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THE SAFE AND EFFECTIVE CLINICAL DEPLOYMENT OF ARTIFICIAL 
INTELLIGENCE TOOLS 

 

Kelly Nealon, M.S. 

Advisory Professor: Laurence Court, Ph.D. 

 

18 million new cancer cases are diagnosed each year. Roughly half of these 

patients will be treated with radiation therapy, a complex technique that requires an 

interdisciplinary team of clinical staff and expensive equipment to be delivered 

safely. Cancer centers in Low- and Middle-Income Countries (LMIC) have an 

especially difficult time meeting the demands of radiation therapy as the complexity 

of treatment techniques increase, with only 37% of patients in these regions having 

access to the care they need. Artificial Intelligence (AI) based tools are being 

developed to simplify the treatment planning and quality assurance processes to 

increase the number of patients who can be treated, as well as improving the quality 

of their treatment plans. While AI techniques have shown great promise, with any 

new technology it is important to not only assess the potential benefits, but also the 

associated risk. To this end, we have performed a risk assessment of our in-house 

automated treatment planning system, the Radiation Planning Assistant, to identify 

points of risk and subsequently develop appropriate quality assurance and training 

resources to minimize patient risk.  

To identify points of risk, a failure mode and effects analysis was performed 

by a multidisciplinary team of clinicians and software developers. Changes were 

then made to limit the risk of 76% of high-risk failures. These risk points were then 

incorporated into hazard testing, and we found that 62% of errors could be detected 
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before a plan was created in the RPA. The user interface was then modified to limit 

the number of errors that will be propagated into the automatic planning process. 

Following the changes made to optimize the safety of the user interface, the 

efficacy of error detection during the plan review process was assessed. A custom 

checklist was developed to guide the review of automatically generated treatment 

plans, based on the results of our FMEA and AAPM TG-275. During final physics 

plan checks, when utilizing the customized checklist, we found an increase in the 

rate of error detection by 20% for physicists and 17% for medical physics residents. 

An end-to-end test was then performed to evaluate the entirety of the RPA 

training and deployment procedure for new users. Users were asked to review 

training materials and generate 10 treatment plans, including all treatment sites 

available in the RPA. Following training, 100% of the errors present in these plans 

were detected and users reported that the developed training materials provided 

them with all information needed to generate safe, high-quality, treatment plans.  

Finally, a real-time contour monitoring system was developed to limit the risk 

of systematic errors and detect abnormalities in the contouring process that could be 

attributed to software error, off-label use, or automation bias.  

In conclusion, we have optimized the safety and efficacy of the RPA training, 

quality assurance, and deployment processes. This evaluation has allowed us to 

not only maximize the impact of our automated treatment planning tool, the RPA, 

but has also generated results that should be used to inform the development of 

safe AI software and clinical deployment procedures, in future clinical 

environments. 



 

vii 
  

Table of Contents 

Approval Page………………………………………………………………………………..i 

Title Page………………………………………………………………………………….…ii 

Acknowledgments ................................................................................................................. iii 

Abstract……………………………………………………………………………………….v 

List of Illustrations................................................................................................................. xii 

List of Tables ......................................................................................................................... xv 

Chapter 1: Introduction .......................................................................................................... 1 

Chapter 2: Purpose and Central Hypothesis ..................................................................... 4 

Chapter 3: A Risk Analysis of the Impact of AI in Clinical Practice ................................ 8 

 3.1 – Introduction......................................................................................................... 8 

 3.2 - Methods and Materials .................................................................................... 10 

 3.3 - Results ............................................................................................................... 13 

          3.3.1 - Process Map ........................................................................................ 13 

          3.3.2 - Cause of Error ..................................................................................... 15 

          3.3.3 - Failure Modes ...................................................................................... 17 

          3.3.4 - Corrective Actions............................................................................... 20 

 3.4 – Discussion ........................................................................................................ 23 

          3.4.1 - Integration with TPS ........................................................................... 24 

          3.4.2 - Automation Bias .................................................................................. 25 

          3.4.3 - Operator Error ..................................................................................... 25 

          3.4.4 - Impact on Deployment and Staff Training ...................................... 26 

 3.5 – Conclusions ...................................................................................................... 27 

Chapter 4: Using Hazard Scenarios to Identify Points of Weakness........................... 28 



 

viii 
  

 4.1 – Introduction....................................................................................................... 28 

 4.2  – Methods............................................................................................................ 30 

           4.2.1 - The Radiation Planning Assistant ................................................... 30 

           4.2.2 - Hazard Testing ................................................................................... 34 

                 4.2.2.1- Service Request Approval ....................................................... 35 

                 4.2.2.2 - CT Approval .............................................................................. 36 

                 4.2.2.3 - Contour Approval ..................................................................... 37 

           4.2.3 - Usability Testing ................................................................................. 38 

 4.3 – Results .............................................................................................................. 39 

           4.3.1- Service Request .................................................................................. 39 

           4.3.2 - CT Scan Approval.............................................................................. 40 

           4.3.3 - Contour Approval ............................................................................... 41 

           4.3.4 - Usability Scores ................................................................................. 42 

 4.4 – Discussion ........................................................................................................ 43 

           4.4.1 - System Updates ................................................................................. 43 

           4.4.2 - Contour Approval Task ..................................................................... 46 

 4.5 - Conclusion......................................................................................................... 47 

Chapter 5: Development of a custom checklist for use with automatically generated 

radiotherapy treatment plans.............................................................................................. 48 

 5.1 -  Introduction ...................................................................................................... 48 

 5.2 - Methods and Materials .................................................................................... 50 

           5.2.1 - Checklist development ...................................................................... 50 

           5.2.2. - Study 1 ............................................................................................... 50 

           5.2.3 - Study 2 ................................................................................................ 53 



 

ix 
  

 5.3 – Results .............................................................................................................. 55 

           5.3.1 - Study 1 ................................................................................................ 55 

           5.3.2 - Study 2 ................................................................................................ 56 

 5.4 – Discussion ........................................................................................................ 57 

           5.4.1 - Error detection in physics plan review ............................................ 57 

           5.4.2 - Participant experience levels ........................................................... 58 

           5.4.3 - Trends in error detection .................................................................. 59 

           5.4.4 - Survey feedback ................................................................................ 60 

           5.4.5 - Checklist development ...................................................................... 61 

           5.4.6 - Future Deployment ............................................................................ 61 

           5.4.7 – Limitations .......................................................................................... 62 

 5.5 – Conclusion ........................................................................................................ 63 

Chapter 6: Performing an End-to-End test of the RPA deployment and training 

strategy: A Pilot Study ......................................................................................................... 64 

 6.1 – Introduction....................................................................................................... 64 

 6.2 - Methods and Materials .................................................................................... 65 

          6.2.1 - The Radiation Planning Assistant .................................................... 65 

          6.2.2 - Proposed Training Procedure ........................................................... 67 

           6.2.3 - End-to-end testing ............................................................................. 69 

 6.3 - Results ............................................................................................................... 72 

           6.3.1 - Round 1 ............................................................................................... 72 

           6.3.2 - Round 2 ............................................................................................... 74 

           6.3.3 - Final Survey ........................................................................................ 75 

 6.4 - Discussion ......................................................................................................... 76 



 

x 
  

           6.4.1 - The RPA Plan Report........................................................................ 77 

           6.4.2 - Dose Calculation Error ...................................................................... 78 

           6.4.3 - Live Q&A Session vs. Videos Alone ............................................... 78 

           6.4.4 – Training Time Commitment ............................................................. 79 

           6.4.5 – Updates to Testing............................................................................ 80 

           6.4.5 - Future Work ........................................................................................ 81 

 6.5 – Conclusions ...................................................................................................... 82 

Chapter 7: Evaluating the clinical use and acceptability of automatically generated 

contours ................................................................................................................................. 83 

 7.1 – Introduction....................................................................................................... 83 

 7.2 - Methods and Materials .................................................................................... 85 

           7.2.1 - Monitoring for unusually large contour edits.................................. 86 

           7.2.2 - Monitoring for automation bias ........................................................ 87 

 7.3 - Results ............................................................................................................... 89 

           7.3.1 - SPC results for detection of abnormally large edits ..................... 89 

                7.3.1.1 -  Flagged Scenarios................................................................... 92 

           7.3.2 - Monitoring for Automation Bias ....................................................... 97 

 7.4 - Discussion .......................................................................................................104 

           7.4.1 - Deployment of the Automatic Contour Monitoring System .......105 

 7.5 - Conclusions.....................................................................................................106 

Chapter 8 – Discussion and Conclusions.......................................................................107 

 8.1 – Specific Aim One ...........................................................................................107 

 8.2 - Specific Aim Two ............................................................................................109 

 8.3 – Specific Aim Three ........................................................................................111 



 

xi 
  

 8.4 – General Discussion .......................................................................................112 

 8.5 – Study Limitations ...........................................................................................114 

 8.6 – Future Direction .............................................................................................115 

 8.7 – Conclusions ....................................................................................................116 

Appendix A – Full Results of Failure Mode and Effects Analysis...............................117 

Appendix B – High-Risk Failure Mode and Effects Analysis Results Following 

System Updates .................................................................................................................127 

Appendix C – Physics Checklist Created for Use for Radiation Planning Assistant-

Generated Treatment Plans .............................................................................................129 

 

 

  



 

xii 
  

List of Illustrations 
 

Fig. 1. Process map for the radiation planning assistant (RPA). CT, computed 

tomography; H&N, head and neck; TPS, treatment planning system. ........................ 12 

Fig. 2. All identified failure modes, sorted by the step in workflow during which they 

occurred. RPA, Radiation Planning Assistant; CT, computed tomography ................ 13 

Fig. 2. All identified high-risk (>125 risk priority number) failure modes, sorted by the 

step in the workflow during which they occurred. RPA, Radiation Planning Assistant, 

CT, computed tomography ................................................................................................. 14 

Fig. 3. Distribution of causes for all identified failure modes. RPA, Radiation 

Planning Assistant.  ............................................................................................................. 15 

Fig. 4. Distribution of causes for high-risk (risk priority number > 125) failure modes

................................................................................................................................................. 17 

Fig. 5. RPNs for the RPA workflow before and after corrective actions were made to 

limit risk to patients. RPN, risk priority number; RPA, Radiation Planning Assistant. 

................................................................................................................................................. 21 

Fig. 7. Process map of the Radiation Planning Assistant workflow. H&N, head and 

neck. ....................................................................................................................................... 31 

Fig. 8. Original format of head and neck service request document. .......................... 44 

Fig. 9. Updated service request document, based on user feedback that organizing 

nodal coverage by laterality would simplify the review of patient information ............ 45 



 

xiii 
  

Fig. 10. Checklist (version 1). Items for review were included based on 

recommendations from AAPM TG-275 and TG-315 and the results of a failure mode 

and effects analysis of the Radiation Planning Assistant (RPA). 90 total items were 

included to be reviewed....................................................................................................... 52 

Fig. 11. Checklist (version 2). The initial checklist was revised based on feedback 

from study participants that the checklist had too much overlap with prior clinical 

practice. The revised version focuses specifically on the errors which could be 

present during the review of RPA output, as identified in a prior failure mode and 

effects analysis ..................................................................................................................... 54 

Fig. 12. Errors detected without and with the initial checklist in study 1 (physicists) 

................................................................................................................................................. 55 

Fig. 13. Errors detected without and with the revised checklist in study 2 (residents) 

................................................................................................................................................. 56 

Fig. 64. Process map of the treatment planning workflow in the RPA ........................ 66 

Fig. 15. Scorecard used to collect participant feedback during end-to-end testing .. 70 

Fig. 16. End-to-end testing workflow for the RPA.  ........................................................ 71 

Fig. 17. Confidence scores for Participant 1 and Participant 2, in each round of the 

study, where 1 = not confident and 5 = very confident................................................... 73 

Fig. 18. Ease of use score for Participant 1 and Participant 2 in each round of the 

study, where 1 = difficult and 5 = very easy..................................................................... 75 

Fig. 19. Mean control plots showing the magnitude of edits made to automatically 

generated brain (a) and mandible (b) contours ............................................................... 90 



 

xiv 
  

Fig. 20. CT scan showing the target volume for treatment of a skull base tumor ..... 92  

Fig. 21. CT scans showing (a) an automatically generated spinal cord contour and 

(b) the final, clinically approved spinal cord contour following edits made by a 

dosimetrist ............................................................................................................................. 92 

Fig. 22. A CT scan depicting the difference between the automatically generated left 

cochlea contour (in purple), and the final clinical contour (in orange) ......................... 94 

Fig. 23. A patient CT scan that was flagged by the monitoring system, due to large 

magnitude edits which were needed to 9 of the 15 provided contours. The failures 

occurred due to the atypical patient orientation during simulation ............................... 96 

Fig. 24. Distribution of edits, by dosimetrist in this study for the (a) mandible, (b) left 

cochlea and (c) the spinal cord .......................................................................................... 98 

Fig. 25. Moving mean charts for edits made to the mandible, for each dosimetrist 100 

Fig. 26. Moving mean charts of the left (a) and right (b) parotid for edits made by 

dosimetrist 5 ........................................................................................................................ 103 

 

 

 

  



 

xv 
  

List of Tables 
 

Table 1. Failure modes and effects analysis scoring criteria for occurrence, severity, 

and detectability from TG-100 ............................................................................................ 11 

Table 2. Final 10 highest scoring failure modes, rescored after risk mitigation 

adjustments were made to the Radiation Planning Assistant workflow. S, severity; O, 

occurrence; D, detectability; RPN, risk priority number; QA, quality assurance; BB, 

radiopaque markers; CT, computed tomography; TPS, treatment planning system. 

................................................................................................................................................. 20 

Table 3. Final 10 highest scoring failure modes, rescored after risk mitigation 

adjustments were made to the Radiation Planning Assistant workflow. S, severity; O, 

occurrence; D, detectability; RPN, risk priority number; QA, quality assurance; BB, 

radiopaque markers; CT, computed tomography; TPS, treatment planning system .....

................................................................................................................................................. 23 

Table 4. Hazards evaluated in this study. S, severity; O, occurrence; D, detectability; 

RPN, risk priority number; CT, computed tomography; CTV, clinical target volume; 

H&N, head and neck; RPA, Radiation Planning Assistant ............................................ 34 

Table 5. Errors detected by radiation oncology residents at the service request 

approval portion of the RPA treatment planning workflow. ........................................... 39 

Table 6. Errors detected by radiation therapists at the CT approval step of the RPA 

treatment planning workflow ............................................................................................... 40 

Table 7. Errors detected by medical physicists at the contour approval portion of the 

RPA treatment planning workflow. .................................................................................... 41 



 

xvi 
  

Table 8.  Participant feedback from final survey, administered upon completion of 

the end-to-end testing.......................................................................................................... 76 

Table 9. Percentage of patients who were flagged as having abnormally large edits 

made to the contours of each OAR in our dataset.......................................................... 91 

Table 10. Numbers of flags for automation bias in all moving mean control plots, 

with 1 indicating that the dosimetrist was flagged for exceeding action thresholds 

corresponding to less edits over time, and 0 indicating that action thresholds were 

not exceeded. “Trending” is used to indicate that the dosimetrist’s most recent 

patients were consistently receiving fewer edits ........................................................... 102 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
1 

 

Chapter 1: Introduction 
 

  Roughly half of the 18 million new cancer patients diagnosed each year are 

treated with radiation therapy, a complex technique that requires an interdisciplinary 

team of clinical staff and expensive equipment to be delivered safely.1 This 

complexity has led to a deficit in the number of patients who have access to the care 

they need, as well as large variability in planning outcomes.2 In order to address this 

deficiency, Artificial Intelligence (AI) based tools are being introduced into 

radiotherapy workflows to assist with organ contouring and treatment planning. 

These tools use complex algorithms to perform similar functions as human planners 

while lowering staffing demands and creating more consistent and often higher-

quality treatment plans.3 

  Manual treatment planning has been the standard of care for decades, 

however human factors, such as planner experience, fatigue, and training can lead 

to a large variation in the final plan output. Inter-observer variability in target volume 

contouring has been found to introduce the largest uncertainty in the treatment 

planning process for many tumor sites, an error that could potentially result in 

geographic miss in dose delivery, and ultimately lower the probability of tumor 

control.4 The treatment planning process is also susceptible to inter-observer 

variability, with clear variations in planning techniques, and output being evident 

even within a single institution.5 The planning process is prone to errors with as much 

as 33% of near-miss errors identified in patients’ treatments originating in the 

treatment planning step of the workflow.6  To address this problem, AI-based tools 
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are being introduced to clinical workflows to standardize the contouring and planning 

processes.7 

  Automated contouring and treatment planning tools are now being used 

clinically, with both commercial and institutionally developed options available. 

8–10 The Radiation Planning Assistant (RPA) is an automated contouring and 

treatment planning tool under development which will lower the workload for low-

resource clinics, potentially increasing the number of patients who can receive 

radiation treatments.11 Thus far, we have developed auto-planning tools for cervix, 

chest wall, and head and neck cancers, with other anatomical sites in 

progress.12–18 Using the RPA, the time and resources needed will decrease, 

allowing for consistent, high-quality treatment plans for all patients, regardless 

of their resources or location. 

Automated tools have the potential to greatly simplify workflows, including in 

radiotherapy, however, they will also introduce new complexities and uncertainties 

which have yet to be adequately evaluated.19 In 2005, a radiation accident occurred 

in New York, due to errors in an automated process. A patient with oropharyngeal 

cancer was treated with a higher dose than planned due to a failure in automation 

and the subsequent treatment plan exporting process. A treatment plan was 

generated which was missing the intended multi-leaf collimator sequences and the 

patient received treatment with an unshielded treatment plan, rather than the 

intended plan which included shielding of critical organs. Due to inconsistency in 

procedure and quality assurance (QA) mechanisms, this patient was treated for 

three days with the corrupted plan, leading to overdose, unintended toxicities, and 
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ultimately patient death.20 In order to prevent incidents like this from happening, new 

technologies must be thoroughly evaluated to mitigate unintended consequences. 

To maximize patient safety when introducing AI tools, a risk assessment must 

be performed and recommendations for the standardization and regulation of AI 

must be developed to ensure that the radiotherapy workflow remains safe and 

efficient for all patients. Using the RPA as a case study, this work will focus on 

developing best practice guidelines for how to produce, perform quality assurance 

for and clinically deploy safe and useful automated tools. 
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Chapter 2: Purpose and Central Hypothesis 

 

Central Hypothesis:  

We hypothesized that 90% of clinically relevant errors introduced by automated 

treatment planning tools can be prevented or detected by establishing a robust risk 

evaluation process and developing a thorough quality assurance and deployment 

procedure. 

 

Specific Aim 1:  

Aim: A risk analysis of the impact of AI in clinical practice 

 

Hypothesis: Risk assessments can be used to reduce the risk profile of 

utilizing AI in radiotherapy treatments. 

 

By developing an in-depth understanding of the risk profile when utilizing automation 

in clinical practice, it is possible to maximize the safety of these processes and 

subsequently mitigate risk. To achieve this, we performed a failure mode and effects 

analysis (FMEA) to assess the risk associated with an artificial intelligence-based 

treatment planning system. Based on the results of this analysis, changes were 

made to improve the risk profile of our system. Simulated hazard scenarios were 

used to evaluate and quantify the final risk profile of our automated system.  

 

 Aim 1.1: An FMEA risk assessment of the Radiation Planning Assistant 

Aim 1.2: Simulate hazard scenarios to identify weaknesses in the Radiation 

Planning Assistant Workflow 
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The work towards Specific Aim 1.1 is presented in Chapter 3: A Risk Analysis of the 

Impact of AI in Clinical Practice. 

 

The work towards Aim 1.2 is presented in Chapter 4: Using Hazard Scenarios to 

Identify Points of Weakness. 

