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Abstract 
 

One of the difficult tasks in biometric classifications is offline signature classifications. Main 

issue is the small number of samples of signatures per signer. This makes traditional methods 

that are based on clustering images over their similarities less efficient due to lack of sufficient 

data. Here, in this work we used Siamese networks to classify signatures and find the associated 

signer. Siamese-nets composed of pairs of CNNs with identical weights. Siamese-net maps the 

signatures to feature space in a way that similar signatures would be placed closer to each other. 

Training process is based on feeding the model with pairs of images. Input image would be a 

pair of similar and dissimilar images. Hence, the model learns to minimize the distance between 

the features of similar images and simultaneously maximizing the feature distances in case of 

dissimilar signature entries. At inference time, a given query signature could be compared in a 

pairwise manner with existing classes of signatures. Any class that has the highest similarity 

with the given query image would be selected as the signer of that query signature. Several 

experiments were conducted to determine the hyperparameters of the model. Classification 

results show the capabilities of our approach in signature classification. Proposed approach 

outperforms classification over CNN multi class structure by over 10% accuracy. 
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 1. Introduction 
 

 

Signature verification is a domain related to detecting the forged signatures of users from the 

genuine ones. Common problems arise when the forger's signatures have less divergence from 

the user's original signatures. Also, the scarcity of signature samples is a prevalent issue.  A 

signature is a form of behavioral biometrics in the biometrics domain. Validating a signature 

in this domain is also more complicated in comparison with other branches like fingerprints 

due to good forgeries. 

Forgeries can be categorized into three sections: 

- Simple forgeries: the forger has information only about the writer's name (user) and 

doesn't see any genuine signature. 

- Random forgeries: the forger has no information about the name or the signature. 

- Skilled forgeries: the forger knows about both name and the genuine signature. This 

case results in lots of forgeries with high similarity with original signatures.  

 

Based on how we gather, Handwritten Signature Validation (HSV) falls into two groups. 

Offline or static and online or dynamic. In the case of static or offline signature acquisition, 

usually, the signature gets scanned with different resolutions (usually 600 dpi). This scan is the 

only input to any verification system. A couple of examples of offline verification are cheque 

signatures, and vouchers at banks, such as the one shown in Figure 1. 

 

 
Figure 1: An example of offline signature over cheques collected from the internet. 
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On the other hand, temporal information is also available with online signature acquisitions. 

This time-related information like the speed of the pen, pressure, inclination angle, number, 

and sequence of strokes are great help to have a better understanding through the whole signing 

process [11]. Such data are gathered dynamically via smart pens and pressure-sensitive pads, 

as shown in Figure 2. 

 

 
Figure 2:  Two examples of an online signature capturing device [40]. 

 

 

 

The online signature acquisition is usually used for applications like the authentication of 

electronic documents. Different sorts of preprocessing, feature selection, and feature 

extractions are used depending on the offline or online approach. 

 

Applying offline signature verification is more complicated than the online approach due to 

the lack of extra information caught by electronic devices. Information like trajectory tracing, 

speed, pressure, etc., makes it easier to detect the difference between the original and forged 

signatures. It should be noted that variations between the user’s original signatures are edge 

cases and challenging ones for both online and offline approaches. 

 

Dynamic online information increases the success rate in signature verification, which inspires 

some researchers to extract dynamic information reflected on the texture of the static scanned 

images [41]. This approach is dependent on a proper pen and paper. 
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In biometric authentication, in general, the user has to register his biometric, which in our case, 

is the signature of the system. Then, his biometrics and identification will be linked to the 

system. Later on, every time the user utilizes his biometrics. It is used as a query to be verified 

against the reference saved biometrics in the system. If the comparison between these two was 

above a certain similarity threshold, the verification is marked as passed, otherwise marked as 

failed, and in this case, considered a forgery.  

 

A variety of approaches could be explored depending on the offline or online branches of 

verifications. One approach is user-based modeling, where there would be one model 

associated with each user. In such cases, the number of existing referential images is the 

bottleneck. Because here, models like Hidden Markov Models (HMMs) or Support Vector 

Machines (SVMs) are used, and the initial data should be more than ten samples. Having that 

number of initial training-sets for signatures is a bit unrealistic, while the user is usually ready 

to provide 2-3 signatures. 

Another form of verification is template-based verification, where users have fewer initial 

samples (1-5). Then with every new query, it is going to be compared in the form of distance 

with these initial images. If the difference is below a threshold, the new query would be marked 

as genuine otherwise as a forgery.  

