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ABSTRACT: Hybrid quantum/classical molecular dynamics (MD) is
applied to simulate the vibrational relaxation (VR) of the amide I mode of
deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel
version of the vibrational molecular dynamics with quantum transitions
(MDQT) treatment is developed in which the amide I mode is treated
quantum mechanically while the remaining degrees of freedom are treated
classically. The instantaneous normal modes of the initially excited NMAD
molecule (INM0) are used as internal coordinates since they provide a proper
initial partition of the system in quantum and classical subsystems. The
evolution in time of the energy stored in each individual normal mode is
subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s
and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT
simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical
simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an
intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous
theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of
the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations
as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is
associated to the energy flow through specific mid-range and high-frequency modes.

1. INTRODUCTION
Current progress in ultrafast time-resolved infrared-Raman
spectroscopy1−14 applied to the study of vibrational relaxation
(VR) and intramolecular vibrational redistribution (IVR)
provides unprecedented details of the transient energy content
of individual vibrations of polyatomic molecules in solution,
and these advances are accompanied by a number of theoretical
approaches which allows different issues of the molecular origin
of VR and IVR15−31 to be successfully unraveled. In this
context, compounds with peptide bonds have attracted special
interest due to the fundamental role that they play in a large
variety of biological processes.32−44 The amide I mode,
primarily associated with the peptide bond carbonyl stretch,45

has been frequently probed in experiments since its strong
transition dipole makes it possible to discern the spectral
contributions of this mode easily.4,46−50 In addition, the
couplings of the amide I modes regularly distributed inside a
protein result in an amide I band whose frequency, bandwidth,
and intensity are sensitive to the topology of the hydrogen-
bonded network that defines the secondary structure of the
protein. This is the reason why the amide I band is widely
employed in protein structural analysis. Time-domain measure-
ments have shown that the VR rate of the amide I mode is to a
certain extent insensitive to the environment, with a lifetime of
the order of 1 ps for most systems studied.4 This feature

indicates that a starting detailed description of the amide I
mode relaxation can be made through the study of the N-
methylacetamide, which is the simplest molecule presenting a
peptide bond, not losing sight nevertheless of the fact that
relaxation of the amide I vibrations of proteins can be
considerably more complicated because of the coupling of nearby
amide groups.
The VR of deuterated N-methylacetamide (NMAD) in

solution has been the subject of a wide number of both
experimental4,6,6,10,51−56 and theoretical52,57−69 studies, which
altogether have provided a qualitative picture of the main
relaxation channels involved in the process. Discrepancies
however in the kinetic interpretation of the vibrational energy
decay and uncertainties in the values of the relaxation lifetimes
of the amide I mode, as extracted from different experimental
measurements,4,54 show that an ultimate accurate description of
the VR of NMAD is still pending.
Among the theoretical treatments developed to shed light on

the VR of NMAD, nonequilibrium classical molecular dynamics
(MD) simulations in combination with instantaneous normal
modes (INMs) analysis70−78 have been shown to provide
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valuable information about the vibrational energy flow through
the molecule following relaxation of the amide I mode.58,67

Recent nonequilibrium MD-INM simulations of the photo
excitation and subsequent VR of both the amide I mode68

and the C−H stretching modes (νs(CH3))
69 of NMAD in

liquid D2O have made it possible to track the time evolution
of the excesses of vibrational energy stored in each individual
INM of NMAD and compare them directly with data provided
by time-resolved infrared-Raman spectroscopic measure-
ments.4,54,55 Despite the success of the MD-INM method in
giving a confident qualitative description of the main NMAD
IVR pathways, it still lacks a certain degree of quantitative
accuracy since it provides relaxation rates which are several
times smaller than those from experiments.58,68,69

Perturbation treatments have also been applied to the VR of
NMAD in solution.7,15,32,79,80 While the most popular of these
methods based on Fermi's golden rule plus use of classical
force−force correlation functions gives decay times of
about ≈2 orders of magnitude larger than the experiment,58

recent theoretical improvements have been shown to give more
accurate results.67,81 VR lifetimes calculated by Straub et al.,81 in
particular, are found to be in good agreement with those
provided experimentally by Hochstrasser et al.4 Straub et al.81

model the VR process as a multistep reaction and use non-
Markovian time-dependent perturbation theory31 with the
Neumann−Liouville equation and the third-order Fermi
resonance parameters to determine the mode-to-mode energy
flow rate constants. Perturbation treatments clearly indicate
that the correct simulation of the vibrational energy relaxation
of the NMAD in solution requires the consideration of
quantum effects such as the existence of discrete levels in the
solute, a feature which become especially important for the
amide I mode relaxation for which the spacing between
vibrational levels is significantly larger than kBT. These methods
are, however, limited to the short time regime dynamics and are
not able to provide therefore a complete description of the
whole relaxation process.
In mode-specific vibrational energy relaxation processes of

solute molecules in condensed phase, the degrees of freedom
requiring a quantum description are usually localized in the
solute molecule, which facilitates the realization of a well-
defined initial partition of the whole system in quantum and
classical subsystems. Hybrid quantum-classical methods22,82−85

are then a highly intuitive tool for the study of these processes
since they proceed through simultaneous propagation of the
solute quantum state and the classical degrees of freedom.
Classical coordinates that couple to the vibrational quantum
states can then be identified and thereafter connected with
different intramolecular and intermolecular energy transfer
pathways, thus giving us a deep understanding of the molecular
mechanism of the relaxation. Surface-hopping86−89 and mean
field90−94 methods are the two most widely used hybrid
quantum/classical methods approaches able to treat inter-
actions between quantum and classical subsystems in a self-
consistent way, and both have been applied to the study of VR
and IVR in van der Waals clusters and condensed phases.85

Also recently, the so-called mixed quantum-classical Liouville
method has been used to describe vibrational energy
redistribution95−98 (VER). Within this approach, VER is de-
scribed as a nonequilibrium process involving solvation on
different vibrational adiabatic potential energy surfaces and
nonadiabatic transitions between them. Since this method does
not rely on a perturbative treatment of the interaction between

the relaxing mode and the bath modes, it allows for a direct
analysis of the VER mechanism.
Among the surface-hopping approaches, vibrational molec-

ular dynamics with quantum transitions (MDQT) has been
implemented and successfully used to deal with vibrational
predissociation, IVR, and fragmentation dynamics of van der
Waals clusters consisting of a dihalogen molecule surrounded
by a number of rare gas atoms.99−104 This method relies on the
MDQT treatment of electronic transitions developed by
Tully87,105 as adapted to vibrational transitions, in which the
vibration of the diatomic molecule treated quantum-mechanically
and the remaining degrees of freedom are treated classically,
and it provides lifetimes and final state distributions which can
be properly used to develop kinetic schemes to interpret the
VR process. The vibrational MDQT method has also been
applied to VR in the condensed phase, mostly with diatomic
molecules in solution.106−109

