followed by 
the details of SiNNE. Figure 2 presents the flowchart of the 
complete framework.

3.1  Issue of Using Z‑Score

Because Z-Score normalization uses mean and variance of 
density values of all data instances in a subspace ( 𝜇f̃Si

 and 
𝜎f̃Si

 ), it can be biased towards a subspace having high varia-
tion of density values (i.e., high 𝜎f̃Si).

Let’s take a simple example to demonstrate this. Assume 
that Si and Sj ( i ≠ j ), be two different subspaces of the same 
dimensionality (i.e., |Si| = |Sj| ). Intuitively, because they 
have the same dimensionality, they can be ranked based on 
the raw density (unnormalized) values of a query � . Assum-
ing 𝜇f̃Si

= 𝜇f̃Sj
 , we can have Z(f̃Si

(�)) < Z(f̃Sj
(�)) even though 

f̃Si
(�) = f̃Sj

(�) if 𝜎f̃Si > 𝜎f̃Sj
 (i.e., Si is ranked higher than Sj 

based on density Z-Score normalization just because of 
higher 𝜎f̃Si).

To show this effect in a real-world dataset, let’s take an 
example of the pendigits1 dataset ( n = 9868 and d = 16 ). 
Figure 3 shows the distribution of data in two three-dimen-
sional subspaces Si = {7, 8, 13} and Sj = {2, 10, 13} . Visu-
ally, the query � represented by the red square appears to be 
more outlier in Sj than in Si . This is consistent with its raw 
d e n s i t y  v a l u e s  i n  t h e  t w o  s u b s p a c e s , 
f̃Sj
(�) = 1.20 < f̃Si

(�) = 21.30 . However, the ranking is 
r eve r s e d  a f t e r  t h e  Z - S c o re  n o r m a l i z a t i o n , 
( Z(f̃Sj

(�)) = −1.25 > Z(f̃Si
(�)) = −2.10 ). This is due to the 

higher 𝜎f̃Si = 57.3 > 𝜎f̃Sj
= 34.2.

Apart from these, existing OAM scoring measures have 
two limitations:

– they are dimensionally biased and they require normali-
zation; and

OSi =
exp(�i − �

rec
i
)2

∑d

j=1
exp(�j − �

rec
j
)2

1 Available at https:// elki- proje ct. github. io/ datas ets/ outli er.

https://elki-project.github.io/datasets/outlier
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– they are expensive to compute in each subspace.

Being motivated by these limitations of density-based scores 
in OAM, we introduce a new measure which is dimension-
ally unbias in its raw form and can be computed efficiently.

3.2  Outlierness Computation

We now introduce a new scoring measure called simple iso-
lation using nearest-neighbor ensembles (SiNNE in short). 
This scoring function is inspired by the isolation-based 
anomaly detection using nearest-neighbor ensembles [2, 3].

The proposed scoring function has two major steps:

– Building hyperspheres: The process of building hyper-
spheres in each subspace. The hyperspheres are build 
using nearest neighbors.

– Scoring query: The current model is used to score the 
query.

3.2.1  Build Model

Let X = {x1, x2,… , xn} be a dataset xi ∈ ℜd , where i ∈ n 
represents the position of data point x in X  , n is the number 
of data points in the dataset and d is the number of dimen-
sions. We randomly choose � data samples from X  , t times 
in each subspace.

Our proposed scoring function follows same procedure as 
the iNNE [2] to build ensemble of hyperspheres. However, 
in context of OAM, the difference is that we create ensem-
bles in subspaces instead of full feature space.

Basically, SiNNE creates an ensemble of hyperspheres. 
Ensemble is defined as t sets of hyperspheres, where each 
set consists of � hyperspheres.

Definition 5 (Hyperspheres) Given data subset D(�)

i
 , a 

hypersphere �(c) centered at c with radii �(c) = ||c − �c|| 
is defined as { x ∶ ||x − c|| ≤ �(c) }, where x ∈ ℜd and 
c, �c ∈ D

(�)

i
 ; �c is the nearest neighbor of c in D(�)

i
.

Definition 6 Given � sub-samples, an ensemble H contains t 
sets and each set consists of � hyperspheres. H is defined as:

Note that the training process of SiNNE and iNNE is 
same, however, they differ in the computation of outlier 
score (cf. Sect. 3.5 for more differences).

