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Summary: Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present sim-
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ilar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that
support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum
toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice
therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment.
In this article, we present and compare the results of neural network and support vector machine-based methods that
can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained
vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD,
or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD)
voices with the methods proposed here. The results overcome the best classification rates between normal and patho-
logical voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing
between MTD and SD.
Key Words: Spasmodic dysphonia–Muscle tension dysphonia–Neural networks–Support vector machines.
INTRODUCTION

The quality of life of patients with voice disorders is seriously
affected as a direct consequence of their pathologies, causing
psychological and emotional problems.1 Two pathologies with
consequences on the communication-related quality of life of
patients are spasmodic dysphonia (SD) and muscle tension
dysphonia (MTD). SD is a larynx focal dystonia. A dystonia is
a disorder of the central nervous system, in which there is an
increased contraction of the muscles.2,3 There are several types
of SDs. The most common SD is called adductor SD (AdSD),
and it occurs when the muscles that bring the vocal folds
together contract too strongly. This disorder is characterized
by a very strained or strangled voice quality, with occasional
voice stoppages, or breaks, when the air cannot escape. These
breaks are more evident during speech associated with voiced
sounds and when initiating sustained phonation. Abductor SD
(AbSD) is less common. In this disorder, the spasms occur in
the muscles that open the vocal folds. For this reason, it is diffi-
cult to bring the vocal folds together to produce voiced sounds.

SD is a rare disorder. For example, it has an incidence of one
case per 100 000 in Munich,4,5 and it is estimated to affect
30 000–50 000 people in North America.6 The true incidence
may be greater, because the diagnosis is often missed.4 Because
ted for publication October 8, 2008.
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of its rarity, many physicians are not familiar with this voice pa-
thology. As a result, individuals with SD often are told that their
voice disorder is because of nervousness, laryngitis, reflux, etc.
The onset of voice dystonia occurs slowly over a period of sev-
eral months to a year, and two-thirds of the affected patients are
females.7 SD, a true dystonia, and laryngeal tremor are often
confused.8 Severe cases of vocal tremor may cause speech
breaks similar to those of AdSD. Patients with SD may present
vocal tremor or MTD associated with it.9,10 Voice can be nor-
mal during laughing, coughing, crying, or other involuntary vo-
cal use or singing.

Patients with MTD exhibit excessive muscular tension while
speaking. This voice dysfunction is not associated with abnor-
malities of the laryngeal structures. When the muscles associ-
ated with speech production lose some of their coordination
or contract inappropriately, they can produce a hoarse voice,
neck pain, neck fatigue, and even complete loss of the voice.
Diagnosis of MTD can be difficult, because the vocal folds
actually have a relatively normal appearance at rest according
to Verdolini et al.11 The classification MTD represents a persis-
tent, unexplained dysphonia that is behaviorally modifiable.11 It
is only during speech tasks that the abnormal contraction of the
muscles is seen. The key treatment for MTD is voice ther-
apy.2,3,11 However, MTD can mimic the strained, effortful voice
characteristics of AdSD, leading to diagnostic confusion and
possibly inappropriate management.12

Diagnosis of SD is generally based on auditory-perceptual
characteristics. It is considered on the basis of history and
physical examination. Workup may include magnetic resonance
imaging (MRI) of the brain, laryngeal electromyography
(EMG), laboratory test necessary for dystonia patients, neuro-
logical assessment, voice assessment using protocol that
includes continuous and stroboscopic light with flexible and
rigid scopes with different repetitive phonatory tasks, and
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objective and perceptual voice analysis. The differential diagno-
sis of AdSD and MTD can often be difficult because of the ab-
sence of a well-established set of diagnostic criteria to
distinguish the two disorders.13

