

UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À

UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

COMME EXIGENCE PARTIELLE

DE LA MAÎTRISE EN MATHÉMATIQUES ET INFORMATIQUE

PAR

ABOLFAZL VASHEE

CLASSIFICATION DES SIGNATURES HORS LIGNE

MAI 2022

Université du Québec à Trois-Rivières

Service de la bibliothèque

Avertissement

L’auteur de ce mémoire, de cette thèse ou de cet essai a autorisé
l’Université du Québec à Trois-Rivières à diffuser, à des fins non
lucratives, une copie de son mémoire, de sa thèse ou de son essai.

Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses
droits de propriété intellectuelle, incluant le droit d’auteur, sur ce
mémoire, cette thèse ou cet essai. Notamment, la reproduction ou la
publication de la totalité ou d’une partie importante de ce mémoire, de
cette thèse et de son essai requiert son autorisation.

Abstract

One of the difficult tasks in biometric classifications is offline signature classifications. Main

issue is the small number of samples of signatures per signer. This makes traditional methods

that are based on clustering images over their similarities less efficient due to lack of sufficient

data. Here, in this work we used Siamese networks to classify signatures and find the associated

signer. Siamese-nets composed of pairs of CNNs with identical weights. Siamese-net maps the

signatures to feature space in a way that similar signatures would be placed closer to each other.

Training process is based on feeding the model with pairs of images. Input image would be a

pair of similar and dissimilar images. Hence, the model learns to minimize the distance between

the features of similar images and simultaneously maximizing the feature distances in case of

dissimilar signature entries. At inference time, a given query signature could be compared in a

pairwise manner with existing classes of signatures. Any class that has the highest similarity

with the given query image would be selected as the signer of that query signature. Several

experiments were conducted to determine the hyperparameters of the model. Classification

results show the capabilities of our approach in signature classification. Proposed approach

outperforms classification over CNN multi class structure by over 10% accuracy.

Table Of Contents

Abstract i

Table Of Contents ii

Table of figures iv

List of tables v

Table of equations vi

List of Abbreviations vii

1. Introduction 1

2. Literature Review 5

3. Convolutional Neural Networks (CNN) 10

4. Siamese networks 16

4.1. Classification and Siamese-nets 16

4.2 Signature classification with Siamese nets 19

4.3 Conclusion of Siamese-net 21

5. Methodology 22

5.1 Conclusion of methodology 24

6. Dataset 25

6.1 Conclusion of dataset 26

7. Training and validation 27

7.1. N-Way comparison: 27

7.2 Pseudocode for training and validation: 30

7.3 Conclusion of training and validation 31

8. Results and analysis 33

8.1 Baseline 33

8.1.1 - Dataset 33

8.1.2 - Structure of the network 33

8.1.3 - Training 35

Experiment_1: image size 32x32 pixels 35

Experiment 2: Image size: 32 x 32 pixels, activation function: Sigmoid. 36

Experiment 3: Image size: 100X100 pixels, activation function: Sigmoid 36

8.1.4 - Test CNN on 55 classes 37

iii

Experiment_1: Image size: 32x32 pixels, activation function: Relu 37

Experiment_2: image size:32x32 pixels, activation function: Sigmoid 38

Experiment_3: image size 100x100, activation function softmax 38

8.1.5 - Baseline conclusion 39

8.2 - Our approach 39

8.2.1 - Similarity used for classification 41

Experiment_1: 10 classes and image size 32x32 42

Experiment_2: 10 classes and image size 70x70 42

8.2.2. Performance Metrics 42

Confusion matrix 42

Precision 43

Recall 44

Macro Average: 44

Weighted Average: 44

F1 score 45

Accuracy 45

8.2.3. Experiment_3: Sequential batch training 45

8.2.3. Experiment_4: Random batch training 45

8.2.4. Experiment_4: image size 100x100 47

8.2.5. Experiment_5: Increasing the number of classes to 55 48

8.2.6 Test on Chinese dataset and comparisons 49

8.3 Conclusion of our approach 50

9. Comparison 51

10. Conclusion and Future works 52

References 53

Table of figures

Figure 1: An example of offline signature over cheques. 1

Figure 2: Two examples of an online signature capturing device. 2

Figure 3: Overlapped signatures show a high amount of intra-class variations. 6

Figure 4: High level overview of CNN structures. 10

Figure 5: Convolution, Kernel, and feature maps example. 12

Figure 6: Input data dimensionality in CNNs. 13

Figure 7: Max Pooling example. 14

Figure 8: An example of a normal classification network based on CNN. 18

Figure 9: An example of Siamese network architecture. 19

Figure 10: A Siamese network architecture in nutshell for similarity calculation. 20

Figure 11: The shape of the vectors that passed in different layers of the network. 23

Figure 12: Signature examples. 25

Figure 13: A 4-way comparison pair and its results. 28

Figure 14: The Structure of the simple CNN network. 34

Figure 15: CNN model accuracy over Image size: 32x32 and activation: Relu. 35

Figure 16: CNN model accuracy over Image size 32x32 and activation: sigmoid. 36

Figure 17: CNN model accuracy over image size: 100x100 and activation: sigmoid. 37

Figure 18: Training loss for 10 classes. 47

Figure 19: Samples of signatures from the Chinese signature dataset. 49

List of tables

Table 1. Precision and Recall on 32x32 images with CNN. 38

Table 2. Precision and Recall on 100x100 images with CNN. 38

Table 3. Precision and Recall on 100x100 images using sigmoid activation function. 39

Table 4. Confusion matrix over 10 different classes (70x70) samples. 43

Table 5. Performance of the model over the 10 classes with sequential batch training of

(70x70) samples. 43

Table 6. Confusion matrix over 10 classes of signatures with random batch training of

(70x70) samples. 46

Table 7. Precision and recall for all of the 10 classes of signatures with random batch training

of (70x70) samples. 46

Table 8. Confusion matrix over 10 classes of signatures with random batch training of

(100x100) samples. 47

Table 9. Precision and recall for all of the 10 classes of signatures with random batch training

of (100x100) samples. 48

Table 10. Model performance of classification over 55 classes. 48

Table 11. Model performance of classification Chinese signatures dataset 49

Table 12. Comparison results between Dutch and Chinese dataset. 51

Table of equations

Equation 1 22

Equation 2 22

Equation 3 27

Equation 4 28

Equation 5 41

Equation 6 41

Equation 7 43

Equation 8 44

Equation 9 44

Equation 10 45

Equation 11 45

List of Abbreviations

DT Dichotomy Transformations

DTW Dynamic Time Warping

HMMs Hidden Markov Models

HOG Histogram of Oriented Gradients

HSV Handwritten Signature Validation

ReLU Rectifier Linear Unit

SVMs Support Vector Machines

WD Writer Dependent

WI Writer Independent

ICDAR International Conference on Document Analysis and Recognition

ICEEOT International Conference on Electrical, Electronics, and Optimization

Techniques

ICICoS International Conference on Informatics and Computational Sciences

Eq Equation

CNN Convolutional Neural Networks

TP True Positive

TN True Negative

FP False Positive

FN False Negative

 1. Introduction

Signature verification is a domain related to detecting the forged signatures of users from the

genuine ones. Common problems arise when the forger's signatures have less divergence from

the user's original signatures. Also, the scarcity of signature samples is a prevalent issue. A

signature is a form of behavioral biometrics in the biometrics domain. Validating a signature

in this domain is also more complicated in comparison with other branches like fingerprints

due to good forgeries.

Forgeries can be categorized into three sections:

- Simple forgeries: the forger has information only about the writer's name (user) and

doesn't see any genuine signature.

- Random forgeries: the forger has no information about the name or the signature.

- Skilled forgeries: the forger knows about both name and the genuine signature. This

case results in lots of forgeries with high similarity with original signatures.

Based on how we gather, Handwritten Signature Validation (HSV) falls into two groups.

Offline or static and online or dynamic. In the case of static or offline signature acquisition,

usually, the signature gets scanned with different resolutions (usually 600 dpi). This scan is the

only input to any verification system. A couple of examples of offline verification are cheque

signatures, and vouchers at banks, such as the one shown in Figure 1.

Figure 1: An example of offline signature over cheques collected from the internet.

2

On the other hand, temporal information is also available with online signature acquisitions.

This time-related information like the speed of the pen, pressure, inclination angle, number,

and sequence of strokes are great help to have a better understanding through the whole signing

process [11]. Such data are gathered dynamically via smart pens and pressure-sensitive pads,

as shown in Figure 2.

Figure 2: Two examples of an online signature capturing device [40].

The online signature acquisition is usually used for applications like the authentication of

electronic documents. Different sorts of preprocessing, feature selection, and feature

extractions are used depending on the offline or online approach.

Applying offline signature verification is more complicated than the online approach due to

the lack of extra information caught by electronic devices. Information like trajectory tracing,

speed, pressure, etc., makes it easier to detect the difference between the original and forged

signatures. It should be noted that variations between the user’s original signatures are edge

cases and challenging ones for both online and offline approaches.

Dynamic online information increases the success rate in signature verification, which inspires

some researchers to extract dynamic information reflected on the texture of the static scanned

images [41]. This approach is dependent on a proper pen and paper.

3

In biometric authentication, in general, the user has to register his biometric, which in our case,

is the signature of the system. Then, his biometrics and identification will be linked to the

system. Later on, every time the user utilizes his biometrics. It is used as a query to be verified

against the reference saved biometrics in the system. If the comparison between these two was

above a certain similarity threshold, the verification is marked as passed, otherwise marked as

failed, and in this case, considered a forgery.