The aim of this work is to investigate the vibrational energy
relaxation of the amide I mode of the NMAD molecule in
aqueous solution (D2O) using vibrational hybrid quantum/
classical MD. For this purpose, we develop the implementation
of the vibrational MDQT method to deal in general with one
normal mode of the solute polyatomic molecule being treated
quantum mechanically and the remaining intra- and inter-
molecular degrees of freedom being treated classically. The
paper is organized as follows. In Section 2 we describe the
specific issues concerning the novel implementation of the
vibrational MDQT method, the way in which the transient
energy content of the vibrational modes of the solute is
evaluated using INMs, and the computational details employed
in this work. In Section 3 we present and discuss the results
obtained for the VR of the NMAD amide I mode in deuterated
water solution, comparing them with previous classical MD
calculations of the system. Conclusions are given in Section 4.

2. METHODOLOGY
2.1. Vibrational MDQT. Nonequilibrium hybrid quantum/

classical surface-hopping approaches have been extensively used
to describe VR processes.99,101−104,106,107,110 The general
description of the method can be found elsewhere,85,99 so we
concentrate here on the specific features when it is applied to
the VR of a quantal normal mode, Q k, of a polyatomic solute
molecule like NMAD, dissolved in a liquid like D2O. The
Hamiltonian of the system can then be written as follows

= + +H Q H Q H V QR R R( , ) ( ) ( ) ( , )k k kq cl cl int cl (1)

where Hq(Q k) is the one-dimensional (1D) quantum harmonic
oscillator Hamiltonian of the vibrational normal mode Q k,
given by

̂ = − ℏ ∂
∂

+ λ ̂H Q
Q

Q( )
2

1
2k

k
k kq

2 2

2
2

(2)

Hcl(Rcl) is the Hamiltonian of the remaining classical
coordinates, Rcl, and Vint(Q k,Rcl) is the interaction potential
that couples the quantum and classical degrees of freedom. The
classical degrees of freedom, Rcl, include all of the solvent
coordinates, the translational and rotational coordinates of the
solute molecule, given specifically by the center of mass vector
RCM and the quaternions q = (q1,q2,q3,q4), and all of the
vibrational coordinates of the solute, excluding the quantal
normal mode Q k. Details concerning the classical equations of
motions can be found in refs 68 and 69, including the use of the
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rigid rotor model for the NMAD molecule which has been
validated in previous classical MD simulations.68

In our earlier nonequilibrium MD simulations68,69,78 we also
used the equilibrium normal modes (ENMs), Qe = (Q1

e,...,QN
e )

of NMAD as propagation coordinates. These coordinates do
not provide, however, a fully separable description of the
molecule in solution at room temperature due to the strong
couplings among the ENMs that emerge when the molecule
explores configurations which are far away from the equilibrium
geometry. In this work we use as propagation coordinates
instead the INMs of NMAD calculated at the initial time, t = 0,
of the simulations, just when the quantal normal mode of
the solute Q k is excited. These initial INMs QINM0 =
(Q1

INM0,...,QN
INM0) provide a proper description of the quantal

vibrational normal mode (Q k
INM0) excited with one vibrational

quantum, decoupled up to second order from the remaining
classical normal modes of the solute. The initial vibrational
energy located in the quantum subsystem is therefore
3ℏωk

INM0/2, where ωk
INM0 is the vibrational frequency of the

quantal Q k
INM0 mode of NMAD, with k = 23 corresponding to

the amide I mode. The value of the 23th INM0 frequency varies
depending on the specific instantaneous initial configurations
used to start the individual trajectories, and the average of
this frequency provides therefore the mean quantum vibrational
energy initially deposited in the system.
The initial INM0's are obtained by diagonalizing the N × N

ENM Hessian KENM matrix at t = 0.68,78 Both sets of modes are
therefore related by the eigenvector matrix LINM0 as follows

Λ=K L L(0)ENM INM INM INM0 0 0 (3)

where ΛINM0 is the diagonal eigenvalue matrix whose elements,
λi
INM0, are related to the INM0 vibrational frequencies by vi

INM0 =
(λi

INM0)1/2/2π. The assignment of the INM0's in terms of the
ENMs is performed using the so-called Min-Cost algo-
rithm,69,78 which maximizes the trace of the overlap matrix
with elements (lij

INM0)2 as described in refs 69 and 78.
The time evolution of the wave function |ψ(t)⟩ accounting

for the vibrational motion of the quantal coordinate Q k
INM0 is

governed by the time-dependent Schrödinger equation

ℏ ∂|ψ ⟩
∂

= ̂ + ̂ |ψ ⟩i
t

t
H Q V Q tR

( )
( ( ) ( , )) ( )k kq

INM
int

INM
cl0 0

(4)

which is solved by expanding the time-dependent wave
function |ψ(t)⟩ in terms of the diabatic eigenstates |v⟩ of the
Ĥq harmonic oscillator Hamiltonian with energy Ev as follows

∑|ψ ⟩ = | ⟩t c t v( ) ( )
v

v
(5)

The usefulness of the diabatic states in hybrid quantum/
classical surface-hopping calculations of VR processes has been
demonstrated in a number of studies.99,102,111−113 In this case,
previous classical MD simulations of the VR of the NMAD
amide I mode in D2O solution have shown that this mode
widely preserves its identity along the simulation,78 as stated by
the standard deviation of its frequency, which remains below
0.5%.68 The couplings of the amide I mode with the rest of
NMAD modes are therefore expected to be relatively small,
thus validating the use of the corresponding diabatic states as a
natural representation of the quantum degree of freedom.

