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Abstract

There is as yet no general agreement regarding the most appropriate solution to the problem of identifying areas of endemism, not
even in particular cases. In this study, we compared Endemicity Analysis (EA), Parsimony Analysis of Endemicity (PAE), and Biotic
Elements Analysis (BE) based on their ability to identify hypothetical predefined patterns that represent nested, overlapping, and
disjoint areas of endemism supported by species with different degrees of sympatry. We found that PAE performs poorly when
applied to patterns that either overlap with each other or are supported by species with imperfect sympatry. BE exhibits a
counterintuitive sensitivity to the degree of congruence among the distributions of endemic species, being unable to recognize areas
of endemism supported by perfectly sympatric species. In contrast, in all cases examined we found that EA results in a high
proportion of correctly identified distributional patterns. In addition to highlighting the strengths and limitations of these
approaches, our results show how different methods can lead to seemingly conflicting conclusions and caution about the possibility
of identifying distributional patterns that are merely methodological artefacts.

� The Willi Hennig Society 2012.

Current methods for identifying areas of endemism can
be classified on the basis of whether they aim to determine
(i) species patterns, i.e. groups of species with overlapping
distributions, or (ii) geographical patterns, i.e. groups of
area units with similar species composition. These
approaches assess closely related but slightly different
aspects of biogeographical data. Species patternsmethods
group species with similar distributions and result in
clusters of species which may or may not define obvious
spatial patterns, while geographical patterns methods are
more related to the classical notion of area of endemism,
resulting in geographical areas defined by species distri-
butions.Despite this fundamental difference, the different
methods are usually applied to address the same problem
(e.g. Moline and Linder, 2006).

Here, we analyse the performance of three current
methods to identify areas of endemism: Endemicity
Analysis (EA; Szumik et al., 2002; Szumik and Golob-
off, 2004), Parsimony Analysis of Endemicity (PAE;
Morrone, 1994), and Biotic Elements Analysis (BE;
Hausdorf and Hennig, 2003). While the first two
methods are based on an area pattern approach, the
last named follows a species pattern approach. We
selected PAE as a representative of hierarchical methods
because, although several alternatives have been pro-
posed (see Linder, 2001; Garcı́a-Barros et al., 2002), it
remains the most widely used in empirical analyses (e.g.
Cracraft, 1991; Geraads, 1998; De Grave, 2001; Aguilar-
Aguilar et al., 2003; Contreras-Medina et al., 2007;
Cabrero-Sañudo and Lobo, 2009). We decided not to
include in this analysis the more recent network analysis
method (NAM) (Dos Santos et al., 2008) because its
theoretical and operational limitations have been
described elsewhere (Casagranda et al., 2009a).

Endemicity analysis, PAE, and BE have been recently
compared based on real distributional data (see Moline
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and Linder, 2006; Carine et al., 2009; Casazza and
Minuto, 2009); however, real datasets provide only a
limited assessment of the differences among the proce-
dures. Some characteristics of the distribution of species
(e.g. geographical shape, number of records) affect
pattern recognition in uncertain ways. Furthermore,
sampling bias, which often affects available distribu-
tional data, causes problems in the identification of
biogeographical patterns (see, for example, Hortal et al.,
2007). As it is often difficult to distinguish whether the
identified patterns result from singularities of the data or
properties of the methods, an evaluation based on real
datasets—or data simulated under realistic condi-
tions—is insufficient to establish general conclusions
on the performance of the methods.

The main purpose of this work is to highlight the
differences between alternative methods in the analysis of
areas of endemism and identify some of their practical
limitations, in order to uncover potential pitfalls
associated with their application. Here, we evaluate the
performance of EA, PAE and BE on a collection of
hypothetical species distributions designed to recreate
specific patterns that might be observed in nature. These
hypothetical distributions serve as a reference result and
allow for a fair comparison of themethods. Furthermore,
the use of schematic species distributions provides a
standardizedmeans to recognize and illustrate the specific
problems of each method.