A variety of approaches could be explored depending on the offline or online branches of

verifications. One approach is user-based modeling, where there would be one model

associated with each user. In such cases, the number of existing referential images is the

bottleneck. Because here, models like Hidden Markov Models (HMMs) or Support Vector

Machines (SVMs) are used, and the initial data should be more than ten samples. Having that

number of initial training-sets for signatures is a bit unrealistic, while the user is usually ready

to provide 2-3 signatures.

Another form of verification is template-based verification, where users have fewer initial

samples (1-5). Then with every new query, it is going to be compared in the form of distance

with these initial images. If the difference is below a threshold, the new query would be marked

as genuine otherwise as a forgery.

In online verification, Dynamic Time Warping (DTW) was shown to be promising in utilizing

the trajectory of the signature as a distinctive feature for verification [42]. However, as the

number of initial samples is usually low in this problem, local feature extractions have been

focused on in previous research.

We are after a powerful and precise approach that can identify and confirm a handwritten

signature in a short amount of time which has a lot of usage in different corporations. So far,

several works of literature have taken this issue into consideration and tackled it with different

approaches [24, 32, 49]. The main focus of this thesis is to find an approach that could select

specific features of static images which are distinctive enough to classify the given image

automatically. That's where deep neural networks and CNNs become handy with their ability

to converge to the right and distinctive features automatically.

Deep neural networks, especially CNNs (convolutional neural networks) have been used in a

variety of domains like object detection, classification, etc. But one of the main limitations of

4

such tasks is the size of the dataset. Usually, to get a reliable classification model a huge labeled

dataset is needed. Which may be very hard to get in some tasks like signature classification and

authentication. Here we try to tackle this task by Siamese networks. These networks, unlike

normal classification networks, do not produce a probability distribution for each class. Instead,

it learns the similarity between two given pairs.

In order to address the signature classification issue, we have to know the difficulties we are

facing in this derivative of the signature authentication problem. Most of the issues we are

facing in the main problem still persist in this subproblem too. High intraclass variation of

signatures also lowers inter-class variations among some user’s signatures. Also, the fact that

hand-written signatures in each country can be dependent on various parameters like language

and culture makes the signature classification even more challenging.

The second main issue is the lack of sufficient signature samples because either people do not

find it convenient to share their signatures with others or it takes time to make such a dataset.

If we break the problem HSV into smaller problems. It would first find the user for the

questioned signature and then figure out if it is a forgery or a genuine signature. Here, we

focused on the first part of the problem which is the classification of the questioned signature.

This stepwise approach helps us to gain more insights into feature selection and model-tuning,

transfer of learning for the second part of the problem.

In the rest of the thesis, we first discuss some previous works in the literature and then explain

more about CNN and its ability to automatically pick up the features based on the objective

function. Then we talk more specifically about deep Siamese networks, their characteristics

and why it is an excellent candidate to help us do the classification even with a small amount

of training-set. Afterward, we explain our method to do the classification using the Siamese

nets and compare it with the baseline CNN classification in the result section.

2. Literature Review

The first step in designing an HSV system is selecting the classification strategy. Two well-

known approaches are writer-dependent vs. writer-independent. In classifications using the

Writer Dependent (WD) approach, for each writer, a different classifier is trained. Which is

dominantly used due to its higher accuracy and reliability. The drawbacks related to the WD

approach are complexity overhead and high computational costs of the system when more

writers (clients) are added to the system [43].

Considering the fact that handwritten signatures, unlike other biometric traits, have a

significant dependency on a person's behavior at the time, even each signature from one person

cannot be identical to another. As mentioned before, Dynamic Time Warping (DTW) showed

better performance in online signature detections [30, 31].

The second approach is Writer Independent (WI) classifications, whereas one model is trained

for all the writers. This approach is based chiefly on dissimilarity space generated by existing

Dichotomy transformers [43]. Here, a dissimilarity metric is used by a dictomizer (two-class

classifier) to determine if a given image belongs to a class or not. WI approaches seem to be

less complex and also less reliable in comparison with WD approaches [44]. Existing

challenges in this domain are a high intra-class variation (see Figure 3), low training samples,

an imbalanced dataset, and scalability in case a new writer is introduced to the system. Overall,

both systems have their advantages and disadvantages at some points. This is why some studies

focused on hybrid approaches in order to achieve better results [16,17,18].

6

Figure 3: Overlapped signatures from the same user show a high amount of intra-class

variations exists for one writer [47].

Some research done in WI over dissimilarity space is based on comparisons like [46] could

address some of the issues like the scalability of the classifier. Such works are based on a

comparison of the query signature vs reference signature in the feature space. Hence, the

system is based on a comparison with the reference signature. Therefore, the system can

manage writers that are not trained on which address the scalability issue.

Classification based on DT is very sensitive to the feature selection as we have only two classes

positive and negative. 1) Positive class is composed of dissimilarity vectors that are computed

based on existing samples in the same class. 2) The negative class has distance vectors that are

calculated from other writers. Approaches based on DT try to have as little as possible overlap

between these two classes.

Feature extraction is one of the essential steps in this kind of classification. For years,

researchers [17, 24] have tried to tackle the issue from different angles so that they may find

an optimal technique. For this phase, we can categorize their kinds of literature under

handcrafted and non-handcrafted features-based methods. In the first category, the process

should have been done manually, which takes lots of time and effort to design a feature

extractor. On the other hand, the latter approach, with a robust ability to learn complex features

and adjustability, helps us to achieve higher accuracy.

7

Basically, hand-crafted methods use some filters to define some simple features. These

methods are categorized as Basic image features, Statistical, Content-Based, and Local and

Global feature-based methods. Moreover, in this field of study (signature detection), we often

come across Global and Local feature-based methods. In order to find and extract particular

features from part of an image like edges or tiny patches, we divide it into a grid and then use

our method on each part of the grid (which can contain a group of pixels), usually this process

is known as Local feature detection. In contrast, Global feature extraction is when we take the

entire image into account as one part totally and then utilize our descriptor which illustrates

that image by one vector.

Although nowadays studies have focused more on deep learning methods, still hand-crafted

features-based methods are part of actual research in this field. That is to say, for instance,

Cavalcanti et al. (2002) [20] decided to use 3 methods: structural, invariant, and pseudo-

dynamic for the feature extraction phase and chose the subset of features with the higher result

according to the classifiers. They used Bayes and K-NN as classifiers. Oliveira et al. (2005)

also did their research on bank cheque signatures and found out that pseudo-dynamic features

along with static features are useful in this matter [21]. Histogram of Oriented Gradients (HOG)

because of its great edge detection ability and immunity to noise and transfiguration in images,

regardless of their shape, is one of the popular methods among these types [22, 24, 26]. Later

Zhang (2010) and Harfiya et al. (2017) used the Pyramid Histogram of Oriented Gradients

which is an extended form of HOG. Also, there have been some authors who analyzed the issue

from a mathematical and fractal [27, 28, 29] to a Graphometry perspective [38, 39].

Machine learning (and Deep Learning) algorithms, such as Neural Networks, SVM (Support

Vector Machines), and Siamese Neural Networks, can automatically do the feature learning

and the classification. Among recent studies, CNN (Convolution Neural Networks), due to its

robust ability for classification, has also gained lots of popularity(attention) in this matter.

Using CNN for classification started with Khalajzadeh et al. [8] and was later developed by

others on a larger scale [9, 6], and Kaulen and Baab did it recently on a smaller scale [10].

Also, we have to mention that there are some hybrid works that combine CNN with other

approaches like the Crest-Trough method and SURF algorithm for better results [6].

8

Some authors used supervised classification methods and leveraged techniques like LDA

(Linear Discriminant Analysis), which developed on anisotropic scaling and registration

residual error [12]. LAD reduces the dimensionality of data and selects a new exercise inorder

to maximize the separability (distance) between existing categories (classes). Another

supervised technique is the pixel-based approach which compares the pattern to find the edges

regardless of signature transformations and uses SVM for classification [13, 14]. It is worth

noting that despite the fact that traditional machine learning algorithms like SVM are not

sufficient to do reliable classification for large datasets, other research has shown that in smaller

datasets, they have proven to have acceptable accuracies [15].

Siamese-nets are one of the recent approaches that integrate and automate the classical steps of

classifications in one model. As mentioned in the previous paragraph, classical approaches

mostly use the hand-crafted feature. Then classification methods like SVM would be applied

on those features. Zhu et al demonstrated that for the tasks with small numbers of samples

focusing on dissimilarities applying LDA [12] for verification purposes would be beneficial.

Siamese-nets follow the same steps but the feature selection is automatic and maximizing the

difference between inter class images is done with a fully connected perceptron applied on top

of the extracted features distances. An example of this approach in literature is the work of

Sunak et al. on signature validation [1]. They used Siamese-nets to detect the forgery on

signatures. They showed that Siamese-net is a reliable approach for signature validation tasks.

And specifically maximizing the differences between original and forgery signatures. Here,

instead of forgery detection, the Siamese-net model architecture is used to classify the given

query signature and find the corresponding signer.

2.1 Literature review conclusion:

We have two methods of signature classification, Online and Offline classification. Online

classification uses electronic devices to capture features related to the user. Such as, velocity

of the pen, pressure, inclination angle, number, and sequence of strokes. Offline classification

focuses on images of the signatures to extract meaningful and descriptive features for

9

classifications. One of main existing issues in signature classifications are the low number of

signature samples per user.

Low number of samples is a bottleneck for conventional approaches either hand crafted

features or CNN based methods to extract the meaningful features. Both are mainly focused on

similarity in intra-class images to create. It has been demonstrated that methods which not only

focuses on capturing similarities but also simultaneously maximizing the distance between the

features of dissimilar images are good candidates for classifications of images with a small

number of training-set like Siamese-net.