The substitution of eq 5 into eq 4 gives

∑ℏ ̇ =′ ′i c t c t H( ) ( )v
v

v v v
(6)

where

= ⟨ ′| ̂ + ̂ | ⟩

= δ + ⟨ ′| ̂ | ⟩

′

′

H v H Q V Q v

E v V Q v

R

R

( ) ( , )

( , )

v v k k

v v v k

q
INM

int
INM

cl

int
INM

cl

0 0

0
(7)

The diabatic couplings in this expression can be efficiently
calculated all along the hybrid simulations by expanding them
in a Taylor series of the quantum coordinate Q k

INM0 about its
equilibrium, Q k

INM0 = 0, value as follows112,113

⟨ ′| ̂ | ⟩

= δ + ⟨ ′| ̂ | ⟩

+ ⟨ ′| ̂ | ⟩ +

′

v V Q v

V K v Q v

K v Q v

R

R

( , )

(0, )

( ) ...

k

v v Q k

Q k

int
INM

cl

int cl ,
INM

( )
INM 2

k

k

0

INM0
0

INM0 2
0

(8)

where K are the expansion coefficients which are evaluated at the
current values of the classical coordinates using a finite dif-
ference method. In practice it suffices to include up to the quad-
ratic terms in these expansions to reach convergence.112,113

In the present implementation of the vibrational MDQT
method, the classical degrees of freedom evolve on the
vibrational energy surface created by a single vibrational state
|v⟩ of the quantal Q k

INM0 harmonic mode. The Hamilton
equations for the classical variables are then

̇ = mR P /R Rcl cl cl (9)

̇ = −∇ − ⟨ |∇ ̂ | ⟩H v V Q vP R R( ) ( , )kR R Rcl cl int
INM

clcl cl cl
0

(10)

where the first and second terms on the right-hand side of
eq 10 corresponds, respectively, to the classical forces, FRcl

, and
to the averaged classical/quantum interactions, with the latter
being computed using a Taylor expansion similar to that used
to evaluate the diabatic couplings in eq 8. In this case it suffices
to include up to linear terms in the expansion to reach
convergence.
In the vibrational MDQT method87 classical trajectories can

hop from one vibrational state to another at each propagation
time with the hop probabilities governed by the relative change
over time of the coefficients of the vibrational wave function
|ψ(t)⟩. A preliminary analysis of the time evolution of the
quantum populations of the NMAD amide I mode in D2O
solution reveals the occurrence of short-time oscillations
unrelated to the global relaxation process. These oscillations
give large short-time values for the |1⟩→ |0⟩ hopping
probabilities. The significantly larger value of the amide I
vibrational quantum with respect to the thermal energy hinders
then the possibility of any subsequent |0⟩→ |1⟩ hop back. As a
consequence, these classical forbidden transitions leads to
unsuitable ultrafast divergences between the averaged quantum
and classical populations. An example of these divergences is
shown in Figure 1, where the quantum, |cv(t)|

2, and classical
populations of the NMAD amide I mode calculated using the
hopping probabilities during the first 80 fs of a typical
simulation are plotted. While different strategies have been
proposed to overcome this drawback,114,115 as far as the

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp210727u | J. Phys. Chem. B 2012, 116, 2969−29802971



vibrational MDQT method is concerned we found that this
problem can be properly solved by evaluating the probability of
the quantum transition from the current vibrational state |v⟩ to
any other state |v′⟩ at every period of short-time oscillation
using the expression105

∫
=

′ * ′ ′

| |→ ′

+δ
′ ′

g
c t c t H t

c t

2Im( ( ) ( )) d

( )v v
t
t

v v v v

v
2

(11)

where the integral is evaluated numerically using a δ values
equal to 35Δt which is found to match well with the average
short-time oscillation period of 17.5 fs obtained using a classical
time step Δt = 0.5 fs. As observed in Figure 1 the calculation of
the hopping probabilities using eq 11 (black dots) ensures a
better short-time agreement between classical and quantum
populations.
2.2. Hybrid INM Analysis. The definition of the ENMs

based on the second-order expansion of the potential energy
function of the isolated solute molecule about its equilibrium
configuration makes them unsuitable to express the vibrational
energy of the solvated molecule as the sum of individual
harmonic contributions at room temperature.78 As for the
INM0's, they provide a decoupled description of the vibrational
motions of the molecule at the initial configurations of the VR
which validates them to achieve a proper initial definition of the
quantum and classical subsystems as required in the hybrid
quantum/classical approach. Structural perturbations emerging
throughout the dynamics of the system introduce, however,
strong couplings among the INM0's, making it quite difficult to
quantify the energy stored in each individual normal mode. To
address this problem we use the INMs, INMt's, evaluated at
each propagation time, as was done successfully in our previous
studies on this system.68,69,78 The INMt's are assigned using the
Min-Cost algorithm with the ENMs as templates, to track their
identities as the whole system evolves with time.
As previously reported,69 there are INM0's (or INMt's) which

cannot be unambiguously assigned to a single ENM and are
therefore gathered in groups according to their nearly
degenerated time-averaged vibrational frequencies. In order of
ascending frequency, we have then first the group a1 of modes,
composed of the 11th to 15th INMs, which are mainly formed
by combinations of the rocking methyl ENMs and a backbone
ENM mode. Then we have group a2, composed of the 16th
to 20th INMs with the bending methyl ENMs contributing
the most. Next comes group b1, formed by the 25th and 26th

INMs which are composed essentially of the C−H stretches
(νs(CH3)) excited during in the simulations, and finally we have
group b2, formed by the 27th to 30th INMs, made up basically
of the more energetic stretching methyl ENMs. A complete list
of the INMs and their assignments in terms of the ENMs can
be found in ref 69.
Since the Q k

INM0 mode is treated quantum-mechanically and
the rest of modes Q j

INM0, j ≠ k, are treated classically, it is
important to stress that the INMt's are really hybrid quantum/
classical modes whose position Q̂ i

INMt and momentum P̂i
INMt

operators are obtained by projecting them onto the QINM0 basis
set as follows

∑̂ = + ̂
=
≠

Q t g Q t g Q( ) ( )i
j

N

j k

ji j ki k
INM

1

INM INMt 0 0

(12)

∑̂ = + ̂
=
≠

P t g P t g P( ) ( )i
j

N

j k

ji j ki k
INM

1

INM INMt 0 0

(13)

where Q̂ k
INM0 and P̂k

INM0 are the position and momentum
operators corresponding to the Q k

INM0 quantum mode, and gij
is the dot product of Q j

INMt and Q j
INM0. Accordingly, the

vibrational energies of the individual INMt's can be written in
the form

= ⟨ | ̂ | ⟩ + λ ⟨ | ̂

+ | ⟩

E v P v v Q

a v

1
2

( )
1
2

(

)

i i i i

i

INM INM 2 INM INM

INM 2

t t t t

t (14)

where ai
INMt are the coordinate shifts.68 The substitution of eqs

12 and 13 into eq 14 leads to

= λ −

+ ⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩

+

E a g

g v Q v g v P v

T t

1
2

( ) (1 )

1
2

( )
1
2

( )

