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Abstract—In this paper, we present a novel GP-based visual
controller. The HOG features are used as a global representation
of the observed image. The Gaussian Processes (GP) algorithm
is trained to learn the mapping from the HOG feature vector
onto the velocity variables. The GP training is achieved using
corridor images collected from different places, these images
are labeled using velocity values generated by a geometric-based
control law and robust features. A hand-based verification of
the features is done to ensure the accuracy of the ground truth
labels.Experiments were conducted to explore the capabilities of
the developed approach. Results have shown R Squared metric
with more than ninety percent on the trained GP model in noisy
conditions.

Keywords—Gaussian Processes, Visual Servoing, Wheelchair.

I. INTRODUCTION

The corridor following task was achieved in [1] as a visual
servoing task. It presented as a straightforward application
of the Image-based visual servoing. The aim is to navigate
through corridors autonomously, where people with multiple
disabilities find themselves in a challenging situation [2] [3].
Another attempt has been reported in [4] to accomplish the
same task. They employ an RGB-D camera in addition to a
bunch of other sensors which add more cost into the system.

The corridor following task was also implemented in [5]
using a learning-based method where a ResNet-18 CNN model
is trained on the ImageNet dataset and fine-tuned on a corridor
specified dataset. This approach has outperformed the tradi-
tional one in terms of the robustness of the extracted features.
However, a heavy training phase is needed. In addition, the
inference of such a deep model on a low cost embedded
board in terms of time and computational complexity is not
applicable. This learning-based method can be categorized
under the Direct Visual Servoing (DVS) scheme where the
whole image is considered as an input to produce the desired
control signal [1]. The implementation of a robotic application
such as corridor following on the base of DVS hard to be
scalable over the different shapes of corridors and different
internal environmental conditions.

In this work, we attempt to gather the strengths of both:
learning and DVS techniques while avoiding their drawbacks.
The learning-based approach has proved to generalize well and
to be robust but at the cost of time and computation complexity.
On the other hand, the DVS was proved to be a lightweight
approach but at the cost of scalability. This paper aims to
develop an overarching framework that is robust, lightweight,
and generalized over the desired task. In order to achieve

this goal, we replace the control law (velocity estimation)
component in the main DVS diagram with the Gaussian
Processes (GP) learning algorithm where the input data are
the HOG features. Histogram of Oriented Gradients (HOG)
[6]. Such features have the advantage of being invariant to
illumination changes because of the oriented gradients which
make it suitable for a variety of robotic applications.

The complete processing starting from image acquisition to
producing the velocity signals were deployed into a Raspberry
PI pocket computer. The execution time meets the real time
requirements of the wheelchair control task, it has shown a
frequency of 7Hz.

The main contributions of this paper is a novel real
time GP-based DVS framework for robotics applications. A
wheelchair corridor following task is formulated as HOG-
based controller and realized using a GP-based controller. The
remaining of paper reviews the wheelchair model and the
corridor following tasks in Section II. Section III represents
the proposed approach in detail followed by the results from
the conducted experiments illustrated in Section IV.

II. WHEELCHAIR MODELING FOR CORRIDOR
FOLLOWING

We assume that our wheelchair is a wheeled robot with
six wheels, it is moving on a horizontal plate. It is actuated
using the two large rear wheels by a differential controller and
two DC motors. Additional two passive front wheels and two
small wheels behind the wheelchair are also used to support
the wheelchair. In fact, a wheelchair can be modeled as a
unicycle robot [7] [8] thus matching non-holonomic constraints
[1], because it has two driven wheels which are controlled
independently by two direct current motors and four caster
wheels to maintain stability [8]. The two control variables
related to the wheelchair are then the translation velocity υ
along its forward/backward direction and the angular (steering)
velocity ω that perform the wheelchair rotation and direction
changing.

In the global coordinate frame, the velocity of the unicycle
robot where the control inputs u = (υ, ω) is represented as
follows [7]

υx = υ cosϕ

υy = ω sinϕ

ωz = ω

(1)

These three equations describe the kinematic model of the
robot with respect to the global coordinate frame.978-1-6654-3649-6/21/$31.00 ©2021 IEEE
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Şekil 1: Block diagram for the introduced GP-based visual
control framework

In the corridor task, only the angular velocity ω around
axis y is considered to be calculated through the control law,
while The translational velocity v∗ is considered as a constant
value.

III. GP-BASED FOR CORRIDOR FOLLOWING TASK

The proposed approach for corridor following task is
detailed through this section. As depicted on Figure 1, the input
of our framework is the current image that acquired from the
attached camera, a HOG descriptor for this image is calculated
and fed into the trained GP model which gives an appropriate
angular velocity ω as an output of the framework.