Definition 7 (Simple isolation score) The simple isolation 
score of � in subspace S based on sub-sample D is defined 
as:

H = {{�(c) ∶ c ∈ D
(�)

i
} ∶ i = 1, 2,… , t}

where �[B] denotes the indicator function which gives the 
output 0 if B is true; otherwise �[B] = 1.

SI takes the value either 0 or 1. When � is covered by any 
of the hypersphere, it assigns 0 and if it is not covered by 
any of the hypersphere then SiNNE assumes that point is far 
away from the data and assigns 1.

Definition 8 The outlier score for � in subspace S based on 
SiNNE is defined as the average of simple isolation score 
over t sets.

As SI takes 0 or 1 score only, SiNNE(q) have score values 
in the range [0, 1].

Because the area covered by each hypersphere decreases 
as the dimensionality of the space increases and so is the 
actual data space covered by normal instances. Therefore, 
SiNNE is independent of the dimensionality of space in 
its raw form without any normalization making it ideal for 
OAM. It adapts to the local data density in the space because 
the sizes of the hyperspheres depend on the local density. 
It can be computed a lot faster than the k-NN distance or 
density. Also, it does not require to compute outlier scores 
of all n instances in each subspace (which is required with 

(1)SIS(�) = �[� ∈
⋃

c∈D

�(c)]

(2)SiNNES(�) =
1

t

t∑

i=1

SIi
S
(�)

Fig. 4  a Randomly selected sub-samples D of size � = 8 ; b build 
hypersphere for data point c; c set of hyperspheres from D ; d simple 
isolation score for data point x and y using isolation model
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existing score for Z-Score normalization) which gives it a 
significant advantage in terms of run time.

The procedures to build an ensemble of models and using 
them to compute outlyingness of the given query data in 
subspace S are provided in Algorithms 1 and 2.

Algorithm 1: Build Hyperspheres (X , t, ψ)
Input: X - given data set; t - number of sets, ψ -

number of sub-samples
Output: H - An ensemble of t sets of ψ

hyperspheres
1 initialize H = Φ ;
2 for i ← 1 to t do
3 Generate Di by randomly selecting ψ data points

from X without replacement ;
4 initialize Hi = 0 ;
5 for c ∈ Di do
6 η(c|Di) ← The nearest neighbor of c in Di ;
7 H(c) ← Build a hypersphere centered at c

with radius ||c− η(c|Di)||2 ;
8 Hi = Hi ∪ H(c) ;
9 end

10 H = H∪Hi ;
11 end
12 return H;

Algorithm 2: SiNNE: Computing outlying-
ness of query
Input: q - query point, H - {Hi|i = 1, . . . , t}
Output: SiNNE(q)

1 initialize si = 0 ;
2 for i ← 1 to t do
3 si += search(Hi,q) {return 0 if there is a

hypersphere H that covers q in Hi else 1} ;
4 end
5 SiNNE(q) = si/t ;
6 return SiNNE(q) ;

Time complexity The time complexity of creating SiNNE 
model is O(t�2) and in scoring stage, for query data point, 
it needs to find whether it falls in any hyperspheres or not, 
which takes O(t�) . Total time complexity of SiNNE is 
O(t�2 + t�).

3.3  Subspace Search

Apart from scoring measure, OAM framework requires sub-
space search method. In this work, we will be using Beam 
[27] search method, because it is the latest search method 
and used in literature. We replicate the procedure of beam 
search in Algorithm 3 for ease of reference. The overall time 
complexity of beam search is O(d2 +W ⋅ d ⋅ 𝓁) , where W is 
beam width and � maximum dimension of subspace.