3. Convolutional Neural Networks (CNN)

Arguably, in the field of deep learning and computer vision, we can refer to CNN

(Convolutional Neural Networks) as one of the subclasses of artificial neural networks which

carry a powerful technique in productive and explanatory tasks for image processing.

CNNs are deep learning models designed to process the data in the form of grid patterns, like

images and videos. The animal visual system inspires this approach. It is designed to capture

and learn the features and spatial relationships at low feature level like edges and high feature

level like objects.

CNN usually has three building blocks. Input layer, feature-extraction layers, and

Classification layers like in Figure 4. The convolutional and max-pooling layers are designed

to extract features from the given image and also decrease the dimensionality of data. The last

layer which is fully connected is actually the utilization of single layer neural network

classification. In the nutshell, the high dimensional input data, with lots of spatial relationships,

after going through feature extraction layers the image is transformed to lower dimensionality

of data representations which now can be used by single layer perceptron for classifications.

Figure 4: High level overview of CNN structures [48].

11

The convolutional layer is the core of the CNN architecture. Images are stored in 2-dimensional

arrays that are input to a CNN, as shown in Figure 8. As the meaningful features of the image

could be anywhere in the image, an optimizable small 2D array known as a kernel is going to

convolve with the entire image to extract features, as shown in Figure 5. Results of this

procedure from another convolutional layer that receives the same procedure, which will be

applied to extract features from higher-level features. (Kernels are typically initialized with

random values, then the values are optimized using a gradient descent optimizer.)

Max pooling layer: select the maximum value in a determined window over the extracted

feature map, as shown in Figure 7. This layer helps the model to decrease dimensionality. Also,

max pooling maintains partial invariance to small rotations because the max of a selected

region depends only on the single largest feature present in that region.

After features are extracted, it is usually flattened to an array and fed to a fully connected

multilayer perceptron with final cost function at the end of the pipeline. This function should

be differentiable to be able to apply gradient descent back to lower levels in the pipeline and

optimize the kernels. This procedure is called learning. Learning is the process to minimize the

difference between outputs of the model and the ground truth target via a backpropagation

algorithm. For example, let's assume the CNN model structure displayed in Figure 8 for

classification of the input image into 9 different classes. If the ground truth is 1 for class 5 and

the model provides a low probability for that class. In the learning process the loss function

would assign a high value for the loss to this node (node 5) and would backpropagate the

derivatives to previous layers in order to adjust the weights of the CNN.

12

Figure 5: Convolution, Kernel, and feature maps example [48].

Each block plays a different role while the output of each layer is the input for the next layer.

When we feed the image at the input layer and each Conv layer processes it with activation

maps and as it goes through more layers, more convolved features are extracted. In order to

stack layers, we have to pay attention to the input and output dimensions. For example, to add

a dense layer after the Conv layer we commonly use a flattened layer in between to change the

4D array into 2D. As mentioned in Figure 6. Input and output shapes in CNNs are 4D arrays

(batch size, height, weight, depth) where depth depends on grayscale or RGB images may vary.

Pooling layers have a massive impact on reducing the computing process by decreasing the

feature map size.

Usually, at the end of CNN's architecture, we have fully connected layers. The last block feeds

with pooled feature maps from the previous layer. Then the output of two-dimensional pooled

feature gets flattened by transforming it into a single one-dimensional vector in the Flatten

layer. (This layer helps us to connect all pixel values to final layers). In the next step all neurons

from one layer link to all neurons in the following layer. Each neuron correlated with a unique

feature that might be existing in the image. The probability of that feature in the image passes

through, the value of each neuron.

13

Figure 6: Input data dimensionality in CNNs [51].

At the end of the fully connected layer there is an activation function. Activation functions can

be divided into two categories. Linear and Nonlinear activation functions. Logistic, Softmax

and ReLu (Rectified Linear Unit) are some common examples of these mathematical functions

in neural networks. Logistic sigmoid activation and ReLu activation functions are used for

binary classification. This function takes any real value as input and outputs values in the range

of 0 to 1. Softmax is usually used in the last layer for multi-classification purposes. In the

Softmax function, the raw output of the neural network transforms into a vector of probabilities.

Based on the relative scale of each value in the vector.

14

Figure 7: Max Pooling example [48].

The following terms are consistently employed throughout this master thesis so as to avoid

confusion. A “parameter” in this article stands for a variable that is automatically learned

during the training process. A “hyperparameter” refers to a variable that needs to be set before

the training process starts. A “kernel” refers to the sets of learnable parameters applied in

convolution operations.

Hyperparameters that are subject to change in this work are input image size, number of classes

to be trained over, number of batches to train over, training iteration. In this work, these

hyperparameters are decided over a set of experiments that has been explained in detail in

Chapter 8.

3.1 Conclusion of CNN

CNN model’s architectures are designed to decrease the dimensionality of the images so other

machine learning techniques like multi layer perceptron. can be applied on the feature vectors.

Such approaches allow the application of classifications or object detection tasks on images.

Process of dimensional reduction is applied by several layers of convolutional and max-pooling

operations over several kernels that are used for convolutional operations. Final Here, we used

a flatten one dimensional array of features as the final output of the CNNs. We used two CNNs

15

with shared weights in parallel to be able to extract features of a pair of images simultaneously.

This is the basis of the Siamese-nets that is explained in the next chapter.

4. Siamese networks

The word Siam comes from Siamese cats that usually look identical. Here, we use two identical

networks in parallel. such networks are also called sister networks. The main functionality of

these networks is based on a comparison of two inputs.

Basically, these networks consist of two subnetworks (in most examples CNNs) with the same

architecture, parameters, and weights. As their name represents, this type of network helps us

to find the similarity between two images taken as input. In one-shot learning instead of using

the Softmax or Logistic layer at the last layer, the output of fully connected layers is encoded

in each subnet, and later with the help of distance metrics learning like Triplet loss, Binary

cross-entropy, etc.

Siamese networks are used in a variety of verification applications, especially those with

imbalanced and scarce datasets. Typical examples would be in companies for face detection

and identity verification or in the medical field based on specific case studies. For instance, Liu

Chin-Fu, et al. demonstrate that in a study on whole-brain MR (Magnetic resonance) images,

through encoding the asymmetry in brain volumes, Siamese networks can outperform

conventional prediction techniques in terms of processing time and decreasing complexity [50].

4.1. Classification and Siamese-nets

Siamese networks are designed to receive two images at the same time, they are perfect for

comparison-based approaches. Previously Dichotomy Transformations (DT) approaches were

shown to be a useful approach in addressing issues like a low number of samples in classes and

the scalability of the model in case of adding new classes. DT is based on measuring the

dissimilarities in feature space. Dichotomy Transformations are very sensitive to feature

selection. This approach has been used also by Koch et al [4] for character classification.

Here, with Siamese networks, we can leverage the CNN architecture to automatically select

meaningful features and build the dissimilarity model. So, a CNN model extracts the

descriptive features. Then that CNN model is duplicated and used for two input images. One

of the inputs is the reference image and the other would be the questioned image. The idea is

that if these two images belong to the same class, then features that are going to get extracted

17

by CNN would be very similar to one another. Hence, the distance between the features would

be minimal. This helps us to calculate the dissimilarities in feature space between any query

signature and existing reference signatures. Here, to classify the question image, it is compared

with all the reference images of each class. Then similarly for each class it gets calculated. And

lower dissimilarity or higher similarity decides which class it belongs to. This approach has

been also used in different classification applications like character classification by Koch et

al [4].

Siamese classification is easier to grasp when compared with normal CNN classification

architecture. Usually, classification networks are composed of several layers of convolution

and pooling layers. In vanilla CNN classification, when a query image is fed to the network the

output would be a probability distribution over the output classes. To be noted, in this thesis

the term Vanilla CNN tends to be used to refer to a typical convolutional neural network.

Considering face classification as an example for a company with five employees, the face

classification for them through normal CNN classification would have five probabilities in

output. To train such a network, we need large samples of each person. Another issue is that if

we want to add a new class like a new employee’s face, then we have to get a large number of

images for this new class and retrain the whole model again. Furthermore, sometimes the

classes are constantly changing. An example would be an employee leaving or getting hired if

we have used the regular classification model. Not only do we need more samples of new

employees’ faces, but also, the whole model should be retrained, which brings lots of financial

overhead in terms of time and costs. This kind of situation is where Siamese networks address

such classification problems.

In a nutshell, Siamese networks would learn features to emphasize the dissimilarity between

samples. By feeding a pair of images to the network and maximizing/minimizing the distance

between features to determine the similarity based on whether the pairs belong to the same

class or not. At inference time any given image would be compared with this reference and the

similarity value would be produced by the Siamese network.

In other words, the Siamese network does not learn to classify the given image directly to

output classes. Instead, it learns the similarity function between two pairs.

18

Figures. 8 and 9 illustrate the difference between the architectures of normal classification

models by CNN and Siamese Networks. In CNN, we will have probabilities that given images

belong to which output class.

Figure 8: An example of a normal classification network based on CNN [2].

Moreover, it should be noted that a color image consists of 3 channels, known as RGB

channels (Red, Green, and Blue). Therefore, the matrix dimensionality of a color image

can be presented by w × h × c. Respectively w and h are the width and height of the

image, while c shows the number of channels (n1 in Figure 8). In convolving layers,

after applying the filter on each channel, the output of the channels' number is different,

shown by n2 in this figure. In the end, before feeding the image to the hidden layers,

we have a flattened layer which has been explained in more detail in chapter 3. In the

flatten layer, the previous layer's output is transformed into one vector with the numbers

of the neurons (shown as n3 in figure 8).