 

In online verification, Dynamic Time Warping (DTW) was shown to be promising in utilizing 

the trajectory of the signature as a distinctive feature for verification [42]. However, as the 

number of initial samples is usually low in this problem, local feature extractions have been 

focused on in previous research. 

 

We are after a powerful and precise approach that can identify and confirm a handwritten 

signature in a short amount of time which has a lot of usage in different corporations. So far, 

several works of literature have taken this issue into consideration and tackled it with different 

approaches [24, 32, 49]. The main focus of this thesis is to find an approach that could select 

specific features of static images which are distinctive enough to classify the given image 

automatically. That's where deep neural networks and CNNs become handy with their ability 

to converge to the right and distinctive features automatically.  

 

Deep neural networks, especially CNNs (convolutional neural networks) have been used in a 

variety of domains like object detection, classification, etc. But one of the main limitations of 
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such tasks is the size of the dataset. Usually, to get a reliable classification model a huge labeled 

dataset is needed. Which may be very hard to get in some tasks like signature classification and 

authentication. Here we try to tackle this task by Siamese networks. These networks, unlike 

normal classification networks, do not produce a probability distribution for each class. Instead, 

it learns the similarity between two given pairs. 

In order to address the signature classification issue, we have to know the difficulties we are 

facing in this derivative of the signature authentication problem. Most of the issues we are 

facing in the main problem still persist in this subproblem too. High intraclass variation of 

signatures also lowers inter-class variations among some user’s signatures. Also, the fact that 

hand-written signatures in each country can be dependent on various parameters like language 

and culture makes the signature classification even more challenging. 

The second main issue is the lack of sufficient signature samples because either people do not 

find it convenient to share their signatures with others or it takes time to make such a dataset.  

If we break the problem HSV into smaller problems. It would first find the user for the 

questioned signature and then figure out if it is a forgery or a genuine signature. Here, we 

focused on the first part of the problem which is the classification of the questioned signature. 

This stepwise approach helps us to gain more insights into feature selection and model-tuning, 

transfer of learning for the second part of the problem.  

In the rest of the thesis, we first discuss some previous works in the literature and then explain 

more about CNN and its ability to automatically pick up the features based on the objective 

function. Then we talk more specifically about deep Siamese networks, their characteristics 

and why it is an excellent candidate to help us do the classification even with a small amount 

of training-set. Afterward, we explain our method to do the classification using the Siamese 

nets and compare it with the baseline CNN classification in the result section. 



2. Literature Review 
 

The first step in designing an HSV system is selecting the classification strategy. Two well-

known approaches are writer-dependent vs. writer-independent. In classifications using the 

Writer Dependent (WD) approach, for each writer, a different classifier is trained. Which is 

dominantly used due to its higher accuracy and reliability. The drawbacks related to the WD 

approach are complexity overhead and high computational costs of the system when more 

writers (clients) are added to the system [43].  

 

Considering the fact that handwritten signatures, unlike other biometric traits, have a 

significant dependency on a person's behavior at the time, even each signature from one person 

cannot be identical to another. As mentioned before, Dynamic Time Warping (DTW) showed 

better performance in online signature detections [30, 31]. 

 
The second approach is Writer Independent (WI) classifications, whereas one model is trained 

for all the writers. This approach is based chiefly on dissimilarity space generated by existing 

Dichotomy transformers [43]. Here, a dissimilarity metric is used by a dictomizer (two-class 

classifier) to determine if a given image belongs to a class or not. WI approaches seem to be 

less complex and also less reliable in comparison with WD approaches [44]. Existing 

challenges in this domain are a high intra-class variation (see Figure 3), low training samples, 

an imbalanced dataset, and scalability in case a new writer is introduced to the system. Overall, 

both systems have their advantages and disadvantages at some points. This is why some studies 

focused on hybrid approaches in order to achieve better results [16,17,18]. 
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Figure 3: Overlapped signatures from the same user show a high amount of intra-class 

variations exists for one writer [47]. 

 

 

Some research done in WI over dissimilarity space is based on comparisons like [46] could 

address some of the issues like the scalability of the classifier. Such works are based on a 

comparison of the query signature vs reference signature in the feature space. Hence, the 

system is based on a comparison with the reference signature. Therefore, the system can 

manage writers that are not trained on which address the scalability issue.  

 

Classification based on DT is very sensitive to the feature selection as we have only two classes 

positive and negative. 1) Positive class is composed of dissimilarity vectors that are computed 

based on existing samples in the same class. 2) The negative class has distance vectors that are 

calculated from other writers. Approaches based on DT try to have as little as possible overlap 

between these two classes. 
 