( )

i i i ki

ki k ki k

i

INM INM INM 2 2

2 INM 2 2 INM 2

INM ,cl

t t t

t

0 0

(15)

where

∑

∑ ∑

= ̇

+ ̇ ̇

=
≠

=
≠

=
≠

T t g Q t

g g Q t Q t

( )
1
2

( ( ))

1
2

( ) ( )

i
j

N

j k

ji j

j

N

j k
m

N

m j k

ji mi j

INM ,cl

1

2 INM 2

1 1
,

INM
m
INM

t 0

0 0

(16)

Note that a factor (1 − gki
2) is included in the first term on the

right side of eq 15 for the values of the potential energies of
the individual INMt's to asymptotically reach their correct
equilibrium values, obtained as a weighted average of the
classical and quantum INM0's.
After discussing the hybrid INMt's, it remains to specify how

the energy is conserved at the quantum hops. In diabatic
vibrational MDQT calculations this is achieved by matching the

Figure 1. Average quantum (red line) and classical populations for the
v = 1 VR of the amide I mode obtained by evaluating the hopping
probabilities at every classical time step Δt (crosses) and using eq 11
(circles).
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components of the classical momenta in the direction of the
diabatic coupling vector as follows99

′ = + γ ′P P Fvv
R R Rcl cl cl (17)

where

= ⟨ |∇ | ′⟩′ v V Q vF R( , )vv
kR R int
INM

clcl cl
0

(18)

Here PRcl
and P′Rcl

are the classical momenta before and after
the hop, and the value of γ is obtained by imposing energy
conservation. Previous nonequilibrium classical MD calcula-
tions68 of the VR of the NMAD amide I mode in D2O solution
have shown unrealistic excitations of normal modes with vibra-
tional frequencies higher than that of the parent mode occur
during the relaxation process. It is possible to minimize this
unphysical flow of energy by restricting the energy transfer
during hops to those INMt whose frequencies lie below the
amide I mode frequency. To achieve this, we calculate first the
forces exerted on the hybrid INMt's from the forces exerted on
the classical INM0's using the expression

∑=

= − +

′

=
≠

′F g F

i k k N1, ..., 1, 1, ...

Q
vv

j

N

j k

ji Q
vv

1i
t

j
INM INM0

(19)

Next we remove the INMt forces acting on the hybrid modes
with frequencies higher than the amide I mode frequency, and
finally we calculate back the forces on the INM0's using the
inverse relation to eq 19. In other words, we recalculate the
forces acting on the classical modes in such a way that the
contributions to the change of the momenta of the hybrid modes
above the frequency threshold are set to zero.
2.3. Computational Details. We have carried out MD

simulations of one NMAD molecule surrounded by 251 D2O
molecules, all of them placed in a cubic box with a length of
1.975 nm, chosen to reproduce the experimental density of the
system116 (ρ = 1.10436 g/cm3). The AMBER force field117 is
employed to model the solute NMAD (H3C−COND−CH3)
and the flexible TIP3P water model with doubled hydrogen
masses included in the CHARMM118 force field to represent
the D2O molecules. Subroutines of the TINKER modeling
package119 are also used in our code to evaluate the forces and
the potential energy function. Periodic boundary conditions are
imposed to simulate the bulk system, and a cutoff of 10 Å is
applied to nonbonded interactions.
The classical equations of motion are integrated using the

leapfrog algorithm,120,121 with a time step of 0.5 fs. Quantum-
mechanical equations are solved using an Adams-Moulton pro-
pagator with 4.0 × 10−7 tolerance to ensure norm conservation.
To evaluate the diabatic coupling terms ⟨v′|V̂(Qk

INM0,Rcl)|v⟩
appearing in eq 8 as many times as required in the interpolations
performed by the multistep quantum propagator, we use a
recently proposed algorithm based on the use of a parabolic
interpolation function.122

We have performed 24 NVT equilibrium MD simulations of
1250 ps initialized using random velocities. The temperature
was maintained at a mean value of 300 K by coupling to a
thermal bath123 with a time constant of 0.1 ps. During these
trajectories, the amide I mode (23rd ENM) was held frozen at
its equilibrium value, and the last 500 ps were used to collect
equilibrated configurations at 20 ps intervals. Thus, 600 sets of

positions and momenta were stored for use as initial conditions
for the subsequent nonequilibrium MD simulations, which
were performed in turn in the NVE ensemble to avoid any
influence of velocity scaling on the results. The ENMs were
used to propagate the NMAD vibrations during the equilibration
period and the INM0's to propagate the NMAD vibrations during
the simulations of the relaxation process. The nonequilibrium
MD simulations were started from these initial configurations by
setting the wave function |ψ(t)⟩ that characterizes the vibrational
motion in the quantum coordinate Q 23

INM0 equal to the first excited
vibrational state |1⟩. A number of 600 hybrid quantum/classical
trajectories of 40 ps were propagated to attain reasonable statistics
in all of the quantities reported.

3. RESULTS AND DISCUSSION

Previous studies have shown that the hybrid quantum/classical
methods may not provide the equilibrium Boltzmann quantum
state populations in the long time limit,23,24,88,111,112,124−132

which supposes a serious limitation to their applicability in
simulations of VR of solute molecules in solution. It is therefore
important to consider first the behavior of the populations of
the vibrational states of the amide I mode (Q 23

INM0) of the
NMAD molecule during the VR of it in liquid D2O. We note
then that the vibrational quantum of this mode is much higher
than the thermal energy (ℏω23

INM0 ≫kBT), so only the ground
state is expected to be significantly populated at equilibrium.
The high energy gap between the ground state and the first
excited state means, in addition, that the |0⟩→ |1⟩ MDQT hops
are, in practice, energetically forbidden, so once a trajectory
relaxes to the ground v = 0 amide I vibrational state it remains
trapped there. As a consequence, the classical populations tend
asymptotically toward their right equilibrium Boltzmann
distributions, as observed in Figure 2.

