
Minimum Distance and Parameter Ranges of Locally Recoverable

Codes with Availability from Fiber Products of Curves
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Abstract

We construct families of locally recoverable codes with availability t ≥ 2 using fiber products of curves,
determine the exact minimum distance of many families, and prove a general theorem for minimum
distance of such codes. The paper concludes with an exploration of parameters of codes from these
families and the fiber product construction more generally. We show that fiber product codes can
achieve arbitrarily large rate and arbitrarily small relative defect, and compare to known bounds and
important constructions from the literature.

1 Introduction

A code C is broadly said to be locally recoverable if an erased symbol in any position i in a codeword of C
can be recovered by consulting a small number of symbols in other (fixed) positions, called a recovery set for
position i. Locally recoverable codes have been widely studied in recent years for their potential applications
in reliable and efficient cloud storage. For a survey on this topic, see [1].

A natural next property to look for in locally recoverable codes is the ability to recover more than one
erasure. There are two main approaches to this question. First, one could ask that the single recovery
set for each position allow for recovery of additional erasures within the set, introducing the parameter ρ
to recover ρ − 1 erasures. Alternatively, one could ask that each position has multiple (usually disjoint)
recovery sets, introducing the parameter t to represent the number of recovery sets that each position has.
Of course, these two approaches can also be blended, producing multiple recovery sets that each can recover
multiple erasures. While this work focuses on the second approach for simplicity, the main construction can
be adapted to blend with the first approach.

The Tamo-Barg method [10, 11] of constructing locally recoverable codes is based on building a particular
linear space of functions V on an evaluation set B. The set B is partitioned into extended recovery sets based
on algebraic or geometric relationships between the points in B, and functions in V are chosen so that they
restrict to polynomials of a single variable of bounded degree on each extended recovery set. If the value of
the function at any point in an extended recovery set is erased, it can be recovered through single variable
polynomial interpolation using the values of the function on the other points in the set. There is a large body
of work building on this approach. In [2], the authors construct locally recoverable codes with availability
t = 2 based on fiber products of curves and propose a group-theoretic perspective on the construction. In
[5], the authors generalize the fiber product construction to t ≥ 2 and refine the parameters of the resulting
codes. The group-theoretic method of constructing locally recoverable codes with many recovery sets has
also been studied, notably in [3]. The general approach of creating locally recoverable codes from rational
maps is pursued in [7] and extended to algebraic curves defined by equations with separated variables in [8],
but the general fiber product construction still requires more exploration.

This work is an extension of [5], with a goal of understanding the range of possibilities and limitations
of this construction. For completeness, we include the relevant definitions and construction from [5]. In
Section 2, we include some expository discussion on ways to think of the fiber product of curves and special
cases of the construction. We then introduce the three families of codes which are the main examples of this
paper. These three families are all centered on the well-studied Hermitian curve Hq. The first main example
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family, introduced in Example 3.1 comes from the Hermitian curve, introduced as an example of a locally
recoverable code with two recovery sets in [2]. The second, Example 3.2 is a novel code based on the fiber
product of two Hermitian curves, and is designed to illustrate the flexibility of this method–one can select
curves with appropriate maps and understand the fiber product, and therefore the parameters of the code,
using geometry and the construction of [5]. The final example, Example 3.3, is a code from a fiber product
of Artin-Schreier curves introduced by van der Geer and van der Vlugt. This example was introduced in [5]
and is included as an example where t can be as large as desired. When the construction is defined over
p2h, for p a prime and h a natural number, and we choose t = h factor curves, the fiber product is again the
Hermitian curve Hpt .

In Section 4, we calculate the exact minimum distance for the first family and for a large range of examples
in the third family in Theorems 4.1 and 4.3. Incidentally, we also compute the exact minimum distance of
a non-fiber product code introduced in [2] in Theorem 4.2. This is followed by Theorem 4.4 on minimum
distance for codes defined using a fiber product. We apply Theorem 4.4 to particular examples in the second
and third family in Examples 4.2 and 4.1.

Finally, in Section 5, we explore the parameter space and compare to some relevant bounds and con-
structions from the literature. We show in Corollary 5.1 that fiber product codes are not able to surpass the
rate of the product code construction from [10], though some constructions are extremely close.
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2 Preliminaries

2.1 Locally Recoverable Codes and Availability

Let n, k be natural numbers, with k ≤ n. A linear code C of length n and dimension k over the field Fq
is a k-dimensional linear subspace of (Fq)n. The minimum distance of C is the minimum number, d ≤ n,
of coordinates in which two distinct elements of C (referred to as codewords) must differ. The weight of a
codeword is the number of non-zero coordinates it has, for the codeword c, we denote this value by wt(c).
As a vector space, the minimum distance of C is equal to the minimum weight of the non-zero codewords.
It is common to refer to such codes as [n, k, d]-codes.

For an [n, k, d]-code, the rate of the code is R = k
n . The relative minimum distance is given by d

n . When
a Singleton-type upper bound b on minimum distance is known, we define the defect of the code to be b− d
and the relative defect of the code to be b−d

n .
We say C is a locally recoverable code (LRC) with locality r if for all i ∈ {1, . . . , n} there exists a set

of indices Ai ⊆ {1, . . . , n} \ {i} and a function φi : (Fq)r → Fq such that #Ai = r and for all codewords
c = (c1, . . . , cn) ∈ C we have ci = φi(c|Ai). The set Ai is called the recovery set for the i-th position. It may
be desirable to have multiple disjoint recovery sets for each position to protect against multiple erasures or
allow for simultaneous queries of heavily-accessed information. A locally recoverable code C has availability
t with locality (r1, . . . , rt) if for each i ∈ {1, . . . , n} there exists sets of indices Ai,1, . . . , Ai,t ⊆ {1, . . . , n}\{i}
such that

1. Ai,j ∩Ai,h = ∅ for j 6= h

2. #Ai,j = rj

3. For each j ∈ {1, . . . , t} there exists a function φi,j : Frjq → Fq such that for all codewords c =
(c1, . . . , cn) ∈ C we have ci = φi,j(c|Ai,j

).
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We refer to an LRC with availability t as an LRC(t). The localities of an LRC(t) form a vector (r1, r2, . . . , rt).
When ri = rj = r for all i, j ∈ {1, 2, . . . , t}, we say that the code has uniform locality r.

2.2 Evaluation Codes on Curves

Let X be an algebraic variety defined over a finite field Fq. Let B be a subset of X (Fq) of cardinality n ∈ N,
with points arbitrarily ordered as B = {P1, P2, . . . , Pn}. Let V be a linear subspace of the function field
Fq(X ) such that no function in V has poles at any point in B. For any f ∈ V , define the evaluation map

evB : V → Fnq , f 7→ (f(P1), f(P2), . . . , f(Pn)).

Then we define the evaluation code C(V,B) as

C(V,B) := {evB(f) : f ∈ V }.

Reed-Solomon codes are evaluation codes where V is the space of polynomials of bounded degree and B
are the values in a finite field, viewed as affine points on a projective line. Evaluation codes on the Hermitian
curve have also been very well-studied. For any prime power q, the Hermitian curve Hq is defined over any
extension of Fq by the affine equation

xq + x = yq+1.

The curve Hq has genus 1
2q(q − 1) and has q3 + 1 points over Fq2 including a single point at infinity.

2.3 Fiber Products of Curves

Let Y1, Y2, and Y be projective curves over Fq, with maps hi : Yi → Y that are separable, rational Fq-
morphisms for i = 1, 2. The fiber product Y1 ×Y Y2 is a curve that is (abstractly) defined using the
corresponding fiber product of schemes. More concretely, the Fq-rational points of the fiber product Y1×YY2
are given by

(Y1 ×Y Y2)(Fq) = {(P1, P2) ∈ Y1(Fq)× Y2(Fq) : h1(P1) = h2(P2)}.

The fiber product construction can be iterated and is seen to be (up to isomorphism) associative and
commutative. Thus for any t ∈ N, we may without confusion construct the t-fold fiber product of curves as
follows. Let Y,Y1, . . . ,Yt be projective curves over Fq with separable Fq-rational maps hj : Yj → Y. The
Fq-points of the fiber product X = Y1 ×Y · · · ×Y Yt of Y1, . . . ,Yt over Y are then given by

X (Fq) = {(P1, . . . , Pt) : Pi ∈ Yi(Fq) and hi(Pi) = hj(Pj) for all i, j ∈ {1, . . . , t}}.

A simple visualization of a 2-fold fiber product construction is given in Figure 2.1.