Methods for the identification of areas of endemism

(compared)

Parsimony analysis of endemicity

Parsimony analysis of endemicity was the first method
proposed to formally identify areas of endemism
(Morrone, 1994). The input data for PAE consist of a
binary matrix in which the presence of a given species
(rows) in an area unit (columns) is coded as 1 and its
absence as 0. Analogous to a cladistic analysis, PAE
hierarchically groups area units (analogous to taxa) based
on their shared species (analogous to characters) accord-
ing to the maximum-parsimony criterion. Therefore,
PAE attempts to minimize both ‘‘dispersion events’’
(parallelisms) and ‘‘extinctions’’ (secondary reversions) of
specieswithin a given area.Areas of endemism are defined
from the most-parsimonious tree (or strict consensus) as
groups of area units supported by two or more ‘‘synapo-
morphic species’’ (i.e. endemic species; see Morrone,
1994). In its most classical formulation, species that
present reversions (i.e. are absent in any of the area units)
and ⁄or parallelisms (i.e. are present elsewhere) in their
distributions are not considered endemic. Therefore, in
contrast to the two other methods discussed here, PAE is
especially strict when penalizing the absence of a species

within an area, which makes it more likely to fail to detect
a relatively large number of areas of endemism. To allow
for a more equitable comparison, when using PAE
we considered a species endemic to an area even if it is
absent in up to 40% of its cells. The parsimony analyses
presented here were performed with TNT (Goloboff
et al., 2008).

Despite the known limitations of hierarchical classifi-
cation models in the delimitation of areas of endemism
(Szumik et al., 2002; Aagesen et al., 2009; Arias et al.,
2010), PAE remains the most widely used method for
describing biogeographical patterns (e.g. Pizarro-Araya
and Jeréz, 2004; Contreras-Medina et al., 2007; Cabrero-
Sañudo and Lobo, 2009).

Endemicity analysis

In 2004, Szumik and colleagues proposed an optimality
criterion to identify areas of endemism by explicitly
assessing the congruence among species distributions,
implemented in NDM ⁄VNDM (Szumik et al., 2002;
Goloboff, 2004; Szumik and Goloboff, 2004). The con-
gruence between a species distribution and a given area is
measuredbyanEndemicity Index (EI) ranging from0to1.
The EI is 1 for species that are uniformly distributed in the
area under study, and only within that area (‘‘perfect
endemism’’), and decreases for species that are present
elsewhere, and ⁄or poorly distributed within the area. In
turn, the endemicity value of an area (EIA) is calculated as
the sum of the EIs of the endemic species included in the
area. Therefore, two factors contribute to the EIA: the
number of species included in the area and the degree of
congruence (measured by the EI) between the species
distributions and the area itself (for details see Szumik and
Goloboff, 2004).

Biotic element analysis

Hausdorf (2002) considers areas of endemism in the
context of the vicariance model, and argues for the use of
‘‘biotic elements’’ defined as ‘‘groups of taxawhose ranges
are significantly more similar to each other than to those
of taxa of other such groups’’ (Hausdorf, 2002, p. 651),
rather than the more traditional areas of endemism
(Hausdorf andHennig, 2003).Hismethod is implemented
in the R package Prabclus (Hennig, 2003). Prabclus
calculates a Kulczynski dissimilarity matrix (Shi, 1993)
betweenpairs of specieswhich is then reducedusing anon-
metricmultidimensional scaling (NMDS;Kruskal, 1964).
A Model-Based Gaussian clustering (MBGC) is applied
to this matrix to identify clusters of species with similar
distributions, or biotic elements. In spatial terms, a biotic
element is equivalent to the spatial extent of the distribu-
tions of all species included in the cluster.

Finally, we recognize that using alternative imple-
mentations of the aforementioned methods may lead to
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differences in results. However, for convenience and
clarity, in our discussion and conclusions will refer
simply to PAE, EA and BE.

Hypothetical distribution patterns

Although many patterns of sympatry between species
are obvious to the naked eye, their description is often
conceptually and computationally challenging. To
observe differences in the performance of the methods
under study, we designed three basic hypothetical classes
of areas of endemism that could be found in nature, but
are particularly difficult to identify using current com-
putational methods. We constructed examples of nested
(Fig. 1a), overlapping (Fig. 1b) and disjoint areas
(Fig. 1c), which we refer to as cases 1, 2 and 3,
respectively. As reference, we chose a non-conflictive
pattern (case 0; Fig. 1d). Also, because sympatry among
species within a given area of endemism is variable in
nature—and it is unlikely to find species with strictly
identical distributional ranges—we analysed areas of

endemism defined by species with different degrees of
sympatry as subcases of the above-mentioned examples.
For each case, we then considered further subcases,
where we systematically modified the distributions of the
species by randomly adding presences outside, but
adjacent to, the predefined area, eliminating presences
within the area, or both. We refer to the incongruence
between a species distribution and the area predefined in
the examples as noise, and to the different subcases as
internal, adjacent and mixed noise, respectively. Sub-
cases with no noise were defined by areas of endemism
supported by species distributions that are perfectly
congruent to the corresponding areas (Fig. 2). To
construct subcases with internal, adjacent, and mixed
noise, we modified species distributions that were
perfectly congruent to the area of endemism by ran-
domly removing or adding from one to four cells. All
examples were constructed using 18 species distributed
on a spatial matrix of 100 cells (10 · 10). We considered
hypothetical areas of endemism supported by different
numbers of endemic species (see Table 1 for details).

