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a b s t r a c t

The proposed techniques in recent years for the analysis of superficial waves with multiple transducers

have been focused in the identification of different types of waves in the ground. The multistation tests

avoid the ambiguous phase unwrapping procedure required to obtain experimental dispersion curves

for the SASW technique. However, the soil profiles with stiffness inversion in depth involve the

contribution of higher modes, and the inversion process through ‘‘apparent’’ or ‘‘effective’’ dispersion

curves presents difficulties since these contributions depend of the transducers layout. The technique

proposed herein is based on the test simulation through an updating model with low computational

cost and good accuracy that include all propagation modes. Two actual test cases performed with only

six transducers shows the advantages of a new objective function called ‘‘spatial phase dispersion’’

whose experimental determination does not require subjective interventions by the analyst.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The SASW technique described by Stokoe et al. [1] has found
extensive practical application for mechanical characterization of
soil profiles given that it does not require boreholes since both the
excitation and the recordings of wave passage are performed at
the free surface. Fitting of the shear wave velocities, and
eventually of the thickness of homogeneous horizontal strata
with known (or assumed) density and Poisson coefficient is
carried out minimizing the difference between the analytical
dispersion curve and its experimental counterpart. The dispersion
curves with SASW method are normally obtained assuming the
ground surface motions with a highly dominant contribution of
the fundamental mode of Rayleigh waves. This hypothesis is
adequate in soil profiles with increasing stiffness in depth;
however, the significant influence of the higher modes on the
dispersion curves when the upper layers have higher stiffness,
typical of pavement structures, requires that higher propagation
modes be considered in the interpretation of the test results. Lai
et al. [2] use the SASW technique for simultaneous adjustment of
dispersion and attenuation curves to obtain the stiffness and
damping properties of the soil profile. With such approach, the
obtained results for profiles with growing stiffness in depth are
satisfactory, although there remains the same problems asso-
ciated to the multiple mode contributions.

Tokimatsu et al. [3] describe the influence of multiple
propagation modes on dispersion curves. An adequate offset of
the transducers referred by various authors as ‘‘filtering criteria’’
(for example [4]) allows to reduce the influence of higher
superficial modes and body waves that become more relevant
close to the point of the applied load. In fact, the contribution of
different waves patterns produces an ‘‘apparent’’ or ‘‘effective’’
dispersion curve that depends of the transducers offset. The
difficulty in some cases to obtain a unique dispersion curve that
represents the experimental data restricts the success of the
inversion process to consider the transducers layout for the
superposition of different modes [5]. In this sense, Zywicki [6]
obtains apparent dispersion and attenuation curves observing
that partial derivatives of the adjustment parameters become
unstable due to ‘‘mode jumping’’ effects.

Zomorodian and Hunaidi [7] propose to identify the predomi-
nant propagation mode at each frequency in function of the wave
number that presents the maximum vertical flexibility coefficient.
The dispersion data from different spacing are overlapped over
wide frequency ranges, and for each frequency several dispersion
data may be available. The dispersion data must be combined to
generate the average dispersion curve (data reduction). Due to the
potential dependence of the dispersion curve respect to the
transducers layout, these authors propose to use a filtering
criterion through which the data points at the same frequency
but obtained from two different receiver spacings will be rejected
if they do not match each other. In this manner, inconsistencies
that might result in convergence problems during the inverse
process due to multi-mode propagation are avoided.

The multichannel analysis of surface waves (MASW) proposed
by Park et al. [8] increases the data redundancy, thus reducing the
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influence of the experimental noise and mitigating the higher
superficial modes and body waves effects in the construction of
smoothed versions of effective dispersion curves. Obtaining
experimental dispersion curves with multiple transducers avoids
the need of phase unwrapping procedures that require subjective
interventions by the analyst. Yoon [9] extends the filtering criteria
for multiple transducers to reduce the near-field effects and
develops a procedure combining active and passive surface wave
measurements. Foti [10] finds stronger inversion process utilizing
multistation tests during the simultaneous adjustment of disper-
sion and attenuation curves. Roma [11] uses similar techniques in
inversely dispersive profiles noticing the importance of consider-
ing the transducer layout in the model.

The utilization of multiple transducers has also served to
develop techniques focused on the separation of different
patterns of superficial waves. Zhang et al. [12] use multiple
transducers for the identification of dispersion curves related with
the fundamental mode although such approach can lead to
difficulties when its contribution is not dominant and it is only
secondary. Strobbia [13] combines probabilistic models and
global search procedures to isolate the Rayleigh modes through
transformations to f–k domain. Xia et al. [14] stabilize the
inversion process and improve the resolution of the velocity
profiles simultaneously inverting the fundamental mode and
upper modes.

