1	E-maill address:	jpriotto@exa.un	rc.edu.ar, Departament	o de Ciencias Naturales,

- 2 Universidad Nacional de Río Cuarto. Agencia Postal N°3; 5800 Río Cuarto, Córdoba,
- 3 Argentina. Tel.: +5403584676836. Fax-number: ++5403584676230
- 4
- 5 **Running title:** Movement in linear habitats
- 6

7 CORN MICE (CALOMYS MUSCULINUS) MOVEMENT IN LINEAR

8 HABITATS OF AGRICULTURAL ECOSYSTEMS

- 9 Lucía Sommaro^a, Daniela Gómez^a, Florencia Bonatto^a, Andrea Steinmann^{a,b}, Marina
- 10 Chiappero^{a,c}, José W. Priotto^{a,b,*}.
- 11
- 12 ^aConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad
- 13 Autónoma de Buenos Aires, Avda. Rivadavia 1917 CP C1033AAJ, Argentina.
- ¹⁴ ^bDepartamento de Ciencias Naturales, Universidad Nacional de Río Cuarto. Agencia

15 Postal N°3; 5800 Río Cuarto, Córdoba, Argentina.

- ^c Cátedra de Genética de Poblaciones y Evolución, FCEyN Universidad Nacional de
- 17 *Córdoba, Argentina.*
- 18

19	Movement patterns of Calomys musculinus in linear habitats were studied in
20	relation to sex, season, year, abundance, and width of border. Movement distances
21	(MD) were measured by seasonal capture, mark and recapture (CMR) samples during
22	two years in wide and narrow borders in agroecosystems. The smallest MD were
23	registered in autumn and the highest in spring. In breeding period, MD of males were
24	larger than those of females. In non-breeding period MD were similar between sexes.
25	Effects of sex on MD were consistent with C. musculinus promiscuous mating system.
26	MD were greater in narrow than in wide borders. The narrowness of suitable habitats
27	would force the mice to extend foraging trips in narrow borders. The opportunistic

28	behavior of <i>C. musculinus</i> allows it to use linear habitats in a similar way to the two-
29	dimensional natural habitats.
30	
31	Key words: Argentina agriculture ecosystems, border habitats, corn mice, edges,
32	Generalized Linear Mixed Models, movement distances
33	
34	*Correspondent: jpriotto@exa.unrc.edu.ar
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	

53	Fragmentation of natural landscapes as a result of agriculture, increasing
54	urbanization and other human activities, is a current global concern. Many spatial
55	parameters are involved in these landscape changes, including the composition (e.g.
56	habitat patches), spatial configuration (e.g. fragmentation and isolation), and shape
57	(geometry) (Forman and Godron 1986; Forman 1995; Kareiva and Wennergren 1995)
58	of landscape elements. Habitat remnants persist as linear strips along rivers, property
59	borders, roads, and railways as a consequence of large surfaces of continuous wildlife
60	habitats (e.g. forest and grassland areas) which are converted to urban and agricultural
61	areas (Forman 1995). Wildlife species are restricted to such linear habitats in many
62	heavily altered landscapes. Therefore, the functioning of populations in linear as
63	opposed to two-dimensional habitat area has become a concern in environmental
64	management (Bennett 1990; Hobbs 1992; Fauske et al. 1997), with the emphasis upon
65	the role of linear habitats as dispersal corridors (Forman and Godron 1986; Bennett
66	1990). However, linear habitat structures may contain potential resources for long -term
67	survival and reproduction as well (Fauske et al. 1997). Thus, these habitats play a role
68	as buffer zones where width and vegetation height in relation to surrounding habitats
69	determine the attractiveness of these zones to herbivores and the extent to which
70	permanent populations can exist (Yletyinen and Norrdahl 2008).
71	One of the most important consequences of agricultural ecosystem development
72	is the fragmentation by roads. Roads have been found to act as barriers to small
73	mammal movements (Oxley et al. 1974; Kozel and Fleharty 1979; Garland and
74	Brandley 1984; Mader 1984; Swihart and Slade 1984; Cittadino et al. 1998; Clarke et
75	al. 2001). These barriers can affect the colonization of habitat patches and consequently
76	population persistence (Kozakiewicz 1993).