Figure 2.1: A visualization of the points on a fiber product X lying above a single point on the base curve
Y.
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This construction induces t natural projection maps

gi : X → Yi

from the fiber product onto each factor curve. Let

Ỹi = Y1 ×Y · · · ×Y Yi−1 ×Y Yi+1 ×Y · · · ×Y Yt

be the fiber product of all curves Yj except Yi. Then we see that X is isomorphic to Yi×Y Ỹi, and we identify

Ỹi with the isomorphic factor in the original fiber product construction of X . This gives complementary
projection maps

g̃i : X → Ỹi and h̃i : Ỹi → Y.

We also define the map g : X → Y by g = hi ◦ gi for any i.

Remark 2.1. Simply speaking, the map g̃i “forgets” the information coming from the curve Yi while retaining
the data of the fiber product that come from the other curves.

The function field Fq(X ) is isomorphic to the compositum of the function fields Fq(Yi), where the function
field Fq(Y) is embedded into each Fq(Yi) as induced by the map hi. For ease of exposition, we identify each
function field with its image inside Fq(X ), so Fq(Y) ⊆ Fq(Yi) ⊆ Fq(X ) for each i. Further, we assume that
Fq is the full field of constants within each of these fields, and that

Fq(Y) =

t⋂
i=1

Fq(Yi). (2.1)

Remark 2.2. If 2.1 holds and either each extension Fq(Yi)/Fq(Y) is Galois, or the degrees dhi
are pair-wise

relatively prime, then these extensions are linearly disjoint and the degree of Fq(X )/Fq(Y ) is the product of

the degrees dhi , i.e. dg =
∏t
i=1 dhi . In this case, we have dgj = (

∏t
i=1 dhi)/dhj .

2.4 Locally Recoverable Code with Availability t Construction from Fiber Prod-
uct

The following general construction comes from [5], though for completeness we include it simplified notation
here. Let y0 ∈ Fq(X ) so that Fq(Y) = Fq(y0). For each i, 1 ≤ i ≤ t, we choose yi ∈ Fq(X ) so that
Fq(Yi) = Fq(Y)(yi), where yi is the root of an irreducible separable polynomial bi(X) ∈ Fq(Y)[X]. Let dyi
be the degree of the function yi : X → P1

yi .
We now have that

Fq(X ) = Fq(y0)(y1) · · · (yt) = Fq(y0, y1, y2, . . . , yt).

The degree of g̃i must be equal to the degree of hi, denoted dhi .
Now, choose S ⊂ Y(Fq) such that

• |g−1(P )∩X (Fq)| = dg for all P ∈ S (i.e. all places in S split completely in the extension Fq(X )/Fq(Y))
and

• for each i, 1 ≤ i ≤ t, the function yi has no poles at any point above S in the extension Fq(X )/Fq(Y).

Choose an effective divisor D of degree l on Y(Fq) with S ∩ supp(D) = ∅, so functions in the Riemann-
Roch space L(D) have no poles in S. Let {f1, f2, . . . , fm} be a basis of the Riemann-Roch space L(D). We
require that l < |S| so that for all f ∈ L(D), there exists some P ∈ S with f(P ) 6= 0. Let V be the Fq-vector
space with basis

{fjye11 · · · ytet : 1 ≤ j ≤ m, 0 ≤ ei ≤ dhi − 2 for all i}. (2.2)

Then set
B = g−1(S) ⊂ X (Fq), (2.3)

where an arbitrary ordering of elements is fixed on B. Note that n = |B| = dg|S|.
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The code C(V,B) is locally recoverable with availability t. Recall that we have fixed an ordering of the
points in B for the evaluation map evB . For any i, j ∈ N with 1 ≤ i ≤ n and 1 ≤ j ≤ t, set

Bi,j = g̃−1j (g̃j(Pi)) \ {Pi}.

Let
Ai,j = {a : Pa ∈ Bi,j}.

Consider a codeword evB(f) for some function f ∈ V . Given an erasure in position i of the codeword
(associated with point Pi), each Ai,j acts as a recovery set, because on the set Bi,j the function f is constant

except in yj , so on Bi,j it acts as f̃(yj), a polynomial of degree less than or equal to dhj − 2. The evaluation

of f on the dhj
− 1 points of Bi,j therefore give rise to dhj

− 1 distinct pairs
(
yj(Pi), f̃ (yj(Pi))

)
. Since any

polynomial of this degree is determined by its values on dhj −1 points, these pairs are sufficient to determine

the value of f̃(Pi) = f(Pi).
This construction gives rise to the following theorem.

Theorem 2.1. Given a fiber product X of curves defined over Fq as described in Section 2.3, with V a
vector space of functions on X with basis as in (2.2) and B a subset of X (Fq) as in (2.3), the code C(V,B)
is a locally recoverable code with availability t and

• length n = |B|,

• dimension m(dh1 − 1)(dh2 − 1) · · · (dht − 1),

• minimum distance d ≥ n− ldg −
∑t
i=1 (dhi − 2) dyi , and

• locality (dh1
− 1, dh2

− 1, . . . , dht
− 1).

One may easily calculate the rate R of the constructed code. In the case that the extensions are linearly
disjoint, we have an especially simple form.

Corollary 2.2. If the extensions Fq(Yi)/Fq(Y) are linearly disjoint, then the rate of C(V,B) is

R =
m

|S|

t∏
i=1

dhi − 1

dhi

. (2.4)

This is a simple application of the definition of rate, the fact that |B| = dg |S|, and the fact that when

the extensions are linearly disjoint, we have dg =
∏t
i=1 dhi

.

3 Simplified Framework and Featured Constructions

To gain some intuition, let us consider the simplest version of this fiber product construction: say Y = P1
y0

with∞Y the unique point at infinity on this curve, and hi : Yi → Y given by projection onto y0. In this case,
the fiber product X = Y1×Y · · ·×YYt can be embedded into Pt+1, with affine coordinates (y0, y1, . . . , yt). Note
that this fiber product, X , is isomorphic to the intersection of t hypersurfaces in (t+ 1)-dimensional space.
Further, if we take D = l∞Y to be the divisor defining the Riemann-Roch space L(D), then this fiber product
construction results in a punctured subcode of the Reed-Muller code, with functions simply polynomials in
Fq[y0, y1, . . . , yt] and evaluation points a subset of points on the intersection of the t-hypersurfaces created by
considering the defining equations for the t curves Yi in Pt+1. Explicitly, the functions leading to codewords
are

V = Span{yj0y
e1
1 y

e2
2 · · · y

et
t : 0 ≤ j ≤ l, 0 ≤ ei ≤ dhi

− 2}.
General fiber product codes should be viewed as generalizations of these simple codes.

Let P = (α, β1, . . . , βt) be an evaluation point of such a simple fiber product code, where α, β1, . . . , βt ∈
Fq. The i-th recovery set for P is the set of all evaluation points Q = (α, β1, . . . , βi−1, γ, βi+1, . . . , βt), where
γ ∈ Fq. That is, the i-th recovery set is simply the set of all evaluation points which share all coordinate
values but that of yi with P .

We now introduce three important examples of fiber product codes within this simplified framework.
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Example 3.1. LRC(2)s on the Hermitian Curve Viewed as a Fiber Product As a first concrete
example, we consider the Hermitian curve Hq as a fiber product and intersection. Let Y = P1, Y1 : u = yq+1,
and Y2 : u = xq + x, and let hi : Yi → P1 be projection onto u for i = 1, 2. Then the fiber product
X = Y1×Y Y2 is isomorphic to the curve Hq : xq +x = yq+1. Indeed, the affine points of X (Fq) are given by

{((y, u), (x, u)) : x, y, u ∈ Fq, yq+1 = u = xq + x} ⊆ P2 × P2.

Hence this is isomorphic by the natural map to the intersection of the two hypersurfaces in P3 with affine
equations u = xq +x and u = yq+1, and also to the curve Hq defined in P2 by affine equation yq+1 = xq +x.
The utility of the fiber product viewpoint on this curve is to highlight two natural maps which give rise to
recovery sets. Codes using the fiber product construction of Hq are developed in [2], where a lower bound is
given on the minimum distance. Let CHq

be the LRC(2) presented in Proposition 5.1 of [2]. For this code, we
take the curve Hq with evaluation set BHq

= {P ∈ Hq(Fq2) : y(P ) 6= 0}. We can check that |BHq
| = q3 − q.

Then we let VHq
be the space of functions with basis {xiyj : 0 ≤ i ≤ q − 2, 0 ≤ j ≤ q − 1}. The code

CHq
= C(VHq

, BHq
) is an LRC(2) where the two recovery sets for a point P ∈ BHq

are given by the points
Q ∈ BHq , Q 6= P sharing the same x-coordinate P and those sharing the same y-coordinate value as P .
These recovery sets are of size q − 1 and q, respectively.

