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ABSTRACT: We have obtained three mixed-quantum/classical schemes to directly
calculate thermal rate constants through the evaluation of flux-flux correlation function.
These schemes are appropriate to treat three-atom reactions, but could be easily extended
to larger systems. One of the schemes uses normal mode coordinates, defined at the
transition state. The others use hyperspherical coordinates. The proposed algorithms were
applied to the H+H2 → H2+H reaction, and their accuracy was tested by comparison with
full-quantum results. In this article, we present the derivation of the three
mixed-quantum/classical schemes, describe the details of their implementation, and
discuss the quality of their results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111:
1773–1783, 2011
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1. Introduction

I n a recent article [1] we applied a mixed-
quantum/classical (Q/C) version of the flux–

flux correlation function method to directly cal-
culate thermal rate constants for a model sys-
tem. The model, previously introduced by McRae
et al. [2] consisted of an Eckart barrier resembling the
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collinear H+H2 → H2+H reaction, bilinearly cou-
pled to a harmonic oscillator. The frequency of the
oscillator and the coupling constant were varied over
a wide range of values, following the prescriptions
given in Ref. [2]. It was found that the approximated
rate constants closely match the exact ones, except
when the system forms long-lived complexes. This
finding suggests that mixed-Q/C computations of
the reactive flux could constitute a relatively simple
and efficient way to calculate k(T) of gas-phase reac-
tions that proceed without forming such complexes.
Among the advantages of the approach, we mention
its conceptual simplicity, its relatively low compu-
tational cost, and its ability to take into account
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tunnelling and recrossings without needing ad hoc
corrections. However, a significant difference exists
between applying the Q/C-approach to a model
instead of an actual reactive system. In the model, it
is usually known in advance which are the quantum
and the classical degrees of freedom. Moreover, the
coupling between them is explicitly given as a part of
the model. On the contrary, in the study of any real-
istic system, one has to decide which coordinates to
use and how to allocate them into the classical and
quantum subsystems. These choices implicitly deter-
mine the strength of the coupling between the parts
and, therefore, have a large influence on the accuracy
of the results.

The description of many mixed-Q/C treatments
of gas-phase reactions can be found in the lit-
erature [3–19], and important lessons about the
strengths and weaknesses of the approach can be
learnt from those works. However, to the best of our
knowledge, none of the previous studies used the
Q/C approach to estimate k(T) through the compu-
tation of the flux–flux correlation function. Instead,
the treatments were based on a time-dependent
implementation of the reactive scattering theory. In
such applications, the trajectories are initiated with
the reactants molecules far away from each other and
are propagated until the products leave the strong
interaction region. Because of this, the propaga-
tion times are significantly larger than those needed
to evaluate the flux-flux correlation function. Since
the error of mixed-Q/C trajectories increases by
increasing the propagation time, mixed-Q/C eval-
uations of the flux-flux correlation function could
provide a more accurate way of determining k(T)

than that provided by the reactive scattering formal-
ism. Besides, during computations of the flux-flux
correlation function, the trajectories sample a rela-
tively small region of the potential energy surface
(PES) around the transition state (TS). For this lim-
ited region, it is not so difficult to find coordinates
that produce a fairly good separation between the
subsystems. This is not the case of reactive scattering
computations because the trajectories must sample
large parts of the PES. On the other hand, mixed-Q/C
direct computations of k(T) have been described for
Hamiltonian models corresponding to condensed-
phase reactions [20, 21]. However, such processes are
qualitatively different from reactions in gas phase
because of the different role played by the “bath”
coordinates.

The degrees of freedom required for the descrip-
tion of a general polyatomic reaction can be classified
according to the type of motion they describe. In

turn, this classification can be used as a guide at the
time of defining a mixed-Q/C scheme suitable for
the reaction of interest. So, for example, some degrees
of freedom are related to the internal vibrations of the
nonreactive fragments. In most cases, it seems rea-
sonable to assume that an approximate treatment of
such modes will not have a large impact on the qual-
ity of the final results. On the contrary, the coordinate
or coordinates describing the bonds being broken
and formed clearly require an accurate treatment. A
third coordinate set is related to the degrees of free-
dom describing the rotational motion of reactants
and products. These modes become bending vibra-
tions at the TS that, in some cases, can reach relatively
high frequencies. For this reason, it is difficult to pre-
dict the effect of treating them classically. Finally,
some degrees of freedom are required to account for
the rotation of the system as a whole.