77 Central Argentina agriculture ecosystems consist of a matrix of crop areas (corn, 78 soybean, sunflower, wheat, linen) surrounded by a network of roadsides and fencelines, 79 railways and other edge habitats that support a plant community with some remnants of 80 native flora and many introduced weeds, that provide a more stable cover than crop 81 fields (Bonaventura and Cagnoni 1995; Busch et al. 1997, 2000). These non-crop linear 82 areas provide habitat for a variety of small mammal species and their predators 83 including birds of prey. One of the most abundant species in these habitats is the corn 84 mouse, *Calomys musculinus* (Cricetidae, Sigmodontinae). This species was mainly 85 studied due to its role as reservoir of Junin virus, an etiological agent of the Argentine 86 Hemorragic Fever (AHF) (Mills and Childs 1998). C. musculinus may live in a variety 87 of habitats including natural pastures, crop fields, cultivated fields undisturbed after 88 harvest, border areas protected by wire fences with little agricultural disturbance, road 89 borders, borders between cultivated fields or pastures, and railway banks (Busch et al. 90 2000; Castillo et al. 2003). C. musculinus individuals live primarily in border habitats 91 and they use crop fields only when there is high weed cover and vertical vegetation 92 density (Ellis et al. 1997). However, at present weed cover is almost null in crop fields 93 due to the increasing use of agrochemicals (Bilenca et al. 2007). C. musculinus 94 populations are characterized by seasonal density changes with low density during 95 winter (16/ha) and peaks during late summer or early autumn (260/h); a 1:1 sex ratio is 96 usual (Mills and Childs 1998). The reproductive period has an average length of 8 97 months (from mid-September to April; Mills and Childs 1998). 98 In studies performed in natural grasslands (two-dimensional habitat), C. 99 *musculinus* has a promiscuous mating system; females typically mate with more than 100 one male during each estrous period (Steinmann et al. 2009). During the breeding 101 period, females keep exclusive home ranges and are territorial, whereas males have

home ranges that are more than twice as large as those of females and are shared fully
with both sexes. In non-breeding period male and female home range sizes are similar
(Steinmann et al. 2005; Steinmann et al. 2009).

105 C. musculinus is one of the most abundant species in linear habitats, and it 106 shows a wider habitat and trophic niche than other coexisting rodent species in rural 107 habitat (Busch et al. 2000). Its space use pattern has been studied principally in two-108 dimensional habitats (Steinmann et al. 2005; 2006a, 2006b). The aim of our study was 109 to explore C. musculinus movement patterns in linear habitats of Central Argentina 110 agricultural ecosystems. The following questions were addressed: (1) Do males have 111 higher movement distances than females? (2) Do movement distances depend on the 112 reproductive period? (3) Does the width of linear habitat (border) affect movement 113 distances of mice? (4) Do rural roads act as barriers to C. musculinus movement?

114

115 MATERIALS AND METHODS

116 Field methods. -- This study was carried out from November 2005 to August 117 2007 in linear habitats of agriculture ecosystems in Río Cuarto Department (Córdoba 118 Province, Argentina). Phytogeographically, this region corresponds to "Provincia del 119 Espinal, Distrito del Algarrobo" (Cabrera 1953), which is a low elevation plain (600-120 900 m) with vegetation dominated by algarrobo (*Prosopis alba*, *P. nigra*), accompanied 121 by quebracho blanco (Aspidosperma quebracho blanco), mistol (Zizyphus mistol) and 122 itin (Portulaca kuntzie). The vegetation, however, has undergone marked alterations as 123 a result of agriculture and cattle farming. At present, the landscape mainly consists of 124 individual crop fields, surrounded by wire fences with borders dominated by weedy 125 species. Despite the influence of crop fields, borders have a homogeneous plant cover of about 85 % throughout the year and a high availability of seed in soil (Priotto et al.2002).