 

Feature extraction is one of the essential steps in this kind of classification. For years, 

researchers [17, 24] have tried to tackle the issue from different angles so that they may find 

an optimal technique. For this phase, we can categorize their kinds of literature under 

handcrafted and non-handcrafted features-based methods. In the first category, the process 

should have been done manually, which takes lots of time and effort to design a feature 

extractor. On the other hand, the latter approach, with a robust ability to learn complex features 

and adjustability, helps us to achieve higher accuracy. 
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Basically, hand-crafted methods use some filters to define some simple features. These 

methods are categorized as Basic image features, Statistical, Content-Based, and Local and 

Global feature-based methods. Moreover, in this field of study (signature detection), we often 

come across Global and Local feature-based methods. In order to find and extract particular 

features from part of an image like edges or tiny patches, we divide it into a grid and then use 

our method on each part of the grid (which can contain a group of pixels), usually this process 

is known as Local feature detection. In contrast, Global feature extraction is when we take the 

entire image into account as one part totally and then utilize our descriptor which illustrates 

that image by one vector.  

 

Although nowadays studies have focused more on deep learning methods, still hand-crafted 

features-based methods are part of actual research in this field. That is to say, for instance, 

Cavalcanti et al. (2002) [20] decided to use 3 methods: structural, invariant, and pseudo-

dynamic for the feature extraction phase and chose the subset of features with the higher result 

according to the classifiers. They used Bayes and K-NN as classifiers. Oliveira et al. (2005) 

also did their research on bank cheque signatures and found out that pseudo-dynamic features 

along with static features are useful in this matter [21]. Histogram of Oriented Gradients (HOG) 

because of its great edge detection ability and immunity to noise and transfiguration in images, 

regardless of their shape, is one of the popular methods among these types [22, 24, 26]. Later 

Zhang (2010) and Harfiya et al. (2017) used the Pyramid Histogram of Oriented Gradients 

which is an extended form of HOG. Also, there have been some authors who analyzed the issue 

from a mathematical and fractal [27, 28, 29] to a Graphometry perspective [38, 39]. 

 

Machine learning (and Deep Learning) algorithms, such as Neural Networks, SVM (Support 

Vector Machines), and Siamese Neural Networks, can automatically do the feature learning 

and the classification. Among recent studies, CNN (Convolution Neural Networks), due to its 

robust ability for classification, has also gained lots of popularity(attention) in this matter. 

Using CNN for classification started with Khalajzadeh et al. [8] and was later developed by 

others on a larger scale [9, 6], and Kaulen and Baab did it recently on a smaller scale [10]. 

Also, we have to mention that there are some hybrid works that combine CNN with other 

approaches like the Crest-Trough method and SURF algorithm for better results [6]. 
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Some authors used supervised classification methods and leveraged techniques like LDA 

(Linear Discriminant Analysis), which developed on anisotropic scaling and registration 

residual error [12]. LAD reduces the dimensionality of data and selects a new exercise inorder 

to maximize the separability (distance) between existing categories (classes). Another 

supervised technique is the pixel-based approach which compares the pattern to find the edges 

regardless of signature transformations and uses SVM for classification [13, 14]. It is worth 

noting that despite the fact that traditional machine learning algorithms like SVM are not 

sufficient to do reliable classification for large datasets, other research has shown that in smaller 

datasets, they have proven to have acceptable accuracies [15]. 

 

Siamese-nets are one of the recent approaches that integrate and automate the classical steps of 

classifications in one model. As mentioned in the previous paragraph, classical approaches 

mostly use the hand-crafted feature. Then classification methods like SVM would be applied 

on those features. Zhu et al demonstrated that for the tasks with small numbers of samples 

focusing on dissimilarities applying LDA [12] for verification purposes would be beneficial. 

   

Siamese-nets follow the same steps but the feature selection is automatic and maximizing the 

difference between inter class images is done with a fully connected perceptron applied on top 

of the extracted features distances. An example of this approach in literature is the work of 

Sunak et al. on signature validation [1]. They used Siamese-nets to detect the forgery on 

signatures.  They showed that Siamese-net is a reliable approach for signature validation tasks. 

And specifically maximizing the differences between original and forgery signatures. Here, 

instead of forgery detection, the Siamese-net model architecture is used to classify the given 

query signature and find the corresponding signer.  

 

 

 

2.1 Literature review conclusion: 

We have two methods of signature classification, Online and Offline classification. Online 

classification uses electronic devices to capture features related to the user. Such as, velocity 

of the pen, pressure, inclination angle, number, and sequence of strokes. Offline classification 

focuses on images of the signatures to extract meaningful and descriptive features for 
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classifications. One of main existing issues in signature classifications are the low number of 

signature samples per user.  