Let us focus now on the VR of the NMAD amide I mode in
D2O solution. In Figure 3 we show the evolution in time of the
normalized vibrational energy of this mode, relative to its
equilibrium value, along with the evolution of the energy
extracted from our previous nonequilibrium classical MD
simulations68 and the experimental one.4,54 The average initial
excitation energy of the amide I mode is 1692.7 cm−1, and as
observed in Figure 3, it decays in the hybrid simulations until
reaching its equilibrium value in a period of time similar to that
for populations (see Figure 2). The hybrid MDQT decay is also
significantly faster than that obtained from the classical MD

Figure 2. Time evolution of the classical populations of the ground
state (black line) and the first excited state (red line) of the NMAD
amide I mode in liquid D2O.
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simulations and closer to those reported experimentally by
Hochstrasser et al.4 and Tokmakoff et al.,54 showing a better
agreement with the Hochstrasser data. Our hybrid results thus
confirm that the inclusion of quantum effects in nonequilibrium
MD do have an accused effect on the VR of the NMAD amide I
mode in D2O solution. This is consistent with previous findings
reported by Stock from the comparison of classical and
quantum-mechanical perturbation theory133 based on a system-
bath model with cubic couplings. Stock thus shows that the
inclusion of an adequate quantum correction factor enhances
the amide I relaxation rate obtained by classical nonequilibrium
MD simulations. Since previous studies have demonstrated that
the initial fast IVR relaxation of the amide I mode proceeds
mainly through third-order couplings,65,68 the improvement
achieved by the present quantum description of this mode can
be mainly attributed to the different way in which these
anharmonic couplings are considered in the classical and the
quantum treatments.
The hybrid decay curve is found to be well-reproduced by

the single-exponential function

−

−
= − τE t E

E E
e

( )

(0)
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/
t t

t t
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where τrel is the relaxation time and where the subscript eq
stands for the energy of the INMt at equilibrium. This is in
contrast with the biexponential function which was used to fit
the results from the MD simulations58,68 and also to fit the
experimental data.4,54 The values of the parameters obtained in
all these fits show, however, large uncertainties, evidencing the
difficulties arising in obtaining a unique set of adjustable
parameters that uniquely reproduce the amide I mode decay
curve. While the results from the hybrid simulations can also be
fitted reasonably well to a biexponential function, with otherwise
larger uncertainties, we prefer to keep the single-exponential fit
for simplicity. In Table 1 we give the hybrid relaxation time of
the amide I mode thus obtained, together with the relaxation
times extracted from the previous theoretical and experimental
studies. To make a proper comparison of the hybrid single-
exponential decay time (τrel = 0.73 ps) with the biexponential
decay times, we calculate the relaxation time, T1, for the latter at
which the initial vibrational energy decreases in a factor of 1/e.

We observe then in Table 1 that the hybrid quantum/classical
simulations provide substantially shorter relaxation times than
those from the classical MD simulations, and in closer agreement
with experiments. Table 1 also shows that similar improve-
ments in the relaxation times have been previously reported by
Fujisaki et al.62 taking into account the quantum effects through
second-order perturbation theory.
Let us analyze next the amide I mode relaxation pathways.

The vibrational MDQT method allows us to calculate
accurately the amount of energy transferred at the quantum
hops from the initially excited quantum amide I mode to any
other classical degree of freedom using the classical momenta
values calculated before and after the hops (see eq 17).
Interestingly, we find that the translational and rotational
degrees of freedom of NMAD, as a whole, do not receive
significant amounts of energy and that only 3% (≈ 60 cm−1) of
the vibrational energy initially deposited in the quantal amide I
mode is transferred to the solvent, with the rest of it therefore
being distributed among the other vibrational NMAD modes,
in agreement with previous theoretical and experimental
investigations.55,68,69 Accordingly, the relaxation of the
NMAD amide I mode is essentially an IVR process with a
residual contribution of intermolecular transfer of energy to the
solvent molecules. In Table 2 we give the average energy
transferred from the amide I mode to the different INMt's in
the hops. It is interesting to note that the average energy lost by
the parent amide I mode, of 1465 cm−1, is about 230 cm−1

lower than the initial average energy deposited in this mode of
1692 cm−1. This energy mismatch arises from the mixed
quantum/classical nature of the hybrid amide I (23rd INMt)
mode, whose dominant contribution over the initial INMs
(≈ 90%) is that from the initial quantum 23rd INM0, with the
rest of the contributions coming from the classical INM0's.
Accordingly, the hops from the 23rd INM0 quantum state do
not necessarily involve the transfer of the same amount of
energy as the hops from the hybrid 23rd INMt. Among the
INMt's that receive the largest amounts of energy directly from
the amide I mode are the first (τ(CH3)), the second (τ(CH3)),
and the third (τ(CN)) low-frequencies modes, the sixth (amide V)
and eighth (amide VI) modes, and the group a1 (r(CH3) +
ν(CN)) of modes.69 The energy received by the group a2
(mostly bending methyl ENMs) is distributed into 30 cm−1 per
mode on average, a significantly smaller energy quantity than
that received by the aforementioned modes. Finally, we should

Figure 3. Normalized time evolution of the vibrational energy of the
NMAD amide I mode in D2O solution with respect to its equilibrium
value, obtained from hybrid simulations (black line) and classical68

(red line) simulations, and from experiments conducted by
Hochstrasser et al.4 (blue line) and by Tokmakoff et al.54 (green line).

Table 1. VR Times (in picoseconds) of the Amide I Mode
Obtained by Fitting to Mono- And Biexponential Decay
Functionsa

τ1 (c1) τ2 (c2) T1

experimental Hochstrasseret al.b 0.45 (0.80) 4.00 (0.20) 0.63
Tokmakoff et al.c 0.20 (0.55) 0.86 (0.45) 0.39

MDQT 0.73 (1.00) 0.73
MD Bastida et al.d 1.55 (0.80) 4.01 (0.20) 1.76

Nguyen and
Stocke

1.90 (0.80) 13.3 (0.20) 2.60

second-order
perturbation
theory f

0.43 (1.00) 0.43

0.60 (1.00) 0.60
0.54 (1.00) 0.54
0.93 (1.00) 0.93

aThe ci parameters are the normalized weights (see eq 23).
bReference 4.

cReference 54. dReference 68. eReference 58. fReference 65.
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note that no significant amount of energy is transferred in the
hybrid simulations to the amide II mode (22th INMt), in
agreement with recent experimental data obtained using two-
color femtosecond vibrational spectroscopy.56

Analysis of the evolution of the vibrational energy of each
individual INMt allows us to identify the roles that they play as
intermediate modes during the VR process, after excitation of
the NMAD amide I mode. It is important to stress here that
since the amount of energy stored in each INMt depends on
both their relative excitation and relaxation times, the maximum
energy stored in them will not necessarily coincide with the
amount of energy transferred at the hops (see Table 2). In
Figures 4 and 5 we show the time evolution of the average
vibrational energies relative to their equilibrium values for all
the INMt's which accumulate a significant amount of energy
during the relaxation process. The vertical dashed line delimits
the first relaxation stage, in which the largest part of the excess
of vibrational energy deposited in the amide I is released, in a
time of roughly 2τrel = 1.46 ps. As observed, all of the modes
shown in Figure 4 undergo similarly fast excitations within the
time interval in which the amide I mode relaxes, whereas
subsequent relaxation of these modes becomes faster for the
first, second, and third low frequency modes. Similar fast
excitations are observed in Figure 5 (note the different time
scale) for the higher frequency groups of modes a1, a2, and b1.
In contrast, excitation of the ninth, tenth, and the group b2 of
modes is slower, so their vibrational energy curves reach the
maxima at substantially longer times. This is in agreement with
the small direct energy transfer from the amide I mode into these
modes (see Table 2), indicating that they are being excited from
some intermediate modes. All of the mid- and high-frequency
modes shown in Figure 5 relax more slowly than the low-
frequency modes included in Figure 4. We also note that a
comparative smaller amount of energy is stored in the seventh
and the group a2 of modes as a consequence of the little
energy received by these modes from the amide I mode.

