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Abstract

The main aim of the outlying aspect mining algorithm is to automatically detect the subspace(s) (a.k.a. aspect(s)), where a
given data point is dramatically different than the rest of the data in each of those subspace(s) (aspect(s)). To rank the sub-
spaces for a given data point, a scoring measure is required to compute the outlying degree of the given data in each subspace.
In this paper, we introduce a new measure to compute outlying degree, called Simple Isolation score using Nearest Neighbor
Ensemble (SINNE), which not only detects the outliers but also provides an explanation on why the selected point is an out-
lier. SINNE is a dimensionally unbias measure in its raw form, which means the scores produced by SiNNE are compared
directly with subspaces having different dimensions. Thus, it does not require any normalization to make the score unbiased.
Our experimental results on synthetic and publicly available real-world datasets revealed that (i) SINNE produces better or at
least the same results as existing scores. (ii) It improves the run time of the existing outlying aspect mining algorithm based
on beam search by at least two orders of magnitude. SINNE allows the existing outlying aspect mining algorithm to run in

datasets with hundreds of thousands of instances and thousands of dimensions which was not possible before.

Keywords Outlying aspect mining - Isolation based - Outlying degree - Subspace search

1 Introduction

Outliers (a.k.a anomalies) are data points that show dramati-
cally different behavior from the remainder of data points
in the dataset. The process of finding such data points is
known as Outlier Detection (OD). In the era of big data,
OD is considered as one of the vital task of data mining
with a wide range of application domains [21], i.e., (i) fraud
detection—in this domain, outlier refers to the fraud that
includes credit card frauds [6], insurance claim frauds [4];
(i1) Medical or public health—in this domain, outlier refers
to an unusual health condition of patients that happens due
to instrumental error or disease symptoms [14].

Recently, researchers have been interested in the explana-
tion of why the data point is considered as an outlier. The
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problem of finding these explanations leads to the Outlying
Aspect Mining (OAM) [8, 22, 27, 28]. OAM is the task of
identifying feature subset(s), in which a given data point is
dramatically inconsistent with the rest of the data. In litera-
ture, the problem of OAM is also referred as outlying sub-
space detection [31], outlier explanation (9, 17, 18], outlier
interpretation [7, 16, 29], outlying property detection [1] and
outlying aspect mining [8, 22, 23, 26-28, 30].

In many application scenarios, it is required to find out in
which set of feature(s), a given point is different than others.
For example, in a bank, a fraud analyst collects informa-
tion about various aspects of credit card fraud, and he/she
is interested to know in which aspects the fraud does not
conform with the remainder of that set of data. Moreover,
when evaluating job applications, a panel member wants to
know the job applicant’s unique features. Another exciting
application of OAM is in the medical domain [20]. Assume
that you are a doctor and while treating a specific patient,
you want to know, how this patient is different than others.
Existing OD methods cannot answer all these questions.

To detect outlying aspects, OAM algorithms require a
scoring measure to rank subspaces based on the outlying
degrees of the given query. Existing OAM algorithms such
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Fig. 1 The high-level process
pipeline
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as HOSMiner [31], OAMiner [8], Density Z-Score [27] and
sGrid [28] use a traditional distance or density-based outlier
score as the ranking measure. Because distance or density-
based outlier scores depend on the dimensionality of sub-
spaces, they cannot be compared directly to rank subspaces.
[27] proposed to use Z-Score normalization to make them
comparable. It requires computing the outlier scores of all
the data points in each subspace. It adds significant compu-
tational overhead making OAM algorithms infeasible to run
in large and/or high-dimensional datasets. Also, we discover
that Z-Score normalization is not appropriate for OAM in
some cases.

In this paper, we focus on the two issues of existing scores
used in OAM: (i) dimensionality unbiasedness, and (ii) com-
putational complexity. It is worth noting that another com-
putational issue in OAM is to deal with the exponentially
large number of subspaces. Current OAM methods perform
a systematic search; which is computationally prohibitive
when the number of dimensions is high. This paper does not
deal with this computational issue. It still uses the existing
systematic search approach but deals with computing the
score in each subspace efficiently.

This paper makes the following contributions:

— Identify an issue of using Z-Score normalization of den-
sity-based outlier scores to rank subspaces and shows
that it is biased towards a subspace having high-density
variance.

— Propose a new simple measure called Simple Isolation
score using Nearest Neighbor Ensemble (SINNE), which
is useful for detecting outliers from the dataset and outly-
ing aspects of the given outlier points.

— Provide an objective measure to assess the quality of dis-
covered outlying subspaces.

Pre-Processed
Dataset

Comparison

Subspace Search Algorithm

Query Data

......................

Detected Subspace of query data

— Validate the effectiveness and efficiency of SiNNE in
OAM. Our empirical results show that SINNE can detect
more interesting outlying aspects than the existing score,
and it allows the OAM algorithm to run orders of magni-
tude faster than the existing scoring measure.

The rest of the paper is organized as follows. Section 2
provides a summary of previous work on outlying aspect
mining. The proposed outlier detector scoring measure is
presented in Sect. 3. Experimental settings are provided
in Sect. 4, and empirical evaluation results are provided in
Sect. 5. Finally, conclusions are provided in Sect. 6.

2 Related Works

In this section, first, we fixed some notations for the rest of
the paper, provided some basic definitions, and then dis-
cussed recent outlying aspect mining methods. The high-
level process pipeline of OAM is shown in Fig. 1.