In [2], the authors prove the following.

Theorem 3.1. ([2]) The code CHq
has length n = (q2−1)q, dimension k = (q−1)q, and minimum distance

d ≥ (q + 1)(q2 − 3q + 3) = q3 − 2q2 + 3.

Applying the viewpoint of [5], we are able to tighten this bound.

Proposition 3.2. The code CHq has minimum distance d satisfying

d ≥ q3 − 2q2 + q + 2.

Proof. First, we note that we may consider the Hermitian curve given as a fiber product as described above.
Then BHq

is the set of all points of X = Hq(Fq2) lying above points of Y = P1
u that split completely in the

extension Fq2(X )/Fq2(Y). We obtain VHq
by letting D be the zero divisor, so l = 0. Applying Theorem 2.1,

we find that the minimum distance d of CHq
is in fact bounded by

d ≥ q3 − 2q2 + q + 2.

In Theorem 4.1, we calculate exactly the minimum distance for this code.

Example 3.2. LRC(2)s on the Fiber Product of two Hermitian Curves One can take the fiber
product of any two curves with appropriate maps to the same base curve. As a simple example, we take a
fiber product of two Hermitian curves. For q a prime power, consider the Hermitian curves

Hq,1 : yq0 + y0 = yq+1
1 , and Hq,2 : yq2 + y2 = yq+1

0 .

From each of these there is a projection to P1 via the y0 coordinate, P1
y0 . Using these projections, we

construct the fiber product X . Intuitively, the affine part of this fiber product is pairs of points (P1, P2) on
the Hermitian curve yq+1

1 = yq2 + y2 satisfying y2(P1) = y1(P2). Moreover

#Xq(Fq2) = q4 + 1.

There is a single point at infinity for each Hermitian curve, so there is a single point at infinity for Xq, which
is totally ramified with ramification index q(q + 1) in the extension Xq/P1

y0 .
Also, defining Ω = {α ∈ Fq2 : αq + α = 0}, we see that there are q2 − q points of Xq(Fq2) with y0-

coordinate α 6∈ Ω that are split completely in the extension Xq/P1
y0 (so have ramification index equal to 1),

and another q points with y0-coordinate α ∈ Ω that ramify, but not completely; they have ramification index
q + 1.
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Xq = Hq,1 ×P1
y0
Hq,2

Hq,1 Hq,2

P1
y1 P1

y0 P1
y2

q+1

q

q+1

q q

q+1

Figure 3.1: The Fiber product of two Hermitian curves.

Since all ramification is tame in the extension Xq/Hq,2, and g(Hq,2) = q(q − 1)/2, we can compute the
arithmetic genus of the fiber product using Riemann-Hurwitz formula to get g(Xq) = q3 − q.

Following the construction from [5], we now present a code with two recovery sets by the evaluation of
the splitting points on Xq(Fq2). Let B the set of q4 − q2 points of Xq(Fq2) that are above the q2 − q points
with y0-coordinate α ∈ Fq2 \ Ω that split completely:

B = {(α, β1, β2) : α ∈ Fq2 \ Ω, βq+1
1 = αq + α and αq+1 = βq2 + β2}.

Let Pα = (α, β1, β2) ∈ B. Then the sets Bjα = {(α, y1, y2) ∈ B : yk = βk ∀k 6= j} for j = 1, 2 are recovery
sets for the position corresponding to Pα. We have |B1

α| = q − 1 and |B2
α| = q.

We define
V = Span{yi0 y

j
1 y

k
2 : 0 ≤ i ≤ l, 0 ≤ j ≤ q − 2, 0 ≤ k ≤ q − 1},

with l ≤ q4−2q3+3q+1
q(q+1) .

Theorem 3.3. For the fiber product Xq with B, l and V defined as above, the evaluation code C(V,B) is a
locally recoverable [n, k, d]-code over Fq2 with availability 2 and locality (q − 1, q) where

n = q2(q2 − 1),

k = (l + 1)(q − 1)q, and

d ≥ n− lq(q + 1)− (q − 1)q2 − (q − 2)(q + 1)2.

In Corollary 4.5, we calculate the minimum distance for this code.

Remark 3.1. Here we give a concrete example of the preceding construction of CX3,3. Let q = 3 and
F9 = F3(a), where a2 + 2a + 2 = 0, be the finite field with 9 elements. Let us consider the situation of
Example 3.2, in which we have the fiber product of two Hermitian curves over F9:

Y1 : y30 + y0 = y41 , and Y2 : y32 + y2 = y40 ,

along with the fiber product X3 = Y1 ×P1
y0
Y2. In this case, Ω = {α ∈ F9 : α3 + α = 0} = {0, a+ 1, 2a+ 2},

and we have 6 points on P1
y0 with first coordinate outside Ω that split completely in X3. The maximum l

that can be chosen to get a non-trivial bound for d is l = 3. Using this l in Theorem 3.3, we get a LRC(2)
of length 72, dimension k = 24 and minimum distance d ≥ 2 over F9 (an upper bound for the minimum
distance is 35, see Section 5).

Example 3.3. Artin–Schreier Fiber Product and LRC(t) In [5] the authors use a fiber product curve
construction from van der Geer and van der Vlugt [13] to create codes with availability t for arbitrary t.
Since we continue this example, we review the construction here.

The simplest of the van der Geer and van der Vlugt constructions is given in [13, Section 3, Method I].
Let p be prime, h a natural number, and q = ph. Let {a1, a2, . . . , ah} generate ker(TrFq2/Fq

) over Fp. Then

the curves
Yi : ypi − yi = aiy

q+1
0

7



each have genus 1
2 (p− 1)q and have pq2 + 1 points over Fq2 , with one point, ∞Yi , at infinity.

Let t be an integer with 1 ≤ t ≤ h and let Y = P1
y0 . Then consider the natural map hi : Yi → Y given by

projection onto the y0 coordinate, where ∞Y represents the point at infinity on the projective line P1
y0 and

∞Yi
7→ ∞Y . These are all degree-p Artin–Schreier covers of Y, fully ramified above ∞Y .

Define X = Aq,t to be the fiber product of these curves Yi over Y; i.e.,

Aq,t = Y1 ×Y Y2 ×Y · · · ×Y Yt.

The corresponding maps gi : Aq,t → Yi are degree pt−1, ramified only above ∞Yi
. Let ∞Aq,t

be the single
point above ∞Y on Aq,t.

Y

Y2 Yt

Aq,t

Y1
h2

h1 ht

g1
g2

gt

. . .

Figure 3.2: The t-fold fiber product of Artin-Schreier curves, denoted Aq,t.

As shown in [13, Theorem 3.1], the curve Aq,t has genus 1
2 (pt − 1)q and |Aq,t(Fq2)| = ptq2 + 1, making

Aq,t maximal over Fq2 .
Note that the curve Aq,t is naturally a subvariety of (P2)t. It embeds in Pt+1, however, by the map

ν : Aq,t → Pt+1 defined on affine points of Aq,t via

ν((y0, y1), (y0, y2), . . . , (y0, yt)) = (y0, y1, y2, . . . , yt).

From here, we identify Aq,t with its image in Pt+1. The affine points of Aq,t are given by

B = {(y0, y1, y2, . . . , yt) ∈ (Fq2)t+1 : ypi − yi = aiy
q+1
0 for all 1 ≤ i ≤ t}. (3.1)

For 1 ≤ i ≤ t, the functions gi : Aq,t → Yi are given by

gi(y0, y1, y2, . . . , yt) = (y0, yi)

and the functions g̃i : Aq,t → Ỹi are given by

g̃i(y0, y1, y2, . . . , yt) = (y0, y1, y2, . . . , yi−1, yi+1, . . . , yt).

For each i, the map g̃i has degree p. For 1 ≤ i ≤ t, the function yi has degree dyi = q + 1, since for each
α, β ∈ Fq2 with β 6= 0 and αp + α = aiβ

q+1, there are q + 1 points Qj = (ζkβ, α) ∈ Yi(Fq2), where ζq+1 = 1
and 1 ≤ k ≤ q + 1.

Remark 3.2. As observed in [5], when t = h, we have that Aq,t ∼= Hq.
Applying the construction from [5], we can construct codes defined over Fq2 with many recovery sets.