Different maneuvers in the clinical practice with voiced and
voiceless tasks may help to distinguish AbSD than ADSD.
Patients suffering from AbSD have problems with voiceless
onset with sounds, such as /f/, /sh/.ch. /h/, /k/, /p/, /s/, /t/, by
counting from 60 to 69, and symptoms also appear when sing-
ing. The symptoms of AdSD are more distinguishable during
voiced reading. Symptoms are more prominent when counting
from 80 to 89 and less when counting from 60 to 69, and they
improved when singing or whispering. AdSD is characterized
by intermittent voice offsets in the middle of voiced sounds,
and the essential symptom is voice breaks. Furthermore,
some patients had pitch or phonatory breaks during voiced
sounds, uncontrolled rises in their fundamental frequency, or
breathy voice quality. SD is clearly not a functional condition;
however, as most of the other voice disorders, stress can make
SD worse, and voice therapy can make it better. The underly-
ing condition may easily be confused with MTD. It must be
emphasized that SD is actually organic (neurological). Tradi-
tional objective voice measures for patients with SD may not
always be helpful in the differential diagnosis because of the
wide variation of findings across subjects. Acoustical analysis
may help to diagnose an SD. Fundamental frequency from
conversational sample may be useful in identifying each pa-
tient’s compensatory strategy for managing his or her vocal
spasms with extreme muscle tension.2,14 Rees et al. suggested
that visual inspections of voice spectrograms can help to dis-
tinguish AdSD from MTD.15 The auditory-perceptual similar-
ity of AdSD and MTD can lead to misdiagnosis, and
ultimately inappropriate/unnecessary medical, behavioral, or
surgical intervention. An additional problem is related to the
absence of a set of established and validated diagnostic crite-
ria to distinguish between AdSD and MTD in clinical prac-
tice, making difficult the differential diagnosis, even among
experienced clinicians.12,16,17

Patients with AdSD may attempt to prevent their symptoms
by increasing the tension in their laryngeal muscles in an effort
to compensate the symptoms. The consequence is the appear-
ance of additional physical disturbances similar to MTD along
with AdSD. The overriding symptoms of MTD can escalate
over time such that the underlying symptoms of AdSD are dif-
ficult to discern.2,3 One of the most used treatments for AdSD is
the injection of botulinum toxin A (Botox) into the muscles
around the larynx. These injections serve to paralyze the mus-
cles affected by the abnormal contractions, providing some re-
lief from symptoms.3 Furthermore, different surgeries could be
possible options for this kind of dystonia.7

Acoustical measures of vocal function are routinely used in
the assessments of pathological voices. They are very appeal-
ing because of their noninvasive nature. The extraction of such
measures from sustained vowel samples is common because
of its simpler acoustic structure. In recent years, the use of
these measures, in combination with pattern recognition tech-
niques, has motivated the emergence of several works con-
cerning automatic diagnosis.18–24 These works addressed the
problem of normal versus pathological discrimination. The
best-reported result reached a 96.5% level of correct classifi-
cations.25

As can be observed, most of the attempts of automatic clas-
sification in this area have been focused on the separation
between normal and pathological voices. To our knowledge,
there are no previous results concerning automatic discrimina-
tion between AdSD and MTD. At present, their differentiation
depends solely on the clinical diagnosis skills of highly spe-
cialized voice therapists. Therefore, an interesting challenge
is to make a contribution to the development of an automatic
diagnosis system that, using well-known acoustic parameters
of voice, could provide a support for the differential diagnosis
between these two pathologies. This is the primary purpose of
this study. With this in mind, in the present study, we attempt
to separate normal voices from pathological voices and, addi-
tionally, obtain a classification as AdSD or MTD for the path-
ological cases.