128 Four sampling transects located in field borders were used as study sites, 1 129 placed in a wide border (range of width: 10 - 30 m, transect A) and 3 placed in narrow 130 borders (<2 m, transects B, C and D). Sampling transects were set up on opposite sides 131 of 7 m wide secondary roads (A opposite to B; C opposite to D). Each transect was 132 composed of 300 m trap lines with 30 Sherman live traps. Trap lines were separated by 133 500 m. Transects A and B had 4 trap lines (A1, A2, A3, A4, B1, B2, B3 and B4) and 134 transects C and D had 2 trap lines (C1, C2, D1 and D2) (Fig. 1). Seasonal samplings 135 were carried out during two consecutive years. Capture, mark and recapture (CMR) 136 trapping sessions were conducted for 5 consecutive days in November (spring), March 137 (summer), May (autumn) and July/August (winter). Trapped animals were weighed and 138 marked with ear tags with numerical codes. Sex and reproductive state (males: scrotal or 139 abdominal testicles, females: perforated or imperforated vulva, pregnancy evidence, 140 visible nipples or not) were also recorded. Small pieces of the tail tip were taken and 141 preserved in ethanol for other studies that include DNA analyses. The research on live 142 animals was performed in a humane manner and followed guidelines for the care and 143 use of animals approved by the American Society of Mammalogists (Gannon et al. 144 2007). 145 We calculated the largest movement distance among capture points of an

individual captured at least twice during a trapping session. Movement distance was
considered to provide an index of home range size (Gaines and Johnson 1982; Pusenius
and Viitala 1995). Because of small sample sizes for juveniles, all analyses used only
adult males and females.

Data analysis.--The primary focus of this study was to investigate the influence of sex, season and year on movement distances of *C. musculinus* in linear habitats. We also test for the effects of abundance index as a covariate because this variable could potentially influence movement distances. Subsequently we analyzed the effect of border width on movement distances, considering separately those individuals captured in wide and narrow borders.

156 Because distance measurements are likely to be non-normal, a generalized linear 157 mixed model (GLMM) with Negative Binomial distribution in R 2.9.0 software (R 158 Development Core Team 2009) was used to identify the factors that determined 159 movement distances. We used repeated measure analysis. The repeated measures were 160 transects (in each transect individual movement distances were registered in three 161 seasons and two years). Individuals were not considered as repeated measures because 162 there were no movement distances of the same individual in different seasons and years. 163 Akaike Information Criterion, corrected for small sample size (AIC_c), was used as a 164 measure of the fit of a model (the smaller the AIC_{c} , the better the fit). We wanted to 165 identify the effect of abundance, season and sex on movement distances. We considered 166 sex, season, abundance and year as main effects and their 2-way interactions. Seasonal 167 analysis of movement distances were based on the following categories: spring 168 (November), summer (March), autumn (May). Winters were discarded from the 169 statistical analyses because few movement distances could be calculated during the first 170 winter and borders were burnt during the second one. The low number of recaptures for 171 each individual did not allow us to obtain reliable results in the abundance estimations 172 using CMR analysis. For this reason the number of individuals captured in the line where each movement distance was calculated was used as an index of abundance. 173