Low number of samples is a bottleneck for conventional approaches either hand crafted 

features or CNN based methods to extract the meaningful features. Both are mainly focused on 

similarity in intra-class images to create. It has been demonstrated that methods which not only 

focuses on capturing similarities but also simultaneously maximizing the distance between the 

features of dissimilar images are good candidates for classifications of images with a small 

number of training-set like Siamese-net.  

 

 

 



3. Convolutional Neural Networks (CNN) 
 
Arguably, in the field of deep learning and computer vision, we can refer to CNN 

(Convolutional Neural Networks) as one of the subclasses of artificial neural networks which 

carry a powerful technique in productive and explanatory tasks for image processing.  

 

CNNs are deep learning models designed to process the data in the form of grid patterns, like 

images and videos. The animal visual system inspires this approach. It is designed to capture 

and learn the features and spatial relationships at low feature level like edges and high feature 

level like objects. 

 

CNN usually has three building blocks. Input layer, feature-extraction layers, and 

Classification layers like in Figure 4. The convolutional and max-pooling layers are designed 

to extract features from the given image and also decrease the dimensionality of data. The last 

layer which is fully connected is actually the utilization of single layer neural network 

classification. In the nutshell, the high dimensional input data, with lots of spatial relationships, 

after going through feature extraction layers the image is transformed to lower dimensionality 

of data representations which now can be used by single layer perceptron for classifications.  

 
Figure 4: High level overview of CNN structures [48]. 
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The convolutional layer is the core of the CNN architecture. Images are stored in 2-dimensional 

arrays that are input to a CNN, as shown in Figure 8. As the meaningful features of the image 

could be anywhere in the image, an optimizable small 2D array known as a kernel is going to 

convolve with the entire image to extract features, as shown in Figure 5. Results of this 

procedure from another convolutional layer that receives the same procedure, which will be 

applied to extract features from higher-level features. (Kernels are typically initialized with 

random values, then the values are optimized using a gradient descent optimizer.) 

 

Max pooling layer: select the maximum value in a determined window over the extracted 

feature map, as shown in Figure 7. This layer helps the model to decrease dimensionality. Also, 

max pooling maintains partial invariance to small rotations because the max of a selected 

region depends only on the single largest feature present in that region. 

 

After features are extracted, it is usually flattened to an array and fed to a fully connected 

multilayer perceptron with final cost function at the end of the pipeline. This function should 

be differentiable to be able to apply gradient descent back to lower levels in the pipeline and 

optimize the kernels. This procedure is called learning. Learning is the process to minimize the 

difference between outputs of the model and the ground truth target via a backpropagation 

algorithm. For example, let's assume the CNN model structure displayed in Figure 8 for 

classification of the input image into 9 different classes. If the ground truth is 1 for class 5 and 

the model provides a low probability for that class. In the learning process the loss function 

would assign a high value for the loss to this node (node 5) and would backpropagate the 

derivatives to previous layers in order to adjust the weights of the CNN. 
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Figure 5: Convolution, Kernel, and feature maps example [48]. 

 

 
 
 

Each block plays a different role while the output of each layer is the input for the next layer. 

When we feed the image at the input layer and each Conv layer processes it with activation 

maps and as it goes through more layers, more convolved features are extracted. In order to 

stack layers, we have to pay attention to the input and output dimensions. For example, to add 

a dense layer after the Conv layer we commonly use a flattened layer in between to change the 

4D array into 2D. As mentioned in Figure 6. Input and output shapes in CNNs are 4D arrays 

(batch size, height, weight, depth) where depth depends on grayscale or RGB images may vary. 

Pooling layers have a massive impact on reducing the computing process by decreasing the 

feature map size. 

 

Usually, at the end of CNN's architecture, we have fully connected layers. The last block feeds 

with pooled feature maps from the previous layer. Then the output of two-dimensional pooled 

feature gets flattened by transforming it into a single one-dimensional vector in the Flatten 

layer. (This layer helps us to connect all pixel values to final layers). In the next step all neurons 

from one layer link to all neurons in the following layer. Each neuron correlated with a unique 

feature that might be existing in the image. The probability of that feature in the image passes 

through, the value of each neuron.  
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Figure 6: Input data dimensionality in CNNs [51]. 