19

Figure 9: An example of Siamese network architecture for signature authentication [1].

Figure 9 shows examples of Siamese networks used by Sunak et al. [1]. Here, two CNN subnets

extracted the features (s1 and s2) and joined by a loss function L, that compares the similarity

between features s1 and s2. Additionally. In Sunak et al. [1] work, y is another function that

determines if the two given samples are members of the same class or not.

4.2 Signature classification with Siamese nets

We can use Signature classification as a form of HSV (Handwritten Signature Verification). In

case that query signature has low similarity with the reference signature of a client, then it can

be labeled as a forgery. In large organizations like banks, we can use signature classification to

determine whether a questioned signature is similar to the user’s registered signature. We may

have many clients, and instead of training one model for each client, we can train one model

and use it to classify the given question signature even though we have a meager amount of

signature samples per class.

20

As mentioned before, Siamese classification is based on comparison with reference signatures.

Classification is done in dissimilarity space which makes it scalable when a new class is

introduced and also addresses issues mentioned above. Siamese networks automatically extract

meaningful features that help to maximize the interclass difference. So, at inference time, given

a new signature, we would be able to compare it with all previous client’s signatures and find

the most similar signatures and dissimilar signatures. The structure of the network would be as

in Figure 10. At training phase, the ConvNet extracts the features from given images, and then

the difference between these features is minimized if two images belong to the same class and

the difference gets maximized if the two given images do not belong to the same class.

Figure 10: A Siamese network architecture in nutshell for similarity calculation.

If each image is considered as x1 and x3 the corresponding extracted features by twin CNNs

would be H(x1) and H(x2). The elementwise absolute distance between two features will be

fed to a fully connected perceptron with final sigmoid function. During the training the output

of the sigmoid function would be set to 1 if two input signature pairs belong to the same class

21

(same signer) otherwise the output of the sigmoid function would be set to zero. So, the model

learns how to determine the similarity between two images in the form of a value between zero

to one.

4.3 Conclusion of Siamese-net

Siamese-nets are composed of two identical CNN architectures to extract the features from

images and vectorize them in a one-dimensional array. In another word input images are

mapped into a feature space. The idea of Siamese nets is the fact that similar images would be

placed near each other in this feature space. So, having pairwise features their elementwise

distance is calculated. Then their distance is fed to a fully connected perceptron with a final

sigmoid function to map the similar images to 1 and dissimilar images to 0 in the training phase.

This model structure would extract the features in a way that minimizes the distance between

the similar signatures and simultaneously maximizes the distance between features of

dissimilar input pairs.

In the inference phase, when a new query signature is given to classify, the trained model would

be able to assign the similarity value between two input images. This similarity value would

be assigned to each existing reference class of signatures. The class with maximum similarity

would be selected as the signer of the given query signature.

5. Methodology

Our approach is based on learning similarities between pairs of signatures. Hence, at inference

time, we can compare the given query signature with each existing class of reference

signatures. Then we can select the class that has the highest similarity with the given query

signature as the signer of the query signature. This process is explained in detail in this section.

The key to solving data scarcity in signature classification is good feature engineering.

Siamese-nets, helps to obtain features that maximizes the distance between features for

dissimilar images and minimize the distance between features for similar features.

Siamese Nets or twin nets are practically two different convolutional networks but share the

same weights and parameters. Hence, we can hypothesize that if we pass two images that

belong to the same class to twin models, as the conv-nets share the same weights and the images

are similar, the extracted features should be also similar. On the other hand, if the images

belong to different classes the produced features should be different. For example, consider

Figure 10. Two images x1 and x2 are passed to each of the twin sisters and their corresponding

features are automatically extracted as h(x1) and h(x2). Each feature flattens (Figure 8 flatten

array) and then in another layer, the distance between them is calculated.

The feature difference is calculated based on the absolute difference between h(x1) and h(x2).

In our case, as explained in Figure 10, each feature vector would be of size 4096.

 (Eq. 1)

The dif vector, also of size 4096, would be given to a single sigmoidal output unit to calculate

the prediction as follow:

𝑝 = 𝜎(∑ 𝑑𝑖𝑓𝑗𝑤𝑗4096

𝑗
) (Eq. 2)

Here, p is similarity value and j is the index of each value in the feature vector (flatten layer in

Figure 8). The value of j varies between 1 to 4098. In eq.2, σ is the sigmoid activation function.

And w are the weights specified to each element of the feature vector. These weights are

adjusted during the training phase. In the training phase we set the target value of 1 to each

23

similar input pair of signatures (signatures that belong to the same person). And target value

equal 0 for pairs of input signatures that are not similar (belong to two different persons).

Hence, later on, at the inference phase, the output of the sigmoid activation function would be

a probability between 0 to 1. This probability is an indication of similarity of two given pairs

of images. This is the main idea behind this methodology.

The structure of the network with three convolutional layers was followed by three max-

pooling layers and flattening of the final feature vector of size 4096 is demonstrated at a high

level as follows.

Here, for sake of simplicity first we down-sampled our images to 70x70 so the shape of the

vectors passed at different layers could be visualized by the model plot in Keras as shown in

Figure 11.

Figure 11: The shape of the vectors that passed in different layers of the network.

Figure 11 shows the summary of the structure of Siamese net model architecture where the

input shapes of the image is 70x70 then the extracted features are of 4096. Two features of size

4096 go to a lambda function to calculate the absolute elementwise distance between them and

the result would be another 4096 vector that is fully connected to the final last layer with a

sigmoid function.

24

5.1 Conclusion of methodology

Core of this methodology is based on comparison of pairs of images. The Result of the

comparison is a similarity value. To get the similarity of pairs of input signatures, first features

are extracted by a twin CNN network with shared weights between them. Idea is that if the

input images are visually similar the output extracted features would be similar too.

Then, absolute element wise distance between feature vectors creates another feature vector

(eq 1) with the same size Figure 11. This feature vector is fully connected to a sigmoid function

Figure 10. Sigmoid function gets trained on this distance vector. If the input pairs of signatures

are similar, target value of the sigmoid would be set as 1 otherwise 0. Hence, Siamese-net

learns to map the similarity of input images to a value between 0 to 1. Also learns how to

extract features that minimizes the distance between the similar signatures and simultaneously

maximizes the distance between features of dissimilar input pairs.

6. Dataset

The data set is composed of 55 different people’s signatures. Examples of such signatures are

shown in Figure 12. Each of these 55 classes has around 12 images of signatures for a specific

individual.

Figure 12: Signature examples.

For sake of simplicity and finding the best hyperparameters, we first decided to do the

classifications for 10 classes. Then after finding the best hyperparameters for training the

model, we test the trained model on 55 classes of different signatures. The number of images

we had per class was 12 (except for two classes with 24 images).

Dataset was split into three subsets: train, validation, and test. The training dataset is used to

train the model. The test dataset is used for testing the model after it is trained. If the

performance of the model on the test dataset was acceptable then the model performance on

validation is calculated. Here, all the reports are done on the validation dataset. As mentioned

above this dataset is not seen during the training. The split was 50% for the training subset,

25% for the test subset and 25% for validation subset. For example, for all 10 classes except

for class 1. We had 6 images of signatures in the training subset, 3 images for the test subset

and 3 images in the validation subset.

26

Same split for train, test and validation is done on a second dataset that was collected from

Chinese signatures [54]. It has 20 different classes, which contain 240 samples. A sample of

it is shown in Figure 19.

6.1. Preprocessing

Here, images are converted to gray level and then scaled. Usually, for faster-fine tuning

purposes, we began with low image dimensions 32⨯32 pixels for the first experiment and

gradually increased it to 100⨯100 pixels. We found out that with larger images than 100

pixels, like 200 pixels we begin to lose some accuracy.

6.1 Conclusion of dataset

The Dutch signature dataset contains 55 classes. Each class contains signatures of an

individual. Each class is divided into 3 subsets to be able to apply training, validation and test

on this dataset. Training usually contains 6 images of each class and test and validation has 3

samples of each class images.

We also apply the same preprocessing on the second dataset (Chinese signature dataset). The

Chinese dataset contains 20 different classes and the same split of number of images for train

(6 images), and 3 images for test-set and 3 for validation-set.

27

7. Training and validation

As in our case we have two target values, 0 and 1, we used binary cross-entropy loss function

to train the model. In binary cross-entropy loss function each of the predicted probability is

compared to the actual class output which can be either 0 or 1. Then the score that penalizes

the probability is calculated. This score is based on the distance between the calculated

probability and the actual expected value.

(Eq. 3)

In the above equation, N is the number of samples, P is the prediction and Y is the actual value.

It was trained for 1000 iterations of training the model over a batch size of 32 randomly selected

pairs of signatures and their target values. So, at each iteration we would select another random

batch of 32 images from the training-set. The model gets evaluated after 5 iterations training

or fitting the model over a given 32 pairs of images. This number is also a parameter to set as

if we begin to evaluate more often the training takes a longer time. Later on, we set it to 20.

The way we evaluate the model is based on a comparison of the questioned image with current

existing classes of signatures. In this work, we are going to call this kind of comparison the N-

Way comparison. For example, if we compare the given questioned signature with the current

10 reference signatures, we are doing the 10-way comparisons. Knowing that N can vary up

to a number of existing classes of signatures. It is explained in detail in the next sections

7.1. N-Way comparison:

To validate the model performance, we have to see in a pair, if the model could find high

similarity intra-class and low similarity for inter-class signatures. To verify that we used a

notion called N-way comparison. It is basically comparing the questioned signature with other

28

N reference signatures including its own class samples. For example, a 4-way comparison

would be like the image 1 in Figure 13.