 

Specific Aim 2: 

Aim: Maximize the role of supported quality assurance to ensure the safe 

deployment of AI-based contouring and planning tools 

 

Hypothesis: Developing quality assurance aids, such as checklists and clear 

plan documentation, for treatment plans created using Artificial Intelligence 

can help mitigate risk and improve overall safety. 

 

To reduce the risk of errors reaching and negatively impacting patients, quality 

assurance mechanisms are put in place as part of the radiotherapy process. Due to 

the changes made to clinical practice when automated tools are introduced, quality 

assurance resources must be adapted to address and mitigate these previously 

unexplored points of error. In Aim 2, a plan reporting and quality assurance system 

was developed for use with AI-based tools, to prevent clinical errors from occurring. 

We examined and quantified the impact that the AI-supported workflow has on the 

efficiency and effectiveness of plan QA, using plans with simulated errors and 

surveys of clinical staff. We also evaluated the deployment of automated contouring 
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and planning tools for a variety of anatomical sites, both internally and at partner 

institutions by performing an end-to-end assessment of the training and deployment 

procedure. This allowed us to optimize the training process to ensure that all users 

are properly equipped to identify and address any errors which could arise when 

utilizing automated tools. 

 

Aim 2.1: Evaluate the impact the AI-supported workflow has had on the 

efficiency and effectiveness of plan QA 

Aim 2.2: Perform an End-to-End test of the RPA deployment and training 

strategy 

 

The work towards Specific Aim 2.1 is presented in Chapter 5: Maximize the Role of 

Supported Quality Assurance to Ensure the Safe Deployment of AI-based 

Contouring and Planning Tools 

 

The work towards Specific Aim 2.2 is presented in Chapter 6: Performing an End-to-

End test of the RPA deployment and training strategy: A Pilot Study  

 

 

Specific Aim 3: 

Aim: Evaluating the clinical use and acceptability of automatically generated 

contours 
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Hypothesis: Monitoring of patient contour edits can lead to increased 

detection of systematic errors, such as those caused by software error, 

automation bias, or off-label use. 

 

While careful software development, thorough quality assurance, and robust training 

processes can limit the amount of error that occurs when utilizing automated tools, 

unexpected errors may still arise during clinical use. These errors could be due to 

failures of the software, such as the generation of low-quality contours, automation 

bias, in which users do not carefully review the provided contours, and off -label use, 

in which contours are generated for a site outside of the intended scope of the 

automated system. To address these abnormalities in clinical use, a monitoring 

system has been developed to perform a real-time evaluation of the magnitude of 

edits made to automatically generated contours. Based on the results of this 

evaluation, action thresholds can be set which will flag contours that fall outside of 

the expected range of edits for further review. 

 

Aim 3.1: Perform real-time monitoring of automated contouring tools in the 

clinic, to evaluate the edits needed to achieve clinical acceptability. 

 

The work towards Specific Aim 3 is presented in Chapter 7: Evaluating the Clinical 

Use and Acceptability of Automatically Generated Contours. 
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Chapter 3: A Risk Analysis of the Impact of AI in Clinical Practice 

 

This chapter is based on the following article:  

 

Nealon KA, Balter PA, Douglas RJ, Fullen DK, Nitsch PL, Olanrewaju AM, Soliman 

M, Court LE. Using Failure Mode and Effects Analysis to Evaluate Risk in the 

Clinical Adoption of Automated Contouring and Treatment Planning Tools. Pract 

Radiat Oncol. Published online 2022. doi:10.1016/J.PRRO.2022.01.003 

 

Permission policy of Elsevier content: As an Elsevier journal author, you have the 

right to include the article in a thesis or dissertation (provided that this is not to be 

published commercially) whether in full or in part, subject to proper acknowledgment.  

No written permission from Elsevier is necessary. 

 

3.1 – Introduction 
 

Each year, the number of people diagnosed with cancer continues to 

increase, with more than 19 million new cases in 2020.21 Of these new cancer cases, 

roughly half will be treated with radiation therapy, a technique that requires a team of 

interdisciplinary clinical staff and expensive equipment. Cancer centers in low and 

middle-income countries (LMIC) have an especially difficult time meeting the 

demands of radiation therapy as the complexity of treatment techniques increases, 

with only 37% of patients in these countries having access to the care they need.22,23 
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Artificial intelligence (AI)-based tools are being developed at an unprecedented rate 

to simplify treatment planning and quality assurance processes, thus increasing the 

number of patients who can be treated and improving the quality of their treatment 

plans. Current applications of AI in radiation oncology include automated contouring, 

dose optimization, and plan quality assurance, with both research and commercial 

solutions becoming available.8,9,19,24  

One approach to applying AI in radiation therapy is that of the Radiation 

Planning Assistant (RPA), an automated contouring and treatment planning tool that 

is currently being developed. This software uses AI to simplify the time-consuming 

and user-intensive planning process, which compensates for staffing deficiencies 

and increases the availability of high-quality plans in low and middle-income 

countries11. The current iteration makes use of deep learning techniques to provide 

planning options for treating head and neck, cervix, and chest wall cancers.12–18 

AI techniques have shown great promise, but as with any new technology, it 

is important to not only assess the potential benefits but also the associated risks25. 

Understanding risks is important, both in the design of the tool itself and in how it is 

integrated into the clinical workflow. A failure modes and effects analysis (FMEA) 

has been used to examine the weaknesses of new technologies, helping to predict 

and mitigate potential errors.26–28  

In this paper, we applied the FMEA approach to the RPA to understand the 

risk of deploying this tool in clinics locally and in low and middle-income countries. 

Based on the results of our FMEA, changes were made to the RPA workflow to 

reduce the associated risk. 
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3.2 - Methods and Materials 

 

For this study, we assembled a multidisciplinary team of RPA users 

consisting of one physician, three physicists, one dosimetrist, two members of the 

RPA development team, and a representative from our institutional radiation therapy 

quality improvement team. All members were from the same institution, and each 

clinical group member had at least 3 years of experience and understanding of the 

types of errors that occur in a typical radiation therapy workflow. Before beginning 

the FMEA risk assessment, each user was given an overview of the functionality of 

the RPA and was instructed to perform the contouring and treatment planning 

workflow for several test patients to familiarize themselves with the system. 

We then developed a process map to identify each step in the RPA workflow 

that required user intervention. Potential failure modes and causes were identified 

for each step in the process. When considering potential failures, we began by 

focusing on operator error and software error, two commonly identified themes in the 

radiation therapy literature. We then evaluated additional potential problems that 

could arise from the introduction of new techniques and technologies into a 

previously established workflow. We closely examined errors that could occur 

because of an intentional or unintentional unwillingness to adjust the RPA. We also 

considered what errors could occur because of inadequate user training. Finally, we 

looked closely at any potential automation bias-based errors, which are caused by 

the tendency to rely too heavily on the outputs of automated systems. For example, 

an automatically generated plan may not be reviewed as thoroughly as a plan 
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created by a human planner because many people expect the output of automated 

systems to be consistent and of high quality.29 

Each failure mode was discussed in the group to prevent bias from any 

individual user and scored by the entire FMEA team. Each criterion—severity, 

occurrence, and detectability—was scored on a scale from 1 to 10, as suggested by 

the American Association of Physicists in Medicine Task Group 100. For severity, a 

qualitative scale was used in which a score of 1 indicates that the error had no 

impact on patient care and a score of 10 indicates that the error could lead to patient 

fatality. Occurrence and detectability were also scored using the quantitative 10-

point scale provided in TG-100 (Table 1).30 

 

Table 2. Failure modes and effects analysis scoring criteria for occurrence, severity, 

and detectability from TG-100. 

 

Criteria were scored using a combination of RPA plan data and clinical 

experience from FMEA committee members. The risk priority number (RPN) for 

each failure mode was calculated by multiplying each failure’s occurrence, severity, 
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and detectability scores together. A failure mode with  a higher RPN indicates that 

more risk is associated with the error than with another error with a lower RPN. 

After each failure mode was scored, the total list of failures was reviewed by 

the FMEA team to ensure that the scoring was consistent throughout. Failure modes 

with high RPNs were discussed to assess how the associated risk could be lowered. 

For this portion of the study, we focused on failure modes with an RPN greater than 

125 or a severity score greater than 7. We discussed making changes to the system 

and ultimately implementing them into the RPA. Failure modes were then rescored 

to reflect the changes. 

 

Fig. 7. Process map for the radiation planning assistant (RPA). CT, computed 

tomography; H&N, head and neck; TPS, treatment planning system.  
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3.3 - Results 

 

3.3.1 - Process Map 
 

Rather than examining the RPA’s internal processes, we developed a process map 

to demonstrate the flow of the RPA system (Figure 1) from the user’s perspective. 

Any step that required user intervention or action was isolated, and failure modes 

were assigned to each step individually (Figure 2). Figure 3 shows the distribution of 

identified high-risk (RPN >125) failure modes for each step in the workflow during 

which they occur.  

 

 

 

Fig. 2. All identified failure modes, sorted by the step in workflow during which they 

occurred. RPA, Radiation Planning Assistant; CT, computed tomography. 
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Fig. 8. All identified high-risk (>125 risk priority number) failure modes, sorted by the 

step in the workflow during which they occurred. RPA, Radiation Planning Assistant, 

CT, computed tomography. 
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3.3.2 - Cause of Error 

 

 

Fig. 9. Distribution of causes for all identified failure modes. RPA, Radiation 

Planning Assistant. 

 

Each failure mode was also classified according to the cause of the error 

(Figures 4 and 5). By isolating the cause of each failure mode, we can more 

accurately tailor the corrective action to reduce the associated risk. 

While assigning causes to each failure mode, we identified eight error 

categories: operator error, different workflow, software error, software limitation, data 

transfer error, equipment limitation, automation bias, and off-label use of the RPA. 

Each of these are defined below.  
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Operator error was defined as any accidental user input, such as clicking the 

wrong button or typing information incorrectly. Different workflow was defined as an 

error that occurred because clinicians were accustomed to treating patients 

according to a workflow that was incompatible with the use of the RPA. Software 

error was defined as an issue within the RPA software that either negatively 

impacted the plan’s quality or limited the plan’s creation. Software limitation was 

defined as an error that occurred if the user attempted to create a plan that was 

outside of the RPA’s capabilities. Data transfer error was defined as the inability of 

plan data to be entirely or accurately transferred between the RPA and a user’s local 

system. Equipment limitation was defined as errors caused by the inability of the 

user’s local equipment or infrastructure to meet the RPA’s requirements (e.g., a low-

quality CT scanner or unstable internet connection). Automation bias was defined as 

the tendency of humans to depend too heavily on software tools, resulting in 

inadequate output examination. The final error category, off-label use of the RPA, 

was defined as unintended software use. The RPA has specific site and treatment 

guidelines in place to ensure that users receive a usable and safe treatment plan for 

every patient. Plans outside of the appropriate statements of use could lead to 

mistreatment. While it was important for us to acknowledge this possibility, these 

failure modes were removed from our final evaluation because off-label application 

use is not specific to the RPA. To mitigate off-label RPA use, the risk will be 

communicated to all users, plan auditing will be performed, and a variety of training 

materials will be available.  
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Fig. 10. Distribution of causes for high-risk (risk priority number > 125) failure modes 

3.3.3 - Failure Modes 

 

In the current RPA workflow, we identified 290 failure modes. Of these, 126 

were specific to the RPA workflow and 164 could occur in a conventional (i.e., 

manual) radiation therapy treatment planning workflow. To focus on the RPA-

attributed risks, we omitted these 164 general failure modes from the analysis. The 

remaining 126 failure modes were classified according to the step in the workflow 

and the cause of the error, as shown above. The full list of RPA-specific failure 

modes can be found in Appendix A. The mean RPN of these failure modes was 

56.3; 105 errors had an RPN below 125, which is the TG-100-recommended 

threshold at which action should be taken to reduce the risk. The 10 highest-risk 

failure modes are included in Table 2. To provide an understanding of how failure 
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modes were identified and scored in this study, we explain how three high -scoring 

failure modes were scored below.  

The “plan not reviewed carefully prior to approval” error, a result of 

automation bias, was defined as users relying too heavily on the RPA’s capabilities, 

resulting in the user trusting that the plan was clinically acceptable and not reviewing 

it diligently. While the RPA is a reliable tool, it still has the potential to generate plans 

that are not ideal for a given patient. For example, if contours need to be corrected, 

the plan must be recalculated in the local treatment planning system (TPS) for the 

linear accelerator being used. If the plan is not reviewed, the patient could be 

seriously injured or exposed to toxic levels of radiation. Thus, we assigned the “plan 

not reviewed carefully prior to approval” error a severity score of 9. Automation bias 

is a common phenomenon, so we assigned this error an occurrence score of 6, 

indicating a relatively high probability. Because the plan is reviewed at the end of the 

workflow, the likelihood of this error being detected is low; therefore, we assigned 

this error a detectability score of 9. Taken together, these scores result in an RPN of 

486, indicating the necessity of a careful plan review by all clinicians.  

The “RPA printout used as plan documentation” error arises from a situation 

in which the clinician decides to use the final plan report generated by the RPA as 

the primary record for a patient. The plan printout briefly summarizes treatment 

planning and provides results for the necessary internal quality assurance checks. 

Although this document contains useful information, it is only a brief snapshot of the 

treatment plan. The DICOM file must still be imported into the users’ local TPS and 

recalculated. The physician should review the plan 's quality, and necessary quality 
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assurance should be performed. The final review of the plan should occur in the 

local TPS. Because the RPA plan printout summarizes an intermediate step in the 

overall treatment planning process, using the printout as documentation could result 

in low-quality treatment. Because of the potential for organ at risk (OAR) toxicity or 

tumor underdose, we assigned the “RPA printout used as plan documentation error” 

a severity score of 7, indicating a severe error. Because the printout is readily 

available, the occurrence of this error is moderate; thus, we assigned it an 

occurrence score of 6, signifying that automation bias is likely. Because this error 

would most likely not be detected, we assigned it a detectability score of 10. If the 

clinical procedure uses the plan PDF, then the potential flaws in the plan, which are 

only visible in the TPS review, would never be identified. Taken together, these 

scores resulted in a final RPN of 420. 

The “contoured target incorrectly” error is applicable in head and neck cancer 

treatment planning, in which CTV2 and CTV3 are automatically generated by the 

RPA to include the lymph node regions specified by the user. A review of previously 

generated RPA plans found that minor edits were needed for the autogenerated 

CTV volumes in roughly 5% of cases. Thus, we assigned the “contoured target 

incorrectly” error an occurrence score of 9. The target would be missed or organs 

would be subjected to additional toxicity if the target were contoured inaccurately; 

thus, we assigned this error a severity score of 5. While the error could be detected 

when the physician reviews the plan, the differences could be fairly subtle or only 

problematic in small regions. We, therefore, determined that this error was only 

moderately detectable and assigned it a detectability score of 6. Together, the 

scores resulted in a total RPN of 270 for this software error. 
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Table 2. Ten highest-scoring failure modes identified in the RPA workflow. S, 

severity; O, occurrence; D, detectability; RPN, risk priority number; RPA, Radiation 

Planning Assistant; QA, quality assurance; TPS, treatment planning system. 

 

3.3.4 - Corrective Actions 
 

Corrective actions were applied to any failure mode with an RPN greater than 

125. We identified 21 failure modes above this threshold, resulting in changes to the 

RPA workflow and infrastructure. Changes to the software included 1) the removal of 

patient information questions from the RPA service request, 2) verification 

checkboxes to ensure that correct target coverage was selected, and 3) the addition 

of redundancy checks to ensure that the correct laterality was selected. To reduce 

the occurrence of mistakes, we made guidance on reference point placement and 
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statements of appropriate use more easily accessible to users. Finally, RPA plan 

reports now include statements of use and reminders to the user that final checks 

must be made after the plan has been imported into their local TPS. More detailed 

training tools are also being developed to assist users with making informed and 

safe decisions about RPA usage.  

 

 

Fig. 11. RPNs for the RPA workflow before and after corrective actions were made 

to limit risk to patients. RPN, risk priority number; RPA, Radiation Planning 

Assistant. 
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Following the implementation of the aforementioned risk reduction 

techniques, failure modes were rescored to reflect the updated system, with a final 

mean RPN of 33.7 and a final maximum RPN of 288 (Figure 6). This decrease in 

RPN indicates that the changes were able to successfully reduce the risk associated 

with the use of the RPA system. The number of failure modes that exceeded the 

action threshold of RPN 125 decreased from 21 to 5, showing a 76% reduction in 

high-risk errors. We were also able to increase the detectability of 15 of the 21 errors 

(71%), ensuring that any errors that do occur can be more easily detected by users. 

The 10 highest scoring modes after the application of risk reduction 

techniques can be seen in Table 3. The full list of rescored failure modes can be 

found in Appendix B. 
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Table 3. Final 10 highest scoring failure modes, rescored after risk mitigation 

adjustments were made to the Radiation Planning Assistant workflow. S, severity; O, 

occurrence; D, detectability; RPN, risk priority number; QA, quality assurance; BB, 

radiopaque markers; CT, computed tomography; TPS, treatment planning system. 

 

3.4 – Discussion 
 

After we rescored the high-risk failure modes to reflect the changes made, 

five still exceeded the TG-100-established threshold of RPN of 125. Of these, four 

can be attributed to automation bias or a user’s overreliance on the RPA. To combat 

this potential problem, training will be provided that emphasizes the importance of 

performing thorough plan checks and quality assurance, including a discussion of 

the risks of overreliance on automated solutions. We are also developing checklists 

for physics and radiation oncology plan checks that are designed to support the plan 
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review process and emphasize its importance. The final high-scoring error was 

“contoured target incorrectly” as mentioned above; as a result of this study, an 

automated target contouring quality assurance tool, similar to one already employed 

for normal tissue, is currently being developed for the RPA to reduce the 

detectability score of this error31. This quality assurance would flag any contours 

without good agreement between a secondary auto contouring method, warning the 

user not to proceed with the plan without careful review. 

 

3.4.1 - Integration with TPS 
 

The current version of the RPA is a web-based tool. This design was chosen 

to maximize availability and minimize cost, thus allowing future use by clinics with 

limited budgets and resources. However, this approach introduces the need for 

additional data transfer between the user’s systems and the RPA website, and 32 of 

the identified failure modes were related to data transfer. Although these errors were 

not high-risk (i.e., their RPNs were less than 125), further integration of the RPA 

tools with the local planning system would eliminate these modes, resulting in an 

inherently safer process. The gains from integrating the RPA with the local planning 

system are similar to those resulting from integrating other automatic tools with a 

planning system (such as in commercial solutions) and from improving integration 

with other software tools in radiation therapy (e.g., planning systems, auto 

contouring systems, and oncology information systems).  
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3.4.2 - Automation Bias 
 

Automation bias is a well-established phenomenon in decision-making 

scenarios aided by automated tools; it was first recognized as a point of risk in the 

airline industry when pilots were provided with, and ultimately depended too heavily 

on, electronic flight planning tools in the 1990s32. Since then, a number of studies 

have assessed the frequency of and solution to automation bias in medicine32–34. 

While a clear consensus has yet to be reached, Goddard et al recommend that 

automation bias be mitigated in both the development and deployment steps. 

Presenting users with clear confidence levels for outputs, highlighting the importance 

of user responsibility, and substantial user training in the AI software can help to 

lower the likelihood of inappropriate automation bias33. Based on the results of these 

studies, the risk mitigation techniques used for automation bias in the RPA have 

included 1) verification boxes to ensure that the user has knowingly consented to 

treatment objectives, 2) clear internal quality assurance metrics for the final plan 

output, and 3) the development of a variety of training and tools for new and 

established users. Clear transparency regarding the risk associated with automation 

bias will be provided during user training.  

 

3.4.3 - Operator Error 
 

Operator error was found to be the most frequent cause of failure in the risk 

assessment of the RPA system, accounting for more than half of the identified failure 

modes. While the impact of operator error is potentially large, a literature review 

indicates that operator error is also a prevalent concern in manual processes. 
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Operator error has been identified as a cause of failure in FMEAs in many aspects of 

the radiation therapy workflow, showing that this problem is not unique to the RPA 30, 

35–37. This raises the question: Is operator error more common in automated 

workflows than in manual workflows?  