Performance criteria

The performance of the different methods was eval-
uated using two indices that quantify the congruence
between predefined and identified patterns, sensitivity
(ISens) and specificity (ISpec).

1. ISens: measures the proportion of cells within a
predefined pattern that are correctly identified by the
method, i.e.

ISens ¼ TP

Predefined
;

where, TP (true positives) is the number of cells included
in both the predefined and the identified pattern. Values
for ISens vary between 1 (if the identified pattern includes
all the cells in the predefined pattern) and 0 (if the
identified pattern includes none of the cells in the
predefined patterns).

2. ISpec: measures the proportion of cells within an
identified pattern that are included in a predefined
pattern, i.e.

ISpec ¼ TP

Identified
:

Values for ISpec vary between 1 (if all cells within the
identified pattern are included in the predefined pattern)
and 0 (if the identified area includes none of the cells
within a predefined pattern). Values of ISpec also
decrease if the identified area includes a large number
of false positives (FP), that is cells present in the
identified area but not in the predefined one (see Fig. 3).

(a) (b)

(c) (d)

Fig. 1. Hypothetical cases of distribution. (a) Case 1, Nested areas: a
small area of endemism defined by a unique set of endemic species
(striped area) is nested in a bigger area defined by a different and
singular group species (solid grey area). (b) Case 2, Overlapping areas:
three spatially overlapping areas of endemism (in solid grey, striped-
grey and striped-black), each defined by a particular set of endemic
species. (c) Case 3, Disjoint areas: a disjoint area defined by a particular
set of endemic species (striped area) is nested in a bigger area of
endemism (in solid grey). (d) Case 0, Non-conflictive patterns: three
contiguous areas of endemism (in solid grey, striped-grey and striped-
black), each defined by it own group of endemic species.

647M.D. Casagranda et al. / Cladistics 28 (2012) 645–654



(a) (b) (c) (d)

Fig. 2. Subcases. (a) Perfect species and ideal patterns: species whose distribution is perfectly congruent with a predefined area and present complete
sympatry with other species. Noisy and ideal species patterns: (b) species with inner noise distributions: species is absent in some cells inside the area;
(c) species with adjacent noise distributions: species is present outside the predefined area, in adjacent cells; (d) species with mixed noise distributions:
species can be absent in some cells inside the area, and ⁄or present in outside cells adjacent to the area.

Table 1
Details of hypothetical examples: cases, subcases, number of endemic species per area and total number of areas included by case

Case Subcase

Number of
endemic species
per area

Sum of resulting
areas by case

Case 0
Non-conflictive
areas (3 areas:
A, B and C)

No noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

84 areas

Internal noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Adjacent noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Mixed noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Case 1
Nested areas
(2 areas: A
and B)

No noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16 24 areas

Inner noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16

Adjacent noise
(total 6 areas)

A: 9, B: 9; A:16, B: 2; A: 2, B: 16

Mixed noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16

Case 2
Overlapping
areas (3 areas:
A, B and C)

No noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

84 areas

Internal noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Adjacent noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Mixed noise
(total 21 areas)

A: 6, B: 6, C: 6; A: 10, B: 6, C: 2.; A:10, B: 2, C: 6;
A: 6, B: 10, C: 2; A: 6, B: 2, C: 10; A: 2, B: 10, C: 6;
A: 2; B: 6; C: 10

Case 3
Disjoint areas
(2 areas: A
and B)

No noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16 24 areas

Internal noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16

Adjacent noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16

Mixed noise
(total 6 areas)

A: 9, B: 9; A: 16, B: 2; A: 2, B: 16
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We focused on four categories of identified patterns,
which we defined according to their ISens and ISpec

values: correctly identified patterns (ISens ‡ 0.8 and
ISpec ‡ 0.8), partially identified patterns (ISens £ 0.5
and ISpec ‡ 0.8), over-identified patterns (ISens ‡ 0.8
and ISpec £ 0.5), and incorrectly identified patterns
(ISens £ 0.5 and ISpec £ 0.5) (see Fig. 4).