Algorithm 3: Beam(q, �,X ,W, T, d)
Input: X - given data set, q - query, � - maximum

dimension, W - beam width, T - number of
top subspaces, d - number of dimension

Output: set of outlying features for query q
1 generate 2D subspaces ;
2 Add the top T subspaces to Ans;
3 for � = 3 to � do
4 initialize L(�) = Φ ;
5 for each subspace S ∈ L(�−1) do
6 for each Attribute Fi ∈ F do
7 if S ∪ Fi not considered yet then
8 compute outlying-score {S ∪ Fi};
9 if the worst subspace score in S is

worse than {S ∪ Fi} then
10 replace;
11 end
12 if |L(�) < W | then
13 append {S ∪ Fi} to L(�) ;
14 end
15 else if the worst scored subspace in

L(�) is worst than {S ∪ Fi} then
16 replace;
17 end
18 end
19 end
20 end
21 end
22 return set of outlying features

3.4  An Example of Proposed Method

In this section, we present an illustrative example of pro-
posed method. Figure  4a shows a randomly selected 8 
sub-samples (highlighted in black color) from dataset with 
n = 50 in 2-d subspace. Figure 4b shows an example of how 
�(c) hypershpere is build at centered c with radii �(c) . Fig-
ure 4c shows all 8 hyperspheres created using 8 sub-samples, 
which is used to compute outlying degree of the data point. 
As shown in Fig. 4d, to compute outlying degree of point x, 
the hypershpere that covers x needs to be determined. The 
SI (x) = 0 as x falls in hypershpere while data point y does 
not fall in any hypersphere, and thus outlying degree of y is 
obtained as 1.

3.5  Key Differences with Closely Related Work

In this subsection, we discuss the difference between SiNNE 
and iNNE.

Although having similar training process, SiNNE and 
iNNE employ different scoring mechanism. Specifically, 
iNNE employs local isolation-based score which is com-
puted as follows:
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where cnn(�) = argmin
c∈D

{�(c) ∶ � ∈ H(c)} , D is set of ran-

domly selected sub-samples without replacement, |D| = � , 
H(c) is a hypersphere centered at c with radius 
�(c) = dS(c, �c) , where �c is nearest neighbor of c.

In contrast, SiNNE uses a new simple isolation-based 
score (cf. Eq. (1)) which assigns 0 if point falls in any hyper-
sphere otherwise 1.

Apart from this, iNNE creates a model in full feature 
space since it has single sole purpose of detecting outliers 
from the full feature space F  while the purpose of SiNNE is 
to detect subspace for the given data point, and thus it cre-
ates a model in subspace. Although iNNE [2] was previously 
used as a outlier detector, its use in OAM context is new.

(3)Ii(�) =

�
1 −

�(�cnn(�))

�(cnn(�))
, if � ∈

⋃
c∈Di

H(c)

1, otherwise
Theorem 1 The isolation score using iNNE with sub-sample 
size � = 2 is equivalent to SiNNE.

Proof Given a iNNE model H and sample size � = 2 , each 
set contains two hypersphere with same radius (cf. Defini-
tion 5). Thus, �(�cnn(�)) = �(cnn(�)) . For sample size ( � = 2 ) 
isolation score is as follows:

which is same as Eq. 1.   ◻

In terms of performance, SiNNE detects the ground truth 
for each query while iNNE only detects the ground truth for 
11 out of 15 queries (details are presented in “Appendix”). In 
addition to that, SiNNE is faster than iNNE, this is because 
SiNNE does not require to find smallest hypersphere and its 
neighboring hypersphere for score.

(4)Ii(�) =

�
0, if � ∈

⋃
c∈Di

H(c),

1, otherwise

Table 2  Dataset statistics

Dataset #datasize (n) #dimension (d)

synthetic datasets 1000 10–100
wilt 4839 5
pageblocks 5473 10
mnist 20,444 96
u2r 60,821 33
mulcross 262,144 4
covertype 286,144 10

Fig. 5  Dimensionality unbiasedness

Table 3  Comparison of SiBeam, RBeam, Beam, and sGBeam in term 
of exact matches on synth_10D. Discovered subspaces with the exact 
matches with the ground truths are bold-faced. �-id represent query 
point index; GT represents ground truth; the numbers in the bracket 
(subspace) are attribute indices

�-id GT SiBeam RBeam Beam sGBeam

172 {8, 9} {8, 9} {1, 8, 9} {8, 9} {8, 9}
183 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}
184 {6, 7} {6, 7} {4, 6, 7} {6, 7} {6, 7}
207 {0, 1} {0, 1} {0, 1, 7} {0, 1} {0, 1}
220 {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5, 

7}
{2, 3, 4, 5} {2, 3, 4, 5}

245 {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5} {3, 4, 5}
315 {0, 1} {0, 1} {0, 1, 9} {0, 1} {0, 1}