Wexler et al performed an FMEA for the commissioning of TPSs and found 

that the number of high-risk failures due to human error in automation-aided 

workflows decreased compared to that in manual workflows as did the average and 

maximum RPNs for the processes38. To limit the impact of operator error on the RPA 

workflow, several changes have been implemented to reduce the occurrence and 

increase the detectability of these errors. First, redundancy checks have been 

established to verify patient information, laterality, and prescription. This is 

accomplished by performing automatic checks of the information (laterality) or 

forcing the user to perform a secondary review of the input information prior to 

proceeding. Automated quality assurance checks have also been added, which will 

display a failed result to improve the user’s detectability of plan errors. Additionally, 

an RPA-specific plan checklist is being developed that will focus on the high-risk 

operator-based errors that were identified in this study.  

 

3.4.4 - Impact on Deployment and Staff Training 
 

The RPA is being developed to provide automated contouring and treatment 

planning tools to clinics with limited resources, potentially saving the clinical teams 

hours of preparation time for each patient. Our study has shown that it is vital that 
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the teams review the plan before it is implemented; such a review may play an even 

more important role in the RPA workflow than in manual processes. A plan review by 

clinicians is particularly important as training programs do not always sufficiently 

emphasize these reviews during clinical training39,40. Additionally, the time taken to 

perform these checks must be considered when evaluating any potential workflow 

benefits of the RPA or other automated processes.  

 

3.5 – Conclusions 
 

An FMEA was performed on the current version of the RPA, an automated 

contouring and treatment planning program. As a resu lt of this analysis, changes 

were made to the RPA interface, training tools, and workflow to limit risk. Following 

these improvements, the number of high-risk failure modes decreased by 76%. The 

detectability of these high-risk failure modes also improved by 71%, ensuring that 

any errors that do occur can be more easily detected by users. The vast majority of 

identified high-risk failure modes were related to automation bias or operator error, 

especially actions related to plan quality review and quality assurance. Thus, when 

automation is added to the radiation therapy process, plan review by physicians, 

physicists, and other clinical staff is important, and staff must be thoroughly trained 

in this process. 
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Chapter 4: Using Hazard Scenarios to Identify Points of Weakness 

 

This chapter is based on the article “Hazard testing to reduce risk in new clinical 

workflows“ currently under review with the Journal of Applied Clinical Medical 

Physics. 

 

4.1 – Introduction 
 

To address the increasing complexities in radiation therapy, various 

commercial and in-house automated solutions are being introduced into treatment 

planning workflows to assist with contouring, planning, and quality assurance.8–10,41–46 

These tools can improve both the consistency and the quality of patients' final 

treatment plans; however, they also introduce new steps into the clinical workflow 

that must be evaluated for safety, reliability, and usability. Traditionally, when new 

technologies are introduced into the radiotherapy workflow, they undergo 

commissioning to ensure that they can be used safely and accurately. The American 

Association of Physicists in Medicine has released task group reports that provide 

recommendations on how to commission treatment planning systems, linear 

accelerators, intensity-modulated radiation therapy systems, and other 

technologies.47–49 Many of these recommendations focus on preventing errors with 

the software, equipment, or calculations that could impact patient safety. While these 

factors are important and must be considered, the reports have often omitted the 

value of risk assessments for identifying additional points of weakness. In one 

prospective risk assessment—a failure mode and effects analysis—to assess the 
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clinical implementation of automated tools, the most common errors were caused 

not by issues with software or equipment, but rather by mistakes made by human 

users.50 Similarly, a study of reported safety incidents by Weintraub et al.51 found that 

while the use of automation can contribute to improvements in clinical workflows, it 

also creates an increased need for mindfulness from users to ensure patient safety.  

One way to assess and optimize safety when introducing automated tools into 

the clinic is by performing a hazard analysis of the workflow, as recommended by 

IEC 62366: Application of usability engineering to medical devices.52 A hazard 

scenario is a problematic or dangerous situation that could arise when an error is 

introduced into a workflow. If such an error were to go undetected by members of a 

radiation therapy team, it would increase risk and compromise patient safety. By 

performing a hazard analysis, the cause of such hazard scenarios can be 

determined and subsequently mitigated by implementing additional safeguards. One 

example of hazard analysis is a study by Pawlicki et al.53, who utilized a tool called 

system theoretic process analysis (STPA) to identify and eliminate potential hazards 

in clinical radiation therapy workflows. Another study showed the benefits of using 

hazard analysis to assess the clinical safety of using the Halcyon treatment system.54   

In this study, we used hazard testing to evaluate the human component of 

radiation oncology workflows, which is often not addressed in commissioning 

processes, using the Radiation Planning Assistant (RPA), an automated contouring 

and treatment planning software tool, as a case study.11  
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4.2  –  Methods 

 

4.2.1 - The Radiation Planning Assistant 

 

The RPA is an automated contouring and treatment planning tool currently 

under development to provide high-quality radiation therapy treatments to low-

resource communities throughout the world.11 The RPA is a web-based system that 

uses artificial intelligence to simplify the planning process. The current version of the 

RPA can create plans for treating cancers of the head and neck, chest wall, cervix, 

and whole brain, with more sites under development.12,13,15–18,55–58  

For the RPA to generate treatment plans, the user must input a computed 

tomography (CT) scan and the prescription information for each patient. That 

information is then verified by the users to ensure that it matches the intended final 

treatment plan before the RPA begins the automated planning process. Figure 7 

shows each step of the user-facing workflow.  
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Fig. 7. Process map of the Radiation Planning Assistant workflow. H&N, head and 

neck. 

To assess the potential for detection of hazards in the RPA, we examined 

three steps of the process: service request approval, review CT scan, and the review 

and upload of contours. These steps were selected because after each piece of data 

is approved, information is sent to the RPA to generate plans; therefore, the 

accuracy of the data at these points is imperative for the creation of a safe treatment 

plan. 
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A service request in the RPA is a document containing patient information, 

planning techniques, prescription, and dose constraints. A service request is created 

for every patient for whom the RPA will be used for contouring or planning. The 

information included must be correct, as it cannot be changed later in the planning 

process without the creation of an entirely new plan. While a service request can be 

created by any member of the clinical team, it must be approved by a radiation 

oncologist. Therefore, to assess the effectiveness of data review at this stage, 

radiation oncologists were recruited to review and approve service requests. 

Each plan created using the RPA also requires the upload of the patient's CT 

scan. Following upload, the CT must be reviewed to ensure it is for the correct 

patient and the correct treatment site. Users must also ensure that the image quality 

and field of view are acceptable and that any artifacts are minimal. They must also 

verify that the isocenter was identified correctly by the RPA before proceeding. We 

anticipated that this step of the workflow would likely be performed by a radiation 

therapist immediately after performing the CT scan, so radiation therapists were 

recruited to review and approve CT scans. 

Following the approval of the service request and the CT scan, the RPA 

generates contours for head and neck or cervix plans. These contours can then be 

manually edited by the treating physician or dosimetrist if corrections for organs at 

risk are needed or to create additional target volumes. They are then re-uploaded 

into the RPA for a final review before the final plan generation. Following upload, a 

PDF document is generated which requires users to review the contours on axial 

images slice by slice before approving for planning. The PDF also reports any edits 
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that users make to the autogenerated contours to highlight modifications that may 

require more careful review. As a preliminary contour review would have been 

completed by physicians before uploading the structure set into the RPA, errors that 

occur in this step in the workflow are likely to be due to failures in data transfer, 

rather than issues with contour quality. Therefore, the details of contour approval 

overlap with checks typically performed during physics plan review. As such, we 

anticipate that the contour review and approval step will be the responsibility of 

medical physicists so for this study, physicists were recruited to review and approve 

the final contours. 

Hazards were selected from a failure mode and effects analysis of the RPA 

based on three criteria.50 First, the error must have occurred previously, as this 

indicates it may happen again. Next, all hazards were scored with a severity greater 

than three (on a scale from one to ten, with one indicating a minor inconvenience 

and ten representing possible patient fatality), indicating that if they occurred, at a 

minimum the final plan would contain a dosimetric error. Finally, all hazards must be 

able to be simulated for testing. The final list of hazards selected for testing is in 

Table 4. 

 

 

 

 

 



 

 
34 

 

 

 

Description S O D RPN Relevant data 

input task 

Hazard 

category 

1 Isocenter position not 

identified correctly 

9 3 3 81 CT upload/review RPA error 

2 Reference point at the wrong 

position 

6 4 5 150 CT upload/review Human error 

3 Inappropriate CT field of view 6 4 8 192 CT upload/review Human error 

4 Error in data entry in service 

request – wrong CTV for H&N 

5 4 2 40 Service request Human error 

5 Error in data entry for service 

request – wrong prescription 

9 6 3 162 Service request Human error 

6 Contours approved despite 

non- contiguous slices 

4 3 5 120 Contour approval Human error 

7 Failure in automated 

contouring – target (CTV2) 

5 9 6 270 Contour approval RPA error, 

Automation bias 

 

Table 4. Hazards evaluated in this study. S, severity; O, occurrence; D, detectability; 

RPN, risk priority number; CT, computed tomography; CTV, clinical target volume; 

H&N, head and neck; RPA, Radiation Planning Assistant. 

4.2.2 - Hazard Testing 

 

When recruiting participants for this study, we aimed to include a 

heterogeneous population to ensure the scalability of these results to many types of 

institutions. To do this, we included reviewers from multiple countries and 

institutions, with varying experience levels. 
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The testing process was conducted over a virtual meeting between a 

participant and a member of the RPA team. Participants were told they would be 

evaluating the usability of the system and were not told that errors could be included 

in the data set. The session began with a training video for the task participants 

would be performing, which detailed how to navigate the interface and what features 

they should be paying attention to on the screen prior to approval.  

The participant then shared their screen, logged into the RPA system, and 

began performing the prescribed task for a previously assembled set of patients. 

Participants were instructed to vocalize any concerns or questions they may have 

while reviewing patient data, and all feedback was recorded. 

 

4.2.2.1- Service Request Approval  
 

 

During the service request approval step, two errors were identified for 

testing, both of which focused on the correctness of patient information. First, we 

tested incorrect nodal level coverage for a patient with head and neck cancer. If the 

wrong nodes are selected for treatment, the target volumes will be generated 

incorrectly, and the treatment plan will not cover the desired regions. Next, we 

created service requests containing the wrong dose prescription for a head and neck 

cancer patient, which could lead to over- or undertreatment. Both errors in patient 

information should be detected when physicians compare the patient's in -house 

prescription document to the RPA service request.  

For the service request approval, radiation oncology residents compared a 

PDF of each patient's prescription to the information included in the RPA service 
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request to ensure the correct transfer of information. If there was inconsistency 

between the prescription and the service request or if participants had concerns, 

they were instructed to reject the request to indicate that it needed to be corrected. If 

the prescription was accurate, the service request was approved. Each oncologist 

reviewed a set of ten patient prescriptions that included chest wall, cervix, and head 

and neck treatment plans. In each set of ten patients, two plans contained errors to 

be detected. 

 

4.2.2.2 - CT Approval 
 

 

For the CT approval step, three errors were identified for testing. Incorrect 

identification of the isocenter describes a scenario in which the RPA is unable to 

automatically identify the isocenter based on the position of three fiducial markers on 

the patient's skin. Rather than place the isocenter at the intersection of those points, 

the software can incorrectly place the isocenter in a different region of the body. This 

could lead to the creation of an inaccurate treatment plan and the irradiation of 

unintended tissues if undetected. When reviewing CT scans, users can also place 

reference points to be used to set boundaries for the treatment plan. For cervix 

plans, the reference point is used to set the superior border of the treatment field. 

For chest wall plans, the reference point sets the inferior border of the treatment 

field. If these points are placed incorrectly, the plan generated could over- or 

undertreat the patient, affecting tumor control. Finally, CT scans can be uploaded 

which, if used for planning, could lead to a less accurate treatment plan. One 

example of this is a CT image in which portions of the patient are cut off owing to an 
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inappropriate field of view. This could lead to errors in creating the plan and 

calculating dose. 

For CT scan approval, radiation therapists were asked to review CT scans to 

verify acceptable image quality and scan location. They were provided with the axial, 

sagittal, and coronal views and were encouraged to navigate slice-by-slice through 

the images. Before approving the CT scan for planning, users responded to six yes-

or-no questions: (1) correct patient, correct CT scan, and correct orientation ; (2) 

correct number of CT slices; (3) acceptable image quality (no large artifacts, 

implants); (4) correct identification of marked isocenter (except chest wall cases); (5) 

sufficient axial field of view and craniocaudal extent; and (6) correct position of the 

reference point (essential for chest wall, optional for cervix 4-field box pelvis). If “no” 

is selected for any of these questions, the CT scan cannot be used for planning, and 

a more appropriate CT scan must be used for that patient.  

 

4.2.2.3 - Contour Approval 
 

 

For the contour matching and approval step of the workflow, two errors were 

introduced for testing. First, we deleted ten slices of an autogenerated clinical target 

volume (CTV) contour to be used for the treatment of cervical cancer. This left gaps 

within the contour that could be seen by scrolling through the axial slices of the CT 

scans. Next, we made edits to an autogenerated CTV contour to delete one side of 

the contour from all slices, creating asymmetry and inconsistency. While both of 

these edits were visually detectable, the RPA’s report also includes warnings when 

contours have been edited to help direct the users' focus onto those contours. Both 
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errors would lead to a warning about large edits, which we expected would increase 

the errors’ detectability by our physicist reviewers. 

For the contour approval portion of the testing, medical physicists were asked 

to upload the patient’s final contours (DICOM structure file) into the RPA to be used 

for treatment planning. Once uploaded, the user was required to match each clinical 

structure’s name to the name used for each organ contour in the RPA. Following the 

matching, a PDF containing each slice of the axial CT scan, with all contours 

present, was created. Users then reviewed the document to ensure that the contours 

look clinically appropriate before performing final approval of the contours for 

planning.  

 

4.2.3 - Usability Testing 
 

Following their completion of the review and approval of each step, users 

were informed of the hazards present and asked if they had any comments or 

concerns regarding the safety, effectiveness, ease of use, and user satisfaction of 

RPA. They were also asked to respond to the questions “How confident are you that 

you completed this task completely?” on a scale of 1-5, where 1 = not confident and 

5= very confident, and “How easy was this task to complete?” where 1 = difficult and 

5 = very easy. This feedback will be used to improve our training tools and the 

usability of the system and to address any safety concerns raised by the users. 
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4.3 – Results 

 

4.3.1- Service Request 

 

 Errors Detected 
Confidence in 

Use 

Ease of Use 

Resident 1 50% 4 5 

Resident 2 100% 4 4 

Resident 3 50% 5 4 

Resident 4 100% 4 4 

Mean 75% 4.25 4.25 

System Update 

Resident 5 100% 3 3 

Resident 6 100% 5 4 

Resident 7 100% 5 5 

Resident 8 100% 4 4 

Resident 9 100% 4 4 

Mean 100% 4.2 4 

 

Table 5. Errors detected by radiation oncology residents at the service request 

approval portion of the RPA treatment planning workflow. 

 

Four radiation oncology residents from four academic institutions in the US 

reviewed service requests. Of the two errors included in the tests, errors in nodal 
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coverage went undetected by 50% of the participants. Based on feedback from 

reviewers, testing was paused while updates were made to the organization of 

information in the service request document. Testing was then repeated with five 

new residents to validate the changes. Ultimately, 100% of errors were detected by 

residents following upgrades to the service request document (Table 5). 

 

4.3.2 - CT Scan Approval 

 

 Errors Detected 
Confidence in 

Use 

Ease of Use 

Therapist 1 100% 4 5 

Therapist 2 100% 5 5 

Therapist 3 100% 5 5 

Therapist 4 33% 5 5 

Therapist 5 100% 5 5 

Mean 87% 4.8 5 

 

Table 6. Errors detected by radiation therapists at the CT approval step of the RPA 

treatment planning workflow. 

 

 All of the radiation therapist reviewers reported that the CT review task was 

clear and easy to complete. In addition, 80% of these reviewers were able to detect 

and appropriately respond to all hazard scenarios included in the provided set of CT 

scans (Table 6). Therapist 4 vocalized all errors and showed a clear understanding 
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of the clinical risk, but due to environmental distractions did not respond accordingly 

and approved all CTs for planning. 

 

4.3.3 - Contour Approval 

 

 

 Errors Detected Confidence in Use Ease of Use 

Physicist 1 50% 5 5 

System Update 

Physicist 2 0% 4 4 

Physicist 3 0% 4 3 

Physicist 4 0% 4 4 

Mean 0% 4 3.7 

 

Table 7. Errors detected by medical physicists at the contour approval portion of the 

RPA treatment planning workflow. 

 

Four physicists performed a review of the uploaded final contours. The first 

physicist reviewed 10 patients’ plans and detected 50% of errors.  During testing, a 

software bug that affected the display of contour edits was identified, and testing 

was stopped. Testing then started from scratch, this time using only five patient 

plans due to time limitations. One error, missing CT slices, was included in the 

remaining patient plans. This error went undetected by all physicists (Table 7). 
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4.3.4 - Usability Scores  
 

Overall, at the conclusion of testing, users reported confidence in their 

understanding of how to use the RPA for treatment planning tasks based on their 

review of relevant training materials. Therapists felt especially confident, with a 

mean rating of 4.8/5 on their confidence in their ability to perform the task and a 

mean rating of 5/5 on the ease of using the RPA. Therapists did report that the task 

of placing a reference point could have been more clearly explained in the training 

video. This feedback will be used to clarify user training materials. 

Usability scores were slightly lower for the radiation oncology residents, with a 

mean confidence rating of 4.2/5 and a mean ease-of-use score of 4/5. Multiple 

residents reported that they did not rate their confidence as 5/5 owing to their lack of 

experience with the RPA and indicated that their confidence would increase with 

continued use. The ease-of-use scores were likely lower than the radiation 

therapists’ scores because residents felt that while navigating the interface was 

easy, approving the prescription information in both in their local treatment planning 

system and the RPA would add an additional task to their workload. 

Finally, following the removal of inaccurate CTV contouring from the hazards 

under evaluation, physicists rated their confidence in the use of the RPA at 4/5 and 

the ease of use at 3.7/5. Physicists reported that their confidence was not higher 

because they were unaccustomed to being responsible for contour review. The 

lower ease-of-use score was attributed to confusing coloring of organs at risk and 

the overwhelming length of the PDF contour report. This feedback will be 

incorporated into the final iteration of the contour review process.  
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4.4  – Discussion 
 

4.4.1 - System Updates 
 

 

When the radiation oncology residents reviewed service requests, the error 

most frequently missed was the incorrect selection of nodal coverage, which went 

undetected by two of the four initial residents. All four of these residents reported 

concerns about the display of information on the service request, particularly for 

head and neck patients, for whom the selection of coverage for three separate CTVs 

is required. Initially, the coverage selections for each patient were presented in a list 

format (Figure 8).  

Residents reported that it was very easy to overlook mistakes when the 

information was so condensed, and with further discussion, it was suggested that 

separating nodal selection by laterality would lead to a more intuitive review process. 

The service request document was updated accordingly (Figure 9). Following the 

updates, five new residents were asked to review and approve the same ten patient 

prescriptions, with the updated service request format, for treatment planning. The 

new cohort of residents all correctly detected both errors (incorrect nodal coverage 

and prescription dose), validating that this change improved the detectability of 

errors. 
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Fig. 8. Original format of head and neck service request document. 
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Fig. 9. Updated service request document, based on user feedback that organizing 

nodal coverage by laterality would simplify the review of patient information. 