Some authors agree over the convenience to simulate the
response at the location of the transducers considering the
contribution of all modes. The use of the complete modal model
of soil profiles is not new although few researchers continue to
use this approach due to the high computational cost to
reproduce the test results. Ganji et al. [15] propose a 3D
simulation of SASW tests to involve all wave types during the
inversion process of the dispersion curve. However, the analytical
dispersion curve is obtained of the same form than the
experimental one presenting the same lack of uniqueness and
mode jumping problems. The main drawback of the simulation
approach is that the exact models are computationally costly
while the approximate models are not sufficiently exacts. On the
other hand, the ‘‘target functions’’ used for the inversion process
do not take advantage of all experimental information, neither
have adequate sensitivity with respect to the adjustment para-
meters. Ryden et al. [16] propose to use multimodal dispersion
curves as target in the analysis of pavement structural systems.
Ryden et al. [17] carry out the inversion process with the
complete spectrum of the phase velocities, thus avoiding the
often difficult modes separation. The target function they use is a
nondimensional version of the phase-velocity spectra proposed
by Park et al. [18,19], although it requires a high number of
transducers for a satisfactory resolution. The problem of conver-
gence to local minima is resolved using global search procedures
based on the inversion technique of fast simulated annealing.

The technique proposed in the present work considers all
propagation modes during the adjustment through a variation of
the ‘‘thin layers formulation’’ [20,21] that leads to good accuracy
and low computational cost. A relatively small number of
transducers allows the definition of a target function, here
designated as ‘‘spatial phase dispersion’’, that produces an
efficient reduction of the experimental data. This function,
originally defined in the frequency domain with the name of
phase dispersion [22], is now used in the wave number domain.
The determination of the spatial phase dispersion does not
require the intervention of the analyst, as is normally done in
the unwrapping procedure of the spectral phase for obtaining of
dispersion curves. This is possible because the values for each
frequency do not depend on adjacent frequencies’ values. The
spatial phase dispersion represents a surface whose ordinates

vary between 0 and 1 independently of the number of
transducers; the two independent variables are the period of
excitation of the source and the propagation velocity of surface
waves. The excitation period is used instead of the frequency
because the discretization of this variable with fixed increments
produces a better distribution of the experimental information.
The surface presents minimum values or ‘‘valleys’’ in correspon-
dence with the dominant propagation velocities for each excita-
tion period. These minima are related to the effective dispersion
curve of the SASW technique. The spurious valleys that appear in
this surface due to the spatial aliasing can be distinguished easily
of the main valley considering the spatial discretization
parameters.

A least square minimization of the difference between the
experimental and analytical phase dispersion allows parameter
adjustment of different strata of the soil profile even in cases of soft
strata underlying hard strata. The variability of the group velocity
with offset and number of transducers is explicitly considered,
turning out to be unnecessary to construct a unique curve valid for
all the experimental data, as is the case in the SASW technique.
Although this work does not deal with the problem of convergence
to local minima, the new target function can be incorporated in
algorithms as the proposed by Degrande et al. [23].

2. Soil profile model

The analytical model used in the inversion process is based on
the ‘‘thin layers formulation’’ [20,21] with a variation for the
halfspace model that supports the strata of the soil profile. This
formulation is usually adopted in obtaining the dispersion curves
given that it allows the response modal decomposition with low
computational cost. However, the approximation adopted for the
halfspace only provides good accuracy for the fundamental mode.
The approximation of the components of the exact stiffness
matrices of halfspace through polynomial fractions using experi-
mental modal analysis techniques accurately represents the
higher modes and at the same time preserves the computational
advantages of this formulation.

2.1. Stiffness matrices for layered soils

The exact matrices of the response in the wave number
domain k in the interface among horizontal strata are presented in
works of Kausel [20] and Kausel and Roësset [21]. The Hankel
transform that allows to convert the response from wave number
domain k to the spatial domain r requires numerical implemen-
tations that turn out to be computationally costly. The thin layers
formulation proposed by the same authors expands the trans-
cendental functions in k of the exact matrix coefficients in
quadratic polynomial of k:

K ¼ Ak2
þBkþC, ð1Þ

where C ¼ G�o2M, and o represents the excitation frequency in
rad/sec. The global matrix K of the soil profile is then built through
the assemblage of the elementary matrices of L strata that link the
generic interfaces 1 and 2 satisfying the following equilibrium
equation:
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where x represents the radial coordinate and z represents the
vertical coordinate. The response in a vertical plane in k domain is
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obtained as

KU ¼ P¼)U ¼ K�1P¼ FP: ð3Þ

The resolution of the eigenvalues problem of the complete
system:

ðAk2
l þBklþCÞFl ¼ 0, ð4Þ

allows to express the spatial response through the superposition
of all propagation modes in closed form avoiding the explicit
application of Hankel transform. The vertical displacement in the
surface Uz in wave number domain k and in spatial domain r
results

UzðkÞ ¼
X2L

l ¼ 1

F2
z,l

ðk2�k2
l Þ
() UzðrÞ ¼

1

4i

X2L

l ¼ 1

F2
z,l Hð2Þ0 ðklrÞ, ð5Þ

where L is the strata number, kl represents the eigenvalues, Fz,l

represents the vertical component of the eigenvectors in the
surface, and Hð2Þ0 ð� � �Þ is the second function of Hankel of order 0.
The matrices of the thin layers formulation present good accuracy
for small thicknesses with respect to wave length l; otherwise,
the layers can be subdivided into sublayers until reaching the
desired accuracy. An adequate discretization of soil layers
depends on the shear wave velocity of the stratum VS and should
satisfy the following condition:

Dhrl=10 ð6aÞ

rVS=ð10 f Þ, ð6bÞ

where f represents the excitation frequency in Hz. The value 1/10
empirically adopted in Eq. (6) represents a conservative value
with respect to values 1/5–1/8 usually adopted for finite element
models of soil–structure systems. This value allows a greater
precision than accepted for the dynamic response of these
systems without an appreciable increment of computational cost.