{6, 7} {6, 7} {0, 6, 7} {6, 7} {6, 7}
323 {8, 9} {8, 9} {2, 8, 9} {8, 9} {8, 9}
477 {0, 1} {0, 1} {0, 1, 2} {0, 1} {0, 1}
510 {0, 1} {0, 1} {0, 1, 5} {0, 1} {0, 1}
577 {2, 3, 4, 5} {2, 3, 4, 5} {0, 3, 7} {6, 7} {2, 3, 4, 5}
654 {2, 3, 4, 5} {2, 3, 4, 5} {1, 2, 3, 4, 

5}
{2, 3, 4, 5} {2, 3, 4, 5}

704 {8, 9} {8, 9} {0, 8, 9} {8, 9} {8, 9}
723 {2, 3, 4, 5} {2, 3, 4, 5} {0, 2, 3, 4, 

5}
{2, 3, 4, 5} {2, 3, 4,5}

754 {6, 7} {6, 7} {6, 7} {6, 7} {6, 7}
765 {6, 7} {6, 7} {1, 6, 7} {6, 7} {6, 7}
781 {6, 7} {6, 7} {6, 7} {6, 7} {6, 7}
824 {8, 9} {8, 9} {6, 8, 9} {8, 9} {8, 9}
975 {8, 9} {8, 9} {8, 9} {8, 9} {8, 9}
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Table 4  Comparison of 
outlying aspects discovered 
by SiBeam, RBeam, Beam, 
and sGBeam on four synthetic 
datasets and average run time 
of 10 queries from each dataset. 
Discovered subspaces with the 
exact matches with the ground 
truths are bold-faced. �-id 
represent query point index; 
GT represents ground truth; 
the numbers in the bracket 
(subspace) are attribute indices

�-id GT SiBeam RBeam Beam sGBeam

synth_20D 43 {0, 1, 2} {0, 1, 2} {0, 14, 17} {0, 1, 2} {0, 1, 2}
86 {18, 19} {18, 19} {18, 19} {18, 19} {18, 19}
157 {0, 1, 2} {0, 1, 2} {1, 4} {0, 1, 2} {0, 1, 2}
288 {0, 1, 2} {0, 1, 2} {0, 1, 18} {0, 1, 2} {0, 1, 2}
451 {18, 19} {18, 19} {18, 19, 1} {18, 19} {18, 19}
665 {0, 1, 2} {0, 1, 2} {2, 4, 17} {0, 1, 2} {0, 1, 2}
705 {18, 19} {18, 19} {18, 19, 2} {18, 19} {18, 19}
873 {18, 19} {18, 19} {4, 7} {18, 19} {18, 19}
878 {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
942 {18, 19} {18, 19} {6, 18, 19} {18, 19} {18, 19}

Avg. Run time 0.49 216.68 248.58 0.42
synth_50D 106 {41, 42, 43} {41, 42, 43} {41, 42, 43} {41, 42, 43} {41, 42, 43}

121 {21, 22, 23} {21, 22, 23} {10, 22, 30} {21, 22, 23} {21, 22, 23}
200 {13, 14, 15} {13, 14, 15} {13, 15, 43} {13, 14, 15} {13, 14,15}
269 {41, 42, 43} {41, 42, 43} {7, 13} {41, 42, 43} {41, 42, 43}
427 {5, 6, 7, 8} {5, 6, 7, 8} {8, 9, 48} {48, 49} {44, 46, 47}
461 {26, 27} {26, 27} {9, 26, 27} {26, 27} {26, 27}
512 {24, 25} {24, 25} {10, 24, 25} {24, 25} {24, 25}
678 {21, 22, 23} {21, 22, 23} {9, 23, 32} {21, 22, 23} {21, 22, 23}
788 {41, 42, 43} {41, 42, 43} {12, 36, 47} {41, 42, 43} {41, 42, 43}
885 {48,49} {48,49} {4, 48, 49} {48,49} {48,49}

Avg. Run time 1.74 1398.75 1492.77 1.62
synth_75D 3 {18, 19} {18, 19} {12, 47, 68} {18, 19} {18, 19}