Table 1 Key symbols and notations

Symbol Definition

X A dataset with d attributes, where |X| = n
X A data point in X

F Set of features, where F = {F|, F,, ..., F,}
q A query point

S The set of all possible subspaces

4 The number of sub-samples

t The number of sets

D Asubsetof X, D C X,|D| =y
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Fig.2 The flowchart
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2.1 Basic Notations and Definitions

Let X= {x,x,,...,x,} be a collection of n data points
in an d-dimensional space R, where R is a real domain.
Each data point x is represented as an d dimensional vec-
tor <x(1),x(2), ,x(d)>. Let F be a full feature space and
S=1{S5,,S,,...,S5} be a set of all possible subspaces,
where & = 2¢ — 1is the number of possible subspaces. The
key symbols and notations used in this paper are provided
in Table 1.

The problem of outlier detection is to identify all x;
which remarkably deviates from others in full feature set F,
whereas the problem of outlying aspect mining is to iden-
tify subspace S; € S, where the given data point x; € X' is
significantly different from the rest of the data. That given
data point x; € X is referred as a query q.

Definition 1 (Outlier) An outlier is a data instance that sig-
nificantly deviates from others in the full feature set F.

Definition 2 (Subspace) A subspace is a subset of the dimen-
sions d of dataset X'.

Definition 3 (Query point) A query q is a data point of inter-
est, which is used to find outlying aspects.

Definition 4 (Problem definition) Given a set of n instances
X (|&] = n) in d dimensional space, a query q € X, a sub-
space S is called outlying aspect of q iff,

— outlying degree of q in subspace S is higher than other
subspaces, and there is no other subspace with same or
higher outlying degree.

@ Springer
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2.2 Outlying Aspect Mining

To the best of our knowledge, [31] is the earliest work that
defines the problem of OAM. They introduced a framework
to detect an outlying subspace called HOS-Miner (stands
for High-dimensional Outlying Subspace Miner). Therein,
the author used a distance-based measure called Outlying
Degree (OutD in short). The OutD of query q in subspace
S is computed as:

OutDg(q) = )’ ds(q,x)
xeXi(q)

where N’fg(q) is a set of k-nearest neighbors of q in subspace
S, ds(a, b) is an euclidean distance between a and b in sub-
space S, which is computed as dg(a, b) = \/ Y., s(a; — b;)*.

In 2015, [8] introduced Outlying Aspect Miner (OAM-
iner in short). Instead of using distance, therein, authors
employed a kernel density estimation [24]-based scoring
measure to compute the outlyingness of query q in subspace
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Fig.3 Data distribution in two three-dimensional subspaces

of the Pendigits dataset. a fs(q) = 21.30,Z(f5(q) = =2.10; b
Js,(@ = 1.20, Z(fy (q)) = ~1.25
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where fS(q) is a kernel density estimation of q in subspace
S, mis the dimensionality of subspace S (m = |S)), ; is the
kernel bandwidth in dimension i.

[8] stated that fg is bias towards high-dimensional sub-
spaces—density tends to decrease as dimension increases.
Thus, to remove the effect of dimensionality biasedness, they
proposed to use the density rank of the query as a measure
of outlyingness.

[27] proposed two outlying scoring metrics (i) density
Z-Score and (ii) iPath score (stands for isolation Path).

Therein, the density Z-Score is defined as follows:
Z-Score(f5(q)) £ f—s(qi_ His

s

where py, and oy _are the mean and standard deviation of
the density of all data instances in subspace S, respectively.

The iPath score is motivated by Isolation Forest (iForest)
anomaly detection approach [15]. The process of calculating
the iPath score in subspace S of query q w.r.t. sub-samples
y of the data is:

t
1 .
iPathg(q) = — ) .
iPathg(q) = ; s(@

where lg(q) is path length of q in i" tree and subspace S.

[27] were the first to coin the term dimensionality unbi-
asedness, i.e., “A dimensionality unbiased outlyingness
measure (OM) is a measure of which the baseline value,
i.e., average value for any data sample X' = {x,,x,,...,x,}
drawn from a uniform distribution, is a quantity independent
of the dimension of the subspace S.”

[28] introduced a simple grid-based density estimator
called sGrid. sGrid is a smoothed variant of a grid-based
density estimator [24]. Let X be a collection of n data objects
in d-dimensional space, x.S be a projection of a data object
x € X in subspace S. The sGrid density of point q is com-
puted as the number of points that falls into a bin that covers
point q and its surrounding neighbors. In their work, they
show that the proposed density estimator has advantages
over the existing kernel density estimator in outlying aspect
mining by replacing the kernel density estimator with sGrid.

In recent work, [30] proposed a reconstruction-based
method using completely random trees (RecForest in short).
Therein, reconstruction has been done using the intersec-
tion of the bounding boxes in the completely random forest
for each data point. The outlying score OS of each feature
i=1,2,...,dfor query q is defined as:

exp(q; — q*)

08, = — -
21 exp(g; — q7)

1

where q"* is a reconstructed sample of q.

[29] proposed an Attention-guided Triplet deviation net-
work for Outlier interpretatioN (ATON). Instead of search-
ing subspaces, ATON learns an embedding space and learns
how each dimension is contributing to the outlyingness of
the query.

3 The Framework

We first outline the motivation for our method, followed by
the details of SINNE. Figure 2 presents the flowchart of the
complete framework.