It is important to take into account that we have used only one
speech sample of each patient. For each of them, we extracted
eight well-known acoustic parameters and created an eight-
element array. These arrays have been classified into three
categories: normal, AdSD, and MTD, using two strategies,
one based on neural networks (NNs) and the other one based
on support vector machines (SVM). The inclusion of nonlinear
techniques allowed us to achieve our goal.
MATERIALS AND METHODS

The analyzed voices have been obtained from 89 speakers
divided into 36 dysphonic (15 patients with MTD and 21 with
AdSD) and 53 normal speakers. The speech signals correspond
to a sustained vowel /a/. It was not possible to differentiate be-
tween MTD and AdSD based only on auditory perception. Sub-
jects have been instructed to sustain the vowel /a/ for at least 3
seconds at a comfortable pitch and loudness using a professional
digital audiotape recording and a professional microphone in an
Industrial Acoustics Company (IAC) sound suite. To confirm
our diagnosis of MTD or SD, we used an examination workout,
including basis of history and physical examination; MRI of the
brain; laryngeal EMG; laboratory test; neurological evaluation;
voice assessment using videostroboscopy with flexible and
rigid scopes and the routine phonatory task, adding voiced
and unvoiced words or sentences; and a trial of voice therapy
in each case. A patient diagnosed with MTD voice improved
to a normal level with a trial of a short voice therapy using a va-
riety of behavioral approaches. However, voice therapy is as-
sumed to be ineffective for AdSD, and a poor response to
voice therapy is often cited as corroborating evidence for the
diagnosis. Botox injections alleviate spasmodic overclosure.
All patients received a short term of voice treatment to confirm
diagnosis. The response of patients with true AdSD to voice
treatment was poor, and Botox injections improved their voices.
Patients with successful voice treatment results were confirmed
as having MTD.
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Selected acoustic measures have been extracted from the sus-
tained vowels, including short-term perturbations of fundamen-
tal frequency and intensity (termed jitter and shimmer,
respectively), and glottal noise measures. Currently, a consensus
does not exist on the utility of the independent use of these mea-
sures for discriminating between normal and pathological
voices.23 However, here we propose to build an eight-dimensional
vector associated with each patient and to use the nonlinear
properties of NN and SVM for classification.26–28 We will
show that the inclusion of these measures in combination
with nonlinear techniques has allowed us to attain accurate dis-
criminations, according to the proposed goals. Many of the
methods previously proposed by other authors rely on an as-
sumption of normality of the data. However, a Lilliefors test
of the null hypothesis that the samples come from a normal dis-
tribution was performed for each analyzed acoustical parame-
ter.29 In all cases, the null hypothesis was rejected at the 1%
significance level and with p-values less than 0.000025. This
assumption is not needed by NN and SVM, which are
data-driven based methods.

Because of the small number of available data, we have
applied the Leave-One-Out (LOO) method in all the cases to
have an estimation of the classification error. This means that
the classification space is computed with every case in the
database except the case that is being classified. In this way,
the classification results are more realistic and close to the
true classification rates.26,30

Features extraction

Here we present the selected parameters to construct the data
vector associated with each patient. The estimation of the fun-
damental frequency (F0) is of special importance, because the
calculation of many parameters depends on an appropriated
F0 estimation. Parsa and Jamieson31 concluded that, because
of its robustness, the waveform matching algorithm is the one
of choice for pathological voices or in the presence of moderate
levels of background noise. Our experience confirms this asser-
tion and, therefore, we have adopted this algorithm for F0

extraction. The chosen parameters are degree of voice breaks
(unvoiceness), three measures of period perturbation quotient
or jitter (local jitter ratio [jitt], relative average perturbation
[RAP], and five-point period perturbation quotient [ppq5]),
three measures of amplitude perturbation quotient or shimmer
(shimmer [shimm], three-point amplitude perturbation quotient
[apq3], and 11-point amplitude perturbation quotient [apq11])
and harmonics-to-noise ratio (HNR).14,18,32

This selection is based on the fact that the analyzed disorders
show voice breaks, increased jitter and shimmer, and decreased
HNR,11,33 and the physicians recognize these measures as the
most relevant ones for this application. The three distinct jitters
and shimmers reflect separate phenomena. For example, an
individual with a rising F0 in a monotonic way has a high jitt
but low RAP and ppq5.