33 {11, 12} {11, 12} {11, 12, 33} {11, 12} {11, 12}
69 {6, 7, 8} {6, 7, 8} {16, 53} {6, 7, 8} {6, 7, 8}
145 {0, 1} {0, 1} {0, 1, 2} {0, 1} {0, 1}
214 {9, 10} {9, 10} {10, 11} {9, 10} {9, 10}
375 {72, 73, 74} {72, 73, 74} {19, 25} {72, 73, 74} {72, 73, 74}
499 {43, 44} {43, 44} {14, 19} {43, 44} {43, 44}
526 {40, 41, 42} {40, 41, 42} {25, 66} {40, 41, 42} {40, 41, 42}
828 {6, 7, 8} {6, 7, 8} {5, 8} {6, 7, 8} {6, 7, 8}
999 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

Avg. Run time 3.43 2366.59 2487.15 3.34
synth_100D 45 {55, 56, 57} {55, 56, 57} {82, 98} {55, 56, 57} {55, 56, 57}

80 {17, 18} {17, 18} {17, 18} {17, 18} {17, 18}
105 {10, 11} {10, 11} {0, 10, 11} {10, 11} {10, 11}
163 {55, 56, 57} {55, 56, 57} {13, 23, 83} {55, 56, 57} {55, 56, 57}
258 {43, 44} {43, 44} {10, 47} {43, 44} {43, 44}
437 {53, 54} {53, 54} {10, 21} {53, 54} {53, 54}
608 {17, 18} {17, 18} {3, 17} {17, 18} {66, 67}
771 {53, 54} {53, 54} {3, 9, 88} {53, 54} {53, 54}
786 {10, 11} {10, 11} {7, 32} {10, 11} {10, 11}
898 {10, 11} {10, 11} {70, 72} {10, 11} {10, 11}

Avg. Run time 11.51 3663.37 3809.92 11.33
Total (40) 40/40 5/40 39/40 39/40
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Table 5  Comparison of outlying aspects discovered by SiBeam, RBeam, Beam, and sGBeam on six real-world datasets and average run time of 
five queries from each dataset. �-id represent query point index; the numbers in the bracket (subspace) are attribute indices

Data �-id SiBeam RBeam Beam sGBeam Data �-id SiBeam RBeam Beam sGBeam

wilt 993 {0, 1, 3} {0} {0} {0} pageblocks 336 {2, 3, 8} {9} {5} {0}
1015 {0, 1, 2} {0} {0} {0} 1488 {0, 1, 3} {0} {5} {0}
2313 {0, 1, 2} {0} {0} {0} 3706 {3, 9} {1, 4} {4} {3}
4068 {1, 2, 4} {4} {4} {1} 4582 {0, 3, 7} {7} {5} {0}
4798 {0, 1, 2} {2} {3} {1} 5121 {0, 1, 6} {4} {4} {6}

Avg. Run time 0.12 85.51 85.87 0.31 0.53 860.59 867.85 0.69
mnist 2561 {1, 76} ⧫ ⧫ {95} u2r 37,075 {0, 8} ⧫ ⧫ {8}

8127 {1, 91} {4} 41,070 {0, 8} {8}
9604 {5, 28, 94} {5} 52,423 {0} {0}
11,424 {3, 79} {30} 56,047 {0, 29} {8}
12,032 {9, 15} {31} 58,769 {0, 16} {16}

Avg. Run time 52.74 >24 h >24 h 155.86 9.96 >24 h >24 h 270.33
mulcross 8504 {1, 2, 3} ⧫ ⧫ {3} covertype 143,662 {0, 7} ⧫ ⧫ {7}

17,742 {0, 1, 3} {0} 143,934 {0, 7} {7}
23,545 {0, 1, 2} {0} 246,578 {0, 2} {7}
133,002 {0} {2} 248,303 {0, 7} {7}
228,099 {1, 2, 3} {0} 248,622 {0, 7} {7}

Avg. Run time 0.15 >24 h >24 h 12.67 2.47 >24 h >24 h 263.76

Table 6  Comparison of SiBeam, RBeam, Beam, and sGBeam on six real-world datasets in terms of quality of discovered subspace