174

175	RESULTS
176	From November 2005 to August 2007 there were 1152 captures of 808
177	individual C. musculinus being caught. Four hundred and twelve females and 396 males
178	were ear-tagged. C. musculinus abundance index was greater during the second year,
179	and the mean number of individuals varied among seasons with a peak in summer and a
180	minimum in winter (Fig. 2).
181	A total of 82 and 97 movement distances were calculated for females and males
182	respectively. C. musculinus individuals moved within the limits of each line; there were
183	no long distance movements (among lines within a transect). This species was reluctant
184	to cross roads; only 8 (4 males and 4 females) marked individuals crossed roads.
185	GLMM analysis based on AIC_c , revealed that sex and season were the most important
186	factors affecting movement distances. AIC _c never decreased in any model that included
187	abundance or year with or without interactions (Table 1). The best model included the
188	interaction between sex and season. Coefficients for the best model are shown in Table
189	2. The greatest movement distances for both sexes were in spring. Male movements
190	were larger than those of females in spring and summer, whereas the inverse pattern
191	was observed in autumn (Fig. 3). In spite of these divergences, only the difference
192	between spring and autumn was statistically significant (Table 2). Having examined the
193	effect of sex, season and year, we investigated, using the same analysis, the effect of
194	border width on movement distances. In this analysis we only included seasons with
195	high number of individuals (spring and summer). Movement distances were greater in
196	the narrow than in the wide border, but this difference was not statistically significant (z
197	= 1.8040, <i>P</i> = 0.0712; Fig. 4).
198	

200	DISCUSSION
201	Generally home range size is regarded as one indicator of habitat quality (Tufto
202	et al. 1996). Since length of movements are a good index of home range size in small
203	mammals (Slade and Russell 1998), and length of foraging trips affects both the
204	energetic cost of food acquisition and the risk to be predated (Norrdahl and Korpimäki
205	1998; Banks et al. 2000; Yletyinen and Norrdahl 2008), movement distances can be
206	used as indicator of habitat quality. Habitat quality is affected heavily by the shape of
207	habitat patch, because it affects the maximum diameter of a given habitat area; the
208	diameter increases as the habitat becomes more linear. Habitat quality would increase in
209	relation to habitat width, because natural bi-dimensional habitats have higher quality
210	than crop borders of agricultural ecosystems (one-dimensional habitats).
211	The factors that influenced the movement patterns of C. musculinus in linear
212	habitats were similar to those observed in two-dimensional habitats (grasslands) by de
213	Villafañe and Bonaventura (1987) and Steinmann et al. (2005). Movement distances
214	varied seasonally, smallest in autumn and highest in spring. They were determined
215	mainly by sex and reproduction. Autumn trapping session was conducted in May, non-
216	breeding period, when the first frosts were registered. Cold periods are energetically
217	demanding for small mammals, and energetic costs can be reduced by restricting to a
218	minimum the movement activities outside the insulated nest (Yletyinen and Norrdahl
219	2008). During the breeding period, movement distances of males were larger than those
220	of females, whereas in the non-breeding period movement distances were similar
221	between sexes. Main effects of sex on movement distances of C. musculinus were
222	consistent with the promiscuous mating system of the species. In promiscuous rodents,
223	longer movement distances of males reflect a strategy that maximizes access to fertile
224	females, whereas lower movements of females reveal territorial behavior directed at

225	protection of nestlings from infanticidal females (Wolff and Peterson 1998; Bond and
226	Wolff 1999; Steinmann et al. 2005; Steinmann et al. 2009) or defense of food resource
227	(Ims 1987; Ostfeld 1985; 1990). During the breeding period, differences in movement
228	distances between spring and summer can be explained by spacing behaviors of males
229	and females. At low population densities (spring) there are many vacant areas in borders
230	where females can establish sparse and exclusive reproductive spaces. Thus, larger
231	movement distances of males would be in relation to an active search for estrous
232	females. Meanwhile, in summer (high population densities) there are few vacant areas
233	in borders due to the fact that all spaces are occupied by estrous females. Thus,
234	movement distances of males searching for females would be diminished.
235	Taking into account that the length of movement can be considered an index of
236	habitat quality in relation to energetic costs of food acquisition and predation risk
237	(Norrdahl and Korpimäki 1998; Banks et al. 2000; Yletyinen and Norrdahl 2008),
238	longer movement distances of mice in narrow borders than in wide borders indicate that
239	the latter were better habitats for C. musculinus than the former. Due to the fact that
240	mice mainly reside in borders, the narrowness of suitable habitat could force mice to
241	extend foraging trips in narrow borders whereas in wide borders movements in several
242	directions are possible. Similar results were found in Microtus agrestis in agricultural
243	ecosystems of Finland (Yletyinen and Norrdahl 2008). However, the movement pattern
244	related to habitat shape is not clear in C. musculinus. Movement distances in two-
245	dimensional habitats are similar (30 m in average from data obtained by Steinmann et
246	al. 2005 and de Villafañe and Bonaventura 1987) to those observed in narrow borders in
247	our study, where there were fewer recaptures per individuals than in the former
248	publications. Movement length could be used as an indicator of quality in linear
249	habitats, but it could not allow to differentiate between one- and two- dimensional