Results and discussion

Hypothetical distribution patterns

Case 0: non-conflictive patterns. This case illustrates
three neighbouring but non-overlapping areas of ende-
mism. From a total of 84 predefined areas, BE and PAE
recognize 43 (51%) and 53 (63%) areas respectively,
with only 33 (39%) and 43 (51%) being correctly
identified (Fig. 5a). EA identifies all predefined areas,
but also 18 additional areas that represent minor
variation of these. In spite of the redundancy, all
identified areas are correct in terms of species and cell
composition. EA performs well across all subcases of
non-conflictive patterns (no noise, internal, adjacent,
and mixed noise), while PAE is ineffective at identifying
noisy patterns, and, paradoxically, BE shows low
success rates at identifying areas supported by perfectly
sympatric species (Fig. 5b).

Case 1: nested patterns. Endemicity analysis is the only
method able to recover 100% of predefined areas. BE
identifies 15 out of 24 predefined areas, and PAE only 10
out of 24 (see Fig. 6a). While EA is equally effective at
recovering patterns defined by species with different
degrees of sympatry, BE shows a paradoxical behaviour:
it cannot identify areas defined by perfectly sympatric
species. PAE recognizes a low percentage of nested
patterns, showing a poor performance across all studied
subcases (Fig. 6b).

Fig. 3. True positives, false negatives and false positives. The prede-
fined and identified areas are shown: the predefined area is defined by
grey cells while the identified area is defined by striped cells. Cells
included in both the predefined and the identified areas are named true
positives (TP), while cells present in the predefined area but not in the
predicted area are false negatives (FN). Cells present in the identified
area but not included in the predefined one are false positives (FP).

(a) (b)

(c) (d)

Fig. 4. Classification of identified areas according to their correspon-
dence with a predefined area. The predefined area is shown at the top,
and examples of identified areas are shown below: (a) correctly
identified, (b) partially identified, (c) over-identified and (d) incorrectly
identified.
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Case 2: overlapping areas. Endemicity analysis recovers
all 84 predefined areas, whereas BE and PAE recover
only 48 (57%) and 25 (29%), with one out of 16 and one
out of six areas being only partially identified, respec-
tively. Similarly, as described for non-conflictive pat-
terns, all areas identified by EA are correct. However,
EA also identifies four extra areas that were not
predefined, but constitute slight variations of others
that were (see Fig. 7a). EA effectively recovers areas
across all subcases, whereas BE fails—as in all other
cases—to identify areas supported by perfectly sympat-
ric species. PAE shows low effectiveness at recognizing
areas in all subcases (see Fig. 7b).

Case 3: disjoint areas. Endemicity analysis correctly
identifies 20 (83%) of 24 predefined areas, and partially
identifies another four (17%; see Fig. 8a). BE identifies
only 14 (58%) predefined areas, two of them only
partially. PAE recovers only seven (29%) of predefined
areas (Fig. 8a), exhibiting the worst performance. Also
in this case, the performance of EA is not affected by
noise in the species distributions, while PAE recognizes
best patterns defined by perfectly sympatric species (no

noise subcases). The performance of BE is not strongly
affected by the increase of noise, recognizing areas with
the same success in all subcases, except—as in all other
cases—for those including no noise (see Fig. 8b).

Noise

Incongruence in species distributions has an evident
effect on identification of areas of endemism. Paradoxi-
cally, the performance of BE decreases as the sympatry
among species increases, and improves when the noise
among species increases (see Fig. 9a). This is especially
evident in cases 1 and 3, where this method recovered 0 ⁄6
and 1 ⁄6 areas, respectively, demonstrating a great defi-
ciency in identifying ideal patterns, i.e. patterns defined by
perfectly sympatric species, with no noise. As opposed to
BE, theperformanceofPAEdecreaseswith the increase of
noise in the distribution of endemic species (Fig. 9b). This
behaviour suggests possible limitations for identification
of real patterns defined by real species with ‘‘imperfect’’
distributions. In contrast to the other methods, noise in
distributions of species does not meaningfully affect the
identification of areas of endemism when using EA
(Fig. 9c). Indeed,EAcorrectly identifiedahighpercentage

(a)

(b)

Fig. 5. Case 0: number of Non-nonflictive areas recognized by each
method. (a) The number of correctly, partially, over-identified and
incorrectly identified areas recovered by each method. (b) The number
of areas recovered by subcase and by method. The dotted line indicates
the total number of predefined areas.