 

When the first physicist reviewed the assigned ten contour sets for approval, 

several issues were identified that needed to be corrected. First, the training and 

review of 10 contour sets took significantly longer than the hour that had been 

allotted for testing. To address this, the patient set was reduced to five to respect the 

time of our volunteers. Next, we received feedback that physicists would be unlikely 

to review CTV contours for accuracy at this stage in the workflow, as that task 

belongs to the physician. Instead, the physicist’s task would be to review contours 
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for integrity to ensure no error in data transfer would occur during the upload 

process back into the RPA system. As a result of this feedback, we decided to 

remove the patient who contained inaccurate CTV contouring from the set. 

Therefore, for the reviewers moving forward, only one error (missing contour slices) 

was present. Finally, we identified a software bug that caused the system to show 

that no edits had been made to the contour set despite several slices having been 

deleted. Testing was paused and the system was updated before proceeding with 

the remaining physicist reviewers. 

 

4.4.2 - Contour Approval Task 
 

 

As shown in the results, the contour upload and approval task had an 

extremely low rate of hazard detection among all participants (0% for the final 

iteration of the study). Discussing this revealed two primary issues with the design of 

this step of the test. First, rather than evaluating a simple data quality assurance 

step as the other cohorts did, the physicists were required to perform several tasks 

for each patient: (1) find and upload the DICOM RTStruct file for each patient to the 

RPA; (2) match each final contour to the appropriate name in the RPA; and (3) verify 

that all contours appeared reasonable and approve for treatment planning. As the 

contour upload and approval step was primarily seen as a necessary task to move 

the planning workflow forward, users often did not consider it to be a quality 

assurance step. The need for this verification and approval step will be emphasized 

in training to ensure that users are encouraged to review all relevant planning data 

at each stage of the workflow to limit patient risk. Next, our reviewers identified that 
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assigning the review of targets to physicists rather than physicians was a weakness 

of this study. Several of our reviewers commented that contouring and treatment 

planning were not part of their clinical responsibilities and therefore they did not feel 

comfortable questioning the output of the RPA or the clinical judgment of the 

physicians. They also stated that reviewing contours on PDFs rather than in the 

treatment planning system made it easy to overlook errors unless there were 

contours explicitly flagged as needing review on the provided contour report.  

These results show that unless contour review and approval are performed by 

a dosimetrist or physician, it is unrealistic to expect quality assurance of contours to 

occur at this step. To mitigate the potential risk from contouring errors, we will 

remind all users, especially physicians, to perform a thorough review of contour 

quality before final plan approval.  

4.5 - Conclusion 

 

Hazard testing was used to test an automated contouring and treatment 

planning process at points where human interaction is necessary. Several failure 

points were identified and resolved, resulting in a high error detection rate for key 

process steps. For the review of CT scans, we found an 87% rate of error detection. 

For the review of service requests, 100% of errors were detected following a system 

update. We found that one workflow step (contour upload and approval), however, 

was not performed by members of the radiation therapy team trained to perform 

contour quality assurance, and no errors (0%) were detected. Therefore, to catch 

errors, we must highlight the need for a radiation oncologist’s review of the final 

contours and dose distribution to ensure safe operation. 
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Chapter 5: Development of a custom checklist for use with automatically 

generated radiotherapy treatment plans. 

 

This chapter is based on the following article:  

 

Nealon KA, Court LE, Douglas RJ, Zhang L, Han EY. Development and validation of 

a checklist for use with automatically generated radiotherapy plans. J Appl Clin Med 

Phys. 2022;1-7. doi:10.1002/acm2.13694 

 

Permission Policy of JACMP: Subject to the terms and conditions of this License, 

Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for 

the duration of the applicable copyright) license to exercise the rights in the Work as 

stated: to Reproduce the Work, to incorporate the Work into one or more 

Collections, and to Reproduce the Work as incorporated in the Collections; 

 

5.1 -  Introduction 
 

Radiotherapy is a complicated treatment technique that is used to treat 

approximately half of all cancer patients21. Radiotherapy requires several 

components: a CT image of the patient's anatomy, manually or automatically created 

contours to identify targets and organs at risk, and a treatment plan generated using 

complex algorithms to model the patient dose. Each step is susceptible to error; as 

such, a thorough review of the final treatment plan must be performed to limit patient 

risk. This includes a physics plan review of many aspects of the treatment plan, 

including patient information, plan dosimetry, and treatment parameters.59,60  
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According to a study by Ford et al, a physics pretreatment plan review is the 

step of the planning process that is most likely to detect errors before they impact 

patient treatment61. Recommendations have been made regarding the content, 

frequency, and methods of plan reviews to maximize effectiveness.25 Checklists 

have been shown to improve the rate of error detection .62–66 

While American Association of Physicists in Medicine (AAPM) task group 275 

provides recommendations on how to perform a physics plan review, this report was 

written prior to the automation boom that is currently occurring in radiotherapy.19 New 

treatment planning tools automate aspects of the planning process, including 

contouring, planning, and quality assurance.8–14,17,18,67 Automation can streamline the 

process, limiting the need for human interaction and decreasing the planning time.68–

70 While this lack of human input could limit human error, it could also decrease the 

error detection rate because of the lack of human review. Because of the different 

workflows used in automated contouring and treatment planning tools, the 

effectiveness of manual checklists in the physics review process, specifically in 

automated plans, should be evaluated. 

In this study, we developed a customized checklist to improve the rate of 

errors detected during the review of treatment plans that had been automatically 

generated by the Radiation Planning Assistant (RPA),  an automated contouring and 

treatment planning tool that is currently under development.11 Planning errors were 

simulated, and the physics plan review was performed both without and with the 

custom checklist. Based on feedback from reviewers, the checklist was modified to 

optimize the effectiveness for use with automatically generated plans. Although it 
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was tested with a specific automated process (the RPA), the study results will apply 

to the automated processes that are increasingly available in commercial treatment 

planning systems. 

 

5.2 - Methods and Materials 
 

5.2.1 - Checklist development 
 

A customized plan review checklist was developed using guidance from 

AAPM task groups 275 and 315 (Medical Physics Practice Guideline 11.a).25,60 

Based on the results of a failure modes and effects analysis of the clinical integration 

of the RPA, the checklist was modified to address additional high-risk points of 

error50. This checklist directly addresses known, common and critical errors which 

could occur in the RPA planning process. The preliminary checklist (Figure 10) 

contained 90 items to be checked for each RPA-generated plan; these fell into the 

categories of general, demographic, prescription and plan directive, simulation, plan 

information, plan summary, dose calculation, beam's eye views, isodose images, 

dose verification, and task scheduling. This comprehensive checklist was reviewed 

by two physicists and several developers from the RPA team, to verify clarity before 

proceeding.  

 

5.2.2. - Study 1 
 

 

To evaluate the effectiveness of our plan review checklist we assembled a 

group of eight physicists from MD Anderson with at least 2 years of clinical 
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experience, including review of external beam radiotherapy treatment plans. These 

physicists were also provided with training on how to safely use the RPA as part of 

this study. The training included videos providing step-by-step instructions for how to 

generate treatment plans in the RPA, as well as how to review the final plan report. 

These videos discuss what errors could occur in the plan generation process, and 

how to detect them in the final plan and report. Users were also provided with all 

user documentation for the RPA planning system. Participants were instructed to 

review all training materials and to follow up if they had any questions.  

 We provided each physicist with 10 automatically generated treatment plans 

(four cervical cancer plans, three chest wall plans, and three head and neck plans) 

and imported them into RayStation, along with the corresponding RPA plan report as 

a PDF file. Details of the automatic algorithms used to generate the plans are 

described elsewhere.12,14,56 Of the ten plans provided to each reviewer, five contained 

deliberate errors, all of which were identified as high risk in our failure modes and 

effects analysis study.50 These errors included incorrect treatment laterality, 

unidentified isocenter, incorrect coverage of the target, inappropriate dose 

normalization, and incorrect placement of the reference point and were introduced in 

the automated planning process. 
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Fig. 10. Checklist (version 1). Items for review were included based on 

recommendations from AAPM TG-275 and TG-315 and the results of a failure mode 

and effects analysis of the Radiation Planning Assistant (RPA). 90 total items were 

included to be reviewed. 

 

The 8 physicists performed plan quality and safety checks according to their 

normal process for the 10 automatically generated treatment plans without the 

checklist and recorded any errors that they found. They also rated the plans based 

on clinical acceptability and provided written  feedback on the plan check process. 

We then created an additional 10 plans, featuring a similar distribution of treatment 

site and planning errors, which the participants reviewed following a 2-week break 

with our customized checklist (Figure 10). After all plan checks had been completed 

and each plan had been scored, participants were provided with a document 

summarizing the errors present in each plan and a final, anonymous survey to 
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evaluate the process. The survey collected information about the overal l RPA plan 

quality, the time needed to check each plan, with and without the checklist, the 

clarity of the RPA plan report, the usefulness of the plan checklist, and any 

suggestions to improve the checklist or plan review process. 

Modifications were made to the checklist to reflect the results of the survey. 

The checklist was reduced from 90 items to 18 based on feedback that there was 

substantial overlap with recommendations from AAPM task group 275, leading to 

redundancy in the plan review process. While the initial checklist contained items for 

the entire plan check process (RPA output and final treatment parameters), the 

revised version focused specifically on the review of the RPA output. The majority of 

the redundant items were removed, excluding basic planning parameters, and all 

checks related to identifying automatically generated plan failure modes were 

preserved. 

 

5.2.3 - Study 2 
 

 

A second study was then performed with 14 senior medical physics residents 

from a variety of CAMPEP-accredited residency programs within the United States. 

Participants were again provided with RPA training materials before proceeding with 

the plan review process. Six of the participants were chosen at random to be 

provided with the updated checklist (Figure 11) to assist with their review, and eight 

were given no checklist. This uneven split was caused by participants from the 

checklist cohort dropping out prior to completing the study and was not intentional.  
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Fig. 11. Checklist (version 2). The initial checklist was revised based on feedback 

from study participants that the checklist had too much overlap with prior clinical 

practice. The revised version focuses specifically on the errors which could be 

present during the review of RPA output, as identified in a prior failure mode and 

effects analysis. 

Each resident reviewed 10 automatically generated plans, five of which 

contained errors. Residents were given 1 month to complete their review to prevent 

the study from interfering with their clinical training. The final survey was then 
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repeated after all plan reviews had been completed. 

5.3 – Results 
 

5.3.1 - Study 1 
 

 

Fig. 12. Errors detected without and with the initial checklist in study 1 (physicists). 

 

All eight physicists completed 20 plan checks each, separated into two 

phases, without and with the customized checklist. Each phase contained five errors 

to be detected per physicist and 40 errors in total. In phase 1, 27 errors (68%) were 

detected, and in phase 2, 35 errors (88%) were detected. Without and with the 

checklist, the mean and standard deviation of errors detected per participant was 3.4 

± 1.1 and 4.4 ± 0.74, respectively (Figure 12). A t-test indicated that the 
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improvement in error detection was statistically significant (p=0.02) for the physicist 

cohort. 

 

5.3.2 - Study 2 
 

 

Fig. 13. Errors detected without and with the revised checklist in study 2 (residents). 

 

The revised checklist was assessed by 14 physics residents who completed 

10 plan checks each, five of which contained errors. Eight residents completed their 

reviews without the checklist, and the remaining six participants utilized the 

checklist. Without the checklist, 53% (21 out of 40) of errors were detected; with the 

checklist, 70% (21 out of 30) of errors were detected. Without and with the checklist, 

the mean and standard deviation of errors detected per participant was 2.9 ± 0.84 
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and 3.5 ± 0.84, respectively (Figure 13). A t-test indicated these results were not 

statistically significant (p=0.08) for the resident cohort, however, the increase in error 

detection when the checklist was utilized showed that there would be a clinical 

benefit when using the custom checklist to assist with plan reviews. 

 

5.4 – Discussion 
 

 

We developed a checklist specifically for use when performing physics 

reviews of automatically generated treatment plans. Two versions of the checklist 

were developed and tested with different groups of medical physicists and trainees. 

While the first checklist was found to be effective at increasing the detectability of 

errors in the treatment plan, the study participants were overwhelmingly dissatisfied 

with its length. The revised checklist was significantly shorter but still led to a similar 

improvement in error detection compared to no checklist. 

 

5.4.1 - Error detection in physics plan review 
 

 

Errors in treatment planning, both automated and manual, are inevitable. A 

study by Gopan et al. found that when physics plan checks were performed on a set 

of treatment plans containing 113 errors, only 67% of errors were detected at this 

step of the workflow71. Similarly, Ford et al. found that pretreatment plan review by 

physicists leads to the detection of 63% of errors61. While these numbers may seem 

discouraging, Ford et al. also identified that when physics plan review is used in 
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conjunction with other quality assurance checks, such as physician review, portal 

dosimetry, and therapist review, 97% of errors were detected before impacting the 

patient. This reinforces that every step of the treatment planning process should be 

used for quality assurance to increase redundant checks, and limit patient risk. 

The rate of error detection for RPA plans when utilizing the custom checklist 

(88% for physicists and 70% for residents) is higher than in the prior studies, 

reinforcing that the final treatment plan and plan report from the RPA is clear and 

errors are evident. We recognize that the rate of error detection would have ideally 

been higher for both studies (physicists and residents) when utilizing the checklist. 

However, the improvement in error detection in both cohorts that used the checklist 

indicates the utility of this quality assurance aid. Physics plan review should never 

be used as the stand-alone quality assurance step, and we are confident that when 

evaluated in conjunction with other stages of the planning process, the rate of error 

detection will increase. 

 

5.4.2 - Participant experience levels 
 

 

 As this checklist will be used by physicists or other clinicians with varying 

levels of experience, we evaluated its effectiveness in two separate populations of 

physicists: clinical faculty physicists with more than 2 years of experience in 

checking radiotherapy plans and therapeutic medical physics residents who were in 

their second year of a CAMPEP-accredited residency program.  

While the rate of error detection was higher in both participant populations 

when the checklist was used, we identified a lower rate among the residents in study 
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2. While this could be a result of a lack of experience or the modifications that were 

made to the checklist, we also found that on average, the residents reported that 

they spent less time reviewing each plan than did the experienced physicists; 

therefore, the lower detection rate could be attributed to a less thorough review. 

Regardless, the rate was higher in both populations with the checklist (20% in the 

first study and 18% in the second), indicating that it is an impactful quality assurance 

aid.  

 

5.4.3 - Trends in error detection 
 

 

In study 1, when the custom checklist was not utilized for plan review, we 

found that physicists were least likely to detect an error in plan normalization, such 

as a dose that is too high or too low (25% detected). When the custom checklist was 

utilized, the rate of detection for improper plan normalization increased to 75%.  

In study 2, we found that both cohorts (with and without the checklist) were 

unable to detect when the CTV coverage did not match the intended prescription. 

Without and with the checklist, 0% and 17% of participants detected this error, 

respectively. The low detection rate when reviewing CTVs can likely be attributed to 

the lower clinical experience level of the residents, as CTVs based on nodal regions 

can be difficult to visually delineate. This same error was detected by 50% and 

100% of physicists, without and with the checklist respectively, showing the increase 

of detection with experience. 

Incorrect reference point position and incorrect isocenter detection are two 

errors that are somewhat unique to the RPA workflow, however, we found that for 
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both studies these errors had the highest detection rates among both the checklist 

and no checklist cohorts. This highlights a strength of the RPA system – the clarity of 

the final plan report. When unique errors are easily detectable, this indicates that the 

presence of the error was effectively displayed on the plan documentation, 

simplifying the review process. 

 

5.4.4 - Survey feedback  
 

 

In the survey from study 1, we received feedback that the provided checklist 

was too long from 80% of the physicists. Respondents also indicated that the 

checklist presented limited utility due to redundancy with recommendations from TG-

275, which inform the standard clinical review process. Thus, the checklist was 

revised to contain only critical errors that would be more likely to occur with 

automated planning systems. We expect this checklist to be used as an additional 

review step for automatically generated plans, in conjunction with the established 

plan review process Patient information checks in the record and verify system were 

removed.  

 Only 60% of participants in the first study reviewed all of the relevant RPA 

training videos and documentation that they had been provided with. In the second 

study, only 29% of physics residents reported that they had reviewed all provided 

training materials. We anticipate that had all training materials been used, the error 

detection rate would have increased, and the duration of plan review would have 

decreased, as the auto-generated plans would be more easily understood. 
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 Most (83%) participants in both studies indicated that it took less than 30 

minutes to review each plan, both without and with the provided custom checklist. 

Each participant surveyed reported that overall, the length of plan review was 

unchanged when using the checklist developed for use with automatically generated 

plans. We conclude that the use of a quality assurance checklist did not increase the 

time required to complete the plan review and ultimately increased the rate of error 

detection; thus, it will be an asset to the physics plan check process. 

 

5.4.5 - Checklist development 
 

 

This checklist was developed to assist with the physics plan review for 

treatment plans that are generated using automated tools. Rather than reiterating 

the recommendations that were made in AAPM task group 275, we generated a 

supplemental document that should be used in addition to the standard clinical 

procedure. The final checklist includes errors that were identified as more commonly 

occurring in plans generated using artificial intelligence-based tools and data from a 

failure modes and effects analysis study50. This decision led to more specific checks 

and a shorter checklist in the second study.  

 

5.4.6 - Future Deployment  

 

The final iteration of the custom checklist, included in the appendix, will be 

deployed to physicists for use with the RPA. Training will be provided to help guide 

the plan review process, with emphasis on possible high -risk failures. Users will then 
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be provided with test plans to review using the checklist, several of which will contain 

previously assessed errors. If all errors are detected, the user will be able to proceed 

with using the RPA for plan generation. If errors are not detected, additional training 

will be provided to the user and the checklist will be modified to add any missing 

items. The final iteration of our checklist will be evaluated as part of an end-to-end 

test of the RPA commissioning and training procedures. 

 

5.4.7 – Limitations 
 

 

This study included a limited number of participants because of the large time 

commitment required by each volunteer. In the first study, conducted with 

experienced clinical physicists, each volunteer participated in two rounds of plan 

checks, first without and then with the customized checklist. This format could 

introduce observer bias into the results: each participant was familiar with the RPA 

plan reports and performing plan reviews before the second phase of the study, 

which could have resulted in a higher number of errors detected with the checklist. 

To eliminate this factor from the second round of the study, each physics resident 

was randomly assigned to the checklist or no checklist cohort, and all plan checks 

were performed in one session. 

This study, including the development of a checklist, was motivated by the 

results of a failure modes and effects analysis that focused on the RPA system. 

Therefore, the checklist will need to be adapted when applied to other systems. Our 

results confirm that checklists are useful with automated planning approaches, which 
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should apply to other systems, including those that we expect treatment planning 

system vendors to introduce in future versions. 

 

5.5 – Conclusion 
 

 

  Our results indicate that the use of a customized checklist in the review of 

automated treatment plans will result in a higher error detection rate and, thus 

improved patient safety. When physicists completed their plan review utilizing the 

checklist, the error detection rate increased by 20%, to 88% of total errors being 

detected. When physics residents completed their plan review utilizing the checklist, 

the error detection rate increased by 17%, to 70% of total errors being detected. 