The HOG descriptor has achieved the best performance
among other global descriptors including direct image inten-
sities and deep features. As a result, HOG was selected to be
used as a global descriptor for the collected images in this
work.

A. GP-based regressor as a wheelchair visual controller

Since the GP is considered a non-parametric algorithm,
then the only optimization required is related to the added noise
or the hyperparameters that could exist in the used kernel. To
accomplish such an optimization, an optimization algorithm
can be applied on the loss function log p(y|θhyp) which is the
log-likelihood of the probability of witnessing our expectations
conditional on the hyperparameters θhyp.

In order to get the expected value for new input, the matrix
K(X,x∗) consists of the kernel values between all inputs
represented in the X matrix as row vectors and the new input
x∗. The kernel matrix is transposed and multiplied by the
inverse of the C matrix which is the noised kernel matrix.

m(X,x∗) = K(X,x∗)TC−1y (2)

In this work, we defined the kernel k between two inputs
xi and xj as follows:

k(xi, xj) = exp(
−1

2l2
(xi − xj)T (xi − xj)) (3)

and C is expressed as:

C = K(X,X) + Iσ (4)

It is worth noting that l and σ are considered as hyperpa-
rameters where θhyp = l, σ, furthermore, they are optimized in

Şekil 2: Examples of the features detected by a human anno-
tator to be used as a ground truth where V P is the vanishing
point with coordinates (xv, yv) and θv is the angle between
the median line and middle of the image.

the training phase of the GP through SLSQP algorithm which
stands for sequential least square programming. The SLSQP
was implemented as part of the Scikit-learn Python library.
Regrading the initialization values of the hyperparameters, we
noticed that changing the initial values does not affect the
convergence process of the optimization function in terms of
finding the optimum solution. It only affects the number of
iterations needed to reach the optimum solution.

We are interested in calculating the angular velocity ω
around axis y only. Hence, the GP-based control law can be
derived as a single output GP which is shown as follows:

ωy = GPωy
(HOG) (5)

It is clear that GP can calculate the desired velocity based
only on HOG features with no need to know the reference
features in prior in order to calculate the error function as in
the traditional visual servoing techniques.

B. Training data and labeling

Calculating the ground truth of the gathered data is an
essential part in order to train a proper GP model for the
specified task. The ground truth (angular velocities) of the
dataset was calculated through the traditional approach intro-
duced in [1], whereas the vanishing point and the median line
were detected by a human annotator to gather more accurate
coordinates of those geometric features and some examples
are given in Figure 2. After the detection step, the angular
velocity is calculated for each input image by the control law
proposed in [1]. The ground truth for each image is calculated
and inserted into a one vector y.

Our dataset contains images of corridors from different
viewpoints and also different architectural features which gath-
ered using the open-access datasets published by [9] and [10]
in addition to the images collected by [5].

The gathered data consisted of 2610 images. Those images
were duplicated and randomly noised with one of four different
noises which are as follows: JPEG Compression, Motion Blur,
Mild and Strong Gaussian. To accomplish this task, we looped
over the 2610 images, and for each image, we picked one of
the four available noise types randomly to be applied to the
current image. The JPEG compression was one of the noise
types because the images are in PNG format which is not the
normal case because of the large storage space it requires,
so, this compression can simulate a more realistic situation.
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Şekil 3: Some examples from the collected dataset (a) Four
images from the Clean subset (b) Four images from the noisy
subset corresponding to images in the first row where the kind
of noise that applied from left to right is: JPEG Compression,
Mild Gaussian, Strong Gaussian and Motion Blur.

Then, we have the Motion Blur which simulates the blur in
images caused by the fast robot movement. Finally, the Mild
and Strong Gaussian noises are to show how our model will
react to different levels of blur caused by inappropriate changes
in the focus of the camera.

As a result, the whole dataset become equal to 5220
images. Some examples are shown on Figure 3.

IV. EXPERIMENTAL EVALUATION

This section demonstrate the generalization and robustness
of our approach. In the next Subsection we show the robustness
and error analysis along with analysis matrices. After that, our
real wheelchair experiments are presented.

A. Analysis metrics

MSE is used in this work and it is defined as follows:

MSE =
1

n

n∑
k=1

(ωk − ω̂k)
2 (6)

where ω represents the ground truth of angular velocities,
ω̂ represents the predicted velocities and n is the number of
the test cases. A lower MSE value means a lower error and it
is not restricted into a specific range.

R2 was also used to measure the robustness of our model
as given below:

R2(ω, ω̂) = 1−
n∑

k=1

(ωk − ω̂k)2

(ωk − ω̄k)2
(7)

where ω̄ is the mean of the ground truth values related to the
test images. The values of R2 start from − inf into 1 where 1
is the best value.