Neural networks

NNs are arrangements of simple and biologically inspired
elements operating in parallel. A NN can be trained to solve
a given problem adjusting the values of its inner connections,
based on a comparison of the desired and obtained output. In
such sense, it is a data-driven method.

NNs are broadly used in the field of pattern recogni-
tion.26,27,34 In the present work, a multilayer perceptron
(MLP) has been applied. The resilient back propagation algo-
rithm was chosen for training because of its excellent perfor-
mance in pattern recognition problems.35,36

To improve the generalization capability of the classifier and
facilitate its design, feature dimensionality reduction is neces-
sary. The classical procedure in statistics is principal compo-
nents analysis (PCA),26 which reduces dimensionality by
forming linear combinations of the features, reducing data re-
dundance. The purpose of PCA is to find an optimal projection,
which can account for a given percentage of the original data
variance. Such directions are given by the largest eigenvectors
of the covariance matrix of the full data. This optimizes a sum-
squared error criterion.

Performing a PCA, the number of input units in the NN can
be reduced, and consequently, the number of weights to be
adapted can be diminished. In our case, six components con-
tributed with 99.5% of the variance in the data set, meaning
that the PCA lowered the size of the NN input vectors from
eight to six.

We used hyperbolic tangent activation function both in the
hidden layer and in the output layer. To select the best possible
number of neurons in the hidden layer, its size was varied from
eight to 34, running 100 experiments in each case. In the output
layer, there were three neurons, one for each class (AdSD,
MTD, and normal). In Figure 1, the MLP configuration is de-
picted. The six elements xi ði ¼ 1; 2;.; 6Þ of the input vec-
tors are presented in the input layer. Each circle represents an
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individual neuron. The output layer contains three neurons, and
the observed values are labeled as yj ð j ¼ 1; 2; 3Þ. The ‘‘win-
ner’’ output corresponds to the neuron with the highest value,
and the input vector is classified with the class associated
with this output.
Support vector machines

For comparison purposes, we considered an SVM approach as
an alternative method. SVMs have recently been proposed and
adopted as popular tools for learning from experimental data.
An advantage of SVMs is that they do not depend on a random
initialization, as the NN’s weights. They do not need any fine-
tuning of parameters and exhibit a great ability to generalize. In
many problems, SVMs have been shown to provide better per-
TABLE 1.

MLP NNs: Results of Tukey’s Multiple Comparison Test

Group

(Number

of Hidden

Units)

Mean

Error ±

Standard

Deviation

(%)

Groups With Means

Not Significantly Different

32 11.01 ± 1.52 32 28 34 24 26 22 30 20 18 16 14

28 11.13 ± 1.57 32 28 34 24 26 22 30 20 18 16 14

34 11.21 ± 1.61 32 28 34 24 26 22 30 20 18 16 14

24 11.25 ± 1.62 32 28 34 24 26 22 30 20 18 16 14

26 11.33 ± 1.63 32 28 34 24 26 22 30 20 18 16 14

22 11.36 ± 1.56 32 28 34 24 26 22 30 20 18 16 14

30 11.38 ± 1.59 32 28 34 24 26 22 30 20 18 16 14

20 11.42 ± 1.67 32 28 34 24 26 22 30 20 18 16 14

18 11.52 ± 1.75 32 28 34 24 26 22 30 20 18 16 14

16 11.73 ± 1.92 32 28 34 24 26 22 30 20 18 16 14

14 11.80 ± 1.58 32 28 34 24 26 22 30 20 18 16 14

12 12.64 ± 1.98 12 10 8

10 12.83 ± 1.96 12 10 8

8 13.43 ± 2.37 12 10 8

Each group is labeled using the number of hidden units of the NN. The first

column shows the number of hidden units in the NN. The mean errors

(mean of the percentage of misclassifications) and the standard devia-

tions are presented in the second column. Finally, in the third column,

the groups that are not significantly different from the group in the first

column are shown, with a significance level of a¼ 0.05.
formance than more traditional techniques, such as highly
tuned NNs.37

The basic idea behind the SVMs is to transform the data into
a higher-dimensional space by some mapping fixed in advance
and to find a large-margin separating hyperplane in the transformed
space.27,28,38 The output y of an SVM is computed as follows:

yðxÞ ¼
XN

i¼1

gi Kðx; xðiÞÞ þ b; (1)

where x is the input feature vector, the kernel K(x,x(i)) is a sca-
lar-valued function of the testing sample x and a training sample
x(i), and b is the bias term.