Figure 13: A 4-way comparison pair and its results.

In Figure 13 the questioned signature (in the first column) is compared with 4 (N) other

different classes (second column) and corresponding similarity is calculated (third column).

So, if the maximum similarity belongs to the pairs with signatures from the same person, we

consider it a correct prediction and if not, we consider this as a miss. It should be noted that the

N-way comparison has only one pair of signatures belonging to the same person (row one).

When we create the pairs to evaluate the model, we select them randomly from the validation-

set.

If we repeat creating an N-way comparison for ‘k’ times, then the accuracy of the model would

be obtained as the ratio of the correct predictions over the validation-set, as follow:

Validation_accuracy= (100 * n_correct) / k (Eq. 4)

29

In the equation 4 k is the number of trials and n_correct is the number of correct predictions in

all the trials. We call this metric Validation_accuracy. Which is used during training to check

the model performance on our validation-set. This will give us an idea of where the model is

in terms of quality of classification during training.

It should be noted that this is the validation accuracy and is different from the final

classification accuracy that is used to evaluate the model performance on the test-set (see

eq.11). Because, at the validation step, the goal is just to select the models that are doing well

on the classification of the validation-set. So later on, after we save those good candidate

models during the training, we can do a more detailed analysis of the models over the test-set.

The evaluation on the test-set is in terms of classification metrics like Precision, Recall, and

Accuracy. The accuracy we used at the test level is the ratio of all True Positives to all (true

positives and negatives) which is mentioned in eq.11 Whereas, the accuracy used in the

validation phase is just how many True Positives we get over the validation-set. This accuracy

is called validation-accuracy.

So now we can evaluate the model during training. It tells us which model we should pick as

the final model for the testing phase. To select the best model, we followed the following logic.

If the model accuracy is higher than a threshold (60%) over the validation-set during training,

then we save the model. We follow this approach but each time our model gets better accuracy

we raise the threshold and save the new model too.

For example, if in the next run the accuracy of the model over the validation-set becomes 70%

the threshold would be raised to 70%, and we save the new model too, and so on and so forth.

Then finally we would select models that have higher accuracy on validation to test them on

the test-set. It should be noted that if we have multiple models with the same validation

accuracy (i.e., 100%) then we would keep saving the last 5 models during the training. We

explain this procedure in the form of a pseudo code in the next section.

30

7.2 Pseudocode for training and validation:

Here, we modularized the training the model and validation of the model in two functions. First

function is N_way_validation assigns an accuracy to the trained model. The trained model is

obtained by train_and_validate function which is the second function we mention here.

train_and_validate function trains the model, passes it to the N_way_validation function to

evaluate its accuracy over the validation-set, saves the model if its accuracy is above the

threshold, and increases the threshold incrementally to keep the models with highest accuracy.

Pseudo code 1

N is number of classes of signatures exists in validation-set

The model is already trained over the training-set.

k is a fixed number like 20 or 100.

 Function N_way_Validation (Number_of_classes = N, model):

 correct_classification_counter = 0

 Repeat K times:

- Randomly select an image A in the validation-set.

- Create N pairs from N different classes of validation-set.

- Evaluate each pair with the currently trained model.

- if model classify image A correctly among N classes:

o correct_classification_counter += 1

 validation_accuracy = correct_classification_counter / K

 Return validation_accuracy

31

Pseudo code 2

This function trains the model on training set and keeps track of the model accuracy, if newly

trained model at every 5 iterations (user can change this value) has higher accuracy than the

previous trained model’s accuracy, it is saved and the accuracy threshold is updated to the latest

highest accuracy.

number_of_iterations, is how many times we run and fit the model over randomly selected

32 batches of pairs of images from the training-set.

N is the number of classes of signatures that the model is training on.

Function train_and_validate (number_of_iterations, N = number_of_classes):

 accuracy_threshold = 60%

 For 0 to number_of_iterations do:

 - Randomly create a batch of 32 pairs of images from training_set.

- Train the model with these 32 pairs of images.

 - Every 5 iterations do:

- validation_accuracy = N_way_Validation(N, model)

- If (validation_accuracy > accuracy_threshold):

 then:

o A good candidate model is trained, save this model.

o Update the accuracy_threshold = validation_accuracy

7.3 Conclusion of training and validation

Siamese-nets are pairwise models. Hence, to train them we need a pair of images. Output or

target is set to either one or zero, if the input images respectfully belong to the same class or

not. To be able to train, test and validate, we advise an approach (N-Way comparison) to

measure the performance metric. To see if a model can classify a given query image, we need

32

to have a reference sample of each of the existing classes to compare the query image against

it. Hence, N-way comparison is used to compare the query image with N other classes. In this

Approach N pairs of images have been constructed. Among those N pairs, only one pair has

both the query and the reference image from the same class of signatures. The rest of the N-1

pairs have pairs of different classes. So, the target values used to train these sets would have

only 1 value equal to one and the rest of the N-1 target values are equal to zero.

For example, in case we want to train over the total number of classes (N = 55), first we make

55 pairs of images where only one pair of classes matches. Then we randomly select a batch.

For example, for a batch of 32 we would randomly create 55 pairs of images then select 32 of

these pairs randomly.

33

8. Results and analysis

8.1 Baseline

To evaluate the performance of the method we used the Convolutional Neural Network as the

baseline classification model for our signature’s classification. CNN can be one of the efficient

tools for extracting the common features among different classes [53]. So, we decided to run

a test on a simple CNN structure for classification purposes. Training is done from scratch like

the Siamese network.

8.1.1 - Dataset

The Dutch dataset [52] has been used in this case. Here, we selected 55 different classes of

signatures. In other words, it's a dataset of signatures of 55 different people. Number of

signature samples for each class of signatures is around 12 images. The dataset containing the

55 different classes of signatures is divided into 3 sets. Train, test, and validation. We assigned

6 to train, 3 to validate, and 3 to test.

8.1.2 - Structure of the network

In Figure 14 A simple CNN’s structure is used for classification of 55 classes of signatures.

The input sizes of the model changed for several experiments we did over input image sizes.

We did experiments with input size of 32 pixels up until 100 pixels.

This CNN structure is composed of the first two conv layers (conv2d_2 and conv_2d_3) that

each are followed by a separate max pooling layer (max_pooling2d_2 and max_pooling2d_3).

A third conv layer (conv2d_5) is used on top of the previous max pooling layers and its output

is flattened to a one-dimensional vector. The length of this vector is again decreased over two

dense layers (dence_2 and dence_3) of sizes of 64 and 55 to be able to classify the given images

to one of 55 classes.

34

Figure 14: Structure of the simple CNN network for classification of 55 classes of signatures.
for input images of 32x32 pixels.

Also, for the sake of not losing any details in our images, we kept the color channels and

avoided converting the images to grayscale mode.

35

8.1.3 - Training

We divided the dataset to train, test and validation. In the train-set, each class has 6 images and

the test and validation-set have 3 images. Here, we performed 3 different experiments and

altered the training hyperparameters in terms of image input size, number of classes, and

activation function to check accuracy of the model.

We stopped the training after the accuracy of validation converged after 100 iterations. Here,

iteration means the number of times the model is fitted over the given training-set. We see that

in almost 40 iterations the model converges on its performance. We didn't go after 100 to

prevent the model from beginning to remember the training-set and overfit. Overfitting is a

concept in machine learning which happens when a model learns very well on the training set

but performs poorly on test data. We were careful here knowing the training-set had only 6

samples per class so stopping it early as soon as it reached its accuracy plateau to prevent the

overfitting impact on the model.

Experiment_1: image size 32x32 pixels

Figure 15: The accuracy of the CNN model during the training for the classification of 55
classes of signatures. Blue is the model accuracy. on the training-set and yellow is the model

accuracy on the validation-set. Image size: 32x32, activation: Relu.

36

Experiment 2: Image size: 32 x 32 pixels, activation function: Sigmoid.

In the model structure we had two dense layers dense_6 and dense_7 shown in Figure 14. at

the end of the pipeline. For the dense layer right before the last layer (dense 6) we were using

the Relu activation function. In the second experiment (next chapter), we changed it to change

that to sigmoid to check the performance of the model accuracy. The last layer (dence_7) has

a softmax activation function. Given an image as an input the Softmax function calculates the

probability of classification of that image for each of 55 classes.

We see an improvement of around 10% in validation accuracy while training the model with

a sigmoid activation function.

Figure 16: Mode’s accuracy of the model on training-set and validation-set on the
classification of 55 classes with CNN. Image size 32x32 and activation function: sigmoid.

Experiment 3: Image size: 100X100 pixels, activation function: Sigmoid

Now that we have selected our activation function, we can do an experiment on another

parameter which is the input size of the CNN model. We increased the signature image to

100x100 pixels. The training was done on the same dataset as before with 55 classes. Training

accuracy on both training-set and validation-set has been converged after 30 iterations.

37

The Validation accuracy this time increased to 78%. That's the point where we stopped the

training at the 100 iterations. The model reached its plateau of 78% accuracy on validation at

around iteration 40 as shown in Figure 17.

Figure 17: The model’s accuracy on training-set and validation-set on the classification of
55 classes with CNN. Activation: sigmoid, size: 100x100.

8.1.4 - Test CNN on 55 classes

In previous sections we trained classification models. Now we are going to evaluate their

performance on the test-set. The evaluation metric is accuracy, precision-recall, and F1 score.

This accuracy is the ratio of all True positives over (TPs + TNs) that is mentioned in eq. 11.

We calculate the metrics on all the previous experiments to select the best hyperparameters

mentioned above.