We have developed mixed-Q/C schemes to com-
pute the flux-flux correlation function of three-atom
reactions and applied them to the simplest reac-
tive system, H+H2 →H2+H. However, we should
note that the schemes presented here could easily
be extended to treat polyatomic systems. We have
analyzed, in particular, the quality of the mixed-
Q/C approach when the bending vibration of the
TS is treated classically. Two different coordinate
sets were tested: hyperspherical coordinates and TS
normal modes. We have considered that the atoms
move on a two-dimensional space, i.e., they move
on the {x, y} plane. This allowed us to perform full-
quantum (full-QM) computations easily and quickly,
even for J �= 0. The strategy is justified by a recent
study of Wang [16], which indicates that the accu-
racy of Q/C computations, performed on reduced-
dimensionality (RD) models, can be used to infer
the quality of the approach when applied to the
exact Hamiltonian from which the RD models were
extracted.

The effective Hamiltonians used in the mixed-
Q/C calculations were derived from the ones used in
the full-QM calculations, following the prescriptions
given by Gerber et al. [22] In some cases, addi-
tional approximations were introduced to obtain
simpler propagation schemes. We take care that
all the parameters, such as masses and conversion
constants, were exactly the same in both full-QM
and mixed-Q/C computations. Therefore, the dif-
ferences between them can only be attributed to the
limitations of the Q/C algorithms being tested, given
a truthful assessment of their ability to estimate k(T).

In the next section, we present the mixed-Q/C
schemes and describe the methodology used to carry
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out both full-QM and mixed-Q/C computations.
Then, in Section 3, we present the results. In particu-
lar, we compare the predictions of the different Q/C
schemes, between each other and with the full-QM
computations. On the basis of these comparisons, we
discuss the pros and cons of the Q/C algorithms.
Finally, in Section 4, we outline the conclusions of
this work.

2. Methodology

2.1. FULL-QM AND MIXED-QC
COMPUTATIONS OF THE REACTIVE FLUX

Miller et al. [23] demonstrated that the rate con-
stants for a gas-phase reaction can be accurately
calculated from

Qr(T)k(T) =
∫ ∞

0
Cff(t)dt, (1)

where Qr(T) is the reactants partition function per
unit volume and Cff(t) is the flux–flux correlation
function,

Cff(t) = Tr
[
F̂(β)eiĤt/�F̂e−iĤt/�

]
. (2)

Here F̂ = [Ĥ, h] is the flux operator, h is the Heav-
iside step function, β = (kT)−1, and F̂(β) is the
Boltzmannized flux operator

F̂(β) = e−βĤ/2F̂e−βĤ/2. (3)

By introducing the spectral decomposition of F̂(β)

into Eq. (2), a numerically convenient expression is
obtained to evaluate Cff(t) [20],

Cff(t) =
Nf∑
j=1

fj〈uj(t)|F̂|uj(t)〉. (4)

In this expression, fj and |uj〉 are the eigenvalues and
eigenfunctions of F̂(β), respectively, Nf is the number
of such eigenfunctions with non-negligible eigenval-
ues, and the |uj(t)〉 is the time-evolved eigenfunction
of F̂(β),

|uj(t)〉 = e−iĤt/�|uj〉. (5)

To perform the mixed-Q/C computations, the
Hamiltonian is written as [1, 20]

H = Ĥs + H#
b + Vcoup(s, r). (6)

In this equation, Ĥs is the quantum Hamiltonian of
the “system,” which only groups a selected set of
coordinates, s, and their conjugated momenta. Ide-
ally, s includes all the modes directly involved in the
reactive event. On the other hand, H#

b is the classi-
cal Hamiltonian of the “bath,” which depends on
the rest of the coordinates, r, and their conjugated
momenta. The superscript in H#

b indicates that the
classical coordinates are defined by setting the quan-
tum subsystem at the TS. Finally, the last term of
Eq. (6) is a coupling potential that renders the full
Hamiltonian nonseparable.

The mixed-Q/C estimation to the flux–flux corre-
lation function, CQC

ff , is evaluated as [20],

CQC
ff = Q#

b
1

Ntraj

Ntraj∑
n=1

Nf∑
j=1

fs,j〈un
s,j(t)|F̂s|un

s,j(t)〉s. (7)

In this expression Ntraj is the number of trajectories,
Q#

b is the partition function for the classical degrees
of freedom at the transition state, F̂s = [Ĥs, h] is the
flux operator for the quantum subsystem, whereas
fs,j and |us,j〉 are the eigenvalues and eigenfunctions
of F̂s(β), respectively. The trajectories of Eq. (7) are
initiated by selecting the classical coordinates and
momenta at random from their classical distribu-
tion probabilities, whereas the quantum subsystem
is set at a given eigenstate of F̂s(β). Then, the trajecto-
ries are integrated using a mixed-Q/C propagation
scheme. In such a scheme, the evolution of the |us,j〉 is
obtained from the application of the time-dependent
Schrödinger equation corresponding to the effective
Hamiltonian,