The fast excitation of the group b1 (νs(CH3)) of modes
during the first relaxation stage (see Figure 5c) could be due, in
principle, to a fast direct transfer of energy from the amide I
mode. The results reported in Table 2 show, however, that this
is not the case. Previous experimental and theoretical studies
have demonstrated that the stretching νs(CH3) modes (group b1)
and the bending δ(CH3) modes of the methyl groups
(group a2) are strongly coupled to each other and that these
couplings promote a fast interchange of energy between
them.15,55,69,134−138 Group b1 of modes therefore receives
energy because of its strong mixing with group a2, rather
than by direct transfer from the amide I mode. We should note
that these two mechanisms cannot be distinguished by classical
MD simulations, since these simulations do not provide the
information needed to discern between the pathways that
the energy directly released by the parent mode follows (see
Table 2).

Table 2. Vibrational Energy (in cm−1) Transferred from the
Amide I Mode to the INMt's of the NMAD Molecule at the
Hops

ith INM ⟨ΔEi
INMt⟩hop labela

1 114.1 ± 247.2 τ(CH3)
2 104.3 ± 223.8 τ(CH3)
3 83.4 ± 178.9 τ(CN)
4 36.9 ± 125.8 δ(CNC)
5 45.6 ± 112.8 δ(CCN)
6 93.8 ± 201.4 amide V
7 41.3 ± 116.3 amide IV
8 186.1 ± 294.8 amide VI
9 23.4 ± 84.4 ν(CC)
10 16.8 ± 80.6 amide III
group a1

b 541.6 ± 427.1 r(CH3) + ν(CN)
group a2

b 151.0 ± 249.2 δ(CH3)
21 8.8 ± 95.3 δs(CH3)N
22 −17.1 ± 71.2 amide II
23 −1464.7 ± 163.6 amide I
24 −1.4 ± 3.0 amide A
group b1

b −4.8 ± 8.6 νs(CH3)
group b2

b −15.1 ± 15.5 ν(CH3)
aτ = torsion, δ = bending, ν = stretching, r = rocking, a = asymmetric,
and s = symmetric. bGroups a1, a2, b1 and b2 are formed by 5, 5, 2, and
4 modes, respectively.

Figure 4. Time evolution of the vibrational energy of the (a) first, (b)
second, (c) third, (d) sixth, (e) seventh, and (f) eighth INMts (black
lines) extracted from the hybrid MDQT simulations, with the
adjustment curves to eq 21 superimposed. The limit of the first
stage at 1.46 ps is indicated by the brown vertical dashed line.

Figure 5. Time evolution of the vibrational energy of the (a) a1, (b) a2,
and (c) b1 INMt groups, (d) ninth and (e) tenth INMt, and the (f)
group b2 (black lines), with the adjustment curves to eq 21
superimposed. The limit of the first stage at 1.46 ps is indicated by
a brown vertical dashed line.
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The time evolution of most of the intermediate modes
shown in Figures 4 and 5 can be rationalized by considering
these modes modes as midrange M modes in the sequential
kinetic mechanism P→M→L in which P is the parent amide I
mode and L are the lower-frequency modes. According to this
mechanism, the evolution over time of the energy is given by

− = −− τ − τE t E A e e( ) ( )i i
t tINM

,eq
INM / /t t rel exc

(21)

where τexc is the excitation time corresponding to the P→M
step, τrel is the relaxation time corresponding to the M→L step,
A is a parameter related to the maximum of the energy curve,
and the subscript i denotes the specific midrange mode
considered. To keep the number of fitting parameters to a
minimum, we fix the value of the excitation time at τexc =
0.73 ps, which is the relaxation time of the amide I mode to the
first to third, sixth to eighth, and the group b1 of INMt's. The
energies of all of the intermediate modes are reasonably well
fitted by eq 21, except for those of groups a1 and a2 for which
we use the expression

−
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which contains two relaxation terms with times τrel and τrel′ and
weights arel and arel′ which satisfy arel + arel′ = 1. The curves
obtained from these fits are superimposed in Figures 4 and 5,
and the values of the fit parameters obtained are included in
Table 3. As observed, the fits nicely reproduce the results from
the hybrid simulations. The fast relaxation times of the low-
frequency modes, first to third INMt's, given in Table 3, are
indicative of a fast energy transfer from these modes to the
bath. In addition, the larger relaxation times obtained for modes
sixth to eighth reveal that they are not strongly coupled to the
solvent, as expected for low-frequency modes.
The excitation times of the mid- and high-frequency groups

a1 and a2 included in Table 3 coincide with the amide I
relaxation time of 0.73 ps. Moreover, the biexponential decays
of these groups of modes reveal a first and fast relaxation step,
with a common time of 2 ps, followed by a second and much
slower relaxation step with rates close to that of the
monoexponential decay of the group b1 of modes. Interestingly,
the weight of the first relaxation channel is higher for group a1
than for group a2, whereas for group a2 the dominant relaxation
channel is the second. We also observe in Table 3 that the slow

excitation rates of the ninth (ν(CC)) and tenth (amide III)
INMt's and group b2 (ν(CH3)) of modes cannot be adjusted
well by employing the amide I relaxation time but with larger
τexc values. This confirms that these modes do not receive
energy directly from the amide I but from the intermediate
modes that participate in the first relaxation stage. The
agreement between the τexc values of the ninth and tenth
INMt, and the τrel values of the groups a1 and a2 of modes
seems to indicate that the energy transfers directly between
them. Another possibility for the excitation of the ninth and
tenth INMt is by receiving the energy released in the relaxation
of the sixth to eighth INMts. Nevertheless, any attempt to fit
the ninth and tenth INMt curves to faster excitation times gives
poorer accuracy in the fits. We note also that the frequencies of
the sixth to eighth INMt overlap nicely with the frequencies of
the libration bands of liquid deuterated water,139 indicating that
the groups a1 and a2 of modes are better candidates to act as
intermediates between amide I and the ninth and tenth INMts.
Finally, the excitation time of 4.1 ps of the group b2 of modes
suggests that excitation of this group proceeds through
secondary and quantitatively less important channels.
To sum up, our hybrid MDQT simulations results show that