The coefficient gi and the bias b have to be estimated, and
a set of support vectors {x(i), i¼ 1,.,N} that may be a subset
of the entire training set of data samples has to be identified.
The two most commonly used kernel functions are the polyno-
mial kernel ðxTyþ1Þp and the Gaussian radial basis function
(RBF) expð� 1

2s2kx� yk2Þ. For details, please refer works by
Vapnik28 and Cortes and Vapnik.39
RESULTS

In this section, we present the results obtained with the two
approaches: NNs and SVMs. By means of a statistical test,
we quantify the results obtained in the first case for different
number of neurons in the hidden layer.
Neural networks

For the purpose of comparing the performance of several net-
work sizes, we conducted 100 experiments with each
TABLE 2.

MLP NNs: Best Confusion Matrix for 14 Hidden Units

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 20 1 0 95.24

MTD 5 10 0 66.67

Normal 0 0 53 100.00

Total 93.26



TABLE 3.

MLP NNs: Best Confusion Matrix for 16 Hidden Units

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 17 4 0 80.95

MTD 2 13 0 86.67

Normal 0 0 53 100.00

Total 93.26

TABLE 5.

MLP NNs: Average of the 100 Confusion Matrices for 32

Hidden Units

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 15.78 4.48 0.74 75.14

MTD 4.45 10.44 0.11 69.60

Normal 0.01 0.01 52.98 99.96

Total 88.99

Pathological voices are classified as pathological (AdSD or MTD) in

97.63% of the cases, and normal voices are classified as normal in

99.96% of the cases.
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configuration, registering the mean classification error for
each network size. In each experiment, the weights were ran-
domly initialized. As it was stated in the previous section, er-
rors are measured using the LOO method. This means that the
accuracy of the classifier was estimated by training it sepa-
rately 89 times, using the complete training set, from which
a different single pattern has been deleted. Each resulting net-
work was tested on the single deleted point, and the jackknife
estimate of the accuracy is just the mean of these LOO accu-
racies.26

The mean percentage of misclassifications obtained and the
corresponding standard deviation for each number of hidden
units are depicted in Figure 2. As can be seen, the error seems
to be stabilized after 14 hidden units.

To contrast these mean errors and to obtain information about
which mean errors pairs were significantly different and which
ones were not, a multiple comparison test that considers all
pairwise comparisons has been applied. We applied the Tukey
test with a significance level of a¼ 0.05. This is the recommen-
ded method when we want to test the family of all pairwise
comparisons.40

In Table 1, we show the results of the Tukey multiple compar-
ison test. Each group was labeled using the number of hidden
units of the NN. The first column corresponds to this number.
The mean error (mean of the percentage of misclassifications)
and the corresponding standard deviation are presented in the
second column. The third column shows the groups that are
not significantly different from the one indicated in the first col-
umn, with a significance level of a¼ 0.05. From the analysis of
Table 1, we can conclude that, when the number of hidden units
in the NN is increased above 14, the error is not significantly
reduced.
TABLE 4.

MLP NNs: Best Confusion Matrix for 22 Hidden Units

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 18 3 0 85.71

MTD 3 12 0 80.00

Normal 0 0 53 100.00

Total 93.26
In Tables 2–4, we show the confusion matrices for three
different numbers of hidden units: 14, 16, and 22 neurons, re-
spectively. We can appreciate the fact that, in the three cases,
the best results reach 93.26% of correct classifications over
all the voices and a 100% of correct classifications of normal
voices.