 

At the end of the fully connected layer there is an activation function. Activation functions can 

be divided into two categories. Linear and Nonlinear activation functions. Logistic, Softmax 

and ReLu (Rectified Linear Unit) are some common examples of these mathematical functions 

in neural networks. Logistic sigmoid activation and ReLu activation functions are used for 

binary classification. This function takes any real value as input and outputs values in the range 

of 0 to 1. Softmax is usually used in the last layer for multi-classification purposes. In the 

Softmax function, the raw output of the neural network transforms into a vector of probabilities. 

Based on the relative scale of each value in the vector. 
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Figure 7: Max Pooling example [48]. 

 
 
The following terms are consistently employed throughout this master thesis so as to avoid 

confusion. A “parameter” in this article stands for a variable that is automatically learned 

during the training process. A “hyperparameter” refers to a variable that needs to be set before 

the training process starts. A “kernel” refers to the sets of learnable parameters applied in 

convolution operations.  

 

Hyperparameters that are subject to change in this work are input image size, number of classes 

to be trained over, number of batches to train over, training iteration. In this work, these 

hyperparameters are decided over a set of experiments that has been explained in detail in 

Chapter 8. 

 

 

3.1 Conclusion of CNN 

CNN model’s architectures are designed to decrease the dimensionality of the images so other 

machine learning techniques like multi layer perceptron. can be applied on the feature vectors.  

Such approaches allow the application of classifications or object detection tasks on images.  

Process of dimensional reduction is applied by several layers of convolutional and max-pooling 

operations over several kernels that are used for convolutional operations. Final Here, we used 

a flatten one dimensional array of features as the final output of the CNNs. We used two CNNs 
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with shared weights in parallel to be able to extract features of a pair of images simultaneously. 

This is the basis of the Siamese-nets that is explained in the next chapter.  

 



4. Siamese networks 

The word Siam comes from Siamese cats that usually look identical. Here, we use two identical 

networks in parallel. such networks are also called sister networks. The main functionality of 

these networks is based on a comparison of two inputs.  

Basically, these networks consist of two subnetworks (in most examples CNNs) with the same 

architecture, parameters, and weights. As their name represents, this type of network helps us 

to find the similarity between two images taken as input. In one-shot learning instead of using 

the Softmax or Logistic layer at the last layer, the output of fully connected layers is encoded 

in each subnet, and later with the help of distance metrics learning like Triplet loss, Binary 

cross-entropy, etc. 

Siamese networks are used in a variety of verification applications, especially those with 

imbalanced and scarce datasets. Typical examples would be in companies for face detection 

and identity verification or in the medical field based on specific case studies. For instance, Liu 

Chin-Fu, et al. demonstrate that in a study on whole-brain MR (Magnetic resonance) images, 

through encoding the asymmetry in brain volumes, Siamese networks can outperform 

conventional prediction techniques in terms of processing time and decreasing complexity [50]. 

4.1. Classification and Siamese-nets 

Siamese networks are designed to receive two images at the same time, they are perfect for 

comparison-based approaches. Previously Dichotomy Transformations (DT) approaches were 

shown to be a useful approach in addressing issues like a low number of samples in classes and 

the scalability of the model in case of adding new classes. DT is based on measuring the 

dissimilarities in feature space. Dichotomy Transformations are very sensitive to feature 

selection. This approach has been used also by Koch et al [4] for character classification.  

Here, with Siamese networks, we can leverage the CNN architecture to automatically select 

meaningful features and build the dissimilarity model. So, a CNN model extracts the 

descriptive features. Then that CNN model is duplicated and used for two input images. One 

of the inputs is the reference image and the other would be the questioned image. The idea is 

that if these two images belong to the same class, then features that are going to get extracted 
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by CNN would be very similar to one another. Hence, the distance between the features would 

be minimal. This helps us to calculate the dissimilarities in feature space between any query 

signature and existing reference signatures. Here, to classify the question image, it is compared 

with all the reference images of each class. Then similarly for each class it gets calculated. And 

lower dissimilarity or higher similarity decides which class it belongs to. This approach has 

been also used in different classification applications like character classification by Koch et 

al [4].  

Siamese classification is easier to grasp when compared with normal CNN classification 

architecture. Usually, classification networks are composed of several layers of convolution 

and pooling layers. In vanilla CNN classification, when a query image is fed to the network the 

output would be a probability distribution over the output classes. To be noted, in this thesis 

the term Vanilla CNN tends to be used to refer to a typical convolutional neural network. 