Experiment_1: Image size: 32x32 pixels, activation function: Relu

Testing on the trained CNN model with 32x32 images results in an accuracy of 62% (Table 1).

This makes sense as the number of training on images was so low that the model couldn't pick

up meaningful features to discriminate the classes from one another.

38

Table 1. On 32x32 images, the Precision, and Recall related to the classification of 55
classes with CNN.

 Precision Recall F1-Score

Accuracy 62%

Macro Average 66% 62% 61%

Weighted Average 67% 62% 61%

Experiment_2: image size:32x32 pixels, activation function: Sigmoid

Test results on the model that trained with 32x32 images but with activation function of

sigmoid shows 10% improvement on classification accuracy over test-set (Table 2) in

comparison with Relu activation function.

Table 2. On 100x100 images the precision-Recall related to the classification of 55
signatures with CNN.

 Precision Recall F1-Score

Accuracy 70%

Macro Average 74% 69% 68%

Weighted Average 73% 70% 67%

Experiment_3: image size 100x100, activation function softmax

Here, the model that is trained with images of sizes of 100x100 pixels and softmax activation

function is tested. The accuracy was improved by 6% from 70% to 76% as shown in Table 3.

39

Table 3. On 100x100 images and activation function of sigmoid the precision-Recall related
to the classification of 55 signatures with CNN.

 Precision Recall F1-Score

Accuracy 76%

Macro Average 82% 76% 76%

Weighted Average 82% 76% 76%

8.1.5 - Baseline conclusion

Based on the results, we found out that a CNN architecture has the potential of picking up

meaningful and distinguishable features if the image size is increased to 100x100 pixels and

softmax is used as an activation function. We could get up to 76% classification accuracy. It

also shows that the limitations of CNN are that if we focus on similar features to classify the

signatures, we need more images than just 6 samples per class. Also, we found out that by using

the Sigmoid function instead of Relu in the last dense layers could increase the classification

accuracy.

8.2 - Our approach

Our classification approach is based on training the model with pairs of images in the training-

set. The trained model would be a binary classification for each pair. Indicating if these two

pairs belong to the same class or not. To find the best hyperparameters for training the model

we ran several experiments that are explained in detail.

On the inference side and testing, knowing every image's true class, we would compare each

class image with the query image. Average of the similarity for each class would be the

similarity of the quarry image with that class. Finally, the query image would be classified

based on the highest similarity with each class. Here, this process is explained in detail.

To find the best setup and hyperparameters for the Siamese nets, several experiments have been

performed. We began with low values in hyperparameters (i.e. image and class sizes) and then

increased them to track the performance of the model. For example, we began classification on

40

only 10 classes and then increased it to the maximum existing number of classes in our dataset

(55).

Here, we began with 32x32 then 70x70, and then 100x100 size for input images. Also, we did

some experiments in terms of feeding the model with more pairs of the same class (sequential

batches) vs more random pairs (random batches). It turns out that to get the optimal

performance the best hyperparameters to train the model with are 100x100 pixels images in

random pairs.

8.2.1 Training

We did our training based on what has been explained in Chapter 7. First, we trained our model

with 32x32 pixels images. We began to track the accuracy of the model on validation-set while

we were training the model on the training-set. This way we let the model continue learning

and also continue the generalization over the validation-set. The metric used to evaluate the

model on the validation-set is based on N_way_comparision which is explained in chapter 7.

Also, for sake of simplicity, we began our experiments with only 10 classes to classify with

siamese-net then increased it to 55 classes after fine-tuning the model. Hence, we used

10_way_comparision for the first iterations and then increased it to 55_way_comparision.

As a reminder, N_Way_comparision was a method developed in previous sections to validate

a siamese model. of sampling from the validation-set and calculating the model performance

over the classification of N classes in the validation-set during the training phase. Obtained

accuracy is called validation_accuracy and if the model trained at the designated epoch (i.e.,

every 20 epochs) has a higher than 60% threshold validtion_accuracy, the model is a good

candidate and would be saved for the testing phase.

We stopped the training procedure when the validation_accuracy reached 100% and we

already saved 5 models with 100% validation_accuracy or we reached the maximum number

of epochs. Meaning the model is doing well on the validation-set and we can stop training and

proceed to the testing phase.

Below we explain how we used similarity values for classification and later on we explained

in detail how we have evaluated these classifications in terms of Precision-Recall and F-score.

41

8.2.1 - Similarity used for classification

Having the Siamese model trained and saved in the training phase, we can evaluate its

performance on unseen signatures in the test-set at the inference phase.

For example, to decide if a query image belongs to class k or not, we compare the query

signature with all the sample signatures in reference class k as follows.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑘 =
∑𝑛

𝑗=1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞𝑢𝑒𝑟𝑦 𝑖𝑚𝑎𝑔𝑒𝑗)

𝑛
 (Eq. 5)

 Here, k is the class and j is the number of signature images that exist in the class k (1…n). In

other words, similarity of a query image with a class is the average of similarity of query image

with all the available images from that class. This strategy comes from the fact that in reality,

we don't have lots of reference signatures of a person (a class) in our datasets (i.e., bank’s

client’s signatures). Hence, to see if a new query signature belongs to a person (a class of

signatures), we take the average of the similarity of that query image with all the signatures

available for that specific person. In our cases the number of signatures per class is low, around

3-6 images.

After being able to assign a similarity of a query signature to a specific class. We followed the

same procedure for all the 55 classes of signatures. We have to apply the eq.5 on all the 55

classes (k =1…55). Then a class with the highest average of similarity is selected as the final

class of the query image. This procedure is done by applying an argmax over calculated

similarities for existing classes as shown in eq. 6.

 (Eq. 6)

In the test-set we have the actual class for every signature image which we use as the ground

truth when we evaluate our model classification performance. We test the previously trained

model (on training-set) against the test-set images by randomly selecting the images from the

different classes. Then using the eq.5 and eq.6 to see if the model could classify the query

correctly or not. Using this statistic we can calculate the model performance with a confusion

matrix, the precision, and recall for each of the 10 classes of signatures. Below we directly

mention the iterations we used for fine tuning the model in the test phase with the

42

hyperparameters we used for training in different experiments. Also, we explain the evaluation

metrics.

Experiment_1: 10 classes and image size 32x32

We began our experiments with the small signature classes and signature sizes. This way it

takes less time (in terms of training and evaluating each model) to find the best hyperparameters

to get better accuracy for the classification models. The hyperparameters that are selected and

changed are explained in the following experiments along with the model performance metrics.

In this experiment, we trained a model to classify 10 randomly selected classes with signatures

of 32x32 pixels. The model had around 60% of accuracy (eq.11). Then, we increased the image

size to 70x70 pixels and redo the same experiment.

Experiment_2: 10 classes and image size 70x70

We increased the size of input images to 70x70 and redo the training with the previous setting.

32 batch size, 1000 iterations, and 10_way_comparision at training time, also do the

validation_accuary every 5 iterations. The accuracy obtained at this Experiment_2 was higher

than Experiment_1. Hence, we performed a more detailed evaluation in terms of confusion

matrix, Recall, and Precision too.

8.2.2. Performance Metrics

After classifying the test-set, to analyze the performance of the classification we adopt the

following metrics.

Confusion matrix

Confusion matrix is a table that explains the performance of a model in classification. Each

row indicates the classes to classify and each column shows the classes that model predicted.

In our case we intend to classify samples of 10 classes. Hence, our confusion matrix is 10 by

10. For example, for images that belong to class 1 (row 1), shows that there was a total of 6

images in class 1 and the model classifies all the 6 images correctly as class 1 (put all the 6

images in column 1). Another example, for images belonging to class 3 (row 3) we see that the

model classifies 2 of them as class 3 (put them in column 3) and 1 of the images as class 8 (1

record is mentioned in column 8). So, if the model is more populated in the diagonal part of

43

the confusion matrix, it says that the model is less confused and could predict most of the

classes correctly as we see in the Table. 4.

Table 4. Confusion matrix over 10 different classes with batch training of (70x70) samples.

Table 5. Performance of the model over the 10 classes with sequential batch training of
(70x70) samples.

 Precision Recall F1-Score

Accuracy 85%

Macro Average 88% 83% 83%

Weighted Average 89% 85% 85%

Precision

Precision shows how precise is the model in classification and is calculated as follows:

Precision = TP/(TP+FP) (Eq. 7)

In this equation, TP is True Positive (in this case signature is correctly classified) and FP stands

for False Positive (cases that model wrongly classified as a correct class) in other words

misclassifications. As we see in Table 5 the precision is above 80%. Overall precision is

depicted by macro and weighted average precisions of all the classes. Weighted average

44

precisions consider the number of the images in the dataset too. This means that the model is

accurate at 83% of its classification.

Recall

The Recall is basically the detection rate or the ability of the model to identify and classify all

the samples of relevant class and is calculated as follows.

Recall = TP/(TP+FN) (Eq. 8)

In this formula, FN is False Negative and are those positive samples of each class that the

model missed or couldn’t classify correctly. Table 5 shows that the model performs well in

finding all the samples. In another word, we have fewer False Negatives or missing some cases

by misclassifying them to another class. We observe that the model could detect 83% of the

signatures of each person on average.

Macro Average:

Macro average here is basically the simple average or arithmetic mean of all the values of

Precision and Recalls.