While this analysis was performed using the Radiation Planning Assistant as a case 

study, we anticipate the results will be scalable to other automated systems.  
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Chapter 6: Performing an End-to-End test of the RPA deployment and training 

strategy: A Pilot Study 

 

6.1 – Introduction 
 

Within the next few years, it is anticipated that approximately 20% of radiation 

oncology clinics will be making use of automated contouring and treatment planning 

tools19. Before utilizing automated tools, new users must have access to appropriate 

guidance and training to limit the risk that could be passed on to patients.19,72  

Several failure modes and effect analyses have been performed to evaluate 

points of risk with the use of automated treatment planning tools and determined that 

automation introduces unique failure modes which may not be accounted for in 

standard quality management program.27,50 While both manual and automatic quality 

assurance tools have been shown to detect errors introduced in automation -assisted 

workflows effectively, more thorough user testing must be performed on the entirety 

of the training and deployment process.15,73,74   

When introducing new software into clinical practice, Carden et al. 

recommend that system testing be performed, in which the entirety of the process is 

evaluated.75 This concept is often referred to as end-to-end testing and has become 

common practice in radiation therapy when evaluating new workflows.76–81 While 

automation tools undergo piece-wise testing during the development stage, to 

properly assess their safety, they must be fully evaluated while mirroring the 

anticipated clinical workflow.82 By creating test procedures that mimic the anticipated 
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training and subsequent use of automated tools, the occurrence of errors can be 

decreased while increasing the quality of the final plan output.83 

In this work, an end-to-end test of the training and deployment workflow for a 

novel automated contouring and treatment planning system was performed to 

evaluate any weaknesses in software function, user training, quality assurance, or 

ease of use. Based on participant feedback, updates will be made to the system and 

the new-user onboarding process prior to the clinical release of the automated 

treatment planning tool. 

 

6.2 - Methods and Materials 

 

6.2.1 - The Radiation Planning Assistant  
 

 

We performed an end-to-end assessment to evaluate the efficacy of the 

training and quality assurance resources for our in-house developed software, the 

Radiation Planning Assistant. 

The Radiation Planning Assistant is an automated contouring and treatment 

planning tool developed to be used in conjunction with each institution 's local 

treatment planning system.11 The user uploads a patient's CT scan and inputs the 

desired prescription information, including treatment site, disease extent, 

fractionation, dose, and treatment machine. The RPA then generates relevant 

contours for organs-at-risk and target structures. The user reviews these contours, 

and when approved, a plan is automatically generated to meet the desired planning 
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objectives. The plan DICOM is then downloaded from the RPA, imported into the 

local TPS, and recalculated using the desired CT table, dose grid, and local linac 

parameters. Following the review of this plan, and the automated QA results 

provided in the RPA plan report, the plan can be modified as desired before clinical 

use. The process map for this workflow is shown in Figure 14. Treatment planning 

services are currently available for chest wall (3D), cervix (VMAT and 3D), head and 

neck VMAT, and whole brain treatments (3D), with other sites under development.12–

15,17,18,56,84 

 

Fig. 124. Process map of the treatment planning workflow in the RPA 

 

The goal is for the RPA to be available for low or no cost to low-resource 

sites, which could benefit from additional planning assistance. Prior to use, there will 
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be a required commissioning and training process all new users must complete to 

ensure that the tool is used correctly and safely.  

 

6.2.2 - Proposed Training Procedure 
 

 

First, users are asked to provide the RPA team with a list of all CT scanners, 

linear accelerators, and treatment planning systems available at their sites. This 

allows us to ensure that their machines are up to the minimum specifications needed 

to treat with the system. For example, if the available linear accelerators do not have 

certain energies available, or VMAT capabilities, they will not be given access to 

plans which utilize those functions.  

Next, users who intend to interact with the RPA system must register for an 

account. As each clinical team member will play a different role in the planning 

process, different account types are assigned to physicists, therapists, dosimetrists, 

and radiation oncologists. Each account type has different approval privileges. For 

example, radiation oncologists have the ability to approve the prescription document, 

called the service request, whereas other users do not. This is to ensure that plans 

are not generated which have not received explicit approval from the oncologists to 

ensure proper planning objectives are being used. 

Once accounts are created, each user must undergo a thorough training 

process to ensure that they have a clear understanding of the tool 's capabilities, use 

cases, and points of risk. They are required to review all training videos which have 

been created to guide the user's understanding of the RPA. Topics covered in the 

videos include how to navigate the website, how to generate simple (3D) plans and 
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complex (VMAT) plans, how to review the output of the system, including the final 

plan summary, the contours, and the results of all internal quality assurance which 

was performed. Other videos teach users how to perform replans, delete patient 

data and register new users in the system. In total, there are nine videos, which take 

60 minutes to review.  

Users are also provided with the complete user guide for the RPA, which 

addresses any questions regarding the tool's functionality, and statements of 

appropriate use for each available treatment site. Statements of use describe the 

disease extent, patient setup, and treatment technique for which the RPA can be 

used for planning. If the patient scenario falls outside of these use cases, users are 

instructed to complete the planning manually without using our automated tools. 

Once these materials have been well studied and users feel comfortable, 

users complete a set of mock treatment plans, consisting of both simple and 

complex techniques, in their entirety. After completing these test patients, the final 

plans are submitted to the RPA team to check for any issues that may lead to low-

quality patient treatment, which must be corrected. Users then attend a live seminar 

with members of the RPA team to address any final questions or concerns. In this 

session, they are also reminded of the potential risk to patients if the tool is not used 

according to the planning guidelines and if plans are not reviewed diligently following 

generation. 

After completing the training, users are given access to the RPA for use in 

their clinical workflow.  
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6.2.3 - End-to-end testing 

  
 

To assess the effectiveness of the proposed training process, a set of 10 test 

patients was assembled, which encompassed all of the planning capabilities of the 

Radiation Planning Assistant. The set consists of 2 chest wall, two head and neck 

VMAT, two whole brain, two cervix 4-field box, and two cervix VMAT patient plans. 

The patients were fully anonymized prior to proceeding. 

Two practicing physicists were recruited, who had no prior experience with 

the automated contouring and planning tool being evaluated, to perform the end-to-

end testing. These physicists were ABR-certified clinical physicists from two US 

academic hospitals. Participants were provided with the full suite of training 

materials that were developed for new users of the RPA, discussed above. 

Following the review of this data, users were asked to complete two treatment 

plans: one whole brain patient and one cervix VMAT. They were given a scorecard 

(Figure 15) to provide feedback and address any issues they may have found. A 

custom plan review checklist was provided to participants in order to increase the 

efficacy of final plan checks73. Users were then asked about the clarity of training, the 

quality of plans generated, the ease of use of the tool, and finally, whether the RPA 

would be a positive addition to their clinical workflow.  
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Fig. 15. Scorecard used to collect participant feedback during end-to-end testing 

 

Following the completion of these two plans, users attended a 30-minute 

seminar with a member of the team to address any concerns they identified and 

answer any final questions they may have about the planning process. Following this 
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seminar, users were provided with the remaining eight patients and asked to 

complete the planning workflow and again provide feedback. 

While the process discussed thus far was designed to assess the usability of 

the RPA, we wanted to also use the opportunity to assess the detectability of errors 

in plans generated by the system. Prior to deployment, we must not determine only if 

the tool is effective but if it is safe to use and if issues that arise can be easily 

identified and mitigated.  

To test this, two errors were inserted into our set of plans to evaluate how 

new users respond to their presence. First, a CT was provided of a head and neck 

patient whose scan had been inappropriately cropped. Due to the limited field of 

view, the RPA cannot provide a high-quality treatment plan. Throughout the training 

process, users were informed that if this were to happen, they should not proceed 

with planning.  

 

Fig. 16. End-to-end testing workflow for the RPA 

For the second error, a CT was provided for a patient with cervical cancer. 

When this CT scan is uploaded into the RPA, the system is unable to visually 

identify the marked isocenter for this patient, which is the standard workflow for RPA 
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planning. Throughout the training, users were instructed that if the isocenter is not 

identified, they should not proceed with planning with the automated tool. Treatment 

planning should instead be completed manually in their local treatment planning 

system. Each of these errors was identified as a potential risk point in an FMEA of 

the system50. 

After completing all of the treatment plans, users were asked to complete a 

final survey to provide any remaining feedback about improvements to the training 

materials and the system's overall usability. 

 

6.3 - Results 

 

6.3.1 - Round 1 
 

 

In the first round of this study, each participant was asked to complete two 

treatment plans: one 3D whole-brain treatment and one cervix VMAT plan. 

Participant 1 successfully completed plans for both patients (100%). They reported 

that both plans (100%) were acceptable for use in their clinic following plan 

generation and minor edits. Each plan took 45 minutes to complete. 

Participant 2 completed planning for one (50%) of the patients. The cervix 

VMAT plan could not be completed due to an incompatibility between machine 

treatment parameters for the RPA and their local TPS that prevented final 

recalculation. While the whole brain plan was finished, the final plan was not 

acceptable for clinical use. This plan took 10 minutes to complete. 
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Participants were asked how confident they were that the plans were 

completed properly on a scale of 1-5, where 1 = not confident and 5= very confident. 

Participant 1 scored their confidence at 3/5, and Participant 2 scored their 

confidence at 4/5 (Figure 17). 

 

Fig. 17. Confidence scores for Participant 1 and Participant 2, in each round of the 

study, where 1=not confident and 5=very confident. 

 

Participants were also asked how easy was the planning process to complete 

on a scale of 1-5, where 1 = difficult and 5 = very easy. Participant 1 scored the ease 

of use at 4/5, and Participant 2 scored their ease of use at 5/5. (Figure 17) 

Both users (100%) reported that the training provided was sufficient and 

provided all information needed to complete the plans.  
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6.3.2 - Round 2 

 

In the second round of this study, each participant was asked to complete 

eight treatment plans: two VMAT head and neck, one cervix VMAT, two cervix 4-

field box, two 3D chest wall, and one whole brain treatment. The two errors 

introduced into this dataset had a 100% detection rate, with both participants 

identifying the errors before proceeding with planning.  

Participant 1 completed plans for six of the eight (75%) patients, excluding 

only the patients with known errors. They reported that all six plans (100%) were 

acceptable for use in their clinic following plan generation and minor edits. On 

average, each plan took 60 minutes to complete. 

Participant 2 completed plans for five of the eight (63%) patients, excluding 

the two patients with known errors and one patient plan that could not be 

recalculated in RayStation. Of these plans, two (40%) were rated as acceptable for 

use in their clinic. On average, each plan took 32 minutes to complete. 

Participants were again asked how confident they were that the plans were 

created properly on a scale of 1-5, where 1 = not confident and 5= very confident. 

Participant 1 confidence score increased to 4/5, and Participant 2's score increased 

to 5/5. (Figure 18) 
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Fig. 18. Ease of use score for Participant 1 and Participant 2 in each round of the 

study, where 1 = difficult and 5 = very easy. 

Participants were also asked how easy the planning process was to complete 

on a scale of 1 - 5, where 1 = difficult and 5 = very easy. Participant 1 again scored 

the ease of use at 4/5, and Participant 2's ease of use decreased to 4/5. (Figure 5) 

Both users again (100%) reported that the training provided was sufficient and 

provided all information needed to complete the plans.  

6.3.3 - Final Survey 
 

After completing the end-to-end testing, both participants were sent a survey 

and asked to provide feedback on the training and planning process. The results 

from this survey are shown in Table 8. 
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Did the training materials provide you with all the necessary information to make 
safe, high-quality treatment plans? (1= no, 5= yes) 

Participant 1 4 

Participant 2 5 

Was the live seminar a useful addition to the training program? (1= no, 5= yes) 

Participant 1 4 

Participant 2 2 

You were also provided with a short, recorded video demonstration of a user 
generating an RPA plan. Do you feel that this video was as useful as the live 
seminar? 

Participant 1 Yes 

Participant 2 Yes 

What do you feel is an appropriate length of time to ask new users to commit to 
training for the RPA prior to introducing the tool into their clinical workflow? 

Participant 1 10 hours 

Participant 2 1 hour 

How much time did you commit to training and completing all 10 RPA Plans? 

Participant 1 8-10 hours 

Participant 2 15-20 hours 

Was the RPA workflow easy to understand and execute? (1= no, 5= yes) 

Participant 1 4 

Participant 2 5 

Was the RPA PDF Plan Report used as part of your review for all plans? 

Participant 1 Yes 

Participant 2 Some of the Plans 

Did you find the RPA Plan Report to be helpful for plan review? (1= no, 5= yes) 

Participant 1 3 

Participant 2 2 

Was the provided checklist used as part of your review for all plans? 

Participant 1 Yes 

Participant 2 Yes 

Did you find it to be helpful? (1= no, 5= yes) 

Participant 1 4 

Participant 2 4 

What TPS did you use for final plan recalculation and preparation? 

Participant 1 Eclipse 

Participant 2 RayStation 

Did you have any issues recalculating the RPA plan with your local machines? 

Participant 1 Yes 

Participant 2 Yes 
 

Table 8.  Participant feedback from the final survey, administered upon completion 

of the end-to-end testing. 
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6.4 - Discussion 

 

6.4.1 - The RPA Plan Report 
 

In the current iteration of the RPA, a final Plan Report is generated once 

planning has been completed. This report contains copies of the patient's Service 

Request, the CT Approval checklist, the planning parameters, a slice-by-slice of the 

isodose distribution, the dose volume histogram (DVH), dose statistics, and the 

results of all automated QA tasks. It also contains a slice-by-slice of the patient's 

contours. While this document provides valuable information, which can provide 

planners with more guidance on reviewing the provided treatment plans, the 

document can exceed 50 pages for some planning techniques. Participants of the 

study reported that the exhaustive length of the plan report limited their ability to find 

the desired information and stated that they would not be inclined to review the 

report in its entirety. Both participants recommended removing the slice-by-slice of 

the contours and dose distribution to simplify the document and allow for a more 

streamlined review.  

Based on this feedback, two versions of the plan report may be offered in 

future iterations of the RPA. First, a full version contains all of the currently available 

information, allowing users to examine each detail of the plan in the report before 

importing it into their own TPS. Alternatively, an abridged version will be available, 

allowing users to review the plan parameters, DVH, and results of the automated 

QA. Upon import, a more thorough plan review will occur in the user's local TPS. 
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6.4.2 - Dose Calculation Error 

 

While generating the first set of treatment plans, Participant 2 identified an 

issue that prevented them from completing a Cervix VMAT patient plan. The RPA 

successfully created the contours. They were then edited in the user's local TPS 

(RayStation) and reimported into the RPA for final plan generation.  

Once the plan was imported into RayStation for recalculation, an error 

occurred. The treatment planning parameters, including MLC positions and 

MU/gantry rotation, were incompatible with the thresholds set in RayStation. Due to 

this error, the user could not calculate the dose for the remaining VMAT treatment 

plans. Testing will be paused until this incompatibility in planning parameters is 

corrected in the RPA.  

 

6.4.3 - Live Q&A Session vs. Videos Alone 
 

 

Participants were surveyed to assess whether the live question and answer 

session, held between the two rounds of planning, was a helpful addition to the 

training program. Scores were requested between 1-5 when one indicates not 

beneficial, and five is very useful. Participant 1 scored this question a 4, while 

Participant 2 scored this question a 2.  

An alternate approach was offered to participants, in which the seminar would 

be removed, and similar treatment planning guidance would be provided in a pre-

recorded video. This video showed a live demonstration of the entirety of the plan 

generation process.  
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After reviewing the video, both participants felt that it was as effective of a 

resource as the live seminar. Participant 1 indicated that offering both options would 

allow us to cater better to users with different learning styles. In future iterations of 

end-to-end testing, participants will be provided with both options and asked for 

additional feedback. 

 

6.4.4 – Training Time Commitment 
 

 

Participants were asked to keep track of the time required for each treatment 

plan generated and the total time invested in the end-to-end workflow. Participant 1 

reported that completing the required training and all treatment plans took between 

eight and ten hours, whereas Participant 2 reported that the process took between 

fifteen and twenty hours.  

We expect some deviation in the time required for training, depending on 

each user's previous experience and planning preferences; however, we want to 

ensure that the time commitment is not a limiting factor in a user's ability to utilize the 

RPA in their clinic. To address this concern, participants were also asked what 

length of they would be willing to commit to the training process. Participant 1 

reported that ten hours would be reasonable for training with a new treatment 

planning tool. Participant 1 indicated that training should not exceed one hour.  

Due to the significant disagreement regarding the expected time commitment, 

additional feedback will be requested from the next round of participants to 

determine the best path forward.  
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If consensus is still not reached, we will consider offering two sets of 

participants different types of training: first, an abridged version that requires the 

review of training material and the generation of only two plans, one simple and one 

complex. The second group will be asked to follow the extended training discussed 

in this report.  

Both cohorts would again provide feedback on the system's usability and their 

confidence in use. Suppose no difference is found between the scoring from each 

group. In that case, hazard testing will be performed to ensure that the condensed 

training program does not negatively impact the error detection rate.  

 

6.4.5 – Updates to Testing 
 

 

Participants of this study made several suggestions that will be implemented 

in future rounds of testing. First, users requested that we provide more explicit 

guidance regarding when to place the couch structure in their local TPS. Instructions 

were then updated to state that the appropriate couch structure for each patient can 

be placed at any time before calculating the treatment plan's final dose.  

Both participants also requested that space be allocated on the provided 

physics plan checklist for recording notes about the plan. The checklist has been 

updated to include a small area for planner notes.  

A bug in the RPA system was identified when participants reported that dose 

constraints were inconsistent for chest wall plans generated by the RPA. Upon 

investigation, it was determined that the lung constraints were not implemented as 



 

 
81 

 

instructed in the statements of use. The ipsilateral lung dose, specifically V17 Gy, 

should be used as a constraint for both the left and right chest wall. However, we 

determined that the left lung dose was reported and used as the constraint in the 

automatic QA check, regardless of the laterality of treatment. The dose was reported 

to the ipsilateral lung for left chest wall patients and the contralateral lung for right 

chest wall. This inconsistency will be corrected prior to additional rounds of testing.   

 

 6.4.5 - Future Work 
 

 

Following needed updates to the RPA system, two additional phases of end-

to-end testing will be performed. In the second phase, we will recruit five additional 

physicists to repeat the testing described in this report. These participants will be 

clinicians from the international partner institutions where the RPA will first be 

deployed. By focusing our testing on these participants, we can ensure that the 

training and planning procedures are optimized for our intended users. Based on 

feedback from this study, modifications will again be made to the RPA deployment 

strategy as needed. 

Finally, a third testing phase will occur, for which 15 new physicists from 

various institutions will be recruited. Each participant will review the provided training 

information and will generate and review one treatment plan each. Feedback 

regarding the training resources, system usability, and final plan quality will be 

requested. By expanding our study to a broader variety of users, the scalability of 

the RPA system can be more clearly understood. 
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Following the completion of this study, the RPA will be ready to undergo 

phased clinical deployment to intended partner institutions.  

6.5 – Conclusions 
 

We performed a pilot study to assess the effectiveness of the RPA training 

and deployment workflow. We found that the training resources provided users with 

a clear understanding of how to generate treatment plans, with Participant 1 scoring 

the quality of training as 4 out of 5 and Participant 2 scoring it 5. Both participants 

reported high confidence in their planning capabilities and high scores for ease of 

use. Two errors were introduced into the plann ing process, which had a 100% 

detection rate, indicating that users can appropriately identify and respond to issues 

that may arise. This result supported our central hypothesis that 90% of errors in the 

automated treatment planning process can be prevented or detected with proper 

training and quality assurance resources. Updates were made to the system based 

on participant feedback, and additional testing will be performed with a new cohort of 

participants to further optimize the training and deployment procedures. 
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Chapter 7: Evaluating the clinical use and acceptability of automatically 

generated contours 

 

7.1 – Introduction 
 

Organ contouring is an essential part of the radiotherapy treatment planning 

process. Organ contouring has long been accepted as a variable process in which 

the volume of the final contour can depend on the contouring clinicians' individual 

stylistic choices. For example, Collier et al.85 analyzed the clinical contours for the 

heart, esophagus, and spinal cord generated by 6 different dosimetrists of varying 

experience levels to determine the uncertainty in organ delineation. They observed 

substantial variations of up to several centimeters among the users and 

recommended mitigating this issue using automated methods. In another study, 

Jenkins et al.86 investigated how this contour variability can impact the outcomes of 

prostate cancer radiotherapy. They compared manually drawn target contours with 

an automatically generated reference contour. As the size of the manual contour 

increased relative to the reference, they determined that the risk of biochemical 

recurrence increased by 8-24%/mm. 