Ĥeff
s = Ĥs + Vcoup(s, r(t)). (8)

The evolution of the classical variables is calcu-
lated from the canonical equations with the effective
classical Hamiltonian,

Heff
b = H#

b + 〈us,j(t)|Vcoup|us,j(t)〉s. (9)

The symbol 〈. . .〉s in the last equation denotes
integration over the whole range of the quantum
variables.

2.2. MIXED-QUANTUM/CLASSICAL SCHEMES

The Hamiltonian of a reactive system can be
written in several equivalent ways by using differ-
ent coordinates. Clearly, the application of any of
these Hamiltonians in full-QM computations ren-
ders exactly the same results, assuming that enough
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computational resources are available so as to get
converged values in every case. This does not
hold true for mixed-Q/C computations, because the
application of different coordinates allows for a vari-
ety of ways of partitioning the whole system into the
quantum and classical subsystems [20]. In the fol-
lowing, we derive the effective Hamiltonians to be
used in mixed-Q/C computations of the reactive flux
for three-atom reactions. We will use both transition-
state normal modes and hyperspherical coordinates
to evaluate which of the two options is the most
convenient.

2.2.1. Transition State Normal Modes

Computations using normal-mode coordinates
were only performed for zero total angular momen-
tum. The corresponding Hamiltonian is

ĤNM
J=0 = 1

2

(
p̂2

1 + p̂2
2 + p̂2

3

) + V(q1, q2, q3). (10)

In this equation, q1, q2, and q3 are the mass-weighted
normal-mode coordinates at the transition state,
whereas p̂1, p̂2, and p̂3 are their conjugate momenta.
Coordinate q1 stands for the asymmetric stretching
vibration, it has an imaginary frequency and corre-
sponds to the reaction coordinate at the TS. On the
other hand, coordinate q2 stands for the symmetric
stretching vibration, which modulates the distance
between the donor and the acceptor atoms. Finally,
coordinate q3 corresponds to a bending vibration
that correlates with the rotational motion of the H2

molecule, at the asymptotic regions of the surface.
After deciding the coordinate system to be used,

two important decisions have to be made to define
a mixed-Q/C scheme. First, one has to allocate the
coordinates into the quantum and classical subsys-
tems. In this case, we considered that the quantum
subsystem was composed by the stretching coordi-
nates q1 and q2, whereas q3 was set at the classical
subsystem. Second, one has to decide the potentials
appearing in the quantum and classical Hamilto-
nians. This decision is crucial, because it implicitly
defines the coupling potential. The smaller the cou-
pling in the region sampled by the eigenfunctions of
F̂s(β), the better the approximation. With this idea
in mind, we defined the potential for the quantum
system as

Vs(q1, q2) = V(q1, q2, q3 = 0),

while the potential of the classical bath was as
follows,

Vb(q3) = V(q1 = 0, q2 = 0, q3).

Accordingly, the coupling potential was given as,

Vcoup(q1, q2, q3) = V(q1, q2, q3) − (
Vs(q1, q2) + Vb(q3)

)
.

(11)

We found that this definition produced much bet-
ter results than the one obtained by using harmonic
potentials for each subsystem. This is because the
harmonic approximation is good only within a very
small region around the TS, whereas the eigenfunc-
tions of F̂(β) spread over a significantly wider region.
Finally, following procedure Gerber et al. [22], we
obtained the effective quantum and classical Hamil-
tonians to be used in mixed-Q/C computations,

Ĥeff
s = −�

2

2

(
∂2

∂q2
1

+ ∂2

∂q2
2

)
+ Vs(q1, q2)

+ Vcoup(q1, q2, q3(t)),

Heff
b = p2

3

2
+ Vb(q3) + 〈Vcoup(q1, q2, q3)〉q1,q2 .