Weighted Average:

Macro average is a simple average of all the precision and recalls over 10 classes. Whereas,

Weighted average is a weighted average. This metric considers how many samples of each

class were present in its calculation. So, fewer samples of one class means that its

precision/recall/F1 score has less of an impact on the weighted average for each of those

metrics. The Weighted average is the average calculation based on the number of images

(support) as follows:

𝑊 =
∑𝑛

𝑖=1 𝑤𝑖𝑋𝑖

∑𝑛
𝑖=1 𝑤𝑖

 (Eq. 9)

Here, in this equation 𝑤𝑖 is the number of images in the class i and X is the Precision or

Recall.

45

F1 score

F1 score is the harmonic average of recall and precision. F1 score shows the balance between

Precision and Recall. It tells you how precise your classifier is (how many instances it classifies

correctly). F1 Score tries to find the balance between precision and recall. Usually, there is a

trade-off between precision and recall. the F1 Score is a combination of these two as follows:

F1 score = 2 x [(precision x recall) / (precision+recall)] (Eq. 10)

A higher value of F1 Score means that the model performs well in both finding all the samples

and also performs well in distinguishing them from other classes. The range for F1 Score is [0,

1]. When both precision and recall is zero, we have minimum value for F1 score and when both

precision and recall are 1, meaning the model has neither False Positive nor False Negative.

Accuracy

Accuracy simply is the ratio of correctly predicted observations to the total observations. One

For our model, we have got 84% which means our model is 84% accurate in drawing the line

between classes.

 Accuracy score =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (Eq. 11)

8.2.3. Experiment_3: Sequential batch training

Here, we made another experiment that instead of randomly creating the pairs for Siamese net

to train on, for a 32-batch of pairs, we made sure that half of it contains pairs of the same class

and the other half pairs of negative classes. But the accuracy of the model over the test-set

decreased to around 70%. So, we went back to training over random pairs and the performance

increased. This is explained in the following section in detail.

8.2.3. Experiment_4: Random batch training

Unlike the previous section here we completely randomly select the 32 batches of pairs over

all the classes of signatures. As our dataset is balanced, we got better results.

The confusion matrix over 10 classes of signatures is as follows:

46

Table 6. Confusion matrix over 10 classes of signatures with random batch training of
(70x70) samples.

Table. 6 shows that the model is less confused in the classification of a given new signature in

comparison with sequential batch training. Also, the accuracy score has improved from 3% to

87%.

Table 7. Precision and recall for all of the 10 classes of signatures with random batch
training of (70x70) samples.

 Precision Recall F1-Score

Accuracy 88%

Macro Average 91% 87% 85%

Weighted Average 92% 88% 86%

As shown in Table 7 the average micro-precision of this model has also improved to around

91%. Meaning that model is doing better in terms of encountering fewer False Positives and

classifying each new signature. We also observe an increase in the macro average of recalls

over all the 10 classes to 87%.

Results have improved in comparison with the previous iteration. This indicates that the model

is doing well with maximizing the distance between dissimilar images. Because in the case of

random pairs, the model is presented mostly with the different class pairs and the whole

Siamese net approach tries to classify the pairs over the distance space. It shows that the model

is doing better on learning the distances between signatures rather than similarities.

47

8.2.4. Experiment_4: image size 100x100

Following the trend in previous iterations, increasing the image dimensions was improving the

model’s accuracy. Hence, we did another iteration with (100 x 100) pixels and we trained them

with the same training hyperparameters like 1000 epochs and random 32 batch size. The model

loss at each iteration is depicted in Figure 18.

Figure 18: Training loss for 10 classes.

Results show that increasing the sample sizes helps the model to get less confused between the

classes of signatures. This yields higher accuracy in terms of classification to 94% as shown in

Table 8.

Table 8. Confusion matrix over 10 classes of signatures with random batch training of
(100x100) samples.

48

Model performance in terms of precision and recall is also improved as shown in Table 9. The

macro average of both is over 93% which yields the F1 Score to improve also to 93%.

Table 9. Precision and recall for all of the 10 classes of signatures with random batch
training of (100x100) samples.

 Precision Recall F1-Score

Accuracy 94%

Macro Average 96% 93% 93%

Weighted Average 96% 94% 94%

8.2.5. Experiment_5: Increasing the number of classes to 55

In previous sections we were fine tuning a model with smaller sample size, and smaller

iterations. After finding the hyperparameters that result in higher performance, the model will

be trained for the maximum number of classes to see how our classification method performs

over 55 classes and 4000 iterations.

So, we increase the N_way comparison to 55_way_comparison at the validation phase. The

validation process repeats every 20 iterations and the model with the best performance would

be saved (eq.4) as explained in Chapter 7.

Results of the signature classification over Dutch dataset with 55 classes are shown in Table

10. As we can see the accuracy (eq.11) is 90% whereas baseline has the accuracy of 76% in

chapter 8.1.4.

Table 10. Model performance of classification over 55 classes.

 Precision Recall F1-Score

Accuracy 89%

Macro Average 85% 89% 86%

Weighted Average 85% 89% 86%

49

8.2.6 Test on Chinese dataset and comparisons

We tested our approach with another dataset that was collected from Chinese signatures [54].

It has 20 different classes, which contain 240 samples. A sample of it is shown in Figure 19.

Figure 19: Samples of signatures from the Chinese signature dataset.

For each class, we assigned 6 images for the training and 3 for tests, and 3 images per class for

validation. Our model’s classification performance is presented in Table 11.

Table 11. Model performance of classification Chinese signatures dataset

 Precision Recall F1-Score

Accuracy 84%

Macro Average 76% 84% 79%

Weighted Average 76% 84% 79%

Table 11 shows Siamese-net performance on classification of the second dataset (Chinese

signature dataset). The model had a high accuracy of 84% and F1 score of 79%.

50

8.3 Conclusion of our approach

On the training side, best hyperparameters for training the model are found over an experiment

of classifying only 10 classes of signatures. Using these hyperparameters we trained the model

over the whole 55 classes on Dutch dataset and 20 classes on the Chinese dataset.

On inference phase, the results of the model’s accuracy on test-set for Dutch dataset was

89% and 84% on the Chinese test-set. Process of classification over N classes is based on

comparing the query image with those classes. Each class contains several (3 - 6) images. So,

the similarity of the query signature is determined by the average of the similarity of the query

with all the images in that class (3-6) eq 5. Finally, the class with maximum similarity would

be selected as the signer of the query image, like Figure 13, eq 6. The performance of the

Siamese-net is compared with the base model in next chapter.

51

9. Comparison

In previous experiments the models have been fine tuned so best hyperparameters in training

were selected. Here, to simplify the comparison of baseline (CNN classification) and our

approach we summarize the performances mentioned in previous tables (Tables 3,10,11).

Among the metrics in those tables the accuracy metric has been selected to summarize and

compare the performance of the models in previous experiments. Accuracy metric explains

the model performance as the ratio of the all the True classifications (True Positives + True

Negatives) to all the dataset which contains the False Negatives and False Positives (TP + TN

+ FP + FN) eq.11.

Table 12. Comparison results between Dutch and Chinese dataset.

 Accuracy

 Dutch Chinese

Siamese-net 89% 84%

CNN (Base

line)

76% 78%

 In Table 12 we observe that Siamese-net could improve the performance of classification on

both datasets. Reason is that simple CNN architecture only relies on similar features of intra

class signatures. On the other hand, Siamese networks leverage the pairwise training to focus

on extracting features that minimizes the distance for intra class samples (similar signatures)

and maximizes the distance between inter signatures (non similar signatures). Hence not only

focuses on similarity of images but also leverages the dissimilarity of them for classification.

10. Conclusion and Future works
Our experiments show that Siamese networks could perform well in the classification of offline

signatures with a low (3 to 6) number of samples per class. In this thesis, we could reach 89%

accuracy in offline signature classification using Siamese nets on Dutch dataset and 84% on

Chinese dataset. Model is trained to extract features that maximises the distance between

features of inter-class images and minimizes the feature distances between intra-class images.

Tuning the model plays an important role in optimal performance. Experiments show that

having larger sizes of samples around 100x100 pixels with random sampling to train the pairs

improves the performance of classification.

Here, it has been demonstrated that simple CNN (base line) has a problem picking meaningful

similarities for classification purposes. Whereas, the Siamese network is a more reliable

method to do classification over a small or large number of classes with a low amount of

training pics like 6 images per class.

Advantage of Siamese-net classification is that one model can be trained for all the users, one

model per user and still have a high level of accuracy around 90%. Also, as the classification

is decided based on distances between two signatures (reference and query signatures), models

trained with Siamese-net would be scalable. In this sense that in case a new class is added to

the dataset that is not trained on we can still use the Siamese net to calculate the similarity of

the query image with the new class.

For future works, one can use this approach to measure the similarity of the query signatures

with the reference signatures to determine the authenticity of the query signature. Also, one

can use the transfer of learning of currently learned weights across all the classes. This means

that we can use the weights of the model trained in the first task (signature classification) as an

initialization of the second model (signature authentication) in case of training a writer

dependent model per user, instead of training it from scratch.

References

[1] Dey, Sounak, et al. "Signet: Convolutional Siamese network for writer independent
offline signature verification." arXiv preprint arXiv:1707.02131 (2017).

[2] Chen, Yunpeng, et al. "Drop an octave: Reducing spatial redundancy in convolutional neural
networks with octave convolution." Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. Retrieved from https://www.slideshare.net/ShunYUKo/octave-
convolution

[3] towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17
f34e75bb3d

[4] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese neural networks
for one-shot image recognition." ICML deep learning workshop. Vol. 2. 2015.