Considering face classification as an example for a company with five employees, the face 

classification for them through normal CNN classification would have five probabilities in 

output. To train such a network, we need large samples of each person. Another issue is that if 

we want to add a new class like a new employee’s face, then we have to get a large number of 

images for this new class and retrain the whole model again. Furthermore, sometimes the 

classes are constantly changing. An example would be an employee leaving or getting hired if 

we have used the regular classification model. Not only do we need more samples of new 

employees’ faces, but also, the whole model should be retrained, which brings lots of financial 

overhead in terms of time and costs. This kind of situation is where Siamese networks address 

such classification problems. 

In a nutshell, Siamese networks would learn features to emphasize the dissimilarity between 

samples. By feeding a pair of images to the network and maximizing/minimizing the distance 

between features to determine the similarity based on whether the pairs belong to the same 

class or not. At inference time any given image would be compared with this reference and the 

similarity value would be produced by the Siamese network.  

In other words, the Siamese network does not learn to classify the given image directly to 

output classes. Instead, it learns the similarity function between two pairs. 
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Figures. 8 and 9 illustrate the difference between the architectures of normal classification 

models by CNN and Siamese Networks. In CNN, we will have probabilities that given images 

belong to which output class.  

 

Figure 8: An example of a normal classification network based on CNN [2]. 

 
 

Moreover, it should be noted that a color image consists of 3 channels, known as RGB 

channels (Red, Green, and Blue). Therefore, the matrix dimensionality of a color image 

can be presented by w × h × c. Respectively w and h are the width and height of the 

image, while c shows the number of channels (n1 in Figure 8). In convolving layers, 

after applying the filter on each channel, the output of the channels' number is different, 

shown by n2 in this figure. In the end, before feeding the image to the hidden layers, 

we have a flattened layer which has been explained in more detail in chapter 3. In the 

flatten layer, the previous layer's output is transformed into one vector with the numbers 

of the neurons (shown as n3 in figure 8). 
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Figure 9: An example of Siamese network architecture for signature authentication [1]. 

 

Figure 9 shows examples of Siamese networks used by Sunak et al. [1]. Here, two CNN subnets 

extracted the features (s1 and s2) and joined by a loss function L, that compares the similarity 

between features s1 and s2. Additionally. In Sunak et al. [1] work, y is another function that 

determines if the two given samples are members of the same class or not.   

 

4.2 Signature classification with Siamese nets 

We can use Signature classification as a form of HSV (Handwritten Signature Verification). In 

case that query signature has low similarity with the reference signature of a client, then it can 

be labeled as a forgery. In large organizations like banks, we can use signature classification to 

determine whether a questioned signature is similar to the user’s registered signature. We may 

have many clients, and instead of training one model for each client, we can train one model 

and use it to classify the given question signature even though we have a meager amount of 

signature samples per class. 
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As mentioned before, Siamese classification is based on comparison with reference signatures. 

Classification is done in dissimilarity space which makes it scalable when a new class is 

introduced and also addresses issues mentioned above. Siamese networks automatically extract 

meaningful features that help to maximize the interclass difference. So, at inference time, given 

a new signature, we would be able to compare it with all previous client’s signatures and find 

the most similar signatures and dissimilar signatures. The structure of the network would be as 

in Figure 10. At training phase, the ConvNet extracts the features from given images, and then 

the difference between these features is minimized if two images belong to the same class and 

the difference gets maximized if the two given images do not belong to the same class. 

 

 

Figure 10:  A Siamese network architecture in nutshell for similarity calculation. 

 

If each image is considered as x1 and x3 the corresponding extracted features by twin CNNs 

would be H(x1) and H(x2). The elementwise absolute distance between two features will be 

fed to a fully connected perceptron with final sigmoid function. During the training the output 

of the sigmoid function would be set to 1 if two input signature pairs belong to the same class 
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(same signer) otherwise the output of the sigmoid function would be set to zero. So, the model 

learns how to determine the similarity between two images in the form of a value between zero 

to one.  

 

 

4.3 Conclusion of Siamese-net 

Siamese-nets are composed of two identical CNN architectures to extract the features from 

images and vectorize them in a one-dimensional array. In another word input images are 

mapped into a feature space. The idea of Siamese nets is the fact that similar images would be 

placed near each other in this feature space. So, having pairwise features their elementwise 

distance is calculated. Then their distance is fed to a fully connected perceptron with a final 

sigmoid function to map the similar images to 1 and dissimilar images to 0 in the training phase.  

This model structure would extract the features in a way that minimizes the distance between 

the similar signatures and simultaneously maximizes the distance between features of 

dissimilar input pairs.  

In the inference phase, when a new query signature is given to classify, the trained model would 

be able to assign the similarity value between two input images. This similarity value would 

be assigned to each existing reference class of signatures. The class with maximum similarity 

would be selected as the signer of the given query signature. 