habitats. Future research should be developed, using similar methodologies, to evaluate
the effect of habitat shape (one- vs. two- dimensional habitats) in movement length to
address this assessment.

253 Roads acted as barriers to C. musculinus movements, as observed in many other 254 small mammal species (Oxley et al. 1974; Kozel and Fleharty 1979; Garland and 255 Brandley 1984; Mader 1984; Swihart and Slade 1984; Cittadino et al. 1998; Clarke et 256 al. 2001). Mice would be averse to crossing areas without cover to avoid predation 257 (Cittadino et al. 1998; Sheffield et al. 2001). 258 Ecological changes together with the agriculture development of the Humid 259 Pampa have favored C. musculinus since this species is captured in higher proportion in 260 the current rodent assemblage than it was in the undisturbed original grassland 261 assemblage (Crespo 1966; Bilenca and Kravets 1995). This is because C. musculinus 262 has a wider habitat and trophic niche than other coexisting rodent species in agrarian 263 systems of Central Argentina (Busch et al. 2000). The opportunistic behavior of this 264 species allows it to use linear habitats in a similar way to the two-dimensional natural 265 habitats. 266 267 ACKNOWLEDGMENTS

We thank Marcelo Kittlein for statistical help, Susana Vilor for English version help
and two anonymous reviewers for providing useful comments on an early version of the
manuscript. This research was made possible by grants of the Consejo Nacional de
Investigación Científica y Tecnológica (CONICET) and Universidad Nacional de Río
Cuarto.

274

RESUMEN

276	Se estudiaron los patrones de movimiento de Calomys musculinus en hábitat
277	lineales en relación al sexo, la estación, el año, la abundancia y el ancho del borde. Las
278	distancias de movimiento (DM) fueron registradas a través de muestreos estacionales de
279	CMR durante dos años en bordes anchos y angostos de agroecosistemas. Las menores
280	DM fueron registradas en otoño y las mayores en primavera. En el periodo reproductivo
281	las DM de los machos fueron mayores que las de las hembras. Las DM fueron similares
282	entre sexos en el periodo no reproductivo. El efecto del sexo sobre las DM es
283	consistente con el sistema de apareamiento promiscuo de C. musculinus. Las DM
284	fueron mayores en los bordes angostos que en los anchos. La estrechez de los hábitats
285	adecuados forzaría a los ratones a extender los viajes de forrajeo en los bordes angostos.
286	El comportamiento oportunista de C. musculinus le permite utilizar los hábitats lineales
287	de una manera similar a los hábitats naturales bidimensionales.
288	
289	REFERENCES
290	BANKS, P., K. NORRDAHL AND E. KORPIMÄKI. 2000. Nonlinearity in the
291	predation risk of vole mobility. Proceedings of the Royal Society of London B
292	267:1621-1625.
293	BENNETT, A. 1990. Habitat corridors and the conservation of small mammals in a
294	fragmented forest environment. Landscape Ecology 4:109-122.
295	BILENCA, D.N. AND F.O. KRAVETZ. 1995. Patrones de abundancia relativa en
296	ensambles de pequeños roedores de la Región Pampeana. Ecologia Austral 5:21-
297	30.
298	BILENCA, D.N., C.M. GONZALEZ-FISCHER, P. TETA AND M. ZAMERO. 2007.
299	Agricultural intensification and small mammal assemblages in agroecosystems