Let Pi = (α, β1, β2, . . . , βt) ∈ B. Then Bi,j , the j-th recovery set for the position corresponding to Pi, is the
set of positions corresponding to the points in {(α, y1, y2, . . . , yt) ∈ B : yk = βk ∀ k 6= j}. We then have
|Bi,j | = p. On points corresponding to the positions in Bi,j , any function in V varies as a polynomial in yj
of degree at most (p− 2) and can therefore be interpolated by knowing its values on any p− 1 points.

Given h, t as above, choose l ≤
(
q2 − t(p−2)(q+1)pt−1+1

pt

)
to ensure the evaluation map is injective. Note

that the evaluation map may be injective for larger values of l but that the given lower bound ensures that
d ≥ 1 in the Theorem below. Let D = l∞Y . Then L(D) is the set of polynomials in y0 of degree at most l,
a vector space of dimension m = l + 1.

8



Theorem 3.4 ([5]). Given X = Aq,t the fiber product of the specified Artin–Schreier curves, with B and l
as above, let D = l∞Y , and V as defined in Theorem 2.1. We define CAq,t,l = C(V,B). Then CAq,t,l is a
locally recoverable [n, k, d]-code over Fq2 with availability t and locality (p− 1, p− 1, . . . , p− 1) where

n = ptq2,

k = (l + 1)(p− 1)t, and

d ≥ n− lpt − t(p− 2)(q + 1)pt−1.

In Theorem 4.3, we compute the exact minimum distance of the code here for many values of l.

4 Computing Minimum Distances

A standard technique for determining the minimum distance of an evaluation code C(V,B) is to first bound
the minimum distance below using a geometric argument, then find an element in the space of functions V
that vanishes at the maximum number of points, all of which are contained in the evaluation set B. Using
the bounds from [5] and this technique, it is possible to find the exact minimum distance of some interesting
codes from [2] and [5].

As a warm-up, we find the exact minimum distance of two LRCs on the Hermitian curve described
in [2]. The first arises from a simpler rational map construction. Let C be the code with locality q − 1
described in Proposition 4.1 of [2], i.e., the evaluation code C(V,B) where Hq is the Hermitian curve defined
by yq +y = xq+1, B is the set of q3 affine points in Hq(Fq2), and V is the vector space of functions generated
by {xiyj : 0 ≤ i ≤ l, 0 ≤ j ≤ q − 2} for some fixed l ∈ N. Note that the recovery set for the position
corresponding P ∈ B is the set of q − 1 points

{Q ∈ B : x(Q) = x(P ), Q 6= P}.

Theorem 4.1. When l ≤ q2 − q − 2, the code C has minimum distance

d = n− lq − (q − 2)(q + 1).

Proof. In [2], the authors prove that n − lq − (q − 2)(q + 1) is a lower bound on the minimum distance of
C. Suppose l ≤ q2 − q− 2. Considering the extension of fields Fq2 to Fq, let ϕ1 be the field trace map given
by ϕ1(x) = xq + x and let ϕ2 be the norm map given by ϕ2(x) = xq+1. Since ϕ1 is the trace map, which is
degree q onto Fq, we can write

ϕ−11 (1) = {γ1, . . . , γq}.

Since ϕ2 is the norm map and so is degree q + 1 onto F×q , we can write

Fq2\({0} ∪ ϕ−12 (1)) = {β1, . . . , βq2−q−2}.

Define f ∈ V by

f(x, y) =

l∏
j=1

(x− βj)
q−2∏
i=1

(y − γi).

We see that f has at most lq + (q − 2)(q + 1) zeros. To show that f has exactly that many zeros, we must
show that no evaluation point of C is sent to zero by more than one factor of f . Suppose f(βj , γi) = 0. Then

γqi + γi = 1, but by design βq+1
j 6= 1, hence (βj , γi) 6∈ Hq(Fq2). Thus no evaluation point can be sent to zero

by multiple factors, so f has exactly lq + (q − 2)(q + 1) zeros and evB(f) has weight n− lq − (q − 2)(q + 1),
and the minimum distance is as given.

Recall that CHq
is the LRC(2) on Hq defined in [2]. We now determine the exact minimum distance of

the code.
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Theorem 4.2. The code CHq has minimum distance d = q3 − 2q2 + q + 2.

Proof. Now let α1, α2 ∈ Fq\{0} such that α1 6= α2. Then let E = {a ∈ Fq2 |aq+1 = α1} and F = {a ∈
Fq2 |aq+a = α2}. Because these come from the trace and norm respectively, we can write E = {β1, . . . , βq+1}
and F = {γ1, . . . , γq}. Then let f ∈ VHq

be defined

f =

q−1∏
i=1

(x− βi)
q−2∏
j=1

(y − γj).

The function f has exactly (q − 1)(q) + (q − 2)(q + 1) zeros by the same argument as in the previous
construction. Thus d ≤ q3 − q − (q − 1)(q)− (q − 2)(q + 1) = q3 − 2q2 + q + 2.

Next, we determine the exact minimum distance for many codes from the fiber product of Artin–Schreier
curves constructed in Theorem 3.4.

Theorem 4.3. Let p be a prime and q = ph a prime power. For a fixed l ∈ Z with 0 ≤ l ≤ q2− tq− t−1, let
CAq,t,l be the LRC(t) of Theorem 3.4, constructed using the fiber product of t Artin–Schreier curves. Then
CAq,t,l has minimum distance

d = ptq2 − lpt − t(p− 2)(q + 1)pt−1.

Proof. Recall that the curves that we use to produce the fiber product X are of the form

Yi : ypi − yi = aiy
q+1
0 ,

where 〈a1, a2, . . . , ah〉Fp = ker(TrFq2/Fq
). From Theorem 3.4, we have a lower bound for minimum distance,

d ≥ ptq2 − lpt − t(p− 2)(q + 1)pt−1.
Let ϕ1 : Fq2 → Fq2 be defined by ϕ1(x) = xp − x and ϕ2 : Fq2 → Fq be defined by the norm map

ϕ2(x) = xq+1. Choose values

F0 = {β ∈ F×q2 : ϕ2(aiβ) 6= 1 ∀ 1 ≤ i ≤ t}

and Fi = ϕ−11 (a−qi ). Since ϕ2 is the norm map, |ϕ−12 (1)| = q + 1, so |F0| = q2 − t(q + 1) − 1. Thus we can
write

F0 = {β1, . . . , βq2−tq−t−1}.

By choice of ai, we have TrFq2/Fq
(ai) = 0, and since Fq2/Fq is a degree 2 extension, TrFq2/Fq

(a−1i ) = 0

too. Then since we are working in characteristic p and the trace map can be factored,

TrFq2/Fp
(a−qi ) = TrFq/Fp

(TrFq2/Fq
(a−qi ))

= TrFq/Fp
(TrFq2/Fq

(a−1i )q)

= 0.

By the additive version of Hilbert’s Theorem 90, ϕ−11 (a−qi ) is nonempty. Notice that ϕ1 is separable of degree
p, so |Fi| = |ϕ−11 (a−qi )| must, in fact, equal p. We then write

Fi = {γi,1, . . . , γi,p}.

Define the map f : X → Fq2 ∈ V by

f(y0, y1, . . . , yt) =

l∏
i=1

(y0 − βi)
t∏

j=1

p−2∏
k=1

(yj − γj,k).

Recall that B, as in equation (3.1), is the evaluation set for polynomials in V and |B| = n = ptq2 is the
length of CAq,t,l. Certainly n−wt(evB(f)) is at most lpt+ t(p−2)(q+1)(ph−1). We wish to show that these
values are equal by showing that f has exactly this many zeros in B by showing that no points in B have
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yi component in Fi and yj component in Fj for all i 6= j. Toward that end, suppose that (β, γ1, . . . , γt) ∈ B
such that f(β, γ1, . . . , γt) = 0.

Assume that γi ∈ Fj for some i ∈ {1, . . . , t}. Then a−qi = φ2(γi) = γpi − γi = aiβ
q+1, so a−q−1i = βq+1,

by definition of X . This equation has at most q+ 1 solutions, all of which are in the set {a−1i ϕ−11 (1)}. Since
none of these are in F0, we have that β /∈ F0.

Now suppose that for some j ∈ {1, . . . , t} we have γj ∈ Fj . Then a−qj = ϕ2(γj) = γpj +γj = ajβ
q+1. Thus

we have aq+1
i = aq+1

j . Recall that ai is in the kernel of the trace map, so aqi + ai = 0 and so aq+1
i = −a2i .

Similarly aq+1
j = −a2j . Substituting these values gives us the equality a2i = a2j , so ai = aj or ai = −aj , but

ai and aj are elements of a basis for the kernel of TrFq2/Fq
over Fp, so i = j.