Although the total percentages of discrimination obtained in
Tables 2–4 are equal, we can see that the values corresponding
to each class (pathology) are different. The highest percentage
of correct classifications of AdSD voices was obtained with 14
hidden units (Table 2). However, the best result for MTD recog-
nition was achieved using 16 hidden neurons (Table 3). It can be
observed that an intermediate result was obtained with 22
hidden units (Table 4).

The minimum mean error (11.01%; see Table 1) along the
100 experiments with the different numbers of hidden neurons
was obtained with 32 units. The averaged confusion matrix for
this case is shown in Table 5. With this network configuration,
the mean of correct classifications was 88.99%. It is important
to add that, in this case, the mean of normal voices correctly
classified was 99.96%, and by combining AdSD and MTD in
a single class (pathological voices), 97.63% of correct classifi-
cations was achieved.

To compare our results with previous works, we tested the
ability of our classifier for discrimination between pathologi-
cal and normal voices. For this purpose, we have changed the
output layer, leaving now two output neurons. Increasing the
number of hidden units from one to 14, and running 100 real-
izations in each case, we obtained the minimum mean error
TABLE 6.

MLP NNs: Classification in Two Categories

Actual

Class

Predicted Class
Correct

Classifications (%)Pathological Normal

Pathological 35.13 0.87 97.58

Normal 0.07 52.93 99.87

Total 98.94

Average of the 100 confusion matrices for 8 hidden units.



0 5 10 15
0

1

2

3

4

5

6

Number of hidden units

snoitacifissalcsi
m fo egatnecreP

FIGURE 3. MLP NNs, two classes: percentage of misclassifications. The errors are plotted as a function of the number of hidden units of the NN.

The length of the bars on each direction represents the standard deviation.

Gastón Schlotthauer, et al SD and MTD Automatic Classification 351
while working with eight hidden neurons. In many realiza-
tions (even in those with only one hidden unit), we have ob-
served that the classification was 100% correct. In Table 6,
an averaged confusion matrix for the 100 realizations is pre-
sented. The percentage of correct classifications reached
98.94% (97.58% of pathological voices and 99.87% of normal
voices correctly classified). This result is better than the high-
est percentage of correct discrimination between normal and
pathological voices found in the literature25 (96.5% of correct
detections).

In Figure 3, the mean percentage of misclassifications is de-
picted. The minimum error was obtained with eight neurons. A
Tukey test with a significance level of a¼ 0.05 was applied,
indicating that the MLPs with two or more neurons in the hid-
den layer are not significantly different.

Support vector machines

In the case of SVM, the reduction of the input vector dimension
using PCA caused a decrease of the correct classifications. Be-
cause of this fact, we used the original eight-dimensional input
vectors. As in the previous case, we applied the LOO strategy.
First, we tried to classify the voices in three classes (MTD,
AdSD, and normal) using different kernels. Tables 7 and 8
show the results obtained with polynomial kernel (p¼ 2) and
Gaussian radial basis function (s¼ 0.5), respectively. It can
be observed that the polynomial kernel yields the best classifi-
cation in three classes. To check the ability of SVM for separat-
ing normal and pathological voices, we grouped AdSD and
MTD together. In this case, our concern was to classify the
voices as pathological or normal. Tables 9 and 10 summarize
TABLE 7.

Confusion Matrix for SVMs. Classification in Three

Classes with Polynomial Kernel (p ¼ 2)

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 18 3 0 85.71

MTD 5 9 1 60.00

Normal 0 1 52 98.11

Total 88.76
the obtained results. Again, we can appreciate the fact that
the polynomial kernel had a better performance than Gaussian
radial basis function.
DISCUSSION

In this study, we have compared two different approaches for the
automatic classification of pathological voices. In particular, we
have focused our attention on two different aspects: (1) to
discriminate between normal and pathological voices; and
(2) to discriminate between normal, AdSD and MTD, the two
pathologies for which a proper indicator for their differential
diagnosis does not exist, and misdiagnosis occurs quite often.