300 of the Rolling Pampas, central Argentina. Agriculture, Ecosystems and

301 Environment 121:371-375.

- BONAVENTURA, S.M. AND M. CAGNONI. 1995. La vegetación de los bordes de
 caminos en agroecosistemas. Phycis (Buenos Aires Sec C.) 50:63-71.
- 304 BOND, M.L. AND J.O. WOLFF. 1999. Does access to females or competition among
- 305 males limit male home-ranges in a promiscuous rodent? Journal of Mammalogy306 80:1243-1250.
- 307 BUSCH, M., M.R. ALVAREZ, E.A. CITTADINO AND F.O. KRAVETZ. 1997.
- Habitat selection and interespecific competition in rodents in pampean
 agroecosystems. Mammalia 61:167-184.
- 310 BUSCH, M., M. MIÑO, J.R. DADON AND K. HODARA. 2000. Habitat selection by
- 311 *Calomys musculinus* (Muridae, Sigmodontinae) in crop areas of the pampean
 312 region, Argentina. Ecologia Austral 10:15-26.
- 313 CABRERA, A. 1953. Esquema fitogeográfico de la República Argentina. Revista
- 314 Museo de La Plata, Botanica 8:87-168.
- 315 CASTILLO, E., J. PRIOTTO J. A.M. AMBROSIO, M.C. PROVENSAL, N. PINI,
- 316 M.A. MORALES, A. STEINMANN AND J. POLOP. 2003. Commensal and
- wild rodents in an urban area of Argentina. International Biodeterioration and
 Biodegradation 52:135-141.
- 319 CLARKE, B.K., B.S. CLARKE, L.A. JOHNSON AND M.T HAYNIE. 2001. Influence
- 320 of roads on movement of small mammals. Southwestern Naturalist 46: 338-344.
- 321 CITTADINO, E.A., M. BUSCH, F.O. KRAVETZ. 1998. Population abundance and
- dispersal in *Akodon azarae* (pampa grassland mouse) in Argentina. Canadian
 Journal Zoology 76:1011-1018.

324	CRESPO, J.A. 1966. Ecología de una comunidad de roedores silvestres en el partido de
325	Rojas, provincial de Buenos Aires. Revista del Museo Argentino de Ciencias
326	Naturales e Instituto Nacional de Investigación en Ciencias Naturales, Ecología
327	1:79-134.
328	DE VILLAFAÑE, G. AND S.M. BONAVETURA. 1987. Ecological studies in crop
329	fields of the endemic area of Argentine Hemorragic Fever. Calomys musculinus
330	movements in relation to habitat and abundance. Mammalia 51:233-248.
331	ELLIS, B., J. MILLS, J. CHILDS, M. MUZZINI, K. MCKEE, D. ENRIA AND G.
332	GLASS. 1997. Structure and floristics of habitats associated with five rodent
333	species in and agroecosystem in Central Argentina. Journal of Zoology, London
334	243:437-460.
335	FAUSKE, J., H.P. ANDREASSEN AND R.A. IMS. 1997. Spatial organization of the
336	root vole Microtus oeconomus in linear habitat. Acta Theriologica 42:79-90.
337	FORMAN, R.T.T. AND M. GODRON. 1986. Landscape ecology. John Wiley and
338	Sons, New York.
339	FORMAN, R.T.T. 1995. Land Mosaics. Cambridge University Press, Cambridge, UK.
340	GANNON, W.L., R.S. SIKES, AND THE ANIMAL CARE AND USE COMMITTEE
341	OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2007. Guidelines of
342	the American Society of Mammalogists for the use of wild mammals in
343	research. Journal of Mammalogy 88:809-823.
344	GARLAND, T. JR. AND W.G. BRADLEY W.G. 1984. Effects of a highway on
345	Mojave Desert rodent populations. American Midland Naturalist 111:47-56.
346	GAINES, M.S. AND M.L. JOHNSON. 1982. Home range size and population
347	dynamics in the prairie vole, Microtus ochrogaster. Oikos 39: 63-70.