3.1 Issue of Using Z-Score

Because Z-Score normalization uses mean and variance of
density values of all data instances in a subspace ( Hy, and
UfS,)’ it can be biased towards a subspace having high varia-
tion of density values (i.e., high 07'5,-)'

Let’s take a simple example to demonstrate this. Assume
that S; and S; (i # j), be two different subspaces of the same
dimensionality (i.e., |S;| = [S;]). Intuitively, because they
have the same dimensionality, they can be ranked based on
the raw density (unnormalized) values of a query q. Assum-
ing Mg, = Mg we can have Z(fsi(q)) < Z(fsi(q)) even though
fsi(Q) =f5j(q) if Of;, > o (i.e., §; is ranked higher than S;
based on density Z-Score normalization just because of
higher Gfs,-)'

To show this effect in a real-world dataset, let’s take an
example of the pendigits' dataset (n = 9868 and d = 16).
Figure 3 shows the distribution of data in two three-dimen-
sional subspaces S; = {7, 8,13} and S; = {2, 10, 13}. Visu-
ally, the query q represented by the red square appears to be
more outlier in §; than in §;. This is consistent with its raw
density values in the two subspaces,
fs,(‘l) = 1.20 < f5(q) = 21.30. However, the ranking is
reversed after the Z-Score normalization,
(Z(fs/(q)) =-125> Z(fsi(q)) = —2.10). This is due to the
higher O, = 57.3 > oF, = 34.2.

Apart from these, existing OAM scoring measures have
two limitations:

— they are dimensionally biased and they require normali-
zation; and

! Available at https:/elki-project.github.io/datasets/outlier.
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— they are expensive to compute in each subspace.

Being motivated by these limitations of density-based scores
in OAM, we introduce a new measure which is dimension-
ally unbias in its raw form and can be computed efficiently.

3.2 Outlierness Computation

We now introduce a new scoring measure called simple iso-

lation using nearest-neighbor ensembles (SiNNE in short).

This scoring function is inspired by the isolation-based

anomaly detection using nearest-neighbor ensembles [2, 3].
The proposed scoring function has two major steps:

— Building hyperspheres: The process of building hyper-
spheres in each subspace. The hyperspheres are build
using nearest neighbors.

— Scoring query: The current model is used to score the

query.
3.2.1 Build Model

Let X = {x;,X,,...,x,} be a dataset x; € R, where i € n
represents the position of data point x in X', n is the number
of data points in the dataset and d is the number of dimen-
sions. We randomly choose y data samples from &X', ¢ times
in each subspace.

Our proposed scoring function follows same procedure as
the iNNE [2] to build ensemble of hyperspheres. However,
in context of OAM, the difference is that we create ensem-
bles in subspaces instead of full feature space.

Basically, SINNE creates an ensemble of hyperspheres.
Ensemble is defined as ¢ sets of hyperspheres, where each
set consists of y hyperspheres.

Definition 5 (Hyperspheres) Given data subset DE"’), a
hypersphere H(c) centered at ¢ with radii 7(c) = ||c — 1,
is defined as {x : ||x—c|| < z(c)}, where x € R and
c,n,. € Dl(."’); 1, is the nearest neighbor of ¢ in DE"’).

Definition 6 Given y sub-samples, an ensemble H contains ¢
sets and each set consists of y hyperspheres. H is defined as:

H={{HCc):ce DV} :i=12,..,1}

Note that the training process of SINNE and iNNE is
same, however, they differ in the computation of outlier
score (cf. Sect. 3.5 for more differences).

Definition 7 (Simple isolation score) The simple isolation

score of q in subspace S based on sub-sample D is defined
as:

@ Springer
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Fig.4 a Randomly selected sub-samples D of size y = 8; b build
hypersphere for data point c; ¢ set of hyperspheres from D; d simple
isolation score for data point x and y using isolation model

SIg(q) = liq € | J H(o)] )

ceD

where [[B] denotes the indicator function which gives the
output 0 if B is true; otherwise [[B] = 1.

SI takes the value either O or 1. When q is covered by any
of the hypersphere, it assigns 0 and if it is not covered by
any of the hypersphere then SiNNE assumes that point is far
away from the data and assigns 1.

Definition 8 The outlier score for q in subspace S based on
SiNNE is defined as the average of simple isolation score
over f sets.

SiNNEg(q) = % Y SIig) 2
i=1

As ST takes O or 1 score only, SINNE(q) have score values
in the range [0, 1].

Because the area covered by each hypersphere decreases
as the dimensionality of the space increases and so is the
actual data space covered by normal instances. Therefore,
SiNNE is independent of the dimensionality of space in
its raw form without any normalization making it ideal for
OAM. It adapts to the local data density in the space because
the sizes of the hyperspheres depend on the local density.
It can be computed a lot faster than the k-NN distance or
density. Also, it does not require to compute outlier scores
of all n instances in each subspace (which is required with
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existing score for Z-Score normalization) which gives it a
significant advantage in terms of run time.

The procedures to build an ensemble of models and using
them to compute outlyingness of the given query data in
subspace S are provided in Algorithms 1 and 2.