In recent years, the use of both commercially and in-house developed 

automated contouring tools has increased rapidly, with reported improvements in 

contouring consistency and efficiency.87–89 Although these automated tools have 

many benefits, they also introduce risks into the clinical workflow that must be 

explored. A failure mode and effects analysis of an automated contouring an d 

planning system demonstrated that the most frequent cause of high-risk failure was 

automation bias, in which users rely too heavily on the output of automated tools.50 
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Thus, formalized review of the output of autocontouring software is essential. 

Turchan et al.90 surveyed 273 individuals at both community and academic centers 

regarding their departmental contour review procedures. Only 19% of these 

individuals reported having a formal process for physicians to review organ contours. 

Furthermore, 21% of them reported that the formal review process was rarely or 

never completed. 

Although the quality of autocontouring solutions has improved significantly in 

recent years, these tools can still provide low-quality contours. Therefore, the lack of 

contour review can greatly impact patient safety and treatment outcomes. One 

technique that can be used to supplement clinical reviews and detect abnormalities 

in the use of automated contouring tools is statistical process control (SPC), in which 

statistical analysis of data acquired using the given workflow to be monitored is 

performed.91,92 Groups have used SPC in many applications in medical physics, 

including quality assurance of couch positioning,93 evaluating the acceptability of 

machine performance checks,94 analyzing adaptive treatment plans,95,96 deriving 

machine tolerance for proton quality assurance,97 developing a predictive quality 

assurance system,98 and exploring the dosimetric properties of automated planning 

tools.99 

In this study, we applied SPC methods to identify abnormalities in the clinical 

use of automatically generated contours for 15 organs in the head and neck region 

in cancer patients. We developed a real-time automated contour monitoring system 

to notify users if abnormally small or large edits are made to the contours to help 

improve the clinical review process and the quality of provided automated contours. 
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7.2 - Methods and Materials 

 

This study was performed to determine whether SPC can be used to monitor 

the magnitude of edits made to automatically generated contours. SPC uses the 

statistical properties of a set of data to identify systematic errors in a given workflow. 

By setting action and warning thresholds, abnormalities in data can be detected, and 

“out-of-control” processes can be investigated. In monitoring the magnitude of edits 

made to automatically generated contours, our hope was to improve our ability to 

detect 2 phenomena. First, abnormally large edits of deep-learning contours may 

indicate the failure of deep-learning models, which must be addressed. This could 

occur if the contouring tool was used on a different patient population than that 

which was used to train the model. One example would be using a contouring tool 

that was trained for adult patients, to generate OAR contours for a pediatric patient. 

Large edits could also indicate that automated contouring was performed for a 

different patient population than the one used for the training data.  Off -label use of 

the  contouring tool, in which the tool is used in a fashion unintended by developers, 

such as using a contouring model developed for the male pelvis to contour organs at 

risk (OARs) for a female patient, could also be occurring.  

Second, if the number of contours that are not edited increases, or the 

magnitude of edits made decreases over time, automation bias may be occurring. 

Automation bias could also present as a user who consistently makes fewer edits 

from the start. Therefore, In addition to SPC, we investigated the initial magnitude of 

contour editing performed by each clinical user. For example, if some users 
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consistently make fewer edits than others, additional education about the risk of not 

thoroughly reviewing automatically generated contours may be needed.  

7.2.1 - Monitoring for unusually large contour edits 

 

Data were collected for a cohort of 500 head and neck cancer patients whose 

organs were contoured using in-house deep learning–based segmentation tools 

from October 2020 to December 202174. The automated tool provided contours for 

several relevant OARs, consisting of the brain, brainstem, cochleae, esophagus, 

eyes, lens, mandible, optic nerves, parotid glands, and spinal cord. The 

automatically generated contours were saved into a research database prior to 

integration into the treatment workflow, to ensure that a copy was preserved for 

comparison. Each generated contour was then subjected to dosimetrist and 

physician review, and necessary edits were made until the contours were deemed 

clinically acceptable. The final set of contours was then approved for treatment 

planning. 

The final approved clinical contours for each OAR were exported from our 

treatment planning system (RayStation) and two overlap metrics, Dice similarity 

coefficient100 (DSC) and added path length101 (APL) were calculated for comparing 

the automatically–generated contours with the final contours (after editing). The DSC 

was calculated due to its sensitivity to large volume changes, whereas APL was 

calculated because it was found to be the metric that most closely correlates with the 

time spent editing.101  

 These metrics were then used to calculate the appropriate warning and 

action thresholds for each OAR, following standard SPC methodology. To do this, a 
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random sample of 50 patients was selected from the initial cohort for use in defining 

our thresholds. For both DSC and APL, the mean () and SD () were calculated for 

every OAR in these 50 patients. The warning threshold was then set at  ± 2, and 

the action threshold was set at  ± 3. These limits are commonly accepted in SPC  

and have been applied in other areas of radiation therapy.96,97,99 Control charts were 

then created for each OAR, in which the magnitude of edits made for each patient is 

plotted. Separate control charts were generated for DSC and APL. 

In this portion of the study, we aim to detect contours that required 

exceptionally large edits. Therefore, patients will only be flagged who exceeded the 

large edit action threshold. Specifically, for the DSC plots,  - 3 was the large 

action threshold, as the DSC decreases with increased editing. For the APL plots,  

+ 3 was the action threshold because the APL increases with increased editing.  

The overlap metrics for the remaining patients in the dataset were then 

plotted on the established control charts. Patients whose organs required edits that 

exceeded the warning or action threshold were then investigated to identify any 

clinical justification for these statistical abnormalities. 

 

7.2.2 - Monitoring for automation bias 

 

Automation bias occurs when users over-rely on automated tools and 

therefore do not review the output as thoroughly as they would for manually 

generated contours. This overreliance can lead to additional risk for patients and 

thus must be carefully monitored when deploying new automated tools in clinical 
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practice.50To detect automation bias, rather than looking at the magnitude of edits 

being made for each individual patient, trends in the data indicating that fewer edits 

are made over time were examined. To do this, moving mean control charts were 

used. These charts are generated by grouping a fixed number of data points and 

plotting their mean.91 By averaging several consecutive data points, the data are 

smoothed, and rather than flagging for each individual patient with statistically 

abnormal edits, users will only be alerted if a change in editing practice is observed. 

At our institution, dosimetrists are primarily responsible for running 

autocontouring tools and for the initial review and editing of the output. Therefore, 

the patients were according to the dosimetrist who was responsible for editing and 

approving the automatically generated contours. The data corresponding to the 5 

dosimetrists who completed the most patient plans was then investigated further. A 

t-test (P<.05) was performed to determine whether editing preferences varied among 

the dosimetrists. The dosimetrists' practice patterns were inconsistent; therefore, 

automation bias was assessed for each individual who edited contours. 

After grouping data according to the dosimetrist performing edits, contours 

were then sorted by the date of plan approval. For the moving mean control charts, 

the mean values were calculated for a series of 5 sequential patients. Every time a 

new patient was added to the system, a new mean was calculated using the 5 most 

recent data points. The first 10 mean values in each dosimetrist’s data set were 

used to set the warning and action thresholds for the moving mean charts, again 

setting the warning threshold at  ± 2 and the action threshold at  ± 3. When 

using moving mean control charts, an important point is that these values ( and ) 
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are calculated not using each individual measurement of contour editing but rather 

using a subset of the mean values calculated91. In this study, we have chosen to use 

the first 10 mean values calculated to set our action and warning thresholds. 

Because we looked for abnormally small edits in this portion of the study, the 

thresholds were set asymmetrically. For the DSC plots,  + 3 was used as the 

action threshold because the DSC increases with decreased editing, with a DSC of 1 

indicating no edits were made. For the APL plots,  - 3 was used as the action 

threshold because APL decreases with decreased editing and approaches 0 when  

no edits are made.  

Using the moving range charts for each dosimetrist, changes in editing 

practice that could be indicative of automation bias events were flagged if 1) 1 point 

exceeded the action threshold, 2) 4 consecutive points fell between the warning and 

action thresholds, or 3) 12 consecutive points fell on the same side of the mean. 

This process was repeated for each OAR. 

 

7.3 - Results 
 

7.3.1 - SPC results for detection of abnormally large edits 
 

We set the thresholds for each OAR by calculating the mean and SD of the 

magnitude of edits made for the first 50 patients whose OARs were contoured as 

described above. We then plotted the remaining data to facilitate the visual 

identification of patients whose edits exceeded these thresholds. Examples of  SPC 

control plots for the brain and mandible are shown in Figure 19.   
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Fig.19. Mean control plots showing the magnitude of edits made to automatically 

generated brain (a) and mandible (b) contours. 

 

 

 

The number of patients whose edits exceeded the warning and action 

thresholds when using both the DSC and APL, for each OAR is shown in Table 9. 

The percentage of automatically generated contours that required substantial edits 

and exceeded the action threshold for each OAR is as follows: 1.0% of brain 

contours, 3.1% of brainstem contours, 3.5% of left cochlea contours, 2.9% of right 

cochlea contours, 4.8% of esophagus contours, 4.1% of left eye contours, 4.0% of 

right eye contours, 2.2% of left lens contours, 4.9% of right lens contours, 2.5% of 

a 

b 
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mandible contours, 11% of left optic nerve contours, 6.1% of right optic nerve 

contours, 3.8% of left parotid gland contours, 5.9% of right parotid gland contours 

and 3.0% of spinal cord contours.  For every patient whose edits exceeded the 

action threshold, we visually inspected both the automatically generated and final 

clinical contours to determine the cause of major edits. 

  

Above 
Action 

Threshold 
(n)  

 Above 
Warning 

Threshold 
(n) 

 OAR 
No. of 

Patients DSC APL 

No. of 
Patients 

Above 
Action 

Threshold 

Percent of 
Patients 

Above 
Action 

Threshold DSC APL 

Brain 402 2 2 4 1.0% 0 4 

Brainstem 418 7 8 13 3.1% 9 4 

Left cochlea 342 1 12 12 3.5% 11 7 

Right cochlea 342 0 10 10 2.9% 14 10 

Esophagus 357 12 6 17 4.8% 11 11 

Left eye 346 13 6 14 4.1% 16 4 

Right eye 347 13 6 14 4.0% 19 4 

Left lens 319 7 3 7 2.2% 4 2 

Right lens 324 15 6 16 4.9% 6 4 

Mandible 399 4 9 10 2.5% 4 11 

Left optic 

nerve 
326 21 27 35 

11% 
22 8 

Right optic 
nerve 

327 8 15 20 
6.1% 

12 9 

Left parotid  391 3 14 15 3.8% 8 12 

Right parotid 390 3 22 23 5.9% 4 10 

Spinal cord 431 8 6 13      3.0% 10 6 
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Table 9. Percentage of patients who were flagged as having abnormally large edits 

made to the contours of each OAR in our dataset.    

7.3.1.1 -  Flagged Scenarios 

 

Spinal Cord 

 

Fig. 20. CT scan showing the target volume for treatment of a skull base tumor.  

 

Fig. 21. CT scans showing (a) an automatically generated spinal cord contour and 

(b) the final, clinically approved spinal cord contour following edits made by a 

dosimetrist. 

a b 
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We found that 13 patients (3.0%) were flagged as having edits that exceeded 

the action threshold for the spinal cord contour. Eight of these patients exhibited a 

consistent deviation from standard clinical practice. One example is shown in Figure 

20. For this base of skull treatment plan, the spinal cord edits exceeded our action 

threshold, with a DSC of 0.224. The figure shows the automatic segmentation of the 

spinal cord contour which was generated by our deep learning–based model. The 

automatic segmentation (Figure 21a) appeared to be reasonable with no evident 

failures. Figure 21b shows the final clinical spinal cord for this patient. The 

dosimetrist cropped the provided contour to contain only the small region of the total 

spinal cord volume that was proximal to the target volume and therefore was 

receiving the most radiation dose. 

Upon further investigation, we determined that dosimetrists at our institution 

traditionally contoured only the portion of the spinal cord that falls within the 

treatment field, with a several-centimeter margin both superiorly and inferiorly. 

Although this is no longer the standard practice in our clinic, several dosimetrists in 

the present study did not update their practice when advanced tools became 

available. By identifying this deviation from standard practice, we were able to 

remind the dosimetrists in our clinic that the entire length of the spinal cord should 

be included in the structure set to maximize the out-of-field dose reported in the 

event of retreatment. 
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Cochlea Contour Preferences 

 

Fig. 22. A CT scan depicting the difference between the automatically generated left 

cochlea contour (in purple), and the final clinical contour (in orange). 

 

When reviewing large contour edits made to the cochleae, we observed 

another trend. For the left cochlea, in 12 patients, the warning or action threshold 

was exceeded. For 10 of these patients, the automated contour was edited to 

increase both the diameter of the contour on each slice and the superior-inferior 

extent of the contour (Figure 22. Of these 10 patients, 5 of them were contoured by 

the same member of the dosimetry team performed contouring for 5 of these 10 

patients, indicating a clear preference for larger cochlear volumes by some of the 

contouring staff than those provided by the automated contouring tool.  

Using our real-time automated contour monitoring system, we identified 

contouring preferences for specific dosimetrists that do not align with the output of 
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our model. For all 10 patients whose left cochlea contours exceeded the action 

threshold, the final clinical contours were larger than those obtained using the deep 

learning model. This may indicate a need to create new autocontouring models for 

the cochleae, however, it also highlights the variability in cochlear contouring styles 

between dosimetrists in our clinic. 

 

Inappropriate Use of Autocontouring Tool 

 

Another aim of this contour monitoring system was to identify and 

subsequently address situations in which our automated contouring tools are used 

inappropriately. Each automated contouring model is trained to provide high-quality 

contours in certain situations, which are defined by the training and testing data sets. 

These parameters can include but are not limited to specific patient orientations, 

imaging field of view, immobilization devices used, and computed tomography (CT) 

quality. Although all users of automated systems are trained to only use these tools 

in appropriate scenarios, off-label use is a potential point of risk that has been 

identified.50 When automated contouring models are used on patient images having 

features outside the acceptable parameters abnormal, unpredictable, or low-quality 

contours may be generated. 
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Fig. 23. A patient CT scan that was flagged by the monitoring system, due to large 

magnitude edits which were needed to 9 of the 15 provided contours. The failures 

occurred due to the atypical patient orientation during simulation.  

 

While reviewing data for this study, we identified a patient whose edits 

exceeded the action threshold for 9 of the 15 contours, indicating that large edits 

were required prior to final clinical approval. Upon review of the patient CT and 

treatment plan, we determined that the cause of these model failures was atypical 

patient positioning (Figure 23). The alignment of this patient was not consistent with 

the patients used to train our automated contouring model, which led to the 

generation of suboptimal contours. This is an example of a case that falls outside the 

scope of the automated contouring tool, so the OARs should have been segmented 

manually to ensure accuracy. Because the automated contouring monitoring system 

flagged this patient for review, the clinical team can be reminded of the appropriate 
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situations in which to use automated contouring and the risk of not following these 

directions.  

 

7.3.2 - Monitoring for Automation Bias 
 

To determine if automation bias occurs in our clinic, we examined the 

magnitude of edits made by the 5 dosimetrists who contributed most frequently to 

this data set. To do this, we plotted the DSC and APL for patients edited by each of 

these 5 dosimetrists and compared them to the magnitude of edits made by all 

dosimetrists who contributed to this study (Figure 24). We repeated this process for 

each OAR. More information about the distribution of data for each dosimetrist is 

available in Appendix D. 
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Fig. 24. Distribution of edits, by dosimetrist in this study for the (a) mandible, (b) left 

cochlea and (c) the spinal cord. 

 

a 

b 

c 
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Trends in dosimetry practice 

When examining the magnitude of edits made by the dosimetrists, we 

identified trends in user preference. In particular, we found that dosimetrist 1 

consistently edited contours less than the mean DSC and APL for 14 of the 15 

OARs evaluated in this study. Dosimetrist 2, however, made considerably more edits 

and exceeded the data set mean for 14 of the 15 OARs, indicating that Dosimetrist 2 

found the automatically generated contours consistently required additional edits to 

achieve clinical acceptability.  

We performed a t-test to assess the significance of the difference in edits 

made to each OAR based on the dosimetrist performing the task. We did so for both 

DSC and APL metrics and compared the data sets for dosimetrists 2 and 1. For 

most of the OARs, the results demonstrated a significant difference between the 2 

dosimetrists’ edits (P < .05). However, the t-test results demonstrated that for the 

optic nerves, parotid glands, and spinal cord, the difference was not significant (P > 

.05). Based on these results, the conservative approach was taken and for each 

OAR the presence of automation bias was assessed on an individual basis.  

 

Moving Mean Control Charts 

For the moving mean control chart, the mean values were calculated for a 

series of 5 sequential patients. Every time a new patient was added to the system, a 

new mean was calculated using the 5 most recent data points. The first 10 mean 

values in each dosimetrist’s data set were used to set the warning and action 

thresholds for the moving mean charts. The remaining data points were then plotted 
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on the moving mean charts. Examples of these plots, which display the edits made 

to mandible contours, are shown in Figure 25.  
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Fig. 25. Moving mean charts for edits made to the mandible, for each dosimetrist 

10 moving mean charts were generated for each OAR in each dataset, 

including each of the 5 dosimetrists edits quantified with DSC and with APL. In total, 

150 moving mean charts were created in this study to assess automation bias. Of 

these control plots, 27 were flagged due to the possibility of automation bias. Of 

these 23 charts, 8 were for OARs edited by dosimetrist 1, 9 were for OARs edited by 

dosimetrist 2,  4 were for OARs edited by dosimetrist 3, 2 were for OARs edited by 

dosimetrist 4, and 4 were for OARs edited by dosimetrist 5. Figure 25 shows 

examples of charts that were flagged for automation bias, in the APL moving mean 

charts for dosimetrists 3, 4, and 5. Table 10 summarizes the instances in which 

dosimetrists exceeded the moving mean thresholds for OARs.  
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 Dosimetrist 
 1 2 3 4 5       

Mandible DSC 0 1 1 0 1 
Mandible APL 0 1 1 1 1       

Brain DSC 1 0 1 0 0 

Brain APL 1 0 1 0 0 
      

Brainstem DSC 1 0 0 0 0 

Brainstem APL 1 0 0 0 0       

Left cochlea DSC 0 0 0 0 0 

Left cochlea APL 0 0 0 0 0       

Right cochlea DSC 0 0 0 0 0 

Right cochlea APL 0 0 0 0 0       

Esophagus DSC 1 0 Trending 0 0 

Esophagus APL 0 0 Trending 1 0       
Left eye DSC 0 1 0 0 0 

Left eye APL 0 1 0 0 0       

Right eye DSC 0 0 0 0 0 

Right eye APL 0 0 0 0 0       

Left lens DSC 0 1 0 0 0 

Left lens APL 0 1 0 0 0       

Right lens DSC 1 0 0 0 0 

Right lens APL 1 0 0 0 0       

Left optic nerve DSC 0 0 0 0 0 

Left optic nerve APL 0 0 0 0 0       

Right optic nerve DSC 0 0 0 0 0 

Right optic nerve APL 0 0 0 0 0       
Left parotid gland DSC 0 0 0 0 Trending 
Left parotid gland APL 1 1 0 0 Trending       

Right parotid gland DSC 0 1 0 0 Trending 

Right parotid gland APL 0 1 0 0 Trending       

Spinal cord DSC 0 0 0 0 1 

Spinal cord APL 0 0 0 0 1 

 

Table 10. Number of flags for automation bias in all moving mean control plots, with 

1 indicating that the dosimetrist was flagged for exceeding action thresholds 

corresponding to less edits over time, and 0 indicating that action thresholds were 
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not exceeded. “Trending” is used to indicate that the dosimetrist’s most recent 

patients were consistently receiving fewer edits. 