Thus f has exactly lpt + t(p− 2)(q+ 1)(pt−1) zeros in B, so the code has the desired minimum distance,

d = ptq2 − lpt − t(p− 2)(q + 1)(pt−1).

4.1 A Condition for Exact Minimum Distance.

More generally, we may summarize the situation in which this technique will give the exact minimum distance
of codes from the construction in Theorem 2.1.

Theorem 4.4. Let C(V,B) be a locally recoverable code constructed as in Section 2.4, where V has basis
given by (2.2), B is the evaluation set as in (2.3), and yj0 ∈ L(D) for 0 ≤ j ≤ l. If it is possible to find sets
F0, F1, . . . , Ft ⊆ Fq such that

(1) Fi ⊆ yi(B) for all i = 0, . . . , t,

(2) |F0| = l,

(3) |Fi| ≥ dhi
− 2 for all i = 1, . . . , t,

(4) for all i 6= j with 0 ≤ i, j ≤ t there is no P ∈ X (Fq) with yi-coordinate in Fi and yj-coordinate in Fj,
and

(5) for all i with 0 ≤ i ≤ t, the projection yi : X → P1
yi is not ramified over any point P ∈ P1

yi with
yi(P ) ∈ Fi,

then the code C(V,B) has minimum distance

d = n− ldy0 −
t∑
i=1

(dhi
− 2)dyi , (4.1)

where n = |B| is the length of the code.

Remark 4.1. If Y = P1
y0 , hi : Yi → Y given by projection onto y0, and D = l∞Y , as is the case in all

examples in this paper, we have that yj0 ∈ L(D) for 0 ≤ j ≤ l and y0 : X → Y is an unramified map above
S from the code construction.

Proof. By Theorem 2.1, the right hand side of (4.1) is a lower bound on the minimum distance of such a
code.

Now, label the elements of sets F0, F1, . . . , Ft as

F0 = {β1, . . . , βl} and Fi = {γi,1, . . . , γi,|Fi|}.

Then we can define the polynomial in V ,

f =

l∏
j=1

(y0 − βj)
t∏
i=1

dhi
−2∏

k=1

(yi − γi,k).
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Since the points in B are fully split in the extension Fq(X )/Fq(Y) and assumption (5) we have that
|y−10 (βj)| = dy0 for all j and |y−1i (γi,k)| = dyi for all i, k. By assumption (4), we know that f must
have exactly

ldy0 +

t∑
i=1

(dhi − 2)dyi

zeros, so the code has minimum distance

d = n−

(
ldy0 +

t∑
i=1

(dhi − 2)dyi

)
.

4.1.1 Examples of Applying Theorem 4.4

Here, we give two extremely concrete examples to illustrate the application of this general condition.

Example 4.1. Let p = 3 and t = h = 2, so q = ph = 9 and we work over Fp2h = F81. Let b be a non-trivial
fifth root of unity for which Fp2h = Fp(b). Let a1 = b2 + b + 2 and a2 = b3 + b + 2 be generators of
ker(TrF

p2h
/Fp2

) = {x ∈ Fp2h : a9 + a = 0}. Then we have explicit curves

Y1 : y3i − yi = (b2 + b+ 2)y3
2+1

0 and Y2 : y3i − yi = (b3 + b+ 2)y3
2+1

0 .

Each of these curves has a projection onto P1 via their y0-coordinate, which we will denote h1 and h2.
Consider their fiber product

A9,2 = Y1 ×P1 Y2,

which is a genus 36 curve. Each of the maps gi : X → Yi are degree 3 and ramified only above the point at
infinity. We can realize the 729 affine points of A9,2(Fp2h) to be the set

P =
{

(y0, y1, y2) ∈ A3
F
p2h

: y3i + yi = aiy
32+1
0 ∀ i

}
.

In order to satisfy the hypothesis of Theorem 4.4, it will suffice to find sets F0, F1, and F2 with |F1| =
|F2| = 1 and |F0| = l, where D = l∞Y . We choose F1 = {b2 + b} and F2 = {b3 + 2b2}, each of which will
eliminate 10 possible y0 values from entry into F0, as there are 10 points in P with y1-coordinate b2 + b and
10 with y2-coordinate b3 + 2b2. Thus 61 values remain as possible elements of F0 and hence we may use any
value 0 ≤ l ≤ 61− 1, to receive a code with the prescribed minimum distance, as in Theorem 4.4.

Example 4.2. If we try to apply Theorem 4.4 to get the exact minimum distance for the code CX3,3 over
F9 constructed in Remark 3.1 we see that the sets F0, F1 and F2 cannot be built, so a minimum weight
codeword cannot be constructed by this method and the miniumum distance cannot be determined by the
theorem. Instead, let us consider the situation of Example 3.2 over the finite field F42 , i.e. the fiber product
X4 = Y1 ×P1

y0
Y2, where we define Y1 and Y2 to be copies of the Hermitian curve H4 with equations given

by:
Y1 : y40 + y0 = y51 , and Y2 : y42 + y2 = y50 .

In this case, if a ∈ F16 is such that a4 + a = 1, then the finite ramified points in X4 have first coordinate
in Ω = {α ∈ F16 : α4 +α = 0} = {0, a2 + a, a2 + a+ 1, 1}, and we have 12 points on P1

y0 with first coordinate
outside Ω that split completely in X4.

The maximum l that can be chosen to get a non-trivial bound for d is l = 6. But we can not build
a set F0 with 6 elements satisfying the hypothesis of Theorem 3.3. So we will build one using l = 4. Let
B be the set of 240 evaluation points in X4(F16) such that y0(B) = F16 \ Ω is the set of y0-coordinates.
Defining F0 = {a3 + a+ 1, a3 + a2 + 1, a3 + a2 + a, a3 + 1}, F1 = {a3, a3 + a2, a3 + a, a3 + a2 + a+ 1, 1} and
F2 = {a, a2, a+ 1, a2 + 1}, we can see that the hypothesis of Theorem 4.4 hold and therefore CX4,4, i.e. the
evaluation code of functions from

V = Span{yi0y
e1
1 y

e2
2 |i = 0, . . . , 4; e1 = 0, . . . , 3; e2 = 0, 1, 2},
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evaluated at points in B, is an [240, 60, 62]-locally recoverable code with availability 2. Every coordinate in a
codeword can be recovered using two possible sets: one with 3 elements and another with 4 elements, giving
a locality of (3, 4).

The situation of the previous example can be generalized to compute the exact minimum distance for
the code CXq,l as follows.

Corollary 4.5. Let q > 3 and µ ∈ F×q such that µ 6= αq+1 for all α ∈ Fq2 such that αq+1 = αq + α. For
0 ≤ l ≤ q, the code CXq,l of Theorem 3.3 over Fq2 has minimum distance

d = n− lq(q + 1)− (q − 1)q2 − (q − 2)(q + 1)2.

Proof. Let

F0 ⊆ {x ∈ Fq2 : xq+1 = xq + x} \ {0},
F1 = {x ∈ Fq2 : xq+1 = µ}

and

F2 = {x ∈ Fq2 : xq + x = µ}.

By construction, |F0| = l with 0 ≤ l ≤ q, |F1| = q + 1 and |F2| = q. Also, if P = (α, β, γ) ∈ B then
αq + α 6= 0, βq+1 = αq + α and γq + γ = αq+1. Therefore Fi ⊆ yi(B) for i = 0, 1, 2. Moreover, if P ∈ X (Fq)
has yi-coordinate in Fi then its yj-coordinate is not in Fj for j 6= i. In fact, if α ∈ F0, then αq + α = αq+1,
so β ∈ F1 yields to a contradiction since in this case µ = βq+1 = αq + α = αq+1, and the same happens if
γ ∈ F2. A similar argument shows that the other two cases can not occur either. Therefore, Theorem 4.4
holds.

Remark 4.2. Notice that for many examples, we can choose µ = 1. Actually this is the case, for example,
for q = 4, 7, 13, 16, 19, 25. For q = 5, 9, 17 we can use µ = 2 and for q = 11, µ = 5 satisfies the required
hypothesis.

4.2 A Combinatorial Condition for Exact Minimum Distance

We apply a very simple counting argument to show that the conditions of Theorem 4.4 hold when the
evaluation set is large enough in relation to the map degrees and the base curve of the fiber product is
Y = P1

y0 . Let S = S0 be the set of points on Y lying below the points of B, and let Si be the set of points
of Yi lying below the points of B for each i, 1 ≤ i ≤ t. As a non-infinite point of the projective line, each
point of S0 corresponds to a value α in Fq.