2.2.2. Hyperspherical Coordinates

Using hyperspherical coordinates, the Hamilton-
ian for the planar H+H2 →H2+H reaction can be
written as,

Ĥ = ĤHS
J=0 + K̂rot, (12)

with,

ĤHS
J=0 = − �

2

2µ

(
∂2

∂ρ2
+ 1

ρ2

∂2

∂δ2

)
− �

2

2Iα(ρ, δ)
∂2

∂α2

− �
2

8

(
1

Iα(ρ, δ)
+ 1

Iβ(ρ)

)
+ V(ρ, δ, α). (13)

In this expression, ρ and δ are the hyperradius and
hyperangle, respectively, defined in terms of the
length of the Jacobi vectors r and R (see Fig. 1),

ρ = (r2 + R2)1/2,
δ = arctan(r/R),

while α is the angle between these vectors. The
reduced mass µ is given by µ = m1m2m3/(m1 + m2 +
m3) where mi is the mass of the i-atom. The moment
of inertia Iα(ρ, δ), associated with the hindered rota-
tion of vector R around the center of mass of H2, is
given by

Iα(ρ, δ) = µρ2 sin2 δ cos2 δ, (14)
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FIGURE 1. Jacobi vectors and bending angle used to
derive the Hamiltonian of Eq. (12).

while the moment of inertia Iβ(ρ), associated with
the rotation of the whole system, takes the form

Iβ(ρ) = µρ2. (15)

Finally, the operator K̂rot that accounts for the
kinetic energy of the rotation is

K̂rot = Ĵ
2

2Iβ(ρ)
. (16)

As the total angular momentum is a good quan-
tum number, the operator Ĵ can be replaced by its
eigenvalues. Then, the term corresponding to K̂rot

can be added to V(ρ, δ, α) to define an effective
potential, VJ(ρ, δ, α), for each total angular momen-
tum. Moreover, we also included in VJ(ρ, δ, α) the
terms −�

2/8Iβ(ρ) and −�
2/8Iα(ρ, δ) that appear in

Eq. (13) because of the scaling of the wave function.
This scaling only involves the variables ρ and δ, and
renders the following volume element,

dτ = dρdδdα. (17)

In the same spirit of the treatment given in normal
modes, we defined the mixed-quantum/classical
scheme by allocating the hyperspherical coordi-
nates, which describe the stretching vibrations at the
TS, into the quantum subsystem. The angle α, which

accounts for the bending vibration, was put at the
classical subsystem. The potential for the quantum
Hamiltonian was defined as

VJ
s(ρ, δ) = VJ(ρ, δ, α = α#),

whereas for the classical Hamiltonian we set

VJ
b(α) = VJ(ρ = ρ#, δ = δ#, α).

With these definitions, the coupling potential is
given by

Vcoup(ρ, δ, α) = VJ(ρ, δ, α) − (
VJ

s(ρ, δ) + VJ
b(α)

)
.

The application of the procedure of Gerber et al.
to the Hamiltonian of Eq. (13), with the allocation
of coordinates already described, produces equa-
tions of motion which look slightly different than
the standard ones. This is because the kinetic energy
term in α also depends on ρ and δ. Accordingly,
Eq. (13) cannot be written in the form required by
Eq. (6). We show in the Appendix the derivation of
the effective Hamiltonians obtained by applying the
procedure of Gerber et al. to the full-QM Hamilton-
ian of Eq. (13). However, in the rest of the article, we
present and discuss two simpler approximations in
which the equations of motion maintain the standard
form. This simplification is achieved by replacing the
factor 1/Iα(ρ, δ) appearing in Eq. (13) by a constant
value. In the “mean field” approximation (HSMF),
we average 1/Iα(ρ, δ) over the wave function corre-
sponding to the initial quantum state. This value is
then used throughout the whole propagation. In the
second and even simpler approximation (HSTS), we
replace 1/Iα(ρ, δ) by its value at the transition state,
1/Iα(ρ#, δ#). With these considerations, the quantum
and classical effective Hamiltonians, to be used in
the mixed-Q/C propagation, read

Ĥeff
s = − �

2

2µ

(
∂2

∂ρ2
+ 1

ρ2

∂2

∂δ2

)
+ VJ

s(ρ, δ)

+ Vcoup(ρ, δ, α(t)),

Ĥeff
b = p2

α

2Iα
+ VJ

b(α) + 〈Vcoup(ρ, δ, α)〉ρ,δ ,

where Iα is the constant value adopted by 1/Iα(ρ, δ)
according to the HSMF or HSTS approximations.

3. Numerical Details

In full-QM computations, the eigenfunctions |uj〉
were obtained by diagonalizing the representation
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of F̂(β) in the basis set of eigenfunctions of Ĥ. This
allows for a direct application of the time-evolution
operator to transform |uj〉 into |uj(t)〉. The expansion
of |uj〉 only included eigenfunctions of Ĥ with eigen-
values smaller than the parameter Emax, which was
set high enough to produce converged results. In
turn, the eigenfunctions of Ĥ were determined by
diagonalizing the representation of this operator in a
particle-in-a-box DVR basis set [24]. We were careful
at the time of establishing the limits of the boxes, so
that the values of |uj(t)〉 never had significant ampli-
tude at the edges. The number of DVR points for
each variable was increased until a further increase
had no effect on the final results.