5. Methodology 

Our approach is based on learning similarities between pairs of signatures. Hence, at inference 

time, we can compare the given query signature with each existing class of reference 

signatures. Then we can select the class that has the highest similarity with the given query 

signature as the signer of the query signature. This process is explained in detail in this section. 

The key to solving data scarcity in signature classification is good feature engineering. 

Siamese-nets, helps to obtain features that maximizes the distance between features for 

dissimilar images and minimize the distance between features for similar features.  

Siamese Nets or twin nets are practically two different convolutional networks but share the 

same weights and parameters. Hence, we can hypothesize that if we pass two images that 

belong to the same class to twin models, as the conv-nets share the same weights and the images 

are similar, the extracted features should be also similar. On the other hand, if the images 

belong to different classes the produced features should be different. For example, consider 

Figure 10. Two images x1 and x2 are passed to each of the twin sisters and their corresponding 

features are automatically extracted as h(x1) and h(x2). Each feature flattens (Figure 8 flatten 

array) and then in another layer, the distance between them is calculated. 

The feature difference is calculated based on the absolute difference between h(x1) and h(x2). 

In our case, as explained in Figure 10, each feature vector would be of size 4096. 

        (Eq. 1) 

The dif vector, also of size 4096, would be given to a single sigmoidal output unit to calculate 

the prediction as follow: 

𝑝 = 𝜎(∑ 𝑑𝑖𝑓𝑗𝑤𝑗4096

𝑗
)     (Eq. 2) 

 

Here, p is similarity value and j is the index of each value in the feature vector (flatten layer in 

Figure 8). The value of j varies between 1 to 4098. In eq.2, σ is the sigmoid activation function. 

And w are the weights specified to each element of the feature vector. These weights are 

adjusted during the training phase. In the training phase we set the target value of 1 to each 
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similar input pair of signatures (signatures that belong to the same person). And target value 

equal 0 for pairs of input signatures that are not similar (belong to two different persons). 

Hence, later on, at the inference phase, the output of the sigmoid activation function would be 

a probability between 0 to 1. This probability is an indication of similarity of two given pairs 

of images. This is the main idea behind this methodology. 

The structure of the network with three convolutional layers was followed by three max-

pooling layers and flattening of the final feature vector of size 4096 is demonstrated at a high 

level as follows. 

Here, for sake of simplicity first we down-sampled our images to 70x70 so the shape of the 

vectors passed at different layers could be visualized by the model plot in Keras as shown in 

Figure 11. 

 

Figure 11: The shape of the vectors that passed in different layers of the network. 

 

Figure 11 shows the summary of the structure of Siamese net model architecture where the 

input shapes of the image is 70x70 then the extracted features are of 4096. Two features of size 

4096 go to a lambda function to calculate the absolute elementwise distance between them and 

the result would be another 4096 vector that is fully connected to the final last layer with a 

sigmoid function. 
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5.1 Conclusion of methodology  

Core of this methodology is based on comparison of pairs of images. The Result of the 

comparison is a similarity value. To get the similarity of pairs of input signatures, first features 

are extracted by a twin CNN network with shared weights between them. Idea is that if the 

input images are visually similar the output extracted features would be similar too.  

Then, absolute element wise distance between feature vectors creates another feature vector 

(eq 1) with the same size Figure 11. This feature vector is fully connected to a sigmoid function 

Figure 10. Sigmoid function gets trained on this distance vector. If the input pairs of signatures 

are similar, target value of the sigmoid would be set as 1 otherwise 0. Hence, Siamese-net 

learns to map the similarity of input images to a value between 0 to 1. Also learns how to 

extract features that minimizes the distance between the similar signatures and simultaneously 

maximizes the distance between features of dissimilar input pairs. 



6. Dataset 

The data set is composed of 55 different people’s signatures. Examples of such signatures are 

shown in Figure 12. Each of these 55 classes has around 12 images of signatures for a specific 

individual. 

   

 

Figure 12: Signature examples. 

 

For sake of simplicity and finding the best hyperparameters, we first decided to do the 

classifications for 10 classes. Then after finding the best hyperparameters for training the 

model, we test the trained model on 55 classes of different signatures. The number of images 

we had per class was 12 (except for two classes with 24 images). 