Data �-id SiBeam RBeam Beam sGBeam Data �-id SiBeam RBeam Beam sGBeam

wilt 993 −0.48 −0.39 −0.39 −0.39 pageblocks 336 −1.66 −0.65 −0.19 0.30
1015 −0.51 −0.39 −0.39 −0.39 1488 −1.24 −0.93 0.26 −0.93
2313 −0.49 −0.39 −0.39 −0.39 3706 −0.94 −1.10 0.22 −0.87
4068 −0.36 0.40 0.40 0.71 4582 −1.38 −0.94 0.85 0.60
4798 −2.43 −0.77 0.18 −0.65 5121 −2.37 0.50 0.50 −1.00

mnist 2561 −0.74 ⧫ ⧫ 0.18 u2r 37,075 −1.00 ⧫ ⧫ −1.00
8127 −0.26 0.69 41,070 −1.00 −1.00
9604 −0.70 0.36 52,423 −0.57 −0.57
11,424 −0.56 0.56 56,047 −1.00 −1.00
12,032 −0.28 0.36 58,769 −1.00 −1.00

mulcross 8504 −0.22 ⧫ ⧫ 0.39 covertype 143,662 0.17 ⧫ ⧫ 0.42
17,742 −0.22 0.70 143,934 0.01 0.16
23,545 0.11 0.29 246,578 −0.13 0.01
133,002 1.02 0.68 248,303 −0.83 −0.77
228,099 0.03 0.82 248,622 −0.83 −0.77



129A New Dimensionality-Unbiased Score for Efficient and Effective Outlying Aspect Mining  

1 3

4  Experimental Setting

4.1  Datasets

In this study, we used two types of datasets, i.e., synthetic 
and real-world. For synthetic2 datasets, we adopted five data-
sets ( [13]): synth_10D, synth_20D, synth_50D, synth_75D, 
and synth_100D.

For real-world3 datasets, we adopted six datasets ( [5]): 
wilt, pageblocks, mnist, u2r, mulcross and covertype.

The characteristics of datasets in terms of data size and 
the dimensionality of the original input space are provided 
in Table 2.

4.2  Contenders and Parameters

We compare SiNNE (SiBeam) with three contenders (a) 
kernel density rank (RBeam), (b) Z-Score normalized kernel 
density (Beam) and (c) Z-Score normalized sGrid density 
(sGBeam).

We used default parameters as suggested in respective 
papers unless specified otherwise. For SiBeam, we set � = 8 
and t = 100 . The Beam and RBeam employed KDE (ker-
nel density estimator) to estimate density. KDE uses the 
Gaussian kernel with default bandwidth.4 To calculate the 
Gaussian kernel, we use Euclidean distance. The parameter 
w block size for bit set operation in sGBeam was set to 64 
as suggested by the authors [28]. Parameters beam width 
(W) and maximum dimensionality of subspace ( � ) in Beam 
search procedure were set to 100 and 3, respectively, as done 
in [27].

4.3  Evaluation Metric

As far as we know, there is no such publicly available real-
world dataset which offers ground truth to verify the qual-
ity of discovered subspaces. Therefore, in the absence of a 
better evaluation measure, we propose to use a mean kernel 
embedding [19] to evaluate the quality of discovered sub-
spaces. The intuition behind the mean kernel embedding 
is, in the most outlying aspect, the query is far away from 
the distribution of the data, i.e., it has the minimum average 
similarity with rest of the data. The quality of discovered 
subspace S for a query � using a kernel mean embedding 
method [19] is computed as follows:

where KS(�, x) is a kernel similarity of � and x in subspace 
S.

We use Chi-square kernel [32] because it is parameter-
free and widely used by the computer vision research com-
munity. The Chi-square kernel KS(�, x) is computed as 
follows:

In OAM, � is considered to be more outlier in Si than Sj if 
fSi
(�,X) < fSj

(�,X).

4.4  Implementation

All measures and experimental setup were implemented 
in Java using WEKA platform [10]. We made the required 
changes in the Java implementation of iNNE5 provided by 
the authors to implement SiNNE. We used the Java imple-
mentations of sGrid made available by the authors [28].

All experiments were conducted on a machine with Intel 
8-core i9 CPU and 16 GB main memory, running on macOS 
Monterey version 12.0.1.

We run each jobs on multiple single CPU treads, which is 
done using GNU parallel [25]. All jobs were performed upto 
24 h, and incomplete jobs were killed and marked as ‘ ⧫’.