The procedure used to obtain the eigenfunctions
of F̂s(β) was similar to the one described in the pre-
vious paragraph for F̂(β). The only difference being
that, in this case, the computation involves only
two degrees of freedom. The initial values for the
classical coordinate and momenta were selected at
random, according to their classical Boltzmann dis-
tributions. Finally, the trajectories were propagated
using an adaptation of the PICKABACK algorithm
of Bornemann et al. [25],

q(t + �t/2) = q(t) + �t
2

p(t)
µ

,

|uj(t + �t/2)〉 = e−iĤs�t/2|uj(t)〉,
p(t + �t) = p(t) − �t

∂Vb

∂q

− �t〈uj(t + �t/2)|
(

∂Vcoup

∂q

)
|uj(t + �t/2)〉,

|uj(t + �t)〉 = e−iĤs�t/2eiVcoup�t|uj(t + �t/2)〉,
q(t + �t) = q(t + �t/2) + �t

2
p(t + �t)

µ
.

In the above expressions, q and p refer to the classical
coordinate and momentum, respectively, while the
symbol 〈. . .〉 indicates integration over the quantum
variables. The calculations presented in this article
were performed with the potential energy surface of
Boothroyd et al. [26, 27].

4. Results and Discussion

The properties of the full-QM flux–flux correla-
tion functions were described in the early articles
of Park and Light [28] and Miller et al. [23]. More
recently, Huarte-Larrañaga and Manthe [29] pre-
sented a very detailed and insightful discussion

FIGURE 2. Time integrals of CQC
ff (t ) for 100 trajectories

determined using normal mode coordinates. (a) T = 200
K; (b) T = 1, 000 K.

about their behaviour, as well as the characteristics
of the eigenfunctions of F̂(β). Most of these descrip-
tions also apply to mixed-Q/C computations of the
reactive flux, with just a few differences that derive
from the action of the environment onto the quantum
subsystem. In Figure 2, we show the time integral of
mixed-Q/C flux–flux correlation functions for sets of
100 trajectories run at 200 K and 1,000 K.As explained
in section 2.1, the mixed-Q/C estimation of k(T)

is obtained by taking the average over trajectories
similar to the ones shown in Figure 2.

It can be noted that all the integrals reach their
asymptotic value rapidly. This is typical of reactions
in gas phase, which do not form long-lived com-
plexes. Trajectories run at 1,000 K converge faster
than the ones run at 200 K. This is because the higher
the temperature the larger the flux, so that the initial
wave packets leave the TS region more quickly. One
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can also note that the dispersion between the plateau
value reached by different trajectories is smaller at
1,000 K than at 200 K. Because the flux correlation
function goes to zero more rapidly at higher temper-
atures, the quantum and classical subsystems have
less time to interact. Accordingly, the behaviour of
the quantum subsystem is hardly perturbed by the
state of the classical one. In situations similar to this,
one could resort to an even simpler but more crude
approximation, in which a single trajectory for the
quantum subsystem is run uncoupled from the clas-
sical bath. Then, the estimation of Cff(t) would be
evaluated by multiplying the result of that single
trajectory by the partition function of the classical
degrees of freedom. Such procedure could be seen
as a kind of reduced dimensionality approach for
the computation of the reactive flux.

For integration times larger than the ones shown
in Figure 2, an unphysical behaviour in CQC

ff (t) is
observed. Usually, the flux correlation function starts
to increase and so does its time integral. This kind of
misbehaviour has already been described by Park
and Light [28] and Miller et al. [23] in full-QM
flux–flux correlation functions. The authors attrib-
uted it to the use of a finite basis set: the time
evolution of an unbound system cannot be accu-
rately represented by a finite basis set at all times,
but only within a time interval τ . The feasibility of
the computation requires that the flux correlation
function goes to zero for t < τ , which is the case
for the reaction studied in this article. It is inter-
esting to note that, for basis sets of similar sizes,
the period τ during which the calculation behaves
properly is larger when using hyperspherical coordi-
nates than when using normal modes. Also, there are
differences between full-QM and mixed-Q/C com-
putations, but in this case, the comparison cannot
be done for basis sets of similar sizes. The values of
Qr(T)k(T), calculated from individual Q/C trajecto-
ries, are more difficult to converge than the full-QM
ones. Many of them show small oscillations at times
for which the full-QM computations are already con-
verged. However, these fluctuations are washed out
when taking the average over trajectories, giving
mixed-Q/C results as stable as the quantum ones.