(a)

(b)

Fig. 6. Case 1: number of Nested areas recognized by each method.
(a) The number of correctly, partially, over-identified, and incorrectly
identified areas recovered by each method. (b) The number of areas
recovered by subcase and by method. The dotted line indicates the
total number of predefined areas.
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of predefined areas across all subcases, although in some
particular cases—mixed noise subcase for cases 0 and
2—EA tended to predict a large number of redundant
areas, i.e. areas that mainly constitute variations of one
another. This occurs because equally optimal combina-
tions of cells increase with noise, often resulting in twin
areas, which are slight variations of a particular area.

General performance of methods

Parsimony analysis of endemicity. Our results confirm
previously reported limitations of using hierarchical
methods to detect areas of endemism (see Szumik et al.,
2002). In particular, PAE performs poorly at identifying
overlapping and disjoint patterns. In all cases considered
here, PAE is able to recover areas that have been
predefined using perfectly sympatric species (perfect
areas), but its performance decreases as the noise in the
species distribution increases—especially in subcases
involving ‘‘adjacent’’ and ‘‘mixed’’ noise (Fig. 9b).
Taking into account that in nature overlapping and
disjoint patterns are relatively common and that, in
general, sympatry between species varies widely, PAE is
probably not the most suitable method to describe areas
of endemism based on real distributional data.

Biotic elements analysis. BE is very sensitive to the
degree of congruence among the distributions of the
species that determine the area, although in a counter-
intuitive manner: while the method cannot recognize
patterns defined by perfectly sympatric species, its
performance improves with increasing levels of noise
in the species distributions (see Figs 4b, 5b, 6b and 7b).
Biotic elements are determined by a MBGC technique
on Kulczynski distances between pairs of species
assuming a Gaussian distribution among species dis-
tances. However, Kulczynski distances between species
with identical ranges of distribution are distributed
according to a Gaussian distribution with variance zero,
a case presumably not considered by the model.
Although this ideal case is not frequently observed at
the spatial scale used for most biogeographical analyses,
the inability to identify a perfect case of the pattern
which the method intends to describe is questionable.
The method produced further seemingly counterintui-
tive results, often reporting multiple distinct biotic
elements for species which actually have very similar
distributions (Fig. 10a), as well as reporting a single
biotic element including species with completely

(a)

(b)

Fig. 7. Case 2: number of Overlapping areas recognized by each
method. (a) The number of correctly, partially, over-identified and
incorrectly identified areas recovered by each method. (b) The number
of areas recovered by subcase and by method. The dotted line indicates
the total number of predefined areas.

(a)

(b)

Fig. 8. Case 3: number of Disjoint areas recognized by each method.
(a) The number of correctly, partially, over-identified and incorrectly
identified areas recovered by each method. (b) The number of areas
recovered by subcase and by method. The dotted line indicates the
total number of predefined areas.
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allopatric distributions (Fig. 10b). These examples show
discordance between the theoretical basis of the
approach (Hausdorf, 2002) and its practical implemen-
tation. Together, these limitations suggest the users
should exercise caution when interpreting the results
generated by this method.

Endemicity analysis. Endemicity analysis shows a high
percentage of success in the recovery of predefined areas
(Figs 4–7). Flexibility in recognition of areas displayed by
EA is associated with the fact that, in contrast to the other
methods considered here, EA utilizes both the number of
species and the overlap between their distributions as
optimality criteria to search for areas of endemism. The
mainproblemwithEAis the frequent reportof redundant,
‘‘twin’’ areas that have only slight differences in spatial
structure and ⁄or in their species composition. This prob-
lem can be solved by constructing consensus areas (for
somedetails seeAagesen et al., 2009),whichmerge similar
areas to simplify the analysis of the results.

In this sense, this comparison shows that EA (in
conjunction with consensus areas) is the best available
option for endemicity analyses, despite other studies
indicating that EA is rather sensitive to certain aspects
of the data, such as spatial gaps of information (Arias
et al., 2010). The advantages of EA over other methods
are related to considering spatial information during the
identification of areas, as well as using the classical
definition of area of endemism as the basis for the
analysis (‘‘[an area of endemism] is identified by the
congruent distributional boundaries of two or more
species, where congruent does not demand complete
agreement on those limits at all possible scales of
mapping, but relatively extensive sympatry is a pre-
requisite’’; Platnick, 1991).