Algorithm 1: Build Hyperspheres (X, ,)

Input: X - given data set; t - number of sets, ¥ -
number of sub-samples
Output: H - An ensemble of ¢ sets of ¥
hyperspheres
initialize H = & ;

[

2 fori«— 1 totdo
3 Generate D; by randomly selecting 1) data points
from X without replacement ;
a initialize H; =0 ;
5 for ¢ € D; do
6 1(c|D;) < The nearest neighbor of ¢ in D; ;
7 H(c) « Build a hypersphere centered at ¢
with radius ||c — n(c|D;)]||2 ;
8 Hi; =H; U H(e);
9 end
10 H=HUH,; ;
11 end

12 return H;

Algorithm 2: SiNNE: Computing outlying-
ness of query

Input: q - query point, H - {H!|i =1,...,t}
Output: SiINNE(q)
1 initialize si = 0 ;
2 fori«<—1totdo
st += search(H;, q) {return O if there is a
hypersphere H that covers q in H; else 1} ;
4 end
SINNE(q) = si/t ;
6 return SINNE(q) ;

w

Time complexity The time complexity of creating SINNE
model is O(fy?) and in scoring stage, for query data point,
it needs to find whether it falls in any hyperspheres or not,
which takes O(ty). Total time complexity of SiNNE is

O(ty? + ty).
3.3 Subspace Search

Apart from scoring measure, OAM framework requires sub-
space search method. In this work, we will be using Beam
[27] search method, because it is the latest search method
and used in literature. We replicate the procedure of beam
search in Algorithm 3 for ease of reference. The overall time
complexity of beam search is O(d> + W - d - £), where W is
beam width and £ maximum dimension of subspace.

Algorithm 3: Beam(q,¢, X, W,T,d)

Input: X - given data set, q - query, £ - maximum
dimension, W - beam width, 7" - number of
top subspaces, d - number of dimension

Output: set of outlying features for query gq

1 generate 2D subspaces ;
2 Add the top T subspaces to Ans;
3 for £ =3 to { do

a initialize Ly = @ ;
5 for each subspace S € L;_1) do
6 for each Attribute F; € F do
7 if SU F; not considered yet then
8 compute outlying-score {S U F; };
9 if the worst subspace score in S is
worse than {S U F;} then
10 ‘ replace;
11 end
12 if |L;y < W] then
13 ‘ append {SU F;} to Ly ;
14 end
15 else if the worst scored subspace in
Ly is worst than {SU F;} then
16 ‘ replace;
17 end
18 end
19 end
20 end
21 end

22 return set of outlying features

3.4 An Example of Proposed Method

In this section, we present an illustrative example of pro-
posed method. Figure 4a shows a randomly selected 8
sub-samples (highlighted in black color) from dataset with
n = 50 in 2-d subspace. Figure 4b shows an example of how
H(c) hypershpere is build at centered ¢ with radii z(c). Fig-
ure 4c¢ shows all 8 hyperspheres created using 8 sub-samples,
which is used to compute outlying degree of the data point.
As shown in Fig. 4d, to compute outlying degree of point x,
the hypershpere that covers x needs to be determined. The
SI (x) = 0 as x falls in hypershpere while data point y does
not fall in any hypersphere, and thus outlying degree of y is
obtained as 1.

3.5 Key Differences with Closely Related Work

In this subsection, we discuss the difference between SINNE
and iNNE.

Although having similar training process, SINNE and
iNNE employ different scoring mechanism. Specifically,
iNNE employs local isolation-based score which is com-
puted as follows:
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Table 2 Dataset statistics

Dataset #datasize (n) #dimension (d)
synthetic datasets 1000 10-100
wilt 4839 5
pageblocks 5473 10
mnist 20,444 96
ur 60,821 33
mulcross 262,144 4
covertype 286,144 10
140 - B
—a— SINNE
120 | —— KDE 1
o 100 N
=
©
51
@ 80 ]
@
W
£ 6o
5 1
>
®
40 4
20 1
[’ L 1 1 1 1 1 1 1
2 1 G 8 10 12 14 16 18 20

dimension

Fig. 5 Dimensionality unbiasedness

3

T(Mepn(q)  »
I(q) = 1-— —T(CM((;))), if qe Ucep[ H(c)
' 1, otherwise

where cnn(q) = argmin {z(c) : q € H(c)}, D is set of ran-
eD

domly selected subc-samples without replacement, |D| = v,
‘H(c) is a hypersphere centered at ¢ with radius
7(c) = dg(c, n.), where 7, is nearest neighbor of c.

In contrast, SINNE uses a new simple isolation-based
score (cf. Eq. (1)) which assigns 0 if point falls in any hyper-
sphere otherwise 1.

Apart from this, iNNE creates a model in full feature
space since it has single sole purpose of detecting outliers
from the full feature space F while the purpose of SINNE is
to detect subspace for the given data point, and thus it cre-
ates a model in subspace. Although iNNE [2] was previously
used as a outlier detector, its use in OAM context is new.

@ Springer

Table 3 Comparison of SiBeam, RBeam, Beam, and sGBeam in term
of exact matches on synth_I10D. Discovered subspaces with the exact
matches with the ground truths are bold-faced. g-id represent query
point index; GT represents ground truth; the numbers in the bracket
(subspace) are attribute indices

q-id GT SiBeam RBeam Beam sGBeam

172 (8,9} {8,9} {1,8,9} {8, 9} {8, 9}

183 {0, 1} {0, 1} {0, 1} {0, 1} {0,1}

184 (6,7} {6,7} {4,6,7} {6,7} {6,7}

207 {0, 1} {o,1} {0,1,7} {0, 1} {0,1}

220 {2,3,4,5} {2,3,4,5} {2,3,4,5, {2,3,4,5} {2,3,4,5}

7}

245 {2,3,4,5} {2,3,4,5} {2,3,4,5} {2,3,4,5} {3.4,5}

315 {0, 1} {0, 1} {0, 1,9} {0, 1} {0,1}
{6,7} {6,7} {0,6,7} {6,7} {6,7}

323 {8,9} {8,9} {2,8,9} {8,9} {8,9}

477 {0, 1} {0, 1} {0, 1,2} {0, 1} {0, 1}

510 {0, 1} {0, 1} {0, 1,5} {0, 1} {0, 1}

577 {2,3,4,5} {2,3,4,5} {0,3,7} {6,7} {2,3,4,5}

654 {2,3,4,5} {2,3,4,5} {1,2,3,4, {2,3,4,5} {2,3,4,5}

5}

704 (8,9} {8,9} {0, 8,9} {8,9} {8,9}
723 {2,3,4,5} {2,3,4,5} {0,2,3,4, {2,3,4,5} {2,3,4,5}
5}