- 348 HOBBS, R.J. 1992. The role of corridors in conservation: solution or bandwagon?
- Trends in Ecology and Evolution 7:389-392.
- 350 IMS, R.A. 1987. Responses in spatial organization and behaviour to manipulations of
- the food resource in the vole *Clethrionomys rufocanus*. Journal of Animal
 Ecology 56:585-596.
- 353 KAREIVA, P. AND U. WENNERGREN. 1995. Connecting landscape patterns to
- ecosystem and population processes. Nature 373: 299-302.
- 355 KOZAKIEWICZ, M.A. 1993. Habitat isolation and ecological barriers the effect on
- 356 small mammal populations and communities. Acta Theriologica 38: 1-30.
- 357 KOZEL, R.M. AND E.D. FLEHARTY. 1979. Movements of rodents across roads.
- 358 Southwestern Naturalist. 24:239-248.
- 359 MADER, H.J. 1984. Animal habitat isolation by roads and agricultural fields.
- Biological Conservation 29:81-96.
- 361 MILLS, J.N. AND J.E. CHILDS. 1998. Ecologic studies of rodent reservoirs: their
- 362 relevance for human health. Emerging Infectious Diseases 4:529-537.
- 363 NORRDAHL, K. AND E. KORPIMÄKI. 1998. Does mobility or sex of voles affect
- risk of predation by mammalian predators? Ecology 79:226-232.
- 365 OSTFELD, R.S. 1985. Limiting resources and territoriality in microtine rodents.
- 366 American Naturalist 126:1-15.
- 367 OSTFELD, R.S. 1990. The ecology of territoriality in small mammal. Trends in
- 368 Ecology and Evolution 5:411-415.
- 369 OXLEY, D.J., M.D. FANTON AND G.D. CARMODY. 1974. The effects of roads on
- 370 populations of small mammals. Journal of Applied Ecology 11:51-59.

- 371 PRIOTTO, J., A. STEINMANN AND J. POLOP. 2002. Factor affecting home range
- 372 size and overlap in *Calomys venustus* (Muridae: Sigmodontinae) in Argentine
 373 agroecosystems. Mammalian Biology 67:97-104.
- 374 PUSENIUS, J. AND J. VIITALA. 1995. Familiarity of breeding field vole (Microtus
- 375 *agrestis*) females does not affect their space use and demography of the

376 population. Annales Zoologici Fennici 32:217-223.

- 377 SHEFFIELD, L.M., C.R. CRAIT, W.D. EDGE AND G. WANG. 2001. Response of
- American kestrels and gray-tailed voles to vegetation height and supplemental
 perches. Canadian Journal of Zoology 79:380-385.
- 380 SLADE, N.A. AND L.A RUSSELL. 1998. Distances as indices to movements and
- 381 home-range size from trapping records of small mammals. Journal of

382 Mammalogy 79: 346-351.

- 383 STEINMANN, A.R., J. PRIOTTO, E. CASTILLO AND J. POLOP. 2005. Size and
- 384 overlap of home range in *Calomys musculinus* (Muridae: Sigmodontinae). Acta
 385 Theriologica 50:197-206.
- 386 STEINMANN, A.R., J. PRIOTTO, L. SOMMARO AND J. POLOP. 2006a. The
- 387 influence of adult female absence on the spacing behaviour of juvenile corn mice,
- 388 *Calomys musculinus*: a removal experiment. Annales Zoologici Fennici 43:366389 372.
- 390 STEINMANN, A.R., J. PRIOTTO, L. SOMMARO AND J. POLOP. 2006b. Spacing
- behaviour of juveniles corn mice, *Calomys musculinus* at the beginning of the
 breeding period, in absence of adult males. Acta Oecologica 29:305-310.
- 393 STEINMANN, A.R., J.W. PRIOTTO AND J. POLOP. 2009. Territorial behaviour in
- 394 corn mice, *Calomys musculinus* (Muridae: Sigmodontinae), with regard to
- 395 mating system. Journal of Ethology 27:51-58.