In summary, the problems encountered with the three
methods can be classified into two broad categories: those
derived from the choice of an inappropriatemathematical
formulation, and those resulting from multiple solutions
to the optimization problem. The former are intrinsic to
the methods and therefore are more difficult to solve.
Simply put, the method relies on an algorithm that is
ineffective for its intended purpose. PAE, for example, is a
hierarchical method implying that each cell is included in
at most one area of endemism—the one supported by the
largest number of endemic species. Consequently, PAE
cannot describe overlapping patterns, such as nested
areas. Additionally, the maximum-parsimony criterion
aims to minimize the number of homoplasies, resulting in
PAE hardly identifying any disjoint areas. BE suffers
from the same problem; BE�s model-based inference
requires a series of distributional assumptions which, if
not satisfied, may lead to unreliable, or simply erroneous
conclusions. Thus, even if in theory a biotic element is
defined as a ‘‘group of taxa whose ranges are significantly
more similar to each other than to those of taxa of other
such groups’’, Prabclusmay both group totally allopatric
species in a single biotic element, and fail to recognize
biotic elements defined by perfectly sympatric species (for
an example see Fig. 10). Finally, an inescapable conse-
quence of the application of an optimality criterion is that
multiple hypotheses (in the case of EA, the ‘‘twin’’ areas
representing small variations in the addition or deletion of
single cells)maybeobtained in an analysis. The ambiguity
in the input data often results in multiple ‘‘best’’ solutions
according to an optimality criterion. Although the
reported alternative and equally optimal patterns often
force the researcher to more conservative interpretations,
this result can also be helpful in designing sampling
strategies to improve subsequent analysis.

Final comments

The influence of methodology on the outcome of
different studies is well explored in diverse areas of

(a)

(b)

(c)

Fig. 9. Noise effects on identification of areas of endemism. The
number of areas identified by each method, for different subcases:
(a) results using BE, (b) results using PAE and (c) results using EA.
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biology (see, for example, Hall, 2005; : Kosakovsky
Pond and Frost, 2005; Peterson et al., 2007; Bombi
et al., 2011) but, except for a few papers, it is poorly
discussed in biogeography (Morrone and Carpenter,
1994; Brooks and McLennan, 2001; Moline and Linder,
2006; Casazza and Minuto, 2009; Buerki et al., 2011).
The comparison conducted here shows how the appli-
cation of different analytical methods can lead to
identification of different areas of endemism, and reveals
some undesirable effects produced by methodological
idiosyncrasies in the description of these patterns. Our
results caution about the possibility of finding distribu-
tional patterns which are merely methodological arte-
facts (for example see Fig. 10), highlighting the
importance of methodological choice when analysing
data. Although several aspects of the methods for
identification of areas of endemism remain poorly
explored, here we have summarized their main traits
and underlined some strengths and weakness, to help
provide an adequate methodological decision.

Some properties of distributional data (shape and
extension of distributions, sample size, sample bias, etc.)
can influence the identification of biogeographical
patterns (e.g. Hortal et al., 2007; Casagranda et al.,
2009b). Yet, it remains challenging to estimate how
exactly properties of real distributional data—or distri-
butional data simulated under realistic conditions—will
affect the identification of biogeographical patterns.
Consequently, the use of such data to compare the

performance of methods to identify biogeographical
patterns may introduce bias unrelated to the actual
methods, invalidating the conclusions. Alternatively,
simple examples constitute a powerful option to address
the complex problem of recognizing areas of endemism,
where a large number of factors can influence the results.
Using this approach allows us to avoid the potential
confusion caused by simultaneous effects of several
variables and helps to analyse the impact of choice of
method.

Analyses similar to those performed here and aimed
at exploring other properties of the data, such as the
shape of the distributions, the number of endemic
species or sample bias, would lead us to a deeper
understanding of the behaviour of proposed algorithms
and the consequences of their application on data of
different configurations. Given the increasing informa-
tion on species distributions, such a contribution would
be fundamental to methodological improvements for
more robust and realistic descriptions of biogeograph-
ical patterns. This should be a main issue of current
biogeography: to contribute to efficient decision-making
in the conservation of biological diversity.
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