The applied load on the ground surface during the experi-
mental tests is assumed here to be a vertical point load. The
analytical solution of the response (Pekeris’s problem) presented
by Kausel [24] allows to check numerical solutions obtained with
approximate matrices used for the homogeneous halfspace
model. The input load is described in the k and r domains as

PzðkÞ ¼ 1 () PzðrÞ ¼ dðrÞ=r, ð7Þ

where dð� � �Þ represent the Dirac delta function. The vertical
response in k domain is according to (3) numerically equal to the
first vertical component of the flexibility matrix main diagonal.

2.2. Approximate matrices for homogeneous halfspace

The halfspace model originally proposed for the thin layers
formulation relies on 8–10 strata with increasing thickness in
depth covering 1.5 times the wave length of the propagation
fundamental mode where the maximum displacements are
produced. This strategy allows to obtain adequate precision to
the fundamental mode used to construct the analytical dispersion
curve of SASW technique. Nevertheless, the strategy generates
spurious modes that distort the response in spatial domain more
severely to greater distances of the input load. Fig. 1 shows a
comparison of normalized coefficients of approximate and exact
flexibility versus normalized wave number for horizontal (left)
and vertical (right) displacements. Note that fundamental mode
has the highest wave number and approximate coefficients
possess null imaginary part.

The approximation proposed in this work consists to use
halfspace matrices with the same mathematical structure of thin
layer matrices to continue avoiding the explicit application of the
computationally costly Hankel transform. The approximation of
dynamic flexibilities with polynomial fractions is exhaustively
utilized in experimental modal analysis [25] and is also used
to reproduce complex analytical solutions [26]. The works of
Ceballos et al. [27] and Ceballos [28] present several cases where
the response of soil-structure interaction systems is approached
through experimental modal analysis techniques.

The application of these adjustment techniques has allowed to
obtain discrete matrices as those given in Appendix A that
accurately reproduce the dynamic flexibility curves of the half-
space as can be observed in Fig. 2. A hysteretic damping b¼ 0:005
is assumed to the soil. The adjustment process begins with the
halfspace modeled through 5 strata with increasing thickness in
depth. The modal parameters extracted of these halfspace global
matrices are then adjusted through small steps of iteration until
convergence. The normalized results allow to use the adjusted
matrices for different values of the shear wave velocities; the
optimization procedure should be repeated for different values of
Poisson coefficient, and eventually for different values of
hysteretic damping. These matrices may be included in a database
during the adjustment procedure.

The modal shape components cannot take arbitrary values
since that would break the special structure of the strata matrices
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Fig. 1. Original approximate flexibility of homogeneous halfspace ðn¼ 0:25Þ.
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[20]. Therefore, the optimization procedure incorporates restric-
tions to the modal shapes to maintain this structure allowing to
pass from k domain to r domain in analytical form. These
restrictions should also be satisfied for complex modal shapes of
mechanical systems with non-classical damping whose move-
ment equations are expressed in state space formulation. Garvey
et al. [29,30] present detailed studies of this type of systems that
require to satisfy the called ‘‘fundamental restriction’’.

3. Spatial phase dispersion

The adjustment of shear wave velocities of different strata is
carried out through a least square minimization of the difference
between experimental and analytical versions of the spatial phase
dispersion. This function depends on offset and number of
transducers. Fig. 3 shows the suggested layout for M uniaxial
sensors placed in a vertical direction on the ground surface. The s

parameter represents the transducers offset among themselves
just like the distance between input load and first transducer. This
parameter is duplicated after the execution of 5–10 impacts in
each end of the transducers line.

At this point, it may be pointed out that the main advantages
to take records of the ground movement only in a vertical
direction are: (a) the vertical amplitudes are usually greater than
the horizontal ones having better signal-to-noise relation; (b) a
greater number of measurement points over the ground for the
same number of channels, and (c) the relation between vertical
and horizontal ground movement components that would be
used for the model updating may be affected by material
damping.