Rate constants for J = 0 determined with the dif-
ferent Q/C approximations are plotted in Figure 3,
along with the full-QM values. For completeness,
the data are also presented in Table I in which we
included the statistical uncertainties of the mixed-
Q/C results. These uncertainties were not plotted
in Figure 3, because they are almost invisible to
the naked eye. It can be seen that the agreement

FIGURE 3. Converged values of Qr (T )kJ=0(T ) as a
function of T . Full-QM: solid line; Q/C-NM: dashed line;
Q/C-HSMF: dot–dash–dot line; Q/C-HSTS:
dot–dot–dash line.

between all the Q/C computations and the full-QM
ones is very good above 600 K, whereas its quality
starts to deteriorate below that point. At the highest
temperature, the ratio between full-QM and mixed-
Q/C results is 1.08 for computations performed with
normal mode (NM) coordinates, 1.05 for computa-
tions that use the HSMF approximation and 1.22 for
computations that use the HSTS approach. At the
lowest temperature, the ratio between full-QM and
mixed-Q/C results is 2.81 (NM), 3.65 (HSTS), and
0.54 (HSMF). The fact that the agreement between
mixed-Q/C results and the full-QM ones is worst
at the lowest temperatures revels the limitations of
the mixed-Q/C schemes to accurately account for
tunneling in such conditions.

It is worth noting that, while the NM and HSTS
results always underestimate the rate constants, the
HSMFs overestimate them for T < 500 K and
underestimate them above that temperature. For this
reason, the curve corresponding to the HSMF results
crosses the full-QM one at some point between 200
K and 1,000 K. For the calculations presented in this
article, the best agreement is found at T = 600 K
where the error is less than 2%. Besides, the HSMF
computations present the closest agreement with the
full-QM ones over the whole temperature range. It
is difficult to predict if these characteristics are gen-
eral or just apply to the reaction under study. Clearly,
the analysis of several reactions involving different
mass combinations, as well as different topologies
in their PES are needed to clarify this point. For the
time being, we can only say that the HSMF scheme
appears as the most promising one among those
analyzed in this work.
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TABLE I
Converged values of Qr (T )k (T )/ps for J=0.

T (K) Full-QM Q/C-NM Q/C-HSTS Q/C-HSMF

200 8.19e −14 2.92(0.05)e − 14 2.25(0.02)e − 14 1.51(0.02)e − 13
250 3.45e −11 1.74(0.03)e − 11 1.37(0.02)e − 11 5.26(0.03)e − 11
300 2.43e −09 1.42(0.03)e − 09 1.23(0.02)e − 09 3.30(0.03)e − 09
400 6.20e −07 4.37(0.03)e − 07 3.86(0.04)e − 07 6.70(0.05)e − 07
500 1.98e −05 1.52(0.01)e − 05 1.36(0.01)e − 05 2.05(0.02)e − 05
600 2.16e −04 1.71(0.02)e − 04 1.56(0.02)e − 04 2.12(0.01)e − 04
700 1.24e −03 1.03(0.03)e − 03 9.35(0.09)e − 04 1.19(0.01)e − 03
800 4.78e −03 4.14(0.02)e − 03 3.70(0.03)e − 03 4.52(0.03)e − 03
900 1.41e −02 1.25(0.01)e − 02 1.11(0.02)e − 02 1.32(0.02)e − 02

1000 3.33e −02 3.07(0.01)e − 02 2.73(0.02)e − 02 3.16(0.02)e − 02

The statistical uncertainty of the Q/C results is given within parenthesis.

Full-QM and mixed-Q/C HSMF rate constants,
calculated by summing up the contribution of the
different values of J, are plotted in Figure 4. Because
we considered a planar system, these rates were
calculated as

k(T) = kJ=0(T) + 2
N∑

J=1

kJ(T). (18)