Upon review, 6 additional control charts were noted as showing a trend in the 

data which indicated that fewer edits were being made over time, however, the 

action threshold had not yet been reached. 2 examples of this phenomenon can be 

shown in Figure 26. For the left and right parotid glands, dosimetrist 5’s APL moving 

mean control charts indicated fewer edits were being made over time, as shown in 

the plateau beginning at patient 19. However, the number of available data points 

was insufficient to flag the automated contour monitoring system and trigger an 

investigation.  To mitigate the risk associated with potential trending automation 

bias, the dosimetrists exhibiting these trends will be contacted prematurely to 

discuss the motivation behind decreased contour editing.  

 

Fig. 26. Moving mean charts of the left (a) and right (b) parotid for edits made by 

dosimetrist 5.  

 

 

a b 
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7.4 - Discussion 

 

In this study, we developed a monitoring system to detect when statistically 

abnormal edits are made to automatically generated contours. By investigating the 

causes of these large edits, we identified scenarios, such as contouring for the 

cochleae, in which the automatically generated contours were consistently modified 

to be more closely aligned with a dosimetrists preference. We also identified 

scenarios where large changes were made to the automatically generated contour 

which were inconsistent with standard clinical practice, including substantial 

cropping of the spinal cord contour. The spinal cord is a serial organ, and therefore 

our primary concern is the maximum dose received by the structure, which would 

still have been captured despite the cropping. Therefore, the issues identified in 

spinal cord editing were not dangerous to the patients under treatment, however 

other situations may arise in which patient safety could be compromised if a 

monitoring system to detect abnormal contour edits were not implemented.  

 Furthermore, we assessed trends in the use of autocontouring by 

dosimetrists in our clinic and found marked differences in the magnitude of the edits 

made between dosimetrists. By examining the editing data for each dosimetrist 

individually, we also identified situations indicative of automation bias, in which fewer 

edits were made over time.  
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7.4.1 - Deployment of the Automatic Contour Monitoring System 

 

While we believe this method of monitoring contouring edits using SPC is 

scalable for use with other automated segmentation tools, the specific action and 

warning thresholds used may not be. Contouring styles and preferences vary greatly 

among both institutions and individual users. The tools in this paper can be used to 

identify differences in local clinical practice, which can inform where the appropriate 

action levels should be set depending on the cause of these differences.  

When a new or updated automated contouring, model is introduced into 

practice, the baselines used for monitoring, including the means and warning and 

action thresholds, should be reset using data from the new patient cohort and the 

most up-to-date version of the model.  

Over time, fewer edits may be made to contours as clinicians become more 

comfortable with the contours generated by the automatic contouring tools. The 

warning and action thresholds set in this process should be used as a starting point, 

but we recognize that this process is iterative, and thresholds may need to be 

adapted over time. 

Furthermore, the goal of this automated contour monitoring system is not to 

regulate how autogenerated contours should be used but rather to gain information. 

Large or small edits are not inherently good or bad; however, examining the 

scenarios in which they occur could lead to a better understanding of clinical 

practice. Implementing a real-time automated contour monitoring system will enable 

the identification of weaknesses in our model and areas in our user training and 
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clinical deployment strategy that could be improved. While this study was performed 

using data obtained from the use of our in-house developed automatic contouring 

tool, we recommend monitoring systems should be built into other automatic 

contouring software programs, as well. By using a real-time automated contour 

monitoring system, we can ensure that automated segmentation models provide 

users with the most accurate, useful, and safe contours. 

 

7.5 - Conclusions 

 

By performing a quantitative assessment of the magnitude of edits required to 

achieve clinical acceptability of deep learning–generated contours, we have shown 

that it is possible to detect variations in the use of automatically generated 

contouring tools that may impact patient treatment.  
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Chapter 8 – Discussion and Conclusions 

 

8.1 – Specific Aim One 
 

In chapter three, we hypothesized that risk assessment techniques could be 

used to identify and decrease points of risk with automated treatment planning tools. 

A failure mode and effects analysis (FMEA) was performed to assess the risk that 

may be introduced into the clinical workflow when utilizing the RPA. A 

multidisciplinary team consisting of physicians, physicists, radiation therapists, 

dosimetrists, and members of the RPA development team generated a list of all 

possible failure modes in the current RPA workflow. Any error that was not specific 

to the auto-planning workflow and would also occur during manual planning was 

removed from this list. This allowed the team to focus on new failures or errors 

whose risk was made worse when utilizing the RPA.  

In total, 126 failure modes were identified, which were unique to RPA 

workflow and may not be accounted for in established quality management 

programs. The mean RPN of these failure modes was 56.3; 21 errors had an RPN 

above 125, which is the TG-100-recommended threshold at which action should be 

taken to reduce the risk. In order to mitigate this risk, changes were made to the 

RPA workflow. These changes included updates to the user interface, implementing 

redundancy checks to limit the risk of possible human error, and adding user 

guidance documents to clearly communicate appropriate use scenarios and the 

importance of thorough quality assurance.  
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Following these system updates, the number of failure modes that exceeded 

the action threshold of RPN 125 decreased from 21 to 5, showing a 76% reduction 

in high-risk errors. We also increased the detectability of 15 of the 21 errors (71%), 

ensuring that users can more easily detect any errors that do occur. By prospectively 

identifying risk points in the RPA treatment planning workflow, we found that risk 

could be effectively reduced to increase the safety of patient treatment. The 76% 

reduction in high-risk failure modes, when added to other work in this thesis, 

indicates that we would reach our central hypothesis that 90% of errors can be 

prevented or detected prior to treatment.  

 

In chapter four, we hypothesized that hazard scenarios could be used to 

identify and correct points of weakness in the RPA planning workflow. Errors were 

introduced into multiple stages of the RPA workflow, during which data needed to be 

reviewed and approved before submission for planning. Errors were selected that 

had been identified during the FMEA, which would negatively impact patient 

outcomes if they went undetected.  

Radiation therapists reviewed provided CT scans and found 87% of all errors 

present. Radiation oncology residents reviewed the service request and detected 

75% of errors. Feedback was requested about how the request could be improved to 

increase the detectability of errors, and the service request was updated 

accordingly. Following system updates, 100% of errors were detected by five new 

radiation oncologists, indicating that the change was effective.  

Physicists were asked to review the final clinical contours, and 0% of errors 

were detected. Based on this result, we determined that physicists were not the 



 

 
109 

 

appropriate clinical team member to assess target contours for accuracy. Therefore, 

guidance will be provided to users reinforcing that contours should be thoroughly 

reviewed by physicians prior to patient treatment. In summary, 93.5% of errors were 

detected by radiation therapists and oncologists, supporting our central hypothesis. 

The low rate of error detection by physicists does not support our central hypothesis; 

therefore, the rate of error detection by physicists was further investigated in chapter 

five.    

 

8.2 - Specific Aim Two 
 

In chapter five, we hypothesized that we could increase the error detection 

rate by creating a custom checklist, which focuses the review on errors known to 

occur in the automated planning workflows. A customized plan review checklist was 

developed using guidance from AAPM task groups 275 and 315 25,60 and modified to 

ensure all errors identified during our FMEA were represented. 

To assess the effectiveness of this checklist, physicists were asked to review 

ten treatment plans created by the RPA, which contained five plans with known 

errors. These plan checks were first performed without the use of the checklist. 

Participants were then asked to review an additional ten treatment plans, util izing the 

custom checklist to guide their review. The checklist was then modified based on 

physics feedback and updated prior to repeating the study with medical physics 

residents. 

When physicists completed their plan review utilizing the checklist, the error 

detection rate increased by 20%, to 88% of total errors being detected. When 
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physics residents completed their plan review utilizing the checklist, the error 

detection rate increased by 17%, to 70% of total errors being detected. For both 

cohorts, the number of errors increased when the checklist was utilized, indicating 

that the safety of automated planning tools can be improved when checklists 

generated based on the results of an FMEA are used to guide plan review. The 20% 

increase in error detection for physicists and 17% increase in error detection by 

residents when the checklist was utilized supports our central hypothesis that 90% of 

errors can be prevented or detected prior to treatment by utilizing effective quality 

assurance resources.  

 

In chapter six, we hypothesized that performing an end-to-end test of the RPA 

training and deployment procedure would identify any weaknesses that need 

correcting prior to full-scale deployment of the RPA. The new-user training process 

was simulated for two physicists who had no experience with the system. Each 

participant was asked to review all provided training materials and then use the RPA 

to generate ten treatment plans of varying sites and techniques. They were then 

instructed to thoroughly review the final plan and record any errors that would limit 

the plan's clinical acceptability. Two errors were included in these plans to assess 

the detectability of errors. Feedback was requested regarding improvements that 

could be made to the training process.  

 

Both participants reported that the provided training documents were helpful 

and provided all information needed to generate safe, high -quality treatment plans. 

The errors included had a 100% detection rate, indicating that provided training and 
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quality assurance documents provided users with the guidance needed to respond 

appropriately to unsafe scenarios. Several weaknesses were identified, including 

planning incompatibility between the RPA and RayStation, and the limited 

functionality of the provided plan report. The 100% error detection rate supports our 

central hypothesis that 90% of errors can be prevented or detected prior to 

treatment.  

Updates will be made based on user feedback, and additional rounds of 

testing will be performed with clinicians from international partner institutions who will 

be among the first to use the RPA in clinical practice.  

 

8.3 – Specific Aim Three 
 

In chapter seven, we hypothesized that performing monitoring of patient 

contour edits can lead to increased detection of systematic errors, such as those 

caused by software error, automation bias, or off-label use.  

A monitoring system was developed that uses statistical process control 

(SPC) techniques to identify patients whose automatically generated contours 

required significant edits to achieve clinical acceptability. DSC and APL were 

calculated between the automatically generated contour and the final approved 

clinical contour for 15 OARs in the head and neck region. When the magnitude of 

edits exceeded the thresholds set using SPC, the clinical scenario was further 

investigated to determine the cause. Causes identified were contour style deviating 

from standard clinical practice, dosimetry contouring style not aligning with auto-
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contouring guidelines, and inappropriate use case, in which automated contouring 

was performed on a patient who was simulated in an abnormal position.  

Trends in the use of auto contouring by dosimetrists from our clinic were also 

assessed. We found a significant difference in the magnitude of edits made between 

dosimetrists. By examining the editing data for each dosimetrist individually, 

situations indicative of automation bias, in which fewer edits are made over time, 

were also identified. The detection of instances of off-label use and automation bias 

will be utilized to provide feedback to dosimetrists and reduce systematic errors in 

future clinical scenarios. This supports our central hypothesis that 90% of errors can 

be detected or prevented prior to patient treatment.  

 

8.4 – General Discussion 
 

The development of automated treatment planning tools requires 

consideration not only of the final output (i.e., contour or plan quality) but also of the 

interface's functionality from the perspective of the intended user. Autoplanning tools 

introduce new steps into the treatment planning workflow. This change in procedure 

can lead to additional points of risk, such as those caused by human error, 

automation bias, off-label use of the tool, and software error. Therefore, thorough 

human factors engineering (HFE) studies must be performed prior to introducing 

new systems into clinical practice. HFE studies do not examine how well tools can 

perform in optimal situations. Instead, they examine what occurs when humans, with 

all of their capabilities, limitations, and tendencies considered, interact with these 

systems102. In this study, we found that by using techniques consistent with HFE, 
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such as hazard testing, physics plan checks, and end-to-end testing, we could 

modify the user interface, training materials, and workflow to limit errors that could 

be passed on to patients.  

To support the central hypothesis of this study, that 90% of clinically relevant 

errors could be prevented or detected prior to impacting patient care, an FMEA was 

first used to identify significant risk points in the RPA workflow from the perspective 

of the clinical user. Changes were then made to limit the risk of 76% of high -risk 

failures. These risk points were then incorporated into hazard testing, and we found 

that 62% of errors could be detected before a plan was created in the RPA. During 

final plan checks, when utilizing the customized checklist, we found a rate of error 

detection of 88% for physicists and 70% for medical physics residents. Following the 

optimization of provided training materials, 100% of the errors present were detected 

during an end-to-end test of the entirety of the RPA treatment planning workflow. A 

monitoring system was also developed to limit the risk of systematic errors and 

detect abnormalities in the contouring process that could be attributed to software 

error, off-label use, or automation bias.  

Each of the studies in this report focused on optimizing various layers of 

defense in the quality management program for automated treatment planning tools. 

By evaluating the detectability of errors at several stages in the workflow, we are 

maximizing safety, not by focusing only on total detection of errors at the time of 

patient treatment, but by following the ‘swiss cheese’ approach to quality 

management. In the swiss cheese model, multiple layers of quality assurance are 

incorporated into the safety program which work together to minimize the risk which 
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could reach patients103. In this study we evaluated and mitigated risk at multiple 

stages: First, prospectively, when changes were made to the system based on a risk 

assessment. Next, hazard testing was performed, where error detection was 

evaluated at different steps in the plan generation process. Final physics plan 

checks were also assessed, during which each completed plan is evaluated for 

quality and safety prior to patient treatment. Finally, we developed a system to 

detect systematic errors through the monitoring of contour edits. 

While not all studies in this report independently exceeded the stated goal of 

mitigating 90% of errors, when the developed resources are combined into a 

cohesive quality management program, the central hypothesis that 90% of clinically 

relevant errors can be detected or prevented prior to impacting patient safety was 

supported. 

 

8.5 – Study Limitations 

 

Although we have accomplished the goals we set out to achieve, the 

development of a robust clinical implementation strategy is an iterative process. One 

limitation of our study is that each experiment was conducted as a prospective 

simulation, and the results have yet to be validated in clin ical practice. While this 

choice was made to ensure that risk has been mitigated prior to the global 

deployment of the RPA, it must be acknowledged that updates might be needed 

once clinical integration has occurred.  

Additionally, the participants who assisted in this project were predominantly 

clinicians from US academic institutions. These users were selected due to their 
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availability and ability to commit multiple hours to research. We recognize that using 

participants from our target demographic, such as clinicians from international 

institutions who have expressed interest in utilizing the RPA in their practice, would 

have been preferred. However, due to the high clinical workload, and low staffing 

levels in these environments, participants from our partner institutions were often 

unavailable to participate. Therefore, adjustments may need to be made to the QA 

and training resources during the phased deployment of the RPA to reflect the 

clinical practice of our users.  

 

8.6 – Future Direction 
 

Additional end-to-end testing of the RPA training and deployment process will 

be performed to ensure that the provided resources allow users to create safe, high -

quality treatment plans. In the next testing phase, additional physicists from the 

international partner institutions where the RPA will first be deployed will repeat the 

established end-to-end workflow. By performing testing with our international 

partners, we can ensure that the training and planning procedures are optimized for 

our intended users. Modifications will be made to the deployment strategy to 

increase user confidence, ease of use, and understanding of materials as needed. 

By participating in this testing, users will also become familiar with the RPA system 

before deployment into their clinic in late 2023. 

 

A final round of testing will be performed in which 15 clinicians from various 

institutions will review all training materials, create one treatment plan each, and 
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provide feedback on the process. By expanding the study to a broader range of 

users, the scalability of the RPA system can be more clearly assessed. 

Following the completion of these studies, the RPA will be ready to undergo phased 

clinical deployment.  

 

8.7 – Conclusions 
 

In this study, we presented the work done to optimize the safety and usability 

of an in-house automated treatment planning tool by focusing on three key 

categories: risk, quality assurance, and deployment. This work was encompassed in 

a final evaluation of the end-to-end RPA workflow, during which 100% of clinically 

relevant errors were detected, supporting our central hypothesis that 90% of 

clinically relevant errors introduced by automated treatment planning tools could be 

prevented or detected by establishing a robust risk evaluation process and 

developing a thorough quality assurance and deployment procedure. Furthermore, a 

monitoring system was developed to detect systematic errors that may occur when 

automatically generated contours are used clinically. This evaluation has not only 

maximized the impact of our own automated treatment planning tool but is also 

the first study into the potential risks associated with AI-based treatment 

planning tools, which also examines how best software and workflows can be 

modified to increase usability and safety. The recommendations presented in 

this report can be used to benefit AI software development further and inform the 

development of robust deployment procedures for other AI-based tools in future 

clinical environments. 
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Appendix A – Full Results of Failure Mode and Effects Analysis (Before system 

improvements)  
 

Potential Failure Mode Step Cause S O D RPN 

Plan not reviewed 
carefully prior to 

approval (plan that 
doesn't meet clinical 
standards approved) 

Final Plan 
Approval 

overreliance on system 9 6 9 486 

Incorrect assignment of 
DVH tolerances - H&N 

Create 
Service 
Request 

off-label use of RPA 8 6 10 480 

Request is approved by 
member of the team 
who is not physician 

(used others 
credentials) 

Approve 
Service 
Request 

off-label use of RPA 9 6 8 432 

Incorrect treatment unit 
selected - Cervix 

Create 
Service 
Request 

off-label use of RPA 7 6 10 420 

Request is approved for 
wrong linac 

Approve 
Service 
Request 

off-label use of RPA 7 6 10 420 

RPA printout being used 
as plan documentation 

Plan 
Preparation 

off-label use of RPA 7 6 10 420 

RPA printout being used 
as plan documentation 

Plan 
Preparation 

overreliance on system 7 6 10 420 

Necessary physics QA 
was not performed 

Plan 
Preparation 

overreliance on system 10 4 9 360 

Incorrect Physics QA 
procedures selected 

Registration off-label use of RPA 9 4 10 360 

Selected a disease 
extent not suited for the 

patient - CW 

Create 
Service 
Request 

off-label use of RPA 7 5 10 350 

Selected a disease 
extent not suited for the 

patient - Cervix 

Create 
Service 
Request 

off-label use of RPA 7 5 10 350 

Assign User category 
incorrectly 

Registration off-label use of RPA 9 4 9 324 

Physician changed 
prescription after plan 

generated 

Final Plan 
Approval 

off-label use of RPA 9 4 9 324 
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Request is approved 
without careful 

physician review 

Approve 
Service 
Request 

overreliance on system 9 6 6 324 

Incorrect identification of 
positive nodes - H&N 

Create 
Service 
Request 

off-label use of RPA 6 5 10 300 

Incorrect selection of 
CTV regions - H&N 

Create 
Service 
Request 

off-label use of RPA 6 5 10 300 

Incorrect IMRT QA 
equipment selected 

Registration off-label use of RPA 7 4 10 280 

Contoured target 
incorrectly 

Contouring software error 5 9 6 270 

Incorrect identification of 
CTV 2 and CTV 3 - 

H&N 

Create 
Service 
Request 

off-label use of RPA 5 5 10 250 

Incorrect identification of 
CTV 2 and CTV 3 - 

H&N 

Create 
Service 
Request 

overreliance on system 5 5 10 250 

Incorrect prescription 
input for each CTV - 

H&N 

Create 
Service 
Request 

off-label use of RPA 9 3 9 243 

Incorrect identification of 
prior radiation 

Create 
Service 
Request 

human error 10 4 6 240 

Incorrect treatment unit 
selected - CW 

Create 
Service 
Request 

off-label use of RPA 4 6 10 240 

Incorrect treatment unit 
selected  - H&N 

Create 
Service 
Request 

off-label use of RPA 4 6 10 240 

Request is approved for 
wrong site 

Approve 
Service 
Request 

off-label use of RPA 7 3 10 210 

CT approved despite 
presence of artifact in 

treatment region 
Review CT off-label use of RPA 7 3 10 210 

Incorrect answer on 
pregnancy 

questionnaire 

Create 
Service 
Request 

human error 10 4 5 200 

Plan sent directly to 
console without 

importing to TPS 

Treatment 
Delivery 

off-label use of RPA 10 2 10 200 

Plan not recalculated in 
TPS 

Plan 
Preparation 

off-label use of RPA 5 4 10 200 

Incorrect prescription 
input - CW 

Create 
Service 
Request 

off-label use of RPA 4 7 7 196 
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Incorrect prescription 
input - Cervix 