3.1. Analytical definition

The purpose of the spatial phase dispersion is to quantify for
each frequency the continuity of spatially discretized surface
waves for a given position of the transducers by means of
different ‘‘testing-phase velocities’’ (according to the terminology
used by Ryden and Park [17]). The analytical form of the spatial
phase dispersion is constructed with the relative spatial phase
among transducers as follows:

(1) To quantify the continuity of the surface waves, the spectral
response for each excitation frequency (or period) oi of each
transducer m is ‘‘synchronized’’ as a function of the distance
to the input load rm and of the testing-phase velocity Vj by

dividing the spectral response Uim by the Hankel function
Hð2Þ0 ð� � �Þ:

U ijm ¼
Uim

Hð2Þ0 ðoi=Vj � rmÞ
: ð8Þ

This type of synchronization is designated by Zywicki [6] as a
cylindrical beamforming equation. However, the target func-
tion obtained in their approach after the combination of the
records of different transducers turns out to be essentially
different with respect to the spatial phase dispersion.

(2) The relative spatial phase of each transducer m for each
excitation frequency oi and testing-phase velocity Vj is equal
to the complex amplitude angle:

jijm ¼ angleðU ijmÞ: ð9Þ

(3) The spatial phase dispersion Gij of frequency oi and velocity
Vj is obtained by relating the relative spatial phase of the M

transducers among themselves:

Gij ¼
XM�1

m ¼ 1

XM
n ¼ mþ1

ðsinjijm�sinjijnÞ
2
þ � � �

ðcosjijm�cosjijnÞ
2

0
@

1
A

M2
, n4m: ð10Þ

The basis for this expression is the fact that a single surface
wave propagating at frequency oi at a propagation velocity Vj is
such that all terms under the summation sign are cancelled due to
the synchronization of the spatial phase. In general, the terms
under the summation sign tend to grow when the velocity departs
from the dominant values of the propagation velocities. The factor
M2 leads to the condition that the maximum value of the phase
dispersion has unity as an upper bound.

It is worth pointing out that the spatial phase dispersion, used
as a target function in the inversion process, may be interpreted
as a surface defined in terms of two independent variables
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Fig. 2. Improved approximate flexibility of homogeneous halfspace ðn¼ 0:25Þ.
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Fig. 3. Transducers layout on ground surface.
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(frequency – or period – of the excitation, and the testing-phase
velocity) which is only valid for a given number and spatial
distribution of the transducers. As a consequence of this, the
adjustment between experimental and analytical spatial phase
dispersions corresponding to different transducer layouts are to
be adjusted separately.

Alternative expressions for the spatial phase dispersion
mathematically identical to (10) are obtained in terms of the
synchronized spectral amplitudes:

Gij ¼
1

M2

XM�1

m ¼ 1

XM
n ¼ mþ1

U ijm

jU ijmj
�

U ijn

jU ijnj

 !
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U
�

ijm

jU ijmj
�

U
�

ijn

jU ijnj

 !
0
BBBBB@

1
CCCCCA, ð11Þ
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, ð13Þ

Gij ¼
1

M2

XM�1

m ¼ 1

XM
n ¼ mþ1

2�
U ijmU

�

ijnþU ijnU
�

ijmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U ijmU

�

ijmU ijnU
�

ijn

q
0
B@

1
CA: ð14Þ

The last equation leads to a more convenient form for the
experimental data since it involves spectral densities Sijmn

(defined further on in the paper) that they allow the possibility
of averaging records from different experiments or runs in order
to reduce the influence of random noise:

Gij ¼
1

M2

XM�1

m ¼ 1

XM
n ¼ mþ1

2�
SijmnþSijnmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SijmmSijnn

p
 !

: ð15Þ

Separating the summation from the constant term one
arrives at

Gij ¼ 1�
1

M
�

1

M2

XM�1

m ¼ 1

XM
n ¼ mþ1

SijmnþSijnmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijmmSijnn

p : ð16Þ

An alternative target function that could be used to adjust the
soil profile with identical results, which is closely related to the
normalized phase-velocity spectra proposed by Ryden and Park
[17], consists of the spatial phase coherence defined as follows:

Cij ¼ 1�Gij ¼
1

M
þ

1

M2

XM�1

m ¼ 1

XM
n ¼ mþ1

SijmnþSijnmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijmmSijnn

p : ð17Þ

In this case, a value of Cij close to unity would indicate a high
spatial coherence of the surface waves for the excitation
frequency oi and the propagation velocity Vj.

The synchronization of spectral phase in Eq. (8) could be
carried out through a complex exponential (assuming a 2D waves
propagation model) as

U ijm ¼
Uim

expðIoi=Vj � rmÞ
: ð18Þ

However, the Hankel function better represents the 3D
propagation especially near of the input load. In fact, the
analytical solution of the vertical displacement on a homogeneous

halfspace presented by Lamb [31] results in

UzðkÞ ¼
F2

R

ðk2�k2
RÞ
() UzðrÞ ¼

1

4i
F2

R Hð2Þ0 ðkRrÞ, ð19Þ

with

F2
R ¼

1

G

k2
S ðk

2
R�k2

PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R�k2
S

q
8k4

R�6k2
Rðk

2
Pþk2

S Þþ4k2
Pk2

Sþð4k2
S�8k2

RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R�k2
P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R�k2
S

q� � :
ð20Þ

G¼ dV2
S , kP ¼o=VP ,

kS ¼o=VS, kR ¼o=VR, ð21Þ

where d is the halfspace density, and VP, VS and VR are propagation
velocities of P, S and Rayleigh waves, respectively.