The figure illustrates that, in accordance with the
results of J = 0 computations, the agreement
between full-QM and mixed-Q/C results is pretty
good. The Q/C rates overestimate the full-QM ones
at low temperatures and slightly underestimate
them at high temperatures. Finally, we should men-
tion that total rate constants were also calculated
from J = 0 mixed-Q/C computations invoking the
J- shifting approximation [30],

k(T) ∼= Q#
rot(T)kJ=0(T), (19)

where Q#
rot(T) is the rotational partition function cal-

culated at the TS. We found that the mixed-Q/C
results obtained from Eq. (19) are very close to those
calculated with Eq. (18). At T = 300, 600, and 1000
K, the results of the J-shifting approximation under-
estimate those obtained with Eq. (18) by 4%, 5%,
and 6%, respectively. Thus, the error introduced by
the use of Eq. (19) is of the same order (or even
lower) than the one introduced by the mixed-Q/C
approach. Assuming that these observations will
also hold for computations in three dimensions, one
is lead to conclude that mixed-Q/C evaluations of
k(T) could be done with the much cheaper J-shifting
approximation without a significant loss of accuracy.

The mixed-Q/C computations described so far
have two degrees of freedom in the quantum sub-
system and just one in the classical subsystem. We
also tested a model with a single quantum degree
of freedom. Basically, we worked with the Hamil-
tonian in normal modes for J = 0 and considered
quantally the mode associated with the imaginary
frequency. With such a model, we were unable to get
converged results because the flux–flux correlation
function presents large oscillations that do not go to
zero within a reasonable time. This failure can be
explained by noting that, in a region nearby the TS,
slices of the PES along the quantum coordinate are
symmetrical double wells. So, the situation is rem-
iniscent to the one found in condensed-phase reac-
tions. In such conditions, k(T) can only be defined

FIGURE 4. Converged values of Qr (T )k (T ) as a
function of T . Full-QM: solid line; Q/C-HSMF:white
triangles.
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if the interaction with the bath is strong enough to
break the symmetry of the potential and keep the
wave packet trapped in one of the wells for long
enough [31]. For the title reaction, this condition is
not fulfilled and the flux correlation function oscil-
lates endlessly. Probably, other definitions of a single
quantum coordinate could give better mixed-Q/C
schemes. However, instead of pursuing the search of
such coordinate, we decided to follow an alternative
way that consisted on defining quantum subsystems
with two degrees of freedom. These two degrees of
freedom ({q1, q2} or {ρ, δ}) describe, altogether, the
bonds being broken and formed, and guarantee that
the motion of the wave packet is unbound so that
the flux–flux correlation function converges within
a reasonable propagation time. Also, we believe that
the use of two quantum degrees of freedom, instead
of one, is important to obtain a better description
of tunnelling. This is because the symmetric vibra-
tion at the TS modulates the distance between the
donor and the acceptor of the atom being transferred,
and this distance has a large influence on the tunnel
probability.

5. Concluding Remarks

We have presented mixed-Q/C schemes to esti-
mate the flux correlation function of three-atom
reactions. The accuracy of these schemes was tested
by comparing their results against those obtained in
full-quantum computations. The system under anal-
ysis was a planar version of the H+H2 →H2+H
reaction. We found that, for temperatures above
500 K, all the algorithms produce results in close
agreement with the full-quantum ones. Below that
temperature, the agreement starts to deteriorate. The
best results were obtained with the HSMF scheme,
which gives a quantum treatment to the hyper-
spherical coordinates {ρ, δ} and treats classically the
angle that describes the bending motion at the TS.
Another approximation invoked by this scheme is
that it replaces the factor 1/Iα(ρ, δ), appearing in
Eq. (13), by the average of this function over the
lowest eigenfunction of F̂s(β).

Mixed-Q/C schemes such as the ones analyzed
in this article present several characteristics that are
appealing in any approximate method aimed to cal-
culate k(T). These are their conceptual simplicity, low
computational cost, and ability to take into account
tunnelling and recrossings without needing ad hoc
corrections. Because of these characteristics and of
the good results determined so far, we believe these

are very promising approaches. However, we should
note that further tests still need to be done on more
challenging systems, in order to thoroughly evaluate
their capabilities. In particular, it should be impor-
tant to evaluate the quality of mixed-Q/C schemes
in reactions with asymmetric potential energy sur-
faces. Previous implementations, based on reactive
scattering theory, found difficulties in those cases
[13]. It would also be valuable to analyze the per-
formance of the approach when treating polyatomic
reactions that involve fragments with several inter-
nal degrees of freedom. To this end, reactions of the
type X+CH4 →XH+CH3 with X=H, O(3P) are obvi-
ous candidates because of the existence of accurate
full-quantum results [32], which could be used as
benchmarks. In that regard, we should note that the
mixed-Q/C schemes presented in this article could
be easily extended to treat larger systems. This also
constitutes a valuable characteristic of the proposed
approach.