Theorem 4.6. Let C(V,B) be a code constructed from a fiber product as in Theorem 2.1, where Y = P1
y0 ,

and let η0 = 1 and ηi = deg(hi) for 1 ≤ i ≤ t. Let ψ0 = l and ψi = deg(yi) for 1 ≤ i ≤ t, where here we
consider the function yi : Yi → P1

yi . Then the conditions of Theorem 4.4 above hold whenever

|Si| ≥
∑
i6=j

(ηi − 2)ψiηjψj

for all 1 ≤ i ≤ t and

|S0| ≥
t∑

j=0

ηjψj .

Proof. For each i, ≤ i ≤ t, let Ti ⊆ Fq be the set of values of the yi-coordinates of points in Si. Note that
|S0| = |T0|, and that |Si| = ηi|S0| = ηi|T0|. We will proceed by removing points from Si and values from Ti
as we build the sets Fi. We will be successful in constructing the function in the proof of Theorem 4.4 if we
construct all the sets Fi without exhausting the sets Sj and Tj for any j.

13



First, let F0 be any set of l elements of T0. Remove these elements from T0. For each i, 1 ≤ i ≤ t, each
of these y0-values will be present in at most ηi points in Si, which will cover a total of at most lηi values
of yi. Remove these values from Ti for each i. These values of yi will each appear in at most deg(yi) = ψi
points of Si. Remove these points from Si. This accounts for at most lηiψi = η0ψ0ηiψi points in Si for each
i, 1 ≤ i ≤ t.

Beginning with i = 1, let F1 consist of any η1 − 2 values of y1 which appear as y1 coordinates in S1.
These values of y1 will appear in at most (η1 − 2)ψ1 points in S1, which will lie above at most (η1 − 2)ψ1

points in S0. Remove these points from S0, and these y0-values from T0. Note that by design, these values
will not have been previously removed from T0. For each of these values of y0, there are at most ηj points in
Sj with these y0-values, meaning at most ηj values of yj across these points. Remove these points from Sj
and these values of yj from Tj for all j, 1 ≤ j ≤ t, j 6= i. There are a total of ηjψj points with these values
of yj in Sj . By assumption, the sets Sj were all large enough that this must be possible. Repeat for all i,
2 ≤ i ≤ t, building sets F2, . . . , Ft. This is possible as long as no set T0, S0, Ti or Si is empty at any point
in the process. By definition, the set Ti must be non-empty as long as Si is non-empty. At each stage, we
remove (ηi − 2)ψiηjψj points from each Si for i ≥ 1 and (ηj − 2)ψj points from S0. Since |S0| ≥

∑t
j=0 ηjψj

and |Si| ≥
∑
i 6=j(ηi−2)ψiηjψj , we always have enough points to do this. Thus all sets Fi can be constructed

this way.

Example 4.3. We know from Theorem 4.3 the exact minimum distance of CAq,t,l for many values of l.
However, we apply Theorem to find the exact minimum distance of codes obtained from the curves of
Example 3.3 over an extended base field. In particular, consider points on the base curve, factor curves, and
fiber product defined over Fq6 = Fp6h , where for simplicity we take h = t to also be the number of factor
curves Yai . Since the curve Aq,t is maximal over Fq2 , it is also maximal over Fq6 (upon consideration of the
L-function of the curve). Thus we can compute that Aq,t has p6h + p5h − p4h + 1 points over Fp6h . Since
each curve Yai is covered by the maximal curve Aq,t, Yai is also maximal and thus has p6h + p4h+1− p4h + 1
points over Fp6h . Note that each Fp6h -point corresponds to a place of degree 1 in the function field Fp6h(Yai).

First we consider the lower Artin–Schreier extensions Fp6h(Yai)/Fp6h(y0), corresponding to the maps hi
from the curves Yai to projective line by projection onto the y0-coordinate. These Artin–Schreier extensions
of the projective line are described completely in [9, 3.7.8 and 6.4.1]. The extensions are Galois of degree
p. Each degree-one place in Fp6h(Yai) lies above a fully ramified or fully split place in Fp6h(y0). The only
ramified place in this extension is the unique place at infinity. Thus the p6h + p4h+1 − p4h affine rational
points of Yai over Fp6h arise from p6h−1 + p4h − p4h−1 places in Fp6h(y0) splitting completely.

Recall that the function field of the fiber product of curves is the compositum of the function fields of the
curves. Extending [9, Proposition 3.9.6], we see that if a place of Fp6h(x) splits completely in each extension
Fp6h(Yai)/Fp6h(y0), then this place splits completely in the compositum extension Fp6h(Aq,t)/Fp6h(y0). Since
all non-infinite degree-one places of Fp6h(Aq,t) must lie above non-infinite degree-one places of Fp6h(Yi), we
have that all the non-infinite degree-one places of Fp6h(Aq,t) lie above places of Fp6h(y0) which split completely
in the degree ph extension Fp6h(Aq,t)/Fp6h(y0). Since there are p6h+p5h−p4h non-infinite degree-one places
of Fp6h(Aq,t), these lie above p5h + p4h − p3h non-infinite degree-one places of Fp6h(y0) which split fully in
all extensions.

Applying the construction from Section 2.4, we may take the evaluation set B to be the set of all affine
points of Aq,t(Fp6h) and the divisor D = l∞Y for any l with l ≤ p5h + p4h − p3h − 1 for guaranteed positive
minimum distance. By Theorem 2.1, we get a locally recoverable code with uniform locality p−1, availability
h, length n = p6h+p5h−p4h, dimension l(p−1)h, and minimum distance d ≥ n− lph−h(p−1)p2h−2(ph+1).

Let S0 be the points of Y corresponding to these fully split places below B. Let Si be the points on Yai
lying above S0 for each i. We then have that |Si| = p|S0| = p5h+1 + p4h+1 − p3h+1.

To apply Theorem 4.3, we note that η0 = 1, ψ0 = l, ηi = p and ψi = ph + 1. Then∑
i 6=j

(ηi − 2)ψiηjψj ≤ (t− 1)(p2h+2 + 2ph+2 + p2) + l(ph+1 + p)

for all 1 ≤ i ≤ t and
t∑

j=0

ηjψj = (t− 1)(ph+1 + p) + l.
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Note that there is a large range of values of l for which the conditions of Theorem 4.3 hold, and thus for
which the bound on minimum distance given in Theorem 2.1 is the true minimum distance.

5 Parameter Ranges and Comparison to Bounds

We find the following bounds on the parameters of LRC(t)s in the literature.

• For all codes, the Singleton bound:
d ≤ n− k + 1.

• Tamo and Barg proven rate bound [10] (2014), for codes with uniform locality r:

d ≤ n−
t∑
i=0

⌊
k − 1

ri

⌋
, R ≤ 1∏t

j=1

(
1 + 1

jr

) . (5.1)

• Bhadane and Thangaraj [4] (2017), for codes with locality (r1, r2, . . . , rt), where ri ≤ rj for i < j:

d ≤ n− k + 1−
t∑
i=1

⌊
k − 1∏i
j=1 rj

⌋
. (5.2)

The proven rate bound in (5.1) is known to be tight for t = 1 but no constructions have realized this
bound for t ≥ 2. Two constructions for general r and t should be mentioned here. First, in [10], Tamo
and Barg consider a binary code which is the product of t single-parity-check codes with r message symbols
each. This gives an LRC(t) with locality r for each recovery set for arbitrary r and t. This product code

construction gives an [(r+ 1)t, rt, 2t]-code with rate R =
(

r
r+1

)t
. At the time, the authors stated that they

believed this to be the largest rate attainable for a code with t disjoint recovery sets, each with locality r.
This is very close to the bound rate from (5.1) when t = 2 but diverges from the bound for larger t. Second,
in [14], Wang et al. devise a parity check matrix construction giving rise to LRC(t)s with rate R = r

r+t for

arbitrary r and t. These
[(
r+t
t

)
,
(
r+t
t

)
−
(
r+t−1
t−1

)
, t+ 1

]
-codes have better rate than product codes but even

smaller minimum distance. The authors state that they believe their construction yields optimal rate for
t ≤ r. Our literature search has not found any locally recoverable codes with t ≥ 2 surpassing this rate. In
what follows, we compare the rates and minimum distance of our most general example to these benchmarks.
In some cases we also compute the relative defect.

Remark 5.1. In [3], Bartoli, Montanucci, and Quoos prove that codes with locality (r1, r2, . . . , rt) satisfy

d ≤ n− k −

⌈
(k − 1)t+ 1

1 +
∑t
i=1 ri

⌉
+ 2. (5.3)

In all situations of this paper where this bound applies, we find that the bound in [4] is lower, so we compare
to (5.2) in what follows.