A convenient representation of the spatial phase dispersion is
obtained through contour lines as a function of the excitation
period and of the propagation velocity. The three profiles
described in Table 1 are studied in order to show the general
aspect of this function. Case I represents a stratum of 4 m
thickness with VS ¼ 200 m/s over a homogeneous halfspace with
VS ¼ 400 m/s. Case II considers a stratum of 4 m thickness with
VS ¼ 400 m/s over a homogeneous halfspace with VS ¼ 200 m/s.
Case III represents a stratum of 4 m thickness with VS ¼ 200 m/s
over another stratum of 4 m thickness with VS ¼ 400 m/s, and a
lower homogeneous halfspace with VS¼200 m/s. All cases adopt a
density d¼ 2:0 tn=m3 and a Poisson coefficient n¼ 1=3.

Figs. 4–6 present the spatial phase dispersion obtained using
eight transducers with different offsets for cases described in
Table 1. The dependence of the dominant propagation velocity
with transducers offset is clearly observed in these figures (thick
continuous line). The zone above the dash lines represents wave
lengths greater than the distance between the impact point and
the last transducer ðl4lmaxÞ. The zone below the dash-dot lines
represents wave lengths with deficient sampling rate that would
be affected by aliasing effects ðlolminÞ: observe minimum spatial
phase dispersion strips not related with dominant propagation
velocities. The zone of recommended values for the adjustment is
found between both described lines (shaded zone). The position of
these boundary lines depends on number and offset of transdu-
cers according to the following expressions:

lmax ¼ VmaxT ¼Ms) Vmax ¼Ms=T ðdash linesÞ

lmin ¼ VminT ¼ 2s) Vmin ¼ 2s=T ðdash2dot linesÞ

)
: ð22Þ

3.2. Experimental determination

The experimental spatial phase dispersion is obtained from
tests as follows:

(1) The spectral response for each excitation frequency (or
period) oi, each transducer m and each test sample p is
obtained through the Fourier transform as (tq represents a

Table 1
Study cases of spatial phase dispersion.

Layer Thickness (m) Shear waves velocity (m/s)

Case I Case II Case III

1 4 200 400 200

2 4 – – 400

Halfspace 1 400 200 200

M.A. Ceballos, C.A. Prato / Soil Dynamics and Earthquake Engineering 31 (2011) 91–103 95
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time sample from a total of Q samples)

Uimp ¼
XQ

q ¼ 1

umpðtqÞexpð�IoitqÞ: ð23Þ

(2) The synchronized spectral response in function to input
distance rm and propagation velocity Vj is calculated through

the Hankel function Hð2Þ0 ð� � �Þ:

U ijmp ¼
Uimp

Hð2Þ0 ðoi=Vj � rmÞ
: ð24Þ

(3) The spectral densities are obtained from the P test samples
averaging the products of the synchronized spectral response

of transducer m by the complex conjugate one of
transducer n:

Sijmn ¼
1

P

XP

p ¼ 1

U ijmpU
�

ijnp: ð25Þ

(4) The spacial phase dispersion of frequency oi and velocity Vj is
calculated through the expression (15) in function of spectral
densities.

The global spectral coherence of the experimental data for
definition of confidence ranges can be tentatively obtained for
each excitation period Ti as the arithmetical average of the
coherence of all transducers among themselves.

Fig. 4. Spatial phase dispersion for Case I: 8 transducers with offset of (A) 1 m and (B) 4 m.

Fig. 5. Spatial phase dispersion for Case II: 8 transducers with offset of (A) 2 m and (B) 8 m.
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4. Procedure of model updating

The adjustment of shear wave propagation velocities of
different strata is carried out through simultaneous minimization
of the difference between experimental and analytical versions of
the spatial phase dispersion of each transducer layout used for the
tests. The range of frequencies defined for the adjustment process
depends on the depth of interest, which is naturally conditional to
attaining sufficiently high coherence in that range. The adjust-
ment velocities are defined through expressions (22) in terms of
the involved wave lengths. In this way, the adjustment region of
the surface representing the spatial phase is within the shaded
area of Figs. 4–6.

An adequate conditioning of the updating equation system is
obtained choosing as adjustment parameters the fractional
change of strata velocities {p} according to common techniques
in experimental modal analysis [25]:

fVUg ¼ fVIgð1þfpgÞ, ð26Þ

where {VU} and {VI} are adjusted and initial shear wave velocity
vectors, respectively, in each iteration step. The initial values
vector of strata velocities can be defined through the raw
experimental data. The experimental phase dispersion is ex-
pressed in terms of the initial value for each iteration as

GX
ij ¼GI

ijþ
XNp

l ¼ 1

@GI
ij

@pl
pl: ð27Þ

Eq. (27) is strictly valid for small variations of updating
parameters so that the maximum variation rate of the velocities
for each iteration must be limited. The system to solve using the
least square criterion is

@GI
ij

@p1

@GI
ij

@p2
� � �

@GI
ij

@pNp

( )
fpg ¼GX

ij�G
I
ij: ð28Þ

The root mean square of the difference between experimental
and analytical versions of the spatial phase dispersion (indepen-
dent term of Eq. (28)) for all transducer layouts used in the tests is

utilized as error norm for convergence control during the
inversion process.