5  Empirical Evaluation

In this section, we compare SiNNE and three contenders in 
four set of experiments: (a) Experiment 1—dimensionality 
unbiasedness; (b) Experiment 2—performance on synthetic 
datasets; (c) Experiment 3—performance on real-world 
datasets; and (d) Experiment 4—run-time comparisons.

5.1  Experiment 1: Dimensionality Unbiasedness

We generated 19 synthetic datasets using NumPy [12] 
library. Each dataset contains 1000 data points from uni-
form distribution U([0,1]d) , where d varied from 2 to 20. We 
computed the average score of all instances using SiNNE 
and KDE. The results are presented in Fig. 5. The flat line 
for SiNNE shows that it is dimensionality unbiased, whereas 
KDE (without Z-Score normalization) is not. Note that [27] 
shows that ranks and Z-Score normalization make any score 
dimensionally unbias. Hence, we did not include them in 
our experiment.

(5)fS(�,X) =
1

n

∑

x∈X

KS(�, x)

KS(�, x) = 1 −
∑

i∈S

2
(�i − xi)

2

(�i + xi)

3 Available at https:// elki- proje ct. github. io/ datas ets/ outli er.
4 Note that a better rule of thumb [11] was used to set bandwidth h 
as: h = 1.06 min

{

�,
R

1.34

}

n
−

1

5 where R = X[0.75n] − X[0.25n] , where 
X[0.25n] and X[0.75n] are the first and third quartiles of data X  , respec-
tively. 5 Available at https:// github. com/ thari ndurb/ iNNE.

2 Available at https:// www. ipd. kit. edu/  muell ere/ HiCS/.

https://elki-project.github.io/datasets/outlier
https://github.com/tharindurb/iNNE
https://www.ipd.kit.edu/%7emuellere/HiCS/
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5.2  Experiment 2: Performance on Synthetic 
Datasets

[13] provided several synthetic datasets, which are used in 
previous studies [8, 22, 27, 28]. The collection of these syn-
thetic datasets have 1000 data points and dimensions are 10, 
20, 50, 75, and 100. Each dataset has a fixed number of outli-
ers for which outlying subspaces are known (ground truth).

synth_10D has 19 outliers, we passed all outliers one at a 
time as a query. Table 3 summarize the subspace discovered 
by SiBeam, RBeam, Beam, and sGBeam for all 19 queries. 
In terms of exact matches, SiBeam is the best performing 
measure which detects the ground truth as a top outlying 
aspect of each query. Beam and sGBeam perform similar by 
producing 19 exact matches. RBeam is the worst performing 
measure, which produces only five exact matches.

Table  4 summarizes the mining results of SiBeam, 
RBeam, Beam, and sGBeam on four synthetic datasets, 
i.e., synth_20D, synth_50D, synth_75D and synth_100D. 
SiBeam finds the ground truth as a top outlying subspace 
for each query (ten queries from each datasets). Beam and 
sGBeam perform similar by producing 39 exact matches out 

of 40. RBeam is the worst performing measure, which pro-
duces exact matches for 5 queries out of 40.

5.3  Experiment 3: Performance on Real‑World 
Datasets

In real-world datasets, outliers and their outlying aspects 
are not available. Thus, we used the state-of-the-art outlier 
detector called iForest6 [15] to find top k ( k = 5 ) outliers 
and they were used as queries. We then use the fS score (cf. 
Eq. 5) in the top-ranked subspace to measure the quality of 
discovered subspace—the lower the value, the more likely 
the subspace is outlying aspect of a given query.

It is worth noting that SiBeam and sGBeam are the 
only methods which are able to finish the process for each 
query, while RBeam and Beam finish the process for only 
10 queries.

Table 5 shows subspaces discovered by four OAM meth-
ods (i.e., SiBeam, RBeam, Beam, and sGBeam) on six real-
world datasets.