Appendix

To obtain the equations of motion corresponding
to the Hamiltonian of Eq. (12), we followed the pro-
cedure described by Gerber et al. [22]. With that aim,
it is convenient to rewrite the Hamiltonian as,

Ĥ = K̂s(ρ, δ) + f (ρ, δ)K̂b(α) + VJ(ρ, δ, α), (20)

where the kinetic energy operator K̂s acts on vari-
ables ρ and δ, and K̂b acts on variable α. However,
because of the presence of the function f (ρ, δ) =
Iα(ρ, δ)−1, the second term depends parametrically
on ρ and δ. For this Hamiltonian, we look for solu-
tions of the time-dependent Schrödinger equation in
the form of a Hartree product,

ψ(ρ, δ, t) = φs(ρ, δ, t)φb(α, t), (21)

or in a more simplified way |ψ〉 = |φs〉|φb〉. By invok-
ing the Dirac–Frenkel–McLachlan variational prin-
ciple [33], this trial function leads to the following
equations of motion

(〈φ′
s | f | φ′

s〉K̂b + 〈φ′
s | VJ | φ′

s〉
) | φ′

b〉 = i�
∂ | φ′

b〉
∂t

,

(K̂s + 〈φ′
b | K̂b | φ′

b〉f + 〈φ′
b | VJ | φ′

b〉) | φ′
s〉 = i�

∂ | φ′
s〉

∂t

where |φ′
s〉 and |φ′

b〉 are related to |φs〉 and |φb〉 by a
phase factor of no importance |φ′

s〉 = exp[iσs(t)]|φs〉;
|φ′

b〉 = exp[iσb(t)]|φb〉 [22].
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Then, we consider that the wave function for the
bath variable has the form

φ′
b = a(α, t) exp

(
iS(α, t)

�

)
, (22)

where |a(α, t)|2 is an approximate Dirac δ function
at position α(t). Introducing this function into the
equations of motion presented above and taking the
classical limit (� → 0), we arrive at the following set
of equations,

1
2

〈
φ′

s | f | φ′
s

〉 ( ∂S
∂α

)2

+ 〈
φ′

s | VJ | φ′
s

〉 = −∂S
∂t

,(
K̂s + 1

2

(
∂S
∂α

)2

f + VJ(α(t))

)
| φ′

s〉 = i�
∂ | φ′

s〉
∂t

.

The first of these expressions is a Hamilton–Jacobi
equation for the generating function S(α, t), whose
associated momentum is

pα = ∂S
∂α

. (23)

It leads to the following equations of motion for the
classical variable α

ṗα = −∂Heff
b

∂α
,

α̇ = ∂Heff
b

∂pα

with,

Heff
b = 1

2

〈
φ′

s | f | φ′
s

〉
p2

α + 〈
φ′

s | VJ | φ′
s

〉
. (24)

On the other hand, the propagation equation for the
quantum subsystem can be written as

Ĥeff
s | φ′

s〉 = i�
∂ | φ′

s〉
∂t

, (25)

with

Ĥeff
s = K̂s + 1

2
p2

α(t)f + VJ(α(t)). (26)

The effective classical Hamiltonian of Eq. (24) differs
from the one corresponding to standard mixed-Q/C
schemes by the factor 〈φ′

s | f | φ′
s〉, which multi-

plies to the classical momentum. This factor depends
on time because φ′

s is a time dependent function.
Accordingly, it has to be updated at every step of

the numerical propagation. The effective quantum
Hamiltonian of Eq. (26) also differs from the one
obtained in standard mixed-Q/C schemes. In this
case, the difference appears because of the presence
of the term 1

2 p2
α(t)f , which is absent in the standard

scheme. This term plays the role of a time-dependent
potential and can be added to VJ at the moment of
performing the numerical propagation.

Trajectories run with the effective Hamiltonians
of Eqs. (24) and (26) take a little longer than the
ones computed with the HSMF approach. Besides,
the conservation of energy is not as good as in the
standard scheme. This could be due to the fact that
the PICKABACK algorithm, used to propagate the
mixed-Q/C equations of motion, has been designed
to optimize the energy conservation when the prop-
agation equations have the standard form. We also
noted that the statistical uncertainty of the results
is somewhat larger when we used the equations
of motion derived in this appendix. Nevertheless,
the averaged values determined by the two schemes
agree with each other within their statistical uncer-
tainties. Thus, there seems to be no advantages
in using the more complex propagation scheme
derived here. Accordingly, we consider advisable
the use of schemes such as HSMF that conserve the
form of the more familiar and well-tested standard
equations of motion.
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