396	SWIHART, R.K. AND N.S SLADE. 1984. Road crossing in Sigmodon hispidus and
397	Microtus ochrogaster. Journal of Mammalogy 65:357-360.
398	TUFFO, J., R. ANDERSEN AND J. LINNELL. 1996. Habitat use and ecological
399	correlates of home range size in small cervid: the roe deer. Journal of Animal
400	Ecology 65:715-724.
401	WOLFF, J.O. AND J.A. PETERSON. 1998. An offspring-defense hypothesis for
402	territoriality in female mammals. Ethology Ecology and Evolution 10:227-239.
403	YLETYINEM, S. AND K. NORRDAHL. 2008. Habitat use of field voles (Microtus
404	agrestis) in wide and narrow buffer zones. Agriculture, Ecosystems and
405	Environment 123:194-200.
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	Fig. 1. Distribution and schema of transects studied across agriculture ecosystem in Río
419	Cuarto Department (Córdoba Province, Argentina). 2009 Map Link/Tele Atlas
420	(www.google.com).

- 422 Fig. 2. Mean number of individuals (±SE) of *Calomys musculinus* by season and year in
 423 linear habitats.
- **Fig. 3.** Seasonal movement distances ($\overline{X} \pm SE$) of males and females of *Calomys*
- *musculinus* in linear habitats.
- 428 Fig. 4. Movement distances ($\overline{X} \pm SE$) of *Calomys musculinus* in wide and narrow
- 429 linear habitats.

431	Table 1	. Analysis fo	r the gener	ralized linear	mixed	model	(GLMM)	describing
-----	---------	---------------	-------------	----------------	-------	-------	--------	------------

432 movement distances of *Calomys musculinus*. The best model is indicated in bold

433 typeface

Variable	AICc	ΔAICc	N° parameters	Deviance
Season x sex	1327.994	0.000	7	1313.994
Season	1330.768	2.774	4	1322.768
Season + sex	1330.806	2.812	5	1320.806
Season + year	1332.230	4.236	5	1322.230
Abundance +	1332.622	4.628	4	1324.622
sex				
Abundance x	1332.962	4.968	5	1322.962
sex				
Abundance	1335.122	7.128	3	1329.122
Season x year	1335.608	7.614	7	1321.608
Sex	1337.746	9.752	3	1331.746
Year	1340.744	12.750	3	1334.744

436 **Table 2.** Coefficients (β) for the best model of GLMM analysis of movement distances 437 of Calomys musculinus. Standard errors (in parentheses) and the significance of the 438 coefficients are also shown; p< 0.05 shown in bold typeface. The effect of each term in the model is tested. P values tested the null hypothesis that $\beta = 0$. The Terms with 439 440 significant values less than 0.05 have some discernable effect. Since there is an intercept 441 term, the third level of season (spring) and the second of sex (male) are redundant. The 442 estimates for the first two levels contrast the effects of the first two seasons to the third 443 and the estimates for the females contrast their effects to males.

Factors	β (SE)	z value	P value
Intercept	3.443 (0.23)	0.148	0.000
Summer	-0.306 (0.36)	-0.846	0.398
Autumn	-2.028 (0.46)	-4.280	0.000
Female	-0.337 (0.37)	-0.979	0.328
Summer x female	-0.522 (0.52)	-0.966	0.334
Autumn x female	1.407 (0.74)	1.788	0.074