B. Analysis of The Performance With Clean and Noisy Images

In this experiment, the GP training and testing was con-
ducted first on the ”Clean” dataset in order to observe the
performance of the proposed control law in the ideal state. And
then it followed by training and testing on the whole dataset
i.e. clean and noisy images to analyze the performance of

Test Set MSE R2 GP-based R2 CNN-based
JPEG Compression 0.0133 98.52 88.57

Mild Gaussian 0.0428 94.19 88.34
Strong Gaussian 0.1501 83.74 79.97

Motion Blur 0.1355 86.83 88.32
Clean 0.0836 91.02 88.32
Full 0.0983 90.70

TABLO I: R2 for HOG tested on six different sets

Şekil 4: The upper figure shows a curve of the angular veloci-
ties ω along with turn movement of the wheelchair movement.
The images with names A, B, C and D show the camera view
captured at the corresponding positions mentioned in the first
figure.

the GP-based DVS model on the different noises types. HOG
parameters for the both situations were set into 32× 32 pixel
per cell represented by 9 bins (features) for each. HOG param-
eters were empirically set to give the highest performance. The
datasets was divided into train and test with percentage of 90%
and 10% respectively. For the clean dataset, the MSE gives
0.2332 where the ground truth values after normalization has a
margin which approximately equal to 12. As a result the error
is equal to 1.94% which a very small percentage. R2 gives a
percentage equal to 75.34%. This result need to be better, and
this is achieved through generalizing the trained GP model to
be trained and tested on a more realistic dataset as shown in
the second part of this experiment.

For the full dataset, the MSE and R2 results are depicted
on table I which represents the performance over different sets
including noisy and clean in addition to a test over images from
the full dataset. It is obvious that error was decreased and the
performance increased a lot in comparison with the previous
situation. The results are comparable for the different test sets
and still gain high performance even with strong noise types
like the strong Gaussian and motion blur, where the error is
about 1.2% in comparison with the ground truth range which
still a very tiny percentage. These results lead to the fact that
the proposed model is immune to the different noise types.
Furthermore, a comparison with the previous work [5] was
made, as depicted on the table I, Despite that our approach
has almost the same performance of the CNN-based approach
for the motion blur subset, it has outperformed it for all other
subsets.
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Şekil 5: The upper figure shows a curve of the angular
velocities ω along the wheelchair movement. The images with
names A, B, C and D show the camera view captured at the
corresponding positions mentioned in the first figure.

C. Experiments with real Wheelchair Setup

A real wheelchair experiments were conducted for the
developed visual GP-based controller to achieve the corridor
following task. An electric wheelchair from ”Volta” was used.
A single Raspberry PI equipped with a camera module is used
for the complete computations starting from images acquisition
to velocity calculation. No other computer or computation
device are used where our trained GP model was efficiently
deployed on the Raspberry PI. The angular velocity is sent
to the ”Sabertooth” motor driver in order to differentially
drive the wheelchair motors. The method works on about
7Hz frequency, corresponding to 143ms for executing the full
motion cycle.

1) Start from arbitrary position: The aim of this experi-
ment is to prove that our trained model can align and drive
the wheelchair through the corridor starting from an arbitrary
position, not aligned with the corridor. In this experiment, large
part of the main structure of the corridor was initially out of
the camera view field. The wheelchair was able to correct its
direction and align with the corridor. As depicted in Figure 4,
the first shot marked with (A) letter shows the image captured
by the camera at the initial moment. The negative value of
the corresponding angular velocity at the position (A) works
on correcting the direction of the wheelchair. The correction
takes several time moments, the progress of it is shown in the
next images i.e. B, C, and D. It is clear that the wheelchair
has become in alignment with the corridor at the position of
image C.

2) Corridor Following with Multiple Interventions: In this
experiment, we measure the robustness of our model in terms
of the response to unexpected interventions that could lead to
an inappropriate response while navigating through the corri-
dor. Interventions were made along the corridor by pushing the
wheelchair towards the wall. In Figure 5, the first image (A)
show the start position. Images B, C, and D represent the main
interventions, where each image shows the camera view at the
direction which caused by each intervention. The curve shows
the corresponding velocity response to each of the mentioned

interventions. This experiment demonstrates that after every
interventions made through the corridor, our model is still able
to correct the error and get the wheelchair back into the right
path.

V. CONCLUSIONS

This proposed approach is applied to the corridor following
task by an electric wheelchair. Furthermore, the robustness
of our approach against different challenges is demonstrated
as well. The approach utilises a GP-based visual controller.
The GP considers the global HOG features as an input and
was trained to produce the velocity signal as an output. The
advantages of the GP algorithm was exploited in terms of the
lightweight, performance, and noise immunity. Despite the fact
that our approach was trained over a small number of images,
the conducted experiments proved the robustness and real time
performance of our approach in different real-world scenarios.
In the future works, we aim at more scalable and trainable
features.
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