Create 
Service 
Request 

off-label use of RPA 4 7 7 196 

Request is approved 
with wrong prescription 

Approve 
Service 
Request 

off-label use of RPA 4 7 7 196 

Incorrect plan 
downloaded from RPA 

(if multiple) 

Plan 
Preparation 

human error 9 3 7 189 

Incorrect plan imported 
into the TPS 

Plan 
Preparation 

human error 9 3 7 189 

Reference point added 
to incorrect location 

Review CT off-label use of RPA 9 3 7 189 

Unexpected BB 
placement - wrong 

place 

CT 
Simulation 

human error 9 5 4 180 

Marked isocenter not 
verified in TPS 

Plan 
Preparation 

human error 9 5 4 180 

Incorrect shift not 
validated in TPS 

Plan 
Preparation 

human error 9 5 4 180 

Not loading 3D because 
takes too long 

Review CT overreliance on system 6 7 4 168 

Incorrect selection of 
laterality - CW 

Create 
Service 
Request 

human error 10 5 3 150 

Reference point added 
to incorrect location 

Review CT human error 6 5 5 150 

Request is edited by 
another user prior to 

approval 

Approve 
Service 
Request 

human error 9 4 4 144 

CT approved despite 
poor image quality 

Review CT off-label use of RPA 6 6 4 144 

Needed plan edits not 
made in TPS 

Plan 
Preparation 

human error 4 6 6 144 

RPA printout being used 
as plan documentation 

Plan 
Preparation 

human error 7 2 10 140 

Incorrect MRN (wrong 
patient) 

Create 
Service 
Request 

human error 9 5 3 135 

Incorrect selection of 
CTV regions - H&N 

Create 
Service 
Request 

overreliance on system 6 3 7 126 
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Exported incorrect 
contours 

Contouring human error 7 5 3 105 

Incorrect identification of 
department CT 

Registration human error 4 3 8 96 

Forgets to review 
normal tissue contours 

Contouring overreliance on system 4 6 4 96 

Imported contours 
conflict with existing 

contours 

Plan 
Preparation 

different workflow 9 5 2 90 

Wires -> could be 
interpreted as BBs 

CT 
Simulation 

software limitation 9 5 2 90 

Isocenter position not 
selected correctly  

Review CT software error 9 3 3 81 

Exported contours from 
TPS, then made edits 

which were not imported 
to RPA 

Contour 
Upload 

human error 9 4 2 72 

Exported incomplete 
contours from TPS 

Contour 
Upload 

human error 9 4 2 72 

Imported contours 
conflict with existing 

contours 

Plan 
Preparation 

human error 9 4 2 72 

Incorrect plan 
downloaded from RPA 

(if multiple) 

Plan 
Preparation 

software error 9 2 4 72 

Contoured OAR that 
cannot be considered in 

RPA planning 
Contouring different workflow 8 3 3 72 

Incorrect treatment 
machine parameters 

Registration off-label use of RPA 4 4 4 64 

Incorrectly omitted 
presence of implants 

Create 
Service 
Request 

off-label use of RPA 6 5 2 60 

Creating target as a 
new structure, with 
incorrect naming 

Contouring different workflow 5 2 6 60 

Reference point not 
added when needed for 

planning (cervix) 
Review CT human error 5 4 3 60 

Incorrect identification of 
calibration protocol 

Registration human error 9 3 2 54 

Wrong calibration 
settings (SSD vs SAD, 

MU/cGy) 
Registration human error 9 3 2 54 
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Warning "not for clinical 
use" only in English 
(could lead to issues 

translating or 
understanding) 

Plan 
Preparation 

human error 7 3 2 42 

Warning "not for clinical 
use" only in English 
(could lead to issues 

translating or 
understanding) 

Plan 
Preparation 

software limitation 7 3 2 42 

Contours approved by a 
member of clinic 

unfamiliar with anatomy 
& targets  

Contour 
Upload 

off-label use of RPA 10 4 1 40 

Deidentified plan 
matched to incorrect 

patient 

Plan 
Preparation 

software error 10 2 2 40 

Added additional target 
volume that is not 

supported by the RPA 
Contouring different workflow 9 2 2 36 

Inaccurate contour of 
OAR 

Contouring software error 9 2 2 36 

Imported contours 
conflict with existing 

contours 

Plan 
Preparation 

software error 9 2 2 36 

Contour report not 
reviewed prior to 

download 

Contour 
Review & 
Download 

overreliance on system 8 4 1 32 

Did not review contours 
prior to approving 

Contour 
Upload 

overreliance on system 8 4 1 32 

Deviation between RPA 
and recalculated plan 

are too large 

Plan 
Preparation 

equipment limitation 4 4 2 32 

Incorrect selection of 
primary site - H&N 

Create 
Service 
Request 

off-label use of RPA 5 3 2 30 

PDF from RPA does not 
match institutional 
standards (shifts in 

room space vs. shifts in 
patient space) 

Plan 
Preparation 

different workflow 2 5 3 30 

Changed contour name 
to one not compatible 

with RPA 
Contouring different workflow 2 7 2 28 

Incorrect patient 
orientation label (patient 
in correct position, label 

is incorrect) 

CT 
Simulation 

human error 2 7 2 28 
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Inaccurate image 
guidance techniques 

selected 
Registration human error 1 3 9 27 

Deviation between RPA 
and recalculated plan 

are too great  

Plan 
Preparation 

software error 4 3 2 24 

Inconsistency in plan 
and beam labels 

between RPA and 
clinical workflow 

Plan 
Preparation 

different workflow 2 6 2 24 

RPA unable to properly 
load 3D CT (too slow, or 

crashes) 
Review CT equipment limitation 3 7 1 21 

Did not match correct 
contours 

Contour 
Upload 

human error 10 2 1 20 

Approve contours which 
were matched 

incorrectly 

Contour 
Upload 

human error 10 2 1 20 

Contours approved by a 
member of clinic 

unfamiliar with anatomy 
& targets  

Contour 
Upload 

human error 10 2 1 20 

Automatch could cause 
mismatch in contours 

Contour 
Upload 

software error 10 2 1 20 

Multi isocenter scan 
with multiple bb's 

CT 
Simulation 

software limitation 2 5 2 20 

Incorrect OIS selected Registration human error 1 2 10 20 

Isocenter not found Review CT software error 6 3 1 18 

Internet quality limits 
ability to download 
plans from RPA 

Plan 
Preparation 

equipment limitation 3 6 1 18 

Incorrect treatment 
machine parameters 

Registration human error 3 3 2 18 

Incorrect MLC type 
selected 

Registration human error 3 3 2 18 

Misselection of 
treatment techniques to 

be used 
Registration human error 3 3 2 18 

Inaccurate TPS 
Parameters shared 

Registration human error 2 3 3 18 
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Incorrect Physics QA 
procedures selected 

Registration human error 2 3 3 18 

Incorrect IMRT QA 
equipment selected 

Registration human error 2 3 3 18 

Error in CT data 
transmission into RPA 

(error in dicom tag) 
Upload CT data transfer error 8 2 1 16 

Imported wrong 
contours to TPS 

Contouring human error 8 2 1 16 

Selected wrong 
contours to upload - 

wrong patient 

Contour 
Upload 

human error 8 2 1 16 

Did not review contours 
prior to approving 

Contour 
Upload 

human error 8 2 1 16 

Mismatch of scale on 
report and TPS 

Plan 
Preparation 

software error 2 4 2 16 

Institutional firewalls/ 
antivirus blocks ability 

download plan 

Plan 
Preparation 

equipment limitation 3 5 1 15 

Downloaded contours 
for wrong patient 

Contour 
Review & 
Download 

human error 2 7 1 14 

Didn't correctly correlate 
contour to patient once 

downloaded 

Contour 
Review & 
Download 

human error 2 7 1 14 

Attempt to upload 
contours to incorrect 

patient 

Contour 
Upload 

human error 2 7 1 14 

CT rejected even 
though OK 

Review CT different workflow 2 6 1 12 

Downloaded contours to 
confusing location (not 

organized) 

Contour 
Review & 
Download 

different workflow 2 6 1 12 

Incorrect institutional 
information 

Registration human error 2 3 2 12 

Omitted team member 
from registration 

Registration human error 2 3 2 12 

Assign User category 
incorrectly 

Registration human error 2 3 2 12 

Wrong energies 
selected for machine 

Registration human error 2 3 2 12 
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CT not approved Review CT human error 2 6 1 12 

Delete is selected 
instead of review 

Review CT human error 2 6 1 12 

CT rejected even 
though OK 

Review CT human error 2 6 1 12 

Did not download 
DICOM file for TPS 

import 

Contour 
Review & 
Download 

human error 2 6 1 12 

Downloaded contours to 
confusing location (not 

organized) 

Contour 
Review & 
Download 

human error 2 6 1 12 

Do not accept contours 
Contour 
Upload 

human error 2 6 1 12 

Do not upload contours 
to RPA 

Contour 
Upload 

human error 2 6 1 12 

Contours neither 
accepted nor rejected 

Contour 
Upload 

human error 2 6 1 12 

Delete is selected 
instead of review 

Contour 
Upload 

human error 2 6 1 12 

Plan not transferred to 
TPS 

Plan 
Preparation 

human error 2 6 1 12 

Error in upload (some 
structures have errors) 

Contour 
Upload 

data transfer error 10 1 1 10 

Plan not properly 
transferred to TPS 

Plan 
Preparation 

data transfer error 10 1 1 10 

Plan not interpreted 
correctly by the TPS 
(coordinates flipped, 

etc) 

Plan 
Preparation 

data transfer error 10 1 1 10 

Plan not interpreted 
correctly by the TPS 
(coordinates flipped, 

etc) 

Plan 
Preparation 

software error 10 1 1 10 

Plan not recalculated in 
TPS 

Plan 
Preparation 

human error 5 2 1 10 

Reference point not 
added when needed for 

planning (chest wall) 
Review CT human error 2 5 1 10 

Incorrect contact 
information for triage 

team 
Registration human error 3 3 1 9 
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Do not upload contours 
to RPA 

Contour 
Upload 

different workflow 1 9 1 9 

contour associates with 
incorrect CT 

Contouring software error 8 1 1 8 

Does not import 
contours to TPS 

Contouring different workflow 2 4 1 8 

Request is accidentally 
denied 

Approve 
Service 
Request 

human error 2 4 1 8 

Does not import 
contours to TPS 

Contouring human error 2 4 1 8 

Plan not able to be 
downloaded from the 
RPA (browser issues) 

Plan 
Preparation 

software error 2 4 1 8 

Error in upload 
(catastrophic) 

Contour 
Upload 

data transfer error 3 2 1 6 

Plan is not deliverable 
Treatment 
Delivery 

equipment limitation 3 2 1 6 

Failure to submit a 
registration request 

Registration human error 3 2 1 6 

The plan is not 
deliverable 

Treatment 
Delivery 

software error 3 2 1 6 

CTV1 was not 
contoured but was 

matched appropriately 

Contour 
Upload 

different workflow 2 3 1 6 

H&N OAR's not 
included in the scan 

range 
Review CT human error 2 3 1 6 

CTV1 was not 
contoured but was 

matched appropriately 

Contour 
Upload 

human error 2 3 1 6 

Forgot to match 
contoured structures 

Contour 
Upload 

human error 2 3 1 6 

Necessary OARs for 
RPA were not 

contoured 

Contour 
Upload 

human error 2 3 1 6 

Contours not 
downloaded 

Contour 
Review & 
Download 

data transfer error 2 2 1 4 

Plan not transferred to 
TPS 

Plan 
Preparation 

data transfer error 2 2 1 4 
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File corrupted while 
downloading from RPA 

Plan 
Preparation 

data transfer error 2 2 1 4 

H&N OAR's not 
included in the scan 

range 
Review CT different workflow 2 2 1 4 

Does not import 
contours to TPS 

Contouring equipment limitation 2 2 1 4 

TPS will not import the 
treatment plan 

Plan 
Preparation 

equipment limitation 2 2 1 4 

RPA incorrectly 
connects contours to 

the wrong patient 

Contour 
Review & 
Download 

software error 2 2 1 4 

Compatibility issue 
preventing import 

Contouring software error 2 2 1 4 

Processing error - 
results in no report 

Contour 
Upload 

software error 2 2 1 4 

Necessary OARs for 
RPA were not 

contoured 

Contour 
Upload 

software error 2 2 1 4 

Incorrect selection of 
TPS 

Registration human error 1 2 2 4 

RPA unable to properly 
load 3D CT (too slow, or 

crashes) 
Review CT software error 3 1 1 3 

Does not import 
contours to TPS 

Contouring software error 2 1 1 2 
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Appendix B – High-Risk Failure Mode and Effects Analysis Results Following 

System Updates 
 

Failure Mode Step Cause S O D RPN 

Plan not reviewed carefully 
prior to approval  

Final Plan 
Approval 

overreliance on 
system 

9 4 8 288 

RPA printout being used as 
plan documentation 

Plan 
Preparation 

overreliance on 
system 

7 4 10 280 

Necessary physics QA was 
not performed 

Plan 
Preparation 

overreliance on 
system 

10 2 9 180 

Request is approved 
without careful physician 

review 

Approve 
Service 
Request 

overreliance on 
system 

9 3 6 162 

Contoured target incorrectly Contouring software error 5 9 3 135 

Incorrect identification of 
CTV 2 and CTV 3 - H&N 

Create 
Service 
Request 

overreliance on 
system 

5 2 10 100 

Unexpected BB placement 
- wrong place 

CT 
Simulation 

human error 9 3 3 81 

Marked isocenter not 
verified in TPS 

Plan 
Preparation 

human error 9 3 3 81 

Incorrect shift not validated 
in TPS 

Plan 
Preparation 

human error 9 3 3 81 

Request is edited by 
another user prior to 

approval 

Approve 
Service 
Request 

human error 9 4 2 72 
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Incorrect selection of CTV 
regions - H&N 

Create 
Service 
Request 

overreliance on 
system 

6 2 6 72 

RPA printout being used as 
plan documentation 

Plan 
Preparation 

human error 7 1 8 56 

Incorrect MRN (wrong 
patient) 

Create 
Service 
Request 

human error 9 3 2 54 

Needed plan edits not 
made in TPS 

Plan 
Preparation 

human error 4 2 6 48 

Not loading 3D because 
takes too long 

Review CT 
overreliance on 

system 
6 1 4 24 

Incorrect selection of 
laterality - CW 

Create 
Service 
Request 

human error 10 2 1 20 

Incorrect identification of 
prior radiation 

Create 
Service 
Request 

human error 10 1 1 10 

Incorrect answer on 
pregnancy questionnaire 

Create 
Service 
Request 

human error 10 1 1 10 

Was the correct plan 
downloaded? (if multiple) 

Plan 
Preparation 

human error 9 1 1 9 

Was the correct plan 
imported into the TPS? 

Plan 
Preparation 

human error 9 1 1 9 

Reference point added to 
incorrect location 

Review CT human error 6 1 1 6 
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Appendix C – Physics Checklist Created for Use for Radiation Planning 

Assistant-Generated Treatment Plans  
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Appendix D – Magnitude of contouring edits made by each of the five primary dosimetrists in our dataset compared to the 

mean of the entire dataset, using DSC and APL. 

 

 
Dosi 1 Dosi 2 Dosi 3 Dosi 4 Dosi 5 All Patients 

Mandible - Patients 37 54 26 40 29 399 

Mandible - DSC 0.989±0.021 0.910±0.044 0.980±0.019 0.967±0.056 0.976±0.028 0.967±0.047 

Mandible – APL 591±1370 4780±1660 931±938 881±1570 7556±1920 1610±2050 

Brain - Patients 36 52 25 38 27 402 

Brain - DSC 0.998±0.003 0.986±0.008 0.999±0.001 0.998±0.003 0.998±0.004 0.996±0.006 

Brain – APL 2330±3460 15300±5000 1710±1540 2340±3540 2830±5930 4840±6250 

Brainstem- Patients 36 53 26 40 28 418 

Brainstem - DSC 0.985±0.044 0.941±0.056 0.983±0.029 0.981±0.040 0.985±0.033 0.975±0.047 

Brainstem - APL 222±462 1090±681 302±463 268±402 318±728 502±959 
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Cochlea_L- Patients 35 39 15 32 22 342 

Cochlea_L - DSC 0.911±0.149 0.684±0.184 0.851±0.167 0.867±0.173 0.932±0.094 0.869±0.173 

Cochlea_L – APL 11.2±27.4 50.3±26.4 22.8±25.5 17.9±25.9 13.1±31.0 22.6±37.6 

Cochlea_R- Patients 35 39 15 32 22 342 

Cochlea_R - DSC 0.904±0.157 0.748±0.144 0.895±0.113 0.842±0.161 0.974±0.087 0.877±0.148 

Cochlea_R - APL 12.8±29.9 38.2±20.5 14.2±21.2 21.1±25.4 4.00±19.3 20.9±33.9 

Esophagus- Patients 35 41 15 37 21 357 

Esophagus - DSC 0.951±0.128 0.908±0.137 0.957±0.070 0.956±0.106 0.992±0.009 0.926±0.154 

Esophagus - APL 229±351 620±475 247±197 336±480 102±101 351±507 

Eye_L - Patients 34 39 15 28 23 346 

Eye_L - DSC 0.989±0.016 0.939±0.036 0.962±0.041 0.988±0.021 0.962±0.059 0.971±0.070 

Eye_L - APL 67.4±102 388±217 203±201 63.9±92.43 272±460 165±295 
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Eye_R - Patients 34 39 15 28 23 347 

Eye_R - DSC 0.989±0.014 0.945±0.029 0.975±0.035 0.989±0.023 0.979±0.029 0.978±0.039 

Eye_R - APL 66.0±85.4 345±164 163±228 64.1±120 162±277 151±273 

Lens_L - Patients 29 39 13 25 21 319 

Lens_L - DSC 0.948±0.075 0.816±0.140 0.897±0.100 0.921±0.147 0.897±0.158 0.865±0.130 

Lens_L - APL 2.00±3.06 24.0±18.9 12.2±13.7 6.92±13.9 13.7±24.5 11.7±16.4 

Lens_R - Patients 29 39 13 27 21 324 

Lens_R - DSC 0.957±0.069 0.824±0.111 0.913±0.062 0.950±0.062 0.918±0.107 0.904±0.149 

Lens_R – APL 2.79±6.50 22.2±14.6 9.15±9.31 5.39±9.29 13.9±27.9 11.7±19.7 

OpticNrv_L- Patients 27 39 14 26 21 326 

OpticNrv_L - DSC 0.915±0.153 0.828±0.116 0.801±0.236 0.940±0.098 0.893±0.130 0.888±0.147 

OpticNrv_L - APL 44.3±105 39.6±36.9 63.9±105 18.0±37.4 50.9±120 60.3±138 
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OpticNrv_R- Patients 27 39 14 26 21 327 

OpticNrv_R- DSC 0.886±0.186 0.811±0.133 0.878±0.122 0.942±0.120 0.871±0.157 0.888±0.143 

OpticNrv_R - APL 54.4±109 49.6±48.7 35.6±72.2 20.4±46.5 61.1±131 61.3±127 

Parotid_L - Patients 36 51 20 39 26 391 

Parotid_L - DSC 0.977±0.045 0.959±0.097 0.961±0.045 0.979±0.037 0.985±0.029 0.972±0.056 

Parotid_L - APL 486±971 558±953 594±950 373±670 356±717 489±844 

Parotid_R - Patients 36 52 20 38 26 390 

Parotid_R - DSC 0.986±0.020 0.968±0.067 0.965±0.048 0.981±0.031 0.981±0.042 0.974±0.050 

Parotid_R – APL 356±608 482±793 608±1060 362±663 388±816 471±800 

SpinalCord - Patients 41 57 27 42 36 431 

SpinalCord - DSC 0.989±0.010 0.974±0.071 0.983±0.037 0.975±0.074 0.976±.057 0.968±0.080 

SpinalCord- APL 212±339 257±416 269±445 355±772 280±570 374±757 
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