Remark 5.2. Many more complicated bounds have been proven for minimum distance, many incorporating
field size. See [12], for example, and the survey [1] for a more comprehensive list of proven bounds. Further,
some interesting constructions have been proven rate-optimal in specific cases, or to surpass the rate of the
Wang et al. construction in [14] for certain r and t (for example [6] and binary simplex codes).

This section attempts to shed some light on how different choices in code construction affect the param-
eters of the resulting codes, what parameters are attainable, and how these parameters compare to bounds
and constructions in the literature.
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5.1 General Heuristics

First, we consider the general code C = C(V,B) with parameters described in Theorem 2.1. Recall that l is
the degree of a divisor D on Y(Fq), and m is the dimension of the Riemann-Roch space L(D). For a fixed
evaluation set B, it is clear that the dimension of C increases (and the minimum distance of C decreases) as
l increases up to its maximal value. The Riemann-Roch Theorem states that for a curve Y of genus γ, we
have m ≥ l − γ + 1. The relationship of m and l depends on D when l < 2γ − 1, but when l ≥ 2γ − 1, we
know that m = l− γ + 1. Thus if all other parameters are fixed, the value of m and therefore the dimension
of C will potentially be larger when γ is smaller. In our examples, we take Y = P1, so γ = 0 and m = l+ 1.
Of course, l and therefore m are bounded by the number of points in S, and increasing the genus of (Y)
can allow a larger number of points in S by the Hasse-Weil bound. Since n = |B| = dg |S|, we may attain
longer codes if S is larger. If all other parameters are fixed, this will decrease the rate but increase minimum
distance.

Considering rate, we observe the following,

Corollary 5.1. In the setting of Theorem 2.1, if

• the extensions Fq(Yi)/Fq(Y) are linearly disjoint, and

• dhi = dhj = r + 1 for all i, j,

then the rate R satisfies

R ≤
(

r

r + 1

)t
.

Proof. If γ is the genus of the curve Y, then the Riemann-Roch theorem implies that

l + 1 ≥ m ≥ l − γ + 1.

Since the construction demands l < |S| so that the evaluation map is injective, m ≤ |S|.

Therefore we see that when the fiber product construction is applied to yield codes with uniform locality
r, it is not possible to create codes with rate surpassing that of the product code construction for the same
availability and locality. The fiber product code construction is flexible, however, to allow for codes with
larger minimum distance and to create varying locality across the recovery sets.

In choosing curves Yi and maps hi : Yi → Y for the fiber product, we know that the locality of C will be
determined by dhi

. All other things being equal, we should prefer small locality. However, as we see in the
formulas for parameters and the bounds above, this comes at a cost in rate and minimum distance. Thus
small locality must be balanced against efficiency and effectiveness in the code. If the code is only to be
used for local recovery, with global error correction never applied, large minimum distance is not useful, so
we may wish to maximize rate given certain locality and availability conditions. However, in some situations
it may be that relatively large minimum distance is desirable to recover from a catastrophic event by global
error correction or erasure repair. Thus larger minimum distance may sometimes be desirable; in this case,
larger relative minimum distance can be obtained by reducing the parameter l to the minimum value of 0.

5.2 LRC(2)s CHq on Hq

We return to the codes defined over Fq2 of Example 3.1 and Theorem 4.1. All parameters of these codes are
dependent on the choice of q. We determined the parameters of CHq

for q = ph when q ∈ {2, 3, 5, 7} and
h ∈ {1, 2, 3, 4}. We compare to bounds on the minimum distance from (5.2) as well as the relative defect
from this bound. This data is displayed in Table 5.1.

We can also compute a formula for the defect and relative defect of CHq . Recall that CHq is a [q3 −
q2, q2 − 2, q3 − 2q2 + q + 2]-code with availability 2 and locality (q − 1, q). Taking the bound (5.2), we find
that d ≤ b, where

b = q3 − q − q2 + q + 1−
⌊
q2 − q − 1

q − 1

⌋
−
⌊
q2 − q − 1

q2 − q

⌋
= q3 − q2 − q + 2.

Thus we can compute the defect to be q2 − 2q with a relative defect of q2−2q
q3−q , which approaches 0 as q

increases. Thus these codes on the Hermitian curve have asymptotically good minimum distance.
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q2 (r1, r2) n k d upper bound on d (5.2) bound−d
n

4 (1, 2) 6 2 4 4 0.0
16 (3, 4) 60 12 38 46 0.1333
64 (7, 8) 504 56 394 442 0.0952
256 (15, 16) 4080 240 3602 3826 0.0549
9 (2, 3) 24 6 14 17 0.1250
81 (8, 9) 720 72 578 641 0.0875
729 (26, 27) 19656 702 18254 18929 0.0343
6561 (80, 81) 531360 6480 518402 524801 0.0120
25 (4, 5) 120 20 82 97 0.1250
625 (24, 25) 15600 600 14402 14977 0.0369
15625 (124, 125) 1953000 15500 1922002 1937377 0.0079
390625 (624, 625) 244140000 390000 243360002 243749377 0.0016
49 (6, 7) 336 42 254 289 0.1042
2401 (48, 49) 117600 2352 112898 115201 0.0196
117649 (342, 343) 40353264 117306 40118654 40235617 0.0029
5764801 (2400, 2401) 13841284800 5762400 13829760002 13835520001 0.0004

Table 5.1: Sample parameters for CHq
, an LRC(2) over Fq2 with localities r1 = q − 1 and r2 = q. The

maximum possible minimum distance and relative defect from (5.2) are also listed.

5.3 LRC(2) CXq ,l on Xq = Hq ×P1 Hq

For the codes CXq,l defined over Fq2 of Example 4.2 and Theorem 3.3, we see that all parameters of these
codes are also dependent on the choice of q. In Table 5.2 we compare the parameters for Cl over Fq2 for
different values of q.

q n l k d bound from (5.2) bound−d
n

4 240 0 12 142 226 0.35
1 24 122 209 0.3625
2 36 102 192 0.375
3 48 82 175 0.3875
4 60 62 158 0.4

5 600 0 20 392 577 0.3083
3 80 302 499 0.3283
5 120 242 447 0.3416

7 2352 0 42 1738 2305 0.2410
3 168 1570 2155 0.2487
7 336 1346 1955 0.2589

11 14520 0 110 12014 14401 0.1643
5 660 11354 13791 0.1678
11 1320 10562 13059 0.1719

13 28392 0 156 24208 28225 0.1414
13 2184 21842 26015 0.1469

Table 5.2: Sample parameters for Cl, an LRC(2) over Fq2 with locality (r1, r2) = (q − 1, q).

For l = 0, the dimension of these codes is k = q2 − q and the minimun distance d = q4 − 2q3 + 3q + 2.

Taking the bound from (5.2), we find that d ≤ q4 − 2q2 + 2, and the relative defect is 2(q2−q−1)
q3−q2 , which also

approaches 0 as q increases.

5.4 Parameters for LRC(t) CAq,t,l on Fiber Product of Artin–Schreier curves

Here, we explore the parameter space of codes CAq,t,l on the product of t Artin–Schreier curves with points
over Fq2 and l the maximum degree in y0 of functions leading to codewords. This family of codes is chosen for
exploration because it can attain arbitrarily large availability t (if extension degree of field of definition over
prime field is allowed to increase) and arbitrary large locality (r = p−1 for any prime p). This example family
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is not as general with regard to locality and availability as the product code and Wang et al. constructions,
which allow for any r and t without increasing field size, but it is more general than many other concrete
geometric constructions. This example is not claimed to be optimal for the fiber product construction, only
sufficiently adaptable to study parameters.

5.4.1 Smallest Concrete Examples with t = 2

The smallest non-trivial example in this case is a code of length 729 over the field F81. When p is prime and
q = ph, the smallest p allowing to non-constant functions in each yi with 1 ≤ i ≤ t is p = 3. Since t ≤ h, the
smallest h which allows multiple recovery sets is h = 2. Thus we may choose l with 0 ≤ l ≤ 74 to be sure of
positive minimum distance. Theorem 4.3 gives the exact minimum distance for 0 ≤ l ≤ 60. In Table 5.3, we
give the parameters for the cases l = 0, l = 60, and l = 74 and compare to the minimum distance bound in
[10].

l k rate d bound on d (5.1)
0 4 0.006 669 725
60 244 0.334 129 305
74 300 0.412 3* 207

Table 5.3: Sample parameters for CAq,t,l, an LRC(2) over F81 with length n = 729 and locality r1 = r2 = 2.
The rate is bounded by R ≤ 0.533. The listed distance when l = 74 (marked with *) is a lower bound from
Theorem 3.4 for the true minimum distance.