The sensitivity matrix that multiplies the adjustment para-
meters vector {p} is updated at each iteration evaluating the
derivatives of the spatial phase dispersion through the chain rule.
The spectral response used in Eq. (8) is expressed in terms of
modal parameters form the eigenvalue problem of the thin layers
formulation according to (5). Friswell et al. [32] present the partial
derivatives of complex eigenvalues and eigenvectors of a damping
system with respect to its physical parameters that are directly
applicable to the layered soil model replacing the frequency o by
the wave number k.

The need of iterations during the adjustment process is due to
the linearization of the components of the sensitivity matrix. It
may also be convenient to set limit values to the adjustment
parameters in each iteration to maintain the validity of linearized
expressions.

The Poisson coefficient and hysteretic damping relations are
not chosen as updating parameters due to the lack of sensitivity of
the spatial phase dispersion against these parameters, as
compared with shear wave velocities. Nevertheless, the repetition
of the adjustment procedure with different sets of these
parameters can provide an estimation of the optimum values.
The spatial phase dispersion has low sensitivity with respect to
velocity changes of deep strata whose values are close to the real
ones, as it happens with the dispersion curves of the SASW
technique.

5. Experimental studies

Two test cases are now presented in order to illustrate the
main features of the proposed target function. These cases
correspond to two different soil profiles that may be considered
representative of typical situations near the authors base; the first
one corresponds to a deep loessic formation with normally
dispersive profile (increasing stiffness in depth), while the second
one is a site with a pavement layer, i.e. inversely dispersive. The
selection of the test cases was based on the need to gather all the
experimental data with the same set of transducers and recording
equipment that is required to apply the proposed procedure with

Fig. 6. Spatial phase dispersion for Case III: 8 transducers with offset of (A) 1 m and (B) 4 m.
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a limited logistic effort. As a consequence, the procedure is not
compared with other similar approaches mentioned in the
literature but rather with other readily testing techniques
available to the authors.

5.1. Case 1: normally dispersive profile

5.1.1. Test description

The input load on the ground surface was applied dropping a
steel mass of 0.5 kN from a height of about 1.7 m from a tripod
shown in Fig. 7. The layout of the six HBM accelerometers used as
transducers is also given in this figure. The amplifier/conditioner
(model Spider 8) used has eight input channels set with a
Butterworth low-pass filter at 75 Hz. This equipment is handled
through special software installed in a portable computer
together with the test records. Each of the experimental signals
has a duration of 2.5 sec and a sampling frequency of 600 Hz that
produces 1500 points per record. The sensors were placed using
four layouts on the ground with offsets of 0.5, 1, 2 and 4 m. The
spectral coherence to define the rank of confident periods was
obtained through five tests for each layout.

5.1.2. Analysis of results

The soil at the testing site is ‘‘loess’’; according to available
studies [28,33] it has an approximate density d¼ 1:4 tn=m3 and a
Poisson coefficient of n¼ 1=3. A preliminary analysis of the raw
experimental data suggests to discretize the soil profile model in 8
strata of 1 m thickness each over a homogeneous halfspace. These
strata are then divided into sublayers with the same properties
depending of the analysis frequency according to Eq. (6). The
initial value of shear wave velocities of the strata and halfspace is
VS¼200 m/s. The maximum variation rate of shear wave velocities
defined for each iteration was 0.01.

Figs. 8–11 show a comparison of experimental and adjusted
spatial phase dispersion surfaces for transducer offsets of 0.5, 1, 2
and 4 m, respectively. The general distribution of contour lines of
analytical and experimental versions of the spatial phase disper-
sion present a marked similarity even in the aliasing zone below
the dash-dot lines. The spectral coherence obtained as the average
of values calculated for all the transducers in pairs is shown below

Fig. 7. Application of impulsive load and transducers layout for Case 1.

Table 2
Fitted shear waves velocities for Case 1.

Layer Thickness (m) Poisson’s ratio Density (tn/m3) VS (m/s)

1 1.00 1/3 1.40 217

2 1.00 1/3 1.40 220

3 1.00 1/3 1.40 222

4 1.00 1/3 1.40 220

5 1.00 1/3 1.40 220

6 1.00 1/3 1.40 217

7 1.00 1/3 1.40 222

8 1.00 1/3 1.40 211

Halfspace 1 1/3 1.40 211

Fig. 8. Spatial phase dispersion for a transducer offset of 0.5 m: (A) Experimental and (B) Analytical.
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the experimental surfaces. Their values fell for periods smaller
than 0.015 sec due to the effect of the low-pass filter, while the
offsets of 2 and 4 m show a marked general fall by a combined
effect of smaller signal/noise relation, due to geometric attenua-
tion of surface waves, and the use of long cables to reach the most
distant transducers.