754 {6,7} {6,7} {6,7} {6,7} {6,7}
765 (6,7} {6,7} {1,6,7} {6,7} {6,7}
781 (6,7} {6,7} {6,7} {6,7} {6,7}
824 {8,9} {8,9} {6,8,9} {8,9} {8,9}
975 (8,9} {8,9} {8,9} {8,9} {8,9}

Theorem 1 The isolation score using iNNE with sub-sample
size y = 2 is equivalent to SINNE.

Proof Given a iNNE model H and sample size y = 2, each
set contains two hypersphere with same radius (cf. Defini-
tion 5). Thus, r(nc,m(q)) = 7(cnn(q)). For sample size (y = 2)
isolation score is as follows:

0, if q€.p Hlc),
I — ceD;
i@ { 1,  otherwise “)
which is same as Eq. 1. O

In terms of performance, SINNE detects the ground truth
for each query while iNNE only detects the ground truth for
11 out of 15 queries (details are presented in “Appendix”). In
addition to that, SINNE is faster than iNNE, this is because
SiNNE does not require to find smallest hypersphere and its
neighboring hypersphere for score.
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Table.4 Comparis.0n of g-id GT SiBeam RBeam Beam sGBeam
outlying aspects discovered
by SiBeam, RBeam, Beam, synth_20D 43 (0,1,2) {0, 1,2} {0, 14, 17} {0,1,2} {0,1,2}
d sCan on o i I A R T R Y
of 10 queries from each dataset. 157 {0, 1,2} {0,1,2} (1,4} {0,1,2} {0,1,2}
Discovered subspaces with the 288 {0, 1,2} {0, 1,2} {0, 1, 18} {0, 1,2} {0, 1,2}
exact matches with the ground 451 {18, 19} {18, 19} (18,19, 1} {18, 19} {18, 19}
truths are bold-faced. g-id - 665  {0,1,2} {0,1,2} {2,4,17) {0,1,2} {0,1,2}
represent query point index;
GT represents ground truth; 705 {18, 19} {18, 19} {18, 19, 2} {18, 19} {18, 19}
the numbers in the bracket 873 {18, 19} {18, 19} {4,7} {18, 19} {18, 19}
(subspace) are attribute indices 878 {0, 1,2} {0, 1,2} {0, 1,2} {0, 1,2} {0,1,2}
942 {18, 19} {18, 19} {6, 18, 19} {18, 19} {18, 19}
Avg. Run time 0.49 216.68 248.58 0.42
synth_50D 106 {41, 42, 43} {41, 42, 43} {41, 42, 43} {41, 42, 43} {41, 42, 43}
121 {21, 22,23} {21, 22, 23} {10, 22, 30} {21, 22, 23} {21, 22, 23}
200 {13, 14, 15} {13, 14, 15} {13, 15, 43} {13, 14, 15} {13, 14,15}
269 {41, 42, 43} {41, 42, 43} {7, 13} {41, 42, 43} {41, 42, 43}
427 {5,6,7,8} {5,6,7, 8} {8,9, 48} {48, 49} {44, 46, 47}
461 {26, 27} {26, 27} {9, 26, 27} {26, 27} {26, 27}
512 {24, 25} {24, 25} {10, 24, 25} {24, 25} {24, 25}
678 {21, 22, 23} {21, 22, 23} {9, 23,32} {21, 22, 23} {21, 22, 23}
788 {41, 42, 43} {41, 42, 43} {12, 36, 47} {41, 42, 43} {41, 42, 43}
885 (48,49} {48,49} {4, 48,49} {48,49} {48,49}
Avg. Run time 1.74 1398.75 1492.77 1.62
synth_75D 3 {18, 19} {18, 19} {12, 47, 68} {18, 19} {18, 19}
33 {11, 12} {11, 12} {11, 12, 33} {11, 12} {11,12}
69 {6,7, 8} {6,7, 8} {16, 53} {6,7, 8} {6,7, 8}
145 {0, 1} {0, 1} {0, 1,2} {0, 1} {0, 1}
214 {9, 10} {9, 10} {10, 11} {9, 10} {9, 10}
375 {72,73,74} {72,73, 74} {19, 25} {72,73, 74} {72,73, 74}
499 {43, 44} {43, 44} {14, 19} {43, 44} {43, 44}
526 {40, 41, 42} {40, 41, 42} {25, 66} {40, 41, 42} {40, 41, 42}
828 {6,7, 8} {6,7, 8} {5, 8} {6,7, 8} {6,7, 8}
999 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}
Avg. Run time 343 2366.59 2487.15 3.34
synth_100D 45 {55, 56, 57} {55, 56, 57} {82, 98} {55, 56, 57} {55, 56, 57}
80 {17, 18} {17, 18} {17, 18} {17, 18} {17, 18}
105 {10, 11} {10, 11} {0, 10, 11} {10, 11} {10, 11}
163 {55, 56,57} {55, 56, 57} {13, 23, 83} {55, 56, 57} {55, 56, 57}
258 {43, 44} {43, 44} {10, 47} {43, 44} {43, 44}
437 {53, 54} {53, 54} {10, 21} {53, 54} {53, 54}
608 {17, 18} {17, 18} {3, 17} {17, 18} {66, 67}
771 {53, 54} {53, 54} {3,9, 88} {53, 54} {53, 54}
786 {10, 11} {10, 11} {7,32} {10, 11} {10, 11}
898 {10, 11} {10, 11} {70, 72} {10, 11} {10, 11}
Avg. Run time 11.51 3663.37 3809.92 11.33
Total (40) 40/40 5/40 39/40 39/40
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Table 5 Comparison of outlying aspects discovered by SiBeam, RBeam, Beam, and sGBeam on six real-world datasets and average run time of
five queries from each dataset. q-id represent query point index; the numbers in the bracket (subspace) are attribute indices