[5] Keri L. Kettle, Gerald Häubl, The Signature Effect: Signing Influences Consumption-
Related Behavior by Priming Self-Identity, Journal of Consumer Research, Volume 38,
Issue 3, 1 October 2011, Pages 474–489, https://doi.org/10.1086/659753

[6] Poddar, J., Parikh, V., & Bharti, S. K. (2020, April 14). Offline signature recognition
and forgery detection using Deep Learning. sciencedirect. Retrieved January 2, 2022,
from https://www.sciencedirect.com/science/article/pii/S1877050920305731

[7] Kennard, D. J., Barrett, W. A., & Sederberg, T. W. (2012, November). Offline signature
verification and forgery detection using a 2-D geometric warping approach. In
Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)
(pp. 3733-3736). IEEE.

[8] Khalajzadeh, Hurieh, Mohammad Mansouri, and Mohammad Teshnehlab. "Persian
signature verification using convolutional neural networks." International Journal of
Engineering Research and Technology 1.2 (2012): 7-12.

[9] Calik, Nurullah, et al. "Large-scale offline signature recognition via deep neural
networks and feature embedding." Neurocomputing 359 (2019): 1-14.

[10] Kaulen, Diego, and Kaitlyn Baab. "Offline Signature Recognition with Convolutional
Neural Networks."

[11] Padmajadevi, G., and K. S. Aprameya. "A review of handwritten signature verification
systems and methodologies." 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT). IEEE, 2016.

54

[12] Zhu, Guangyu, et al. "Signature detection and matching for document image retrieval."
IEEE Transactions on Pattern Analysis and Machine Intelligence 31.11 (2008): 2015-
2031.

[13] Ashwin, C. S., et al. "PIXBAS" Pixel Based Offline Signature Verification"." Adv. Inf.
Sci. Serv. Sci. 2.3 (2010): 14-17.

[14] Shekar, B. H., Bharathi Pilar, and K. D. S. Sunil. "Blockwise binary pattern: a robust
and an efficient approach for offline signature verification." The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2017): 227.

[15] Wang, Pin, En Fan, and Peng Wang. "Comparative analysis of image classification
algorithms based on traditional machine learning and deep learning." Pattern
Recognition Letters 141 (2021): 61-67.

[16] Eskander, George S., Robert Sabourin, and Eric Granger. "Hybrid writer-independent–

writer-dependent offline signature verification system." IET biometrics 2.4 (2013):
169-181.

[17] Hafemann, Luiz G., Robert Sabourin, and Luiz S. Oliveira. "Learning features for
offline handwritten signature verification using deep convolutional neural networks."
Pattern Recognition 70 (2017): 163-176.

[18] Yılmaz, Mustafa Berkay, and Berrin Yanıkoğlu. "Score level fusion of classifiers in
off-line signature verification." Information Fusion 32 (2016): 109-119.

[19] Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level performance in face
verification." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014.

[20] Cavalcanti, G. D. D. C., Rodrigo C. Doria, and E. Cde BC Filho. "Feature selection for
off-line recognition of different size signatures." Proceedings of the 12th IEEE
Workshop on Neural Networks for Signal Processing. IEEE, 2002.

[21] Oliveira, Luiz S., et al. "The graphology applied to signature verification." 12th
conference of the international graphonomics society. 2005.

[22] Patil, Pallavi, et al. "Offline signature recognition system using histogram of oriented
gradients." 2017 International Conference on Advances in Computing, Communication
and Control (ICAC3). IEEE, 2017.

[23] Harfiya, Latifa Nabila, Agus Wahyu Widodo, and Randy Cahya Wihandika. "Offline
signature verification based on pyramid histogram of oriented gradient features." 2017
1st International Conference on Informatics and Computational Sciences (ICICoS).
IEEE, 2017.

[24] Yilmaz, Mustafa Berkay, et al. "Offline signature verification using classifier
combination of HOG and LBP features." 2011 international joint conference on
Biometrics (IJCB). IEEE, 2011.

55

[25] Zhang, Bailing. "Off‐line signature verification and identification by pyramid
histogram of oriented gradients." International Journal of Intelligent Computing and
Cybernetics (2010).

[26] Soleimani, Amir, Babak N. Araabi, and Kazim Fouladi. "Deep multitask metric
learning for offline signature verification." Pattern Recognition Letters 80 (2016): 84-
90.

[27] Bouletreau, Viviane, et al. "Handwriting and signature: one or two personality
identifiers?." Proceedings. Fourteenth International Conference on Pattern
Recognition (Cat. No. 98EX170). Vol. 2. IEEE, 1998.

[28] Zouari, Ramzi, Raouia Mokni, and Monji Kherallah. "Identification and verification
system of offline handwritten signature using fractal approach." International Image
Processing, Applications and Systems Conference. IEEE, 2014.

[29] Pourshahabi, Muhammad Reza, Mohamad Hoseyn Sigari, and Hamid Reza Pourreza.
"Offline handwritten signature identification and verification using contourlet
transform." 2009 International Conference of Soft Computing and Pattern Recognition.
IEEE, 2009.

[30] Mohsen, Heba. "Signature identification and verification systems: a comparative study
on the online and offline techniques." Future Computing and Informatics Journal 5.1
(2020): 3.

[31] Kholmatov, Alisher, and Berrin Yanikoglu. "Identity authentication using improved

online signature verification method." Pattern recognition letters 26.15 (2005): 2400-
2408.

[32] Shanker, A. Piyush, and A. N. Rajagopalan. "Off-line signature verification using
DTW." Pattern recognition letters 28.12 (2007): 1407-1414.

[33] Chen, Siyuan, and Sargur Srihari. "Use of exterior contours and shape features in off-
line signature verification." Eighth International Conference on Document Analysis
and Recognition (ICDAR'05). IEEE, 2005.

[34] Güler, Inan, and Majid Meghdadi. "A different approach to off-line handwritten

signature verification using the optimal dynamic time warping algorithm." Digital
Signal Processing 18.6 (2008): 940-950.

[35] Stauffer, Michael, et al. "Offline signature verification using structural dynamic time
warping." 2019 International Conference on Document Analysis and Recognition
(ICDAR). IEEE, 2019.

[36] Kanwal, Saira, Muhammad Uzair, and Habib Ullah. "A Survey of Hand Crafted and
Deep Learning Methods for Image Aesthetic Assessment." arXiv preprint
arXiv:2103.11616 (2021).

[37] Coetzer, Johannes. Off-line signature verification. Diss. Stellenbosch: University of
Stellenbosch, 2005.

56

[38] Bertolini, Diego, et al. "Reducing forgeries in writer-independent off-line signature

verification through ensemble of classifiers." Pattern Recognition 43.1 (2010): 387-
396.

[39] Oliveira, Luiz S., et al. "The graphology applied to signature verification." 12th
conference of the international graphonomics society. 2005.

[40] https://www.stepover.com/us/solutions/

[41] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, “Off-line signature
verification based on grey level information using texture features, Pattern Recogn.,
vol. 44, pp. 375–385, February 2011.

[42] A. Kholmatov and B. Yanıko ̆glu, “Identity authentication using improved online
signature verification method,” Pattern Recognition Letters, vol. 26, no. 15, pp. 2400–
2408, 2005.

[43] ESKANDER, G. S.; SABOURIN, R.; GRANGER, E. Hybrid writer-independent–
writer-dependent offline signature verification system. IET biometrics, IET, v. 2, n. 4,
p. 169–181, 2013. ISSN 2047-4938.

[44] HAFEMANN, L. G.; SABOURIN, R.; OLIVEIRA, L. S. Offline handwritten signature
verification — literature review. In: 2017 Seventh International Conference on Image
Processing Theory, Tools and Applications (IPTA). [S.l.: s.n.], 2017. p. 1–8. ISSN
2154-512X.

[46] SHAO, L.; ZHU, F.; LI, X. Transfer learning for visual categorization: A survey. IEEE
Transactions on Neural Networks and Learning Systems, v. 26, n. 5, p. 1019–1034,
May 2015. ISSN 2162-237X.

[47] Hafemann, Luiz Gustavo & Sabourin, Robert & Soares de Oliveira, Luiz. (2017).
Offline Handwritten Signature Verification-Literature Review.
10.1109/IPTA.2017.8310112.

[48] Josh Patterson and Adam Gibson. Deep learning: a practitioner's approach.
OReilly, 2017.

[49] Rosso, Osvaldo A., Raydonal Ospina, and Alejandro C. Frery. "Classification and
verification of handwritten signatures with time causal information theory
quantifiers." PloS one 11.12 (2016): e0166868.

[50] Liu, Chin-Fu et al. “Using deep Siamese neural networks for detection of brain

asymmetries associated with Alzheimer's Disease and Mild Cognitive
Impairment.” Magnetic resonance imaging vol. 64 (2019): 190-199.
doi:10.1016/j.mri.2019.07.003

[51] https://towardsdatascience.com/understanding-input-and-output-shapes-in-

convolution-network-keras-f143923d56ca

https://www.stepover.com/us/solutions/
https://towardsdatascience.com/understanding-input-and-output-shapes-in-convolution-network-keras-f143923d56ca
https://towardsdatascience.com/understanding-input-and-output-shapes-in-convolution-network-keras-f143923d56ca

57

[52] https://www.etsmtl.ca/unites-de-recherche/livia/recherche-et-

innovation/projets/signature-verification

[53] Jogin, Manjunath, et al. "Feature extraction using convolution neural networks (CNN)

and deep learning." 2018 3rd IEEE international conference on recent trends in
electronics, information & communication technology (RTEICT). IEEE, 2018.

[54] http://www.iapr-

tc11.org/mediawiki/index.php/ICDAR_2011_Signature_Verification_Competition_(S
igComp2011)

https://www.etsmtl.ca/unites-de-recherche/livia/recherche-et-
https://www.etsmtl.ca/unites-de-recherche/livia/recherche-et-