According to the results presented in the previous section,
AdSD pathology was better recognized using a NN with 14 hid-
den units, with a 95.24% (Table 2). MTD reached 86.67% of
correct classifications by means of a NN with 16 hidden units
(Table 3), whereas normal voices were, in most of the cases,
100% recognized. When interested in a three-class classifica-
tion, the best result was obtained, reaching 93.26% of success-
ful classifications, using NNs of 14, 16, or 22 hidden units
(Tables 2–4).

In case of separating pathological and normal voices, it is also
possible to reach a very good discrimination and, as it has been
shown, these results overcome those published to date (Table 6).
The results with a MLP with eight hidden neurons averaged
98.94% of correct classifications in 100 realizations, overcom-
ing the best-reported percentage of correct classifications
(96.5%). In addition, comparing NNs and SVMs as automatic
classifiers for pathological and normal voices, our results allow
to conclude that, in the present application, the MLP NNs with
TABLE 8.

Confusion Matrix for SVMs. Classification in Three

Classes with RBF Kernel, s¼ 0.5

Actual

Class

Predicted Class
Correct

Classifications (%)AdSD MTD Normal

AdSD 16 2 3 76.19

MTD 4 9 2 60.00

Normal 0 0 53 100.00

Total 87.64



TABLE 9.

Confusion Matrix for SVMs. Classification in Two Classes

with Polynomial Kernel (p¼ 2)

Actual

Class

Predicted Class
Correct

Classifications (%)Pathological Normal

Pathological 35 1 97.22

Normal 1 52 98.11

Total 97.75
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eight hidden units are more successful than SVMs. These pre-
liminary results suggest the necessity of future works using
the presented approach with larger databases.
CONCLUSIONS

In this work, we apply two machine learning-based
approaches—NNs and SVMs—with the purpose of the auto-
matic discrimination between AdSD, MTD, and normal voices,
using acoustic parameters of sustained vowel /a/.

From this study, it can be seen that an automatic classifica-
tion is possible between two pathologies that often cause erro-
neous diagnosis by professionals who are not highly
specialized. Additionally, this discrimination is feasible using
only acoustical measures that are well known by both the
speech physicians and the therapists. This is a very important
attribute of our approach because of the knowledge that the
specialists have on these parameters. Their properties, signif-
icances, and relations with pathologies have been extensively
studied in the literature and, additionally, the computational
issues involved in their estimation are well established. In
this way, researchers can use the approach here presented
with no further implementation difficulties. To our knowledge,
there is no previous work regarding automatic classification of
SD and MTD.

The presented automatic classification tools must be refined
and tested on a higher number of normal and pathological voi-
ces, including several samples by each subject, before clinical
usage as a support for the differential diagnosis. Furthermore,
sustained vowels versus running speech may be tested. Never-
theless, the results obtained are very promising and suggest that
this goal is well within reach. A reliable system of automatic
classification could save many MTD patients from inappropri-
ate Botox injections or surgery as a consequence of a misdiag-
nosis.
TABLE 10.

Confusion Matrix for SVMs. Classification in Two Classes

with RBF Kernel, s¼ 0.5

Actual

Class

Predicted Class
Correct

Classifications (%)Pathological Normal

Pathological 34 2 94.44

Normal 3 50 94.34

Total 94.38
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Rosanowski F. Quality of life in dysphonic patients. J Voice. 2005;19:132-137.

2. Barkmeier JM, Case JL, Ludlow CL. Identification of symptoms for spas-

modic dysphonia and vocal tremor: a comparison of expert and nonexpert

judges. J Commun Disord. 2001;34:21-37.

3. Jackson-Menaldi C. La voz patológica. Buenos Aires, Argentina: Editorial

Médica Panamericana; 2002. (In Spanish).