Data q-id SiBeam RBeam Beam sGBeam Data q-id SiBeam  RBeam Beam sGBeam
wilt 993 {0, 1, 3} {0} {0} {0} pageblocks 336 {2,3,8 {9} {5} {0}
1015 {0, 1,2} {0} {0} {0} 1488 {0, 1,3} {0} {5} {0}
2313 {0, 1,2} {0} {0} {0} 3706 {3,9} {1,4} {4} {3}
4068 {1,2,4} {4} {4} {1} 4582 {0,3,7} {7} {5} {0}
4798 {0, 1,2} {2} {3} {1} 5121 {0,1,6} {4} {4} {6}
Avg. Run time 0.12 85.51 85.87 0.31 0.53 860.59  867.85 0.69
mnist 2561 {1,76} ¢ ¢ {95} ulr 37,075 {0, 8} ¢ ¢ {8}
8127 {1,91} {4} 41,070 {0, 8} {8}
9604 {5, 28,94} {5} 52,423 {0} {0}
11,424 {3,79} {30} 56,047 {0, 29} {8}
12,032 {9, 15} {31} 58,769 {0, 16} {16}
Avg. Run time 52.74 >24h >24h  155.86 9.96 >24h >24h  270.33
mulcross 8504 {1,2,3} ¢ ¢ {3} covertype 143,662  {0,7} ¢ ¢ {7}
17,742 {0, 1,3} {0} 143934 {0,7} {7}
23,545 {0, 1,2} {0} 246,578  {0,2} {7}
133,002 {0} {2} 248,303 {0,7} {7}
228,099 {1,2,3} {0} 248,622  {0,7} {7}
Avg. Run time 0.15 >24h >24h  12.67 247 >24h >24h  263.76

Table 6 Comparison of SiBeam, RBeam, Beam, and sGBeam on six real-world datasets in terms of quality of discovered subspace

Data q-id SiBeam  RBeam = Beam sGBeam  Data q-id SiBeam RBeam  Beam sGBeam
wilt 993 —0.48 —0.39 -039  -0.39 pageblocks 336 —1.66 —0.65 —0.19 0.30
1015 —0.51 —0.39 -0.39  -0.39 1488 -1.24 -0.93 0.26 —0.93
2313 —0.49 —0.39 -0.39  -0.39 3706 -0.94 -1.10 0.22 —0.87
4068 —0.36 0.40 0.40 0.71 4582 —1.38 —0.94 0.85 0.60
4798 —-2.43 -0.77 0.18 —-0.65 5121 —-2.37 0.50 0.50 —-1.00
mnist 2561 —0.74 ¢ ¢ 0.18 ur 37,075 —-1.00 ¢ ¢ -1.00
8127 —0.26 0.69 41,070 —-1.00 -1.00
9604 —0.70 0.36 52,423 —0.57 —0.57
11,424 —0.56 0.56 56,047 -1.00 -1.00
12,032 —0.28 0.36 58,769 -1.00 —-1.00
mulcross 8504 -0.22 ¢ ¢ 0.39 covertype 143,662 0.17 ¢ ¢ 0.42
17,742 —0.22 0.70 143,934 0.01 0.16
23,545 0.11 0.29 246,578  —0.13 0.01
133,002 1.02 0.68 248,303 —0.83 -0.77
228,099 0.03 0.82 248,622  —0.83 -0.77
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4 Experimental Setting
4.1 Datasets

In this study, we used two types of datasets, i.e., synthetic
and real-world. For synthetic datasets, we adopted five data-
sets ( [13]): synth_I10D, synth_20D, synth_50D, synth_75D,
and synth_100D.

For real-world? datasets, we adopted six datasets ( [5]):
wilt, pageblocks, mnist, u2r, mulcross and covertype.

The characteristics of datasets in terms of data size and
the dimensionality of the original input space are provided
in Table 2.

4.2 Contenders and Parameters

We compare SiNNE (SiBeam) with three contenders (a)
kernel density rank (RBeam), (b) Z-Score normalized kernel
density (Beam) and (c) Z-Score normalized sGrid density
(sGBeam).