A comparison of the spatial phase dispersion as a function of
the excitation period T, taking the values of the propagation
velocity given by the expression V¼4s/T (it is marked at the
center of the shaded area by a dot line) is shown below the
analytical surfaces. The continuous lines represent the analytical
version of the spatial phase dispersion while the dash lines

Fig. 9. Spatial phase dispersion for a transducer offset of 1 m: (A) Experimental and (B) Analytical.

Fig. 10. Spatial phase dispersion for a transducer offset of 2 m: (A) Experimental and (B) Analytical.
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represent the experimental counterpart (noting that in some
cases the comparison extends beyond the adjustment region). The
root mean square of the difference between analytical and
experimental surfaces of the spatial phase dispersion turns out
to be erms ¼ 0:114.

The final adjusted values of the shear waves velocities shown
in Table 2 are within the range of values measured by Rinaldi et al.
[34] through bender elements in a sample obtained nearby with a
moisture content w¼ 15220% during an oedometric test. The
SASW technique applied in the adjacent area of the test field [28]
gave values of VS ¼ 1602180 m=s near the surface, while for
depths larger than 3 m values of VS ¼ 1902225 m=s were
reported. Down-hole tests performed by Rinaldi et al. [35] are in
the range of VS ¼ 2002320 m=s for depths up to 5 m. These results
show that the values obtained using different experimental
techniques may exhibit marked differences among them. The
differences among these techniques are attributed to the exten-
sion of the soil profile covered during the tests, considering
possible heterogeneousness inside each stratum, to the capacity
of each technique of mitigating the experimental noises, and to
the consistency between the analytical and experimental versions
of the target function, among other factors.

The adjusted soil profile presents basically uniform velocities
that could also have been obtained with the original SASW
technique. The proposed method, however, can be fully auto-
mated and does not require subjective user interventions.

5.2. Case 2: inversely dispersive profile

5.2.1. Test description

The input load on the pavement surface was applied manually
through a steel hammer with a mass of 20 N. The impact point of
the hammer together with the layout of the same accelerometers
used in Case 1 is given in Fig. 12. A Butterworth low-pass filter
at 200 Hz was used for all channels. Each experimental record
has a duration of 1.0 sec and a sampling frequency of 1200 Hz.

The sensors were placed on the pavement in two different offsets:
0.30 and 0.60 m. The spectral coherence to define the rank of
validity was obtained by repeating the tests five times for each
transducer layout.

5.2.2. Analysis of results

The profile consists of a concrete asphalt layer with a thickness of
0.05 m over a base of granular material with a thickness of 0.10 m.
Both strata rest on the same loessic formation of Case 1, that is
discretized in three strata of 0.20, 0.40 and 0.80 m thickness,
respectively, on a homogeneous halfspace. The initial values of shear
wave velocities of the asphalt, granular base and loessic formation
are 800, 400 and 200 m/s, respectively. The maximum variation rate
of shear wave velocities defined for each iteration was 0.005.

Figs. 13 and 14 show a comparison of experimental and
adjusted spatial phase dispersion for transducer offsets of 0.30
and 0.60 m, respectively. The contour lines of analytical and
experimental spatial phase dispersion are very similar within the

Fig. 11. Spatial phase dispersion for a transducer offset of 4 m: (A) Experimental and (B) Analytical.

Fig. 12. Application of impulsive load and transducers layout for Case 2.
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shaded zone. The spectral coherence shown below the experi-
mental surfaces presents values over 0.9 throughout the
frequency range. A comparison of the spatial phase dispersion
in terms of the excitation period T, for the velocities given by
V¼4s/T, is shown below the analytical surfaces. The continuous

lines represent the analytical version of the spatial phase
dispersion while the dashed lines represent the experimental
counterpart. The root mean square of the difference between
analytical and experimental surfaces of the spatial phase
dispersion turns out to be erms ¼ 0:111.

Fig. 13. Spatial phase dispersion for a transducer offset of 0.30 m: (A) Experimental and (B) Analytical.

Fig. 14. Spatial phase dispersion for a transducer offset of 0.60 m: (A) Experimental and (B) Analytical.
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Table 3 shows the discretization of the site profile, the adopted
values of Poisson’s ratio and density, and the final adjusted values
of the shear wave velocities. The adjusted velocity of asphalt is
consistent with the range of values VS ¼ 8002950 m=s obtained in
direct measurements over core samples. The adjusted velocity of
the base is found within the expected values. The shear wave
velocity for the loess stratum of 0.20 m thickness turns out to be
higher than lower strata, which is attributed to surface compac-
tion of the top soil layer. The remaining velocities in loess are
found consistent with those at nearby areas measured with other
techniques referred to in Case 1.