the VR of the amide I is essentially an IVR process, with a first
relaxation step in which energy is transferred directly from the
amide I mode to the group a1 (r(CH3) + ν(CN)), the sixth
(amide V) and eighth (amide VI) INMt and the low-frequency
first-third INMt's, and a second minor relaxation channel which
involves the participation of group a2 (δ(CH3)) and the
seventh (amide IV) INMt's. In the same time scale, a
resonance-mediated energy transfer occurs from group a2 to
group b1 (νs(CH3)), and the low-frequency modes then rapidly
transfer their excess of vibrational energy to the solvent. In the
second, and slower, IVR relaxation step, the energy flows from
groups a1 and a2 to the ninth and tenth INMt's. Finally,
medium- and high-frequency modes transfer the excess energy
that remains in the solute molecule to the solvent in the final
and slowest relaxation step.
For the sake of completeness, a comparison between the

vibrational MDQT simulations carried out in this work and our
previous classical simulations68 is due. In Figure 6 we show the
time-dependent vibrational energies of the intermediate modes
that participate in the relaxation of the NMAD amide I mode in
D2O solution, extracted from both simulations. As previously
reported,68 the classical relaxation of the amide I mode takes
place mainly through channels involving the seventh INM

Table 3. Fitted Parameters for the VR of Different INMt's of NMAD, Including Relaxation and Excitation Times (in
picoseconds), Amplitudes (in %), and Parameter A (in cm−1)

Ei
INMt = A(arele

−t/τrel + arel′e
−t/τ′rel − e−t/τexc) τexc τrel arel τrel′ arel′ A time interval constraints

group a1 (r(CH3) + νs(NC)) 0.73 2.00 66 12.31 34 707 t < 40 ps τexc, τrel
group a2 (δ(CH3)) 0.73 2.00 28 14.00 72 233 t < 40 ps τexc, τrel, τrel′
Ei

INMt = A(e−t/τrel − e−t/τexc) τexc τrel A time interval constraints

first INM (τ(CH3)) 0.73 0.74 6776 t < 3 ps τexc
second INM (τ(CH3)) 0.73 0.75 4400 t < 3 ps τexc
third INM (τ(CN)) 0.73 0.74 7845 t < 3 ps τexc
sixth INM (amide V) 0.73 1.87 85 t < 5 ps τexc
seventh INM (amide IV) 0.73 1.43 109 t < 5 ps τexc
eighth INM (amide VI) 0.73 1.05 480 t < 5 ps τexc
ninth INM (ν(CC)) 2.00 3.27 332 t < 10 ps τexc
tenth INM (amide III) 2.00 3.62 256 t < 10 ps τexc
group b1 (νs(CH3)) 0.73 16.0 85 t < 40 ps τexc
group b2 (ν(CH3)) 4.06 15.6 208 t < 40 ps
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(amide IV), the tenth INM (amide III), and the group a1
(r(CH3) + ν(CN)) of modes. Classical and MDQT dynamics
therefore agree in the identification of the modes of group a1 as
intermediate modes. The seventh and tenth INMs are replaced,
however, by the sixth (amide V) and eighth (amide VI) INMt's
in the hybrid MDQT simulations as main intermediate modes,
due to the decrease of the vibrational energy released by the
amide I mode when going from the classical68 (1692.7 cm−1) to
the MDQT (1464.7 cm−1) simulations. This change of energy
shifts the NMAD vibrational resonances from the seventh and
tenth modes to the sixth and eighth modes, with a decrease in
the vibrational frequencies69 of 135 and 184 cm−1, respectively.
The second major discrepancy between the classical and

MDQT simulations concerns the role played by the low-
frequency first-third INMs. As mentioned above, these modes
receive large amounts of energy from the amide I mode
(∼300 cm−1) at hops (see Table 2) and display similar fast
excitations and subsequent fast relaxations. In contrast, no
transient excess of energy is observed in the first to third modes
in the classical simulations.68 This discrepancy can be attributed
to the larger classical amide I relaxation time, which prevents
the accumulation of any excess of vibrational energy in these
modes. Moreover, the negative or close to zero instantaneous
frequencies commonly found for these modes make them quite
difficult to analyze with other theoretical methods like time-
dependent perturbation theory.65,140,141 A recent energy flow
analysis of the classical relaxation of the NMAD amide I mode
in liquid D2O

142 gave 350 cm−1 for the direct energy relaxation
to the solvent, a value which is in rough agreement with the
amount of energy directly transferred from the amide I to the
low-frequency modes reported in Table 2.
The energy profiles of the midrange groups of modes a1 and

a2 extracted from both classical and hybrid MDQT simulations
are very similar, as observed in Figure 6c,d, with the hybrid
description showing faster excitation times due to the faster
hybrid amide I relaxation. Although there are differences in the
maximum energy stored in these groups of modes, both
simulations provide similar decays in which their equilibrium
values are reached in the same time scale. As for the energy
profiles of the high-frequency groups of modes b1 and b2
depicted in Figure 6e,f, both classical and hybrid simulations

give a similar time evolution of the vibrational energy of these
modes. It is also interesting to analyze the behavior of the 24th
(amide A) INM. The excitation of this mode was reported to
be fast in the classical MD simulations,68 reaching a maximum
content of energy of 80 cm−1, in contrast with the slower and
weaker excitation observed in the present vibrational MDQT
simulations. This discrepancy arises from the fact that the flow
of energy from the amide I mode to high-frequency modes is
prevented during hops and that the amide A mode, which is the
INM mode with the highest resemblance to the corresponding
ENMs,69 does not couple significantly with modes other than
the amide I one.
Let us consider finally the time evolution of the total

vibrational energy of the NMAD molecule. Recent ultrafast
time-resolved infrared-Raman spectroscopic measurements55

reported a relaxation time for this process of 5.1 ps. Although
this value was obtained after excitation of the NMAD C−H
stretching modes (νs(CH3)), no significant differences are
expected after excitation of the amide I mode. On the other
hand, previous classical nonequilibrium MD simulations of the
VR of either the νs(CH3) mode or the amide I mode