We used default parameters as suggested in respective
papers unless specified otherwise. For SiBeam, we sety = 8
and ¢ = 100. The Beam and RBeam employed KDE (ker-
nel density estimator) to estimate density. KDE uses the
Gaussian kernel with default bandwidth.* To calculate the
Gaussian kernel, we use Euclidean distance. The parameter
w block size for bit set operation in sGBeam was set to 64
as suggested by the authors [28]. Parameters beam width
(W) and maximum dimensionality of subspace () in Beam
search procedure were set to 100 and 3, respectively, as done
in [27].

4.3 Evaluation Metric

As far as we know, there is no such publicly available real-
world dataset which offers ground truth to verify the qual-
ity of discovered subspaces. Therefore, in the absence of a
better evaluation measure, we propose to use a mean kernel
embedding [19] to evaluate the quality of discovered sub-
spaces. The intuition behind the mean kernel embedding
is, in the most outlying aspect, the query is far away from
the distribution of the data, i.e., it has the minimum average
similarity with rest of the data. The quality of discovered
subspace S for a query q using a kernel mean embedding
method [19] is computed as follows:

2 Available at https:/www.ipd.kit.edu/ muellere/HiCS/.

3 Available at https:/elki-project.github.io/datasets/outlier.

4 Note that a better rule of thumb [11] was used to set bandwidth &
1

as: h = 1.06 min {cr, % n~s where R = X5, — Xj92s,, Where

X025, and Xjg 75, are the first and third quartiles of data X, respec-
tively.

1
fo(@. ) =~ 3 Ks(q.) )

xeX

where K¢(q, x) is a kernel similarity of q and x in subspace
S.

We use Chi-square kernel [32] because it is parameter-
free and widely used by the computer vision research com-
munity. The Chi-square kernel K4(q,x) is computed as
follows:

(q; —x)’

Ks@n=1-Y2
Z‘g (q; +x)

In OAM, q is considered to be more outlier in S; than Sj if

fs(@. X) <f5(q, ).
4.4 Implementation

All measures and experimental setup were implemented
in Java using WEKA platform [10]. We made the required
changes in the Java implementation of iNNE> provided by
the authors to implement SiNNE. We used the Java imple-
mentations of sGrid made available by the authors [28].

All experiments were conducted on a machine with Intel
8-core 19 CPU and 16 GB main memory, running on macOS
Monterey version 12.0.1.

We run each jobs on multiple single CPU treads, which is
done using GNU parallel [25]. All jobs were performed upto
24 h, and incomplete jobs were killed and marked as ‘4.

5 Empirical Evaluation

In this section, we compare SINNE and three contenders in
four set of experiments: (a) Experiment 1—dimensionality
unbiasedness; (b) Experiment 2—performance on synthetic
datasets; (c) Experiment 3—performance on real-world
datasets; and (d) Experiment 4—run-time comparisons.

5.1 Experiment 1: Dimensionality Unbiasedness

We generated 19 synthetic datasets using NumPy [12]
library. Each dataset contains 1000 data points from uni-
form distribution ([0,1]%), where d varied from 2 to 20. We
computed the average score of all instances using SINNE
and KDE. The results are presented in Fig. 5. The flat line
for SINNE shows that it is dimensionality unbiased, whereas
KDE (without Z-Score normalization) is not. Note that [27]
shows that ranks and Z-Score normalization make any score
dimensionally unbias. Hence, we did not include them in
our experiment.

5 Available at https://github.com/tharindurb/iNNE.
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Table 7 Visualization of discovered subspaces by SiBeam, RBeam, Beam, and sGBeam in the wilt dataset
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5.2 Experiment 2: Performance on Synthetic
Datasets

[13] provided several synthetic datasets, which are used in
previous studies [8, 22, 27, 28]. The collection of these syn-
thetic datasets have 1000 data points and dimensions are 10,
20, 50, 75, and 100. Each dataset has a fixed number of outli-
ers for which outlying subspaces are known (ground truth).

synth_I10D has 19 outliers, we passed all outliers one at a
time as a query. Table 3 summarize the subspace discovered
by SiBeam, RBeam, Beam, and sGBeam for all 19 queries.
In terms of exact matches, SiBeam is the best performing
measure which detects the ground truth as a top outlying
aspect of each query. Beam and sGBeam perform similar by
producing 19 exact matches. RBeam is the worst performing
measure, which produces only five exact matches.

Table 4 summarizes the mining results of SiBeam,
RBeam, Beam, and sGBeam on four synthetic datasets,
i.e., synth_20D, synth_50D, synth_75D and synth_100D.
SiBeam finds the ground truth as a top outlying subspace
for each query (ten queries from each datasets). Beam and
sGBeam perform similar by producing 39 exact matches out

@ Springer

of 40. RBeam is the worst performing measure, which pro-
duces exact matches for 5 queries out of 40.

5.3 Experiment 3: Performance on Real-World
Datasets

In real-world datasets, outliers and their outlying aspects
are not available. Thus, we used the state-of-the-art outlier
detector called iForest® [15] to find top k (k = 5) outliers
and they were used as queries. We then use the fs score (cf.
Eq. 5) in the top-ranked subspace to measure the quality of
discovered subspace—the lower the value, the more likely
the subspace is outlying aspect of a given query.

It is worth noting that SiBeam and sGBeam are the
only methods which are able to finish the process for each
query, while RBeam and Beam finish the process for only
10 queries.

Table 5 shows subspaces discovered by four OAM meth-
ods (i.e., SiBeam, RBeam, Beam, and sGBeam) on six real-
world datasets.