6. Conclusions

A new technique for adjustment of mechanical soil profiles
through the spectral analysis of surface waves has been
presented. This technique, based on the complete solution of
the response of the ground surface, does not have the limitation of
the original SASW method that is rigorously applicable only for
soil profiles with growing stiffness in depth. The spatial phase
dispersion used as a target function for the adjustment process
takes into account the variability of the propagation velocities
with the number and the offset of the transducers used in the
experimental setup.

A new version of the stiffness matrix of the homogeneous
halfspace was derived by means of experimental modal analysis
techniques, allowing to use the thin layers formulation to obtain
the response in spatial domain in closed form through system
modal parameters. In this way the explicit application of Hankel
transform is avoided, thus substantially reducing the computa-
tional time.

The tests cases have shown the distortions on the experi-
mental phase dispersion produced both by experimental noise
and by variations within the layers of the soil profile. The target
function for the model adjustment is shown to be robust even in
low coherence ranges and with relatively small number of
transducers. Further testing of the proposed technique in more
complex soil sites and comparison against other techniques may
be found useful to assess its reliability for practical applications.
Another issue still pending to be addressed in detail is the
estimation of uncertainties of the adjusted parameters of the soil
profile.
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Appendix A

The following halfspace matrices with the format of Eq. (1)
produce the curves of Fig. 2:

A¼
A11 AT

21

A21 I

" #
, ð29Þ

A11 ¼
4:604þ0:261i 0

0 0:453þ0:027i

" #
, ð30Þ

A21 ¼

0:230�0:012i 0

0 0:456�0:319i

1:839þ0:086i 0

0 0:013�0:310i

�0:825þ0:036i 0

0 0:448þ0:507i

0:242þ0:089i 0

0 0:282�0:082i

2
66666666666664

3
77777777777775

, ð31Þ

B¼
B11 BT

21

B21 B22

" #
, ð32Þ

B11 ¼
0 0:483�0:328i

0:483�0:328i 0

� �
, ð33Þ

B21 ¼

0 �0226þ1:353i

0:394�0:718i 0

0 0:791�0:218i

�0:646�0:457i 0

0 0:090þ0:159i

0:056�0:458i 0

0 0:242�0:012i

�0:437�0:102i 0

2
66666666666664

3
77777777777775

, ð34Þ

B22 ¼

0 �0:816�0:134i � � �

�0:816�0:134i 0 � � �

0 0:177þ0:043i � � �

�0:511�0:080i 0 � � �

0 �0:239þ0:054i � � �

0:216�0:209i 0 � � �

0 0:075�0:276i � � �

�0:116�0:174i 0 � � �

2
66666666666664

� � � 0 �0:511�0:080i � � �
� � � 0:177þ0:043i 0 � � �

� � � 0 �0:269�0:012i � � �

� � � �0:269�0:012i 0 � � �

� � � 0 �0:025þ0:112i � � �

� � � 0:070�0:294i 0 � � �

� � � 0 0:231�0:165i � � �

� � � �0:208�0:044i 0 � � �

� � � 0 0:216�0:209i � � �
� � � �0:239þ0:054i 0 � � �

� � � 0 0:070�0:294i � � �

� � � �0:025þ0:112i 0 � � �

� � � 0 0:234þ0:030i � � �

� � � 0:234þ0:030i 0 � � �

� � � 0 0:133þ0:075i � � �

� � � �0:072�0:042i 0 � � �

Table 3
Fitted shear waves velocities for Case 2.

Layer Thickness (m) Poisson’s ratio Density (tn/m3) VS (m/s)

1 0.05 1/3 2.30 831

2 0.10 1/3 1.90 422

3 0.20 1/3 1.40 336

4 0.40 1/3 1.40 191

5 0.80 1/3 1.40 200

Halfspace 1 1/3 1.40 179
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� � � 0 �0:116�0:174i

� � � 0:075�0:276i 0

� � � 0 �0:208�0:044i

� � � 0:231�0:165i 0

� � � 0 �0:072�0:042i

� � � 0:133þ0:075i 0

� � � 0 �0:276þ0:023i

� � � �0:276þ0:023i 0

3
77777777777775

, ð35Þ

C ¼
C11 CT

21

C21 C22

" #
, ð36Þ

C11 ¼
�0:631þ1:099i 0

0 0:546�0:359i

� �
, ð37Þ

C21 ¼

0:213þ0:245i 0

0 0:531�0:832i

�0:198þ0:330i 0

0 �0:452�0:278i

0:124�0:251i 0

0 �0:253�0:376i

�0:177�0:092i 0

0 �0:578�0:068i

2
66666666666664

3
77777777777775

, ð38Þ

C22 ¼ diag

1:574þ0:931i

0:388�0:544i

0:137þ0:162i

�0:402þ0:290i

�0:325þ0:113i

�1:037þ0:264i

�0:481�0:005i

�0:927�0:022i

2
66666666666664

3
77777777777775
: ð39Þ

The degrees of freedom 3–10 represent ‘‘generalized’’ (non-
physical) coordinates used to extend the modal model to improve
the approximation of the flexibility curves.
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