68,69 gave a
relaxation time close to 10 ps for the decay of the total
vibrational energy of the NMAD molecule in D2O solution. In
Figure 7 we show now the total vibrational energy of the

NMAD molecule as a function of time extracted from the
hybrid MDQT simulations. This energy flow can be fitted well
to the biexponential function
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where c1 and c2 are the exponential amplitudes satisfying c1 + c2 = 1,
and τrel,1, and τrel,2 are the relaxation times thereof. Two well-
separated relaxation times are then obtained, with values τrel,1 =
1.53 ps (39%) and τrel,2 = 14.7 ps (61%), from which we can
infer that the whole relaxation process takes place in two well-
defined stages with different relaxation mechanisms. The first
relaxation time τrel,1 accounts for the relaxation of the lowest
frequency vibrations (first to third and sixth to eighth INMt's),
which occur faster due to their strong couplings with the
bath. The weight of this relaxation channel also indicates that
≈40% of the total vibrational energy is funnelled through this
mechanism, an amount which is quite close to the percentage

Figure 6. Time evolution of the vibrational energy of the (a) eighth
INMt, (b) tenth INMt, (c) group a1, (d) group a2, (e) group b1, and
(f) group b2 obtained from MDQT (black lines) and MD (blue lines)
simulations.

Figure 7. Normalized time evolution of the vibrational energy of the
NMAD molecule in liquid D2O with respect to its equilibrium value
(logarithmic scale), with the adjustment curves to the biexponential
functions superimposed (red line).
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of energy transferred from the amide I to the low frequency
modes (see Table 2). The second relaxation time, τrel,2, lies in
the same time scale as that of both the relaxation times of the
high-frequency group of modes b1 and b2 and the relaxation
time of the groups a1 and a2 of modes in the second relaxation
stage. To make a proper comparison of the MDQT
biexponential decay with the previous experimental55 and
classical68,69 monoexponential decays, we employ the time at
which the initial vibrational energy decays by a factor of 1/e.
Thus we obtain a relaxation time of 6.6 ps, which is closer to
the experimental values than that extracted from the classical
MD simulations. The decrease of the NMAD relaxation time
obtained from the vibrational MDQT simulations, as compared
with that from the classical simulations, is due to the faster
relaxation time achieved by the amide I mode. Furthermore, the
quantum release of the energy stored in the amide I mode may
lead to larger perturbations of the intermediate modes than
those brought about by the continuous relaxation of this mode
during the classical simulations. Larger geometrical distortions
are therefore expected from the hybrid simulations which may
result in an increase of the couplings between the intermediate
modes and the subsequent decrease of the whole VR time.

4. CONCLUSIONS
In this work we have carried out nonequilibrium hybrid
quantum-classical MD simulations of the VR of the NMAD
amide I mode in D2O solution. A novel implementation of the
vibrational MDQT method has been developed which deals
explicitly with the quantum mechanical treatment of one
normal mode of the solute polyatomic molecule and the
conventional classical treatment of the remaining degrees of
freedom. INMs of the NMAD defined at initial time t = 0
(INM0) are shown to be suitable coordinates to conduct the
hybrid simulations since they achieve the best compromise
between a proper initial definition of the quantum and classical
subsystems and an accurate hybrid quantum/classical prop-
agation during the VR. The ultimate evaluation of the time
evolution of the energy stored in each individual normal mode
is made by using the hybrid INMs (INMt). Both the INM0's
and the hybrid INMt are identified and assigned using the
ENMs as templates.
The results obtained from the hybrid MDQT simulations

show that inclusion of quantum effects in nonequilibrium MD
notably modifies the dynamics of the VR of the amide I mode,
which turns out to be significantly faster than that from
previous classical simulations, and also in better agreement with
experiments. Furthermore, the hybrid MDQT simulations
reveal different aspects of the VR of the individual quantum
normal mode within a classical polyatomic molecule that
should be taken into account in future vibrational MDQT
descriptions. First, the time evolution of quantum populations
of the initial excited mode may show nonphysical short-time
oscillations not directly related to the global relaxation process.
These oscillations may lead to an unsuitable ultrafast divergence
between the average quantum and classical populations, which can
be amended by evaluation of the quantum transitions only after
every period of them, thus obtaining significant improvements in
the expected match between classical and quantum populations
during the very first stage of the relaxation process. Second, the
nonphysical energy transfer that occurs to high-frequency normal
modes, previously reported in several nonequilibrium classical MD
simulations, can be avoided by preventing the energy flow to these
modes during the hybrid hops, without altering the distribution of

the energy transferred to the low- and mid-frequency modes.
Finally, the direct intra- and intermolecular energies released by
the initially excited quantum amide I mode can be calculated
separately from the energy redistribution at the hops. This
information turns out to be very useful in discerning the origin of
the excitation of several intermediate normal modes during the VR
of the whole molecule.
The hybrid MDQT simulations carried out in this work

confirm that the relaxation of the amide I mode is essentially an
intramolecular vibrational redistribution process, in agreement
with previous theoretical and experimental studies, with little
contribution from the solvent molecules. We have identified
and described the specific hybrid IVR relaxation pathways that
follows the relaxation of the amide I mode and compared them
with the results from previous classical MD simulations. Thus
we have discerned the role played by the low-frequency modes
acting as intermediate modes between the amide I and the
solvent. This fast and highly efficient energy relaxation channel
could not be detected in classical simulations. In addition, it has
been shown that the mid-range and high-frequency modes
behave quite similarly, with some slight differences between
them arising from the faster transfer of the energy released by
the amide I mode and the resonance shift caused by the hybrid
nature of this mode.
The discrete quantum energy transfer from the hybrid amide

I mode to the rest of the NMAD molecule accelerates the
whole VR process, in which two different well-defined
relaxation mechanisms are identified. The faster mechanism
accounts for ≈40% of the total vibrational energy and takes
place with the participation of the lowest frequency vibrations
as short-life intermediate modes. The second and slower
mechanism accounts for the remaining ≈60% of the energy,
which is funnelled through specific mid-range and high-
frequency modes.
The vibrational MDQT implementation presented in this

work can be considered as a first step in the development of
new nonequilibrium hybrid quantum/classical approaches
designed to simulate the VR of real polyatomic molecules,
like peptides, in liquids. This theoretical formulation runs
parallel and on the same track with the most recent advances in
time-resolved infrared-Raman spectroscopic measurements and
can be straightforwardly extended to treat more than one
degree of freedom quantum-mechanically.
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A.; Zuñ́iga, J.; Requena, A. J. Chem. Phys. 1999, 111, 239.
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