Table 6 shows the quality of discovered subspaces by 
SiBeam, RBeam, Beam, and sGBeam. High-quality sub-
spaces of each query is highlighted in bold. SiBeam is best 

Table 7  Visualization of discovered subspaces by SiBeam, RBeam, Beam, and sGBeam in the wilt dataset

6 We used default parameter of � and t which are 256 and 100, 
respectively.
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Table 8  Visualization of discovered subspaces by SiBeam, RBeam, Beam and sGBeam in the pageblock dataset

Table 9  Visualization of 
discovered subspaces by 
SiBeam, RBeam, Beam and 
sGBeam in the mnist dataset
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Table 10  Visualization of 
discovered subspaces by 
SiBeam, RBeam, Beam and 
sGBeam in the u2r dataset

Table 11  Visualization of 
discovered subspaces by 
SiBeam, RBeam, Beam and 
sGBeam in the mulcross dataset
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performer on 28 out of 30 according to proposed quality 
measure. sGBeam discovered high-quality subspace for only 
5 queries out of 30. On the other hand, RBeam discovered 
high-quality subspace for only one query out of ten, whereas 
Beam was unable to detect high-quality subspace even for 
a single query.

The average run time of five queries for each dataset is 
presented in Table 5. Next, we visually compare discovered 
subspaces by each measure for top query from each datasets.

Tables 7, 8, 9, 10, 11 and 12 shows the subspace discov-
ered by SiBeam and contending measures on wilt, page-
block, mnist, u2r, mulcross, and covertype, respectively. 
Visually, we can say that SiBeam detects better subspace 
than its 3 contenders.

5.4  Experiment 4: Run‑Time Comparison

Table 7 shows average run time for randomly chosen 10 
queries from each real-world datasets of the SiBeam and its 

three contending measures. SiBeam and sGBeam were able 
to finish for all datasets, whereas RBeam and beam only able 
to finish on wilt, and pageblock datasets within 24 h. These 
results shows that the proposed scoring measure enables the 
existing OAM approach based on beam search to run orders 
of magnitude faster in large datasets. Specifically, SiBeam 
runs at least two and three magnitude faster than RBeam and 
Beam on wilt and pageblocks datasets, respectively. SiBeam 
runs at least two order of magnitude faster than sGBeam on 
large datasets ( n > 50K).

6  Conclusion

In this paper, we have introduced an efficient and effective 
scoring measure Simple Isolation score using Nearest Neigh-
bor Ensemble (SiNNE), which is dimensionally unbias. By 
replacing the existing scoring measure to proposed scor-
ing measure, we gain three benefits. The first benefit is that 

Table 12  Visualization of 
discovered subspaces by 
SiBeam, RBeam, Beam and 
sGBeam in the covertype 
dataset

Table 13  Average run time (in 
CPU seconds) for 10 queries 
of SiBeam, RBeam, Beam, 
and sGBeam on six real-world 
datasets

Dataset SiBeam RBeam Beam sGBeam

wilt 0.18 ± 0.09 110.69 ± 21.74 111.39 ± 21.96 0.42 ± 0.11
pageblocks 0.66 ± 0.27 1226.62 ± 298.52 1234.37 ± 295.76 0.89 ± 0.38
mnist 73.09 ± 22.27 >24 h >24 h 189.69 ± 28.6
u2r 7.91 ± 1.95 >24 h >24 h 175.78 ± 18.25
mulcross 0.41 ± 0.12 >24 h >24 h 18.5 ± 1.08
covertype 3.56 ± 1.55 >24 h >24 h 317.51 ± 13.03
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SiNNE is dimensionally unbiased measure, which does not 
rely on any normalization means it can be used directly to 
compare subspaces with different dimensionality. The sec-
ond benefit is that SiNNE allows existing OAM (i.e., Beam) 
to run orders of magnitude faster compared to three state-
of-the-art scoring measures. Thus it is more suitable for 
mining huge datasets with thousands of dimensions. The 
third benefit is now we can identify more interesting outly-
ing subspace for a given query. This is confirmed by con-
siderably better performance of SiNNE, compared to three 
state-of-the-art scoring measures in empirical evaluation. 
In addition to that, we introduced a new performance meas-
ure for outlying aspect mining. Our experimental results on 
real-world datasets show that SiNNE perform comparatively 
better than state-of-the-art measures.

Appendix: SiNNE Versus iNNE

This appendix provides the additional results of SiNNE and 
iNNE comparison from the following Sect. 3.5.

Table 14 presents the subspaces discovered by SiNNE 
and iNNE on synthetic datasets. In term of exact matches, 
SiNNE detects ground truth of each query as outlying 
aspects, whereas iNNE only detects ground truth of 11 que-
ries out of 15 as most outlying aspects.
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