4. Schwartz JS, Song P, Blitzer A. Spasmodic dysphonia. In: Cooper G, ed.

Therapeutic Uses of Botulim Toxin. Totowa, New Jersey: Humana Press;

2007:109-121.

5. Konkiewitz CE, Trender-Gerhard I, Kamm C, et al. Service-based survey of

dystonia in Munich. Neuroepidemiology. 2002;21:202-206.

6. Duffy J, Yorkston K, Beukelman D, et al. Medical Interventions for

Spasmodic Dysphonia & Some Related Conditions: A Systematic Review.

Minneapolis, MN: Academy of Neurologic Communication Disorders

and Sciences; 2001. Technical Report 2.

7. Deems DA, Sataloff RT. Spasmodic dysphonia. In: Sataloff RT, ed. Profes-

sional Voice. The Science and Art Clinical Care. 2nd ed. San Diego:

Singular Publishing Group; 1997:499-505.

8. Case JL. Clinical Management of Voice Disorders. Austin, TX: Pro-Ed;

1996.

9. Inamura R, Tsuji DH. Adduction spasmodic dysphonia, vocal tremor and

muscular tension dysphonia: it is possible to reach a differential diagnosis?

Braz J Otorhinolaryngol. 2006;72:434.

10. Barkmeier JM, Case JL. Differential diagnosis of adductor-type spas-

modic dysphonia, vocal tremor and muscle tension dysphonia. Speech

therapy and rehabilitation. Curr Opin Otolaryngol Head Neck Surg.

2000;8:174-179.

11. Verdolini K, Rosen CA, Branski RC, eds. Special Interest Division 3. Voice

and Voice Disorders. American Speech-Language-Hearing Association,

Classification Manual for Voice Disorders—I. Mahwah, NJ: Lawrence Erl-

baum Associates, Inc; 2006.

12. Roy N, Mauszycki SC, Merrill RM, Gouse M, Smith ME. Toward improved

differential diagnosis of adductor spasmodic dysphonia and muscle tension

dysphonia. Folia Phoniatr Logop. 2007;59:83-90.

13. Roy R, Gouse M, Mauszycki SC, Merrill RM, Smith ME. Task specificity

in adductor spasmodic dysphonia versus muscle tension dysphonia. Laryn-

goscope. 2005;115:311-316.

14. Baken RJ, Orlikoff RF. Clinical Measurement of Speech and Voice. 2nd ed.

San Diego, CA: Singular Thomson Learning; 2000.

15. Rees CJ, Blalock D, Kemp SE, Halum SL, Koufman JA. Differentiation of

adductor-type spasmodic dysphonia from muscle tension dysphonia by

spectral analysis. Otolaryngol Head Neck Surg. 2007;137:576-581.

16. Cannito MP, Woodson G. The spasmodic dysphonias. In: Kent R, Ball M,

eds. Voice Quality Measurement. San Diego, CA: Singular Thomson

Learning; 2000:411-430.

17. Ludlow CL. Management of the spasmodic dysphonias. In: Rubin JS,

Sataloff RT, Korovin G, Gould WJ, eds. Diagnosis and Treatment of Voice

Disorders. New York, NY: Igaku-Shoin; 1995:436-454.

18. Boyanov B, Hadjitodorov S. Acoustic analysis of pathological voices.

IEEE Eng Med Biol Mag. 1997;16:74-82.

19. Hansen JHL, Gavidia-Ceballos L, Kaiser JF. A nonlinear operator-based

speech feature analysis method with application to vocal fold pathology

assessment. IEEE Trans Biomed Eng. 1998;45:300-313.

20. de Oliveira Rosa M, Pereira JC, Grellet M. Adaptive estimation of residue

signal for voice pathology diagnosis. IEEE Trans Biomed Eng. 2000;47:

96-104.

21. Ritchings RT, McGillion M, Moore CJ. Pathological voice quality assess-

ment using artificial neural networks. Med Eng Phys. 2002;24:561-564.



Gastón Schlotthauer, et al SD and MTD Automatic Classification 353
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