Larger codes can be created by increasing p, h, and/or t. Letting p = 5 and h = t = 2 we obtain codes
over F625 with length 15625. Here we may choose l with 0 ≤ l ≤ 593 to be sure of positive minimum distance.
Theorem 4.3 gives the exact minimum distance for 0 ≤ l ≤ 572. In Table 5.4, we give the parameters for the
cases l = 0, l = 572, and l = 593 and compare to the bounds in (5.1).

l k rate d bound on d (5.1)
0 16 0.001 14845 15607

572 9168 0.587 545 3595
593 9504 0.608 20* 3154

Table 5.4: Sample parameters for CAq,t,l, an LRC(2) over F625 with length n = 15625 and locality r1 = r2 =
4. The rate is bounded by R ≤ 0.711. The listed distance when l = 593 (marked with *) is a lower bound
from Theorem 3.4 for the true minimum distance.

5.4.2 Maximizing Rate for t ≥ 2

As mentioned above, it may be of greatest interest to maximize the rate of LRC(t)s for a given availability
and locality. For p = 3, 5, 7, we construct codes with t = 2, 3, 4 over field Fq2 where q = pt, the minimum field
extension allowing t recovery sets in this method. To obtain codes of large rate, we choose the maximum l
so that the minimum distance is guaranteed to be positive. The parameters of the codes arising from these
choices are given in Table 5.5. In each case, we give a range where the minimum distance d must lie based
on the lower bound from Theorem 3.4 and an upper bound from Theorem 4.3.

5.4.3 Maximizing Minimum Distance for t ≥ 2

If instead it is of interest to maximize the minimum distance of LRC(t)s for a given availability and locality,
this can be done by choosing l = 0. For p = 3, 5, 7, we construct codes with t = 2, 3, 4 over field Fq2 where
q = pt, the minimum field extension allowing t recovery sets in this method. The parameters of the codes
arising from these choices are given in Table 5.6. In each case, we know the exact minimum distance d from
Theorem 4.3, which we compare to the bound on minimum distance from (5.1) and compute the relative
defect.
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(p, t, l) q2 r n k range for d rate rate bound (5.1)
(3,2,74) 81 2 729 300 [3,129] 0.415 0.533
(3,3,700) 729 2 19683 5608 [27, 1539] 0.285 0.457
(3,4,6451) 6561 2 531441 103232 [54, 17793] 0.194 0.406
(5,2,593) 625 4 15625 9504 [20, 545] 0.608 0.711
(5,3,15398) 15625 4 1953125 985536 [25, 19025] 0.505 0.656
(5,4, 389122) 390625 4 244140625 99615488 [375, 626625] 0.408 0.618
(7,2, 2329) 2401 6 117649 83880 [28, 1449] 0.712 0.791
(7,3, 116911) 117649 6 40353607 25252992 [294, 101479] 0.626 0.750
(7,4, 5757938) 5764801 6 13841287201 7462288944 [343, 6593489] 0.539 0.720

Table 5.5: Sample parameters for CAq,t,l, an LRC(t) over Fq2 , where q = pt. Locality r = p− 1 is the same
for each recovery set. We have chosen l here to maximize dimension.

p t r n k d bound on d (5.1) bound−d
n

3 2 2 729 4 669 725 0.0768
3 3 2 19683 8 18927 19672 0.0378
3 4 2 531441 16 522585 531415 0.0166
5 2 4 15625 16 14845 15607 0.0488
5 3 4 1953125 64 1924775 1953044 0.0145
5 4 4 244140625 256 243201625 244140289 0.0038
7 2 6 117649 36 114149 117609 0.0294
7 3 6 40353607 216 40100767 40353352 0.0063
7 4 6 13841287201 1296 13824809481 13841285651 0.0012

Table 5.6: Sample parameters for CAq,t,l, an LRC(t) over Fq2 , where q = pt. Locality r = p− 1 is the same
for each recovery set. We have chosen l = 0 here to maximize minimum distance.

5.4.4 Rate for Increasing t and Fixed Locality

Let p (and thus locality r = p− 1) be fixed and set t = h to maximize the number of recovery sets for each
field size. For each t, let l take on the maximum value guaranteeing positive minimum distance in Theorem
3.4. In Figure 5.1 we graph the rates of codes CAq,t,l over Fq2t for t ∈ {2, 3, . . . 10}, increasing field size as
well as number of recovery sets. We also graph the proven and conjectured rate bounds for codes with this
availability and locality from [10]. The lengths of the codes are quite large, so we omit the accompanying
tables. We find that the rate of the constructed codes is close to the product code rate for all t, growing
extremely close as t increases. When we examine the minimum distance of these codes, we find that, in
all cases except (p, t) = (3, 2), the minimum distance of the constructed code is larger than that of the
corresponding product code and the Wang et al. construction. However, this minimum distance comes at a
cost of greater length and working over a larger field.

One might wonder what happens when field size q2 and locality r are fixed, but the number t of factor
curves (and recovery sets) is increased. In Figure 5.2, we graph the rate of the code CAp10,t,l

over Fp20 , where

l is maximized for guaranteed positive minimum distance, as well as the proven rate bound from (5.1) and
the rates of the Tamo-Barg product construction and Wang et al. construction, for t ∈ {2, 3, . . . 10}. The
lengths of the codes are quite large, so we omit the accompanying tables. We find that the rate of the fiber
product codes is extremely close to the product code construction bound, matching up to at least 4 decimal
places in each case. The lower bound on minimum distances of these codes are also larger than that of the
product code and Wang et al. construction when (p, t) is not (3, 2). This larger minimum distance comes
at a cost of much greater length, however; the relative minimum distance of the fiber product codes is less
than either of the other constructions.

5.4.5 Rate for Fixed t as Locality Increases

Finally, we consider the parameters of the codes CApt,t,l
for various fixed values of t as the prime p increases

and l is chosen to maximize rate while guaranteeing positive minimum distance. Notice that the field size
in each case is Fp2t so this increases with p and t. In Figure 5.4.5
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Figure 5.1: Rate of codes CApt,t,l
, for p = 3, p = 5, p = 7, and p = 11, where l is maximized for guaranteed

positive minimum distance, defined over Fp2t with t recovery sets for 2 ≤ t ≤ 10}. Also plotted are the
bound on rate (5.1), and rates of product code and Wang et al. constructions (both defined over F2).

5.4.6 Comparison with Product Code Rate as Locality Increases

We now consider the actual formula for the rate of C = CApt,t,l
when l is chosen for maximal rate with

positive minimum distance. Recall that the length and dimension of C are given by

k = q2 −
⌊
t(pt−1)(p− 2)(pt + 1) + 1

pt

⌋
(p− 1)t,

n = ptq2.

With some simplification, this gives a rate at least

R ≥ 1

p3t

(
p2t(p− 1)t − t(p− 2)(pt + 1)(p− 1)t

p
−
(
p− 1

p

)t
+ (p− 1)t

)
.

As p increases, we see that

R ≥
(
p− 1

p

)t
−O

(
1

p

)
.

Thus at p increases, the rate of C approaches 1. Further, the rate of C is asymptotically the same as the
rate of the corresponding product code (here, r = p − 1, so the product code with matching locality and

availability would have rate (p−1)t
pt ). Asymptotically, the Wang et al. construction grows at the same rate as

well. Again, the product code and Wang et al. constructions both have the advantage of smaller field size.
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Figure 5.2: Rate of codes CAp10,t,l
, for p = 3, p = 5, p = 7, and p = 11, where l is maximized for guaranteed

positive minimum distance, defined over Fp20 with t recovery sets for 2 ≤ t ≤ 10}. Also plotted are the
bound on rate (5.1), and rates of product code and Wang et al. constructions (both defined over F2). Code
rate is visually indistinguishable from the rate of corresponding product code.
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Figure 5.3: Rate of codes CApt,t,l
, for p ∈ {3, 5, 7, 9, 11, 13, 17, 23}, where l is maximized for guaranteed

positive minimum distance, defined over Fp2t , with t recovery sets for 0 ≤ t ≤ 4. Each recovery set has locality
p − 1. Also plotted are the bound on rate (5.1), and rates of product code and Wang et al. constructions
(both defined over F2). Code rate is visually indistinguishable from the rate of corresponding product code
when t = 4 and t = 5.
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[7] Carlos Munuera and Wanderson Tenório. Locally recoverable codes from rational maps. Finite Fields
and Their Applications, 54:80–100, 2018.
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