Table 6 shows the quality of discovered subspaces by
SiBeam, RBeam, Beam, and sGBeam. High-quality sub-
spaces of each query is highlighted in bold. SiBeam is best

% We used default parameter of y and ¢ which are 256 and 100,
respectively.
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Table 8 Visualization of discovered subspaces by SiBeam, RBeam, Beam and sGBeam in the pageblock dataset
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Table 9 Visualization of
discovered subspaces by g-id SiBeam RBeam Beam sGBeam
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Table 10 Visualization of
discovered subspaces by g-id SiBeam RBeam Beam sGBeam
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Table 11 Visualization of
discovered subspaces by g-id SiBeam RBeam Beam sGBeam
SiBeam, RBeam, Beam and
sGBeam in the mulcross dataset
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Table 12 Visualization of

discovered subspaces by g-id SiBeam RBeam Beam sGBeam
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performer on 28 out of 30 according to proposed quality
measure. sGBeam discovered high-quality subspace for only
5 queries out of 30. On the other hand, RBeam discovered
high-quality subspace for only one query out of ten, whereas
Beam was unable to detect high-quality subspace even for
a single query.

The average run time of five queries for each dataset is
presented in Table 5. Next, we visually compare discovered
subspaces by each measure for top query from each datasets.

Tables 7, 8,9, 10, 11 and 12 shows the subspace discov-
ered by SiBeam and contending measures on wilt, page-
block, mnist, u2r, mulcross, and covertype, respectively.
Visually, we can say that SiBeam detects better subspace
than its 3 contenders.

5.4 Experiment 4: Run-Time Comparison

Table 7 shows average run time for randomly chosen 10
queries from each real-world datasets of the SiBeam and its

three contending measures. SiBeam and sGBeam were able
to finish for all datasets, whereas RBeam and beam only able
to finish on wilt, and pageblock datasets within 24 h. These
results shows that the proposed scoring measure enables the
existing OAM approach based on beam search to run orders
of magnitude faster in large datasets. Specifically, SiBeam
runs at least two and three magnitude faster than RBeam and
Beam on wilt and pageblocks datasets, respectively. SiBeam
runs at least two order of magnitude faster than sGBeam on
large datasets (n > 50K).

6 Conclusion

In this paper, we have introduced an efficient and effective
scoring measure Simple Isolation score using Nearest Neigh-
bor Ensemble (SiNNE), which is dimensionally unbias. By
replacing the existing scoring measure to proposed scor-
ing measure, we gain three benefits. The first benefit is that

Table 13 Average run time (in

. Dataset SiBeam RBeam Beam sGBeam

CPU seconds) for 10 queries

of SiBeam, RBeam, Beam, wilt 0.18 + 0.09 110.69 + 21.74 111.39 + 21.96 042 +0.11

ZZ?a:gfeam on six real-world pageblocks 0.66 + 0.27 1226.62 + 298.52 1234.37 + 295.76 0.89 + 0.38
mnist 73.09 + 22.27 >24h >24 h 189.69 + 28.6
u2r 791 +1.95 >24h >24 h 175.78 + 18.25
mulcross 0.41 +0.12 >24h >24 h 18.5 + 1.08
covertype 3.56 + 1.55 >24h >24h 317.51 + 13.03
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Table 14 Comparison of SiNNE (SiBeam) and iNNE (iBeam) on five
synthetic datasets. Discovered subspaces with the exact matches with
ground truths are bold-faced. g-id represent query point index; the
numbers in the bracket (subspace) are attribute indices

q-id GT SiBeam iBeam
synth_10D 172 {8,9} {8, 9} {8, 9}
207 {0, 1} {0, 1} {0, 1}
723 {2,3,4,5} {2,3,4,5} {6}
synth_20D 43 {0, 1,2} {0, 1,2} {0, 1,2}
86 {18, 19} {18, 19} {18, 19}
288 {0, 1,2} {0,1,2} {0, 1,2}
synth_50D 106 {41, 42,43} {41, 42, 43} {24}
121 {21, 22,23} {21, 22, 23} {21, 22, 23}
885 {48,49} {48,49} {48,49}
synth_75D 214 {9, 10} {9, 10} {9, 10}
375 {72,73,74} {72,73, 74} {38, 39}
828 {45, 46, 47} {45, 46, 47} {6,7, 8}
synth_100D 258 {43, 44} {43, 44} {43, 44}
437 {53, 54} {53, 54} {53, 54}
771 {53, 54} {53, 54} {53, 54}

SiNNE is dimensionally unbiased measure, which does not
rely on any normalization means it can be used directly to
compare subspaces with different dimensionality. The sec-
ond benefit is that SINNE allows existing OAM (i.e., Beam)
to run orders of magnitude faster compared to three state-
of-the-art scoring measures. Thus it is more suitable for
mining huge datasets with thousands of dimensions. The
third benefit is now we can identify more interesting outly-
ing subspace for a given query. This is confirmed by con-
siderably better performance of SiNNE, compared to three
state-of-the-art scoring measures in empirical evaluation.
In addition to that, we introduced a new performance meas-
ure for outlying aspect mining. Our experimental results on
real-world datasets show that SINNE perform comparatively
better than state-of-the-art measures.

Appendix: SINNE Versus iNNE

This appendix provides the additional results of SINNE and
iNNE comparison from the following Sect. 3.5.

Table 14 presents the subspaces discovered by SINNE
and iNNE on synthetic datasets. In term of exact matches,
SiNNE detects ground truth of each query as outlying
aspects, whereas iNNE only detects ground truth of 11 que-
ries out of 15 as most outlying aspects.
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