Dataset was split into three subsets: train, validation, and test. The training dataset is used to 

train the model. The test dataset is used for testing the model after it is trained. If the 

performance of the model on the test dataset was acceptable then the model performance on 

validation is calculated. Here, all the reports are done on the validation dataset. As mentioned 

above this dataset is not seen during the training. The split was 50% for the training subset, 

25% for the test subset and 25% for validation subset.  For example, for all 10 classes except 

for class 1. We had 6 images of signatures in the training subset, 3 images for the test subset 

and 3 images in the validation subset. 
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Same split for train, test and validation is done on a second dataset that was collected from 

Chinese signatures [54].  It has 20 different classes, which contain 240 samples. A sample of 

it is shown in Figure 19.  

 

6.1. Preprocessing 

Here, images are converted to gray level and then scaled. Usually, for faster-fine tuning 

purposes, we began with low image dimensions 32⨯32 pixels for the first experiment and 

gradually increased it to 100⨯100 pixels. We found out that with larger images than 100 

pixels, like 200 pixels we begin to lose some accuracy. 

  

6.1 Conclusion of dataset 

 
The Dutch signature dataset contains 55 classes. Each class contains signatures of an 

individual. Each class is divided into 3 subsets to be able to apply training, validation and test 

on this dataset. Training usually contains 6 images of each class and test and validation has 3 

samples of each class images.  

 
We also apply the same preprocessing on the second dataset (Chinese signature dataset). The 

Chinese dataset contains 20 different classes and the same split of number of images for train 

(6 images), and 3 images for test-set and 3 for validation-set. 

 



27 
 

7. Training and validation 

As in our case we have two target values, 0 and 1, we used binary cross-entropy loss function 

to train the model. In binary cross-entropy loss function each of the predicted probability is 

compared to the actual class output which can be either 0 or 1. Then the score that penalizes 

the probability is calculated. This score is based on the distance between the calculated 

probability and the actual expected value. 

(Eq. 3) 

 

In the above equation, N is the number of samples, P is the prediction and Y is the actual value. 

It was trained for 1000 iterations of training the model over a batch size of 32 randomly selected 

pairs of signatures and their target values. So, at each iteration we would select another random 

batch of 32 images from the training-set. The model gets evaluated after 5 iterations training 

or fitting the model over a given 32 pairs of images. This number is also a parameter to set as 

if we begin to evaluate more often the training takes a longer time. Later on, we set it to 20. 

The way we evaluate the model is based on a comparison of the questioned image with current 

existing classes of signatures. In this work, we are going to call this kind of comparison the N-

Way comparison. For example, if we compare the given questioned signature with the current 

10 reference signatures, we are doing the 10-way comparisons.  Knowing that N can vary up 

to a number of existing classes of signatures. It is explained in detail in the next sections 

  

7.1. N-Way comparison: 

To validate the model performance, we have to see in a pair, if the model could find high 

similarity intra-class and low similarity for inter-class signatures. To verify that we used a 

notion called N-way comparison. It is basically comparing the questioned signature with other 
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N reference signatures including its own class samples. For example, a 4-way comparison 

would be like the image 1 in Figure 13. 

  

  

Figure 13: A 4-way comparison pair and its results. 

 

In Figure 13 the questioned signature (in the first column) is compared with 4 (N) other 

different classes (second column) and corresponding similarity is calculated (third column). 

So, if the maximum similarity belongs to the pairs with signatures from the same person, we 

consider it a correct prediction and if not, we consider this as a miss. It should be noted that the 

N-way comparison has only one pair of signatures belonging to the same person (row one). 

When we create the pairs to evaluate the model, we select them randomly from the validation-

set. 

If we repeat creating an N-way comparison for ‘k’ times, then the accuracy of the model would 

be obtained as the ratio of the correct predictions over the validation-set, as follow: 

Validation_accuracy= (100 * n_correct) / k     (Eq. 4) 
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In the equation 4 k is the number of trials and n_correct is the number of correct predictions in 

all the trials. We call this metric Validation_accuracy. Which is used during training to check 

the model performance on our validation-set. This will give us an idea of where the model is 

in terms of quality of classification during training. 

It should be noted that this is the validation accuracy and is different from the final 

classification accuracy that is used to evaluate the model performance on the test-set (see 

eq.11). Because, at the validation step, the goal is just to select the models that are doing well 

on the classification of the validation-set. So later on, after we save those good candidate 

models during the training, we can do a more detailed analysis of the models over the test-set. 

The evaluation on the test-set is in terms of classification metrics like Precision, Recall, and 

Accuracy. The accuracy we used at the test level is the ratio of all True Positives to all (true 

positives and negatives) which is mentioned in eq.11 Whereas, the accuracy used in the 

validation phase is just how many True Positives we get over the validation-set. This accuracy 

is called validation-accuracy. 

So now we can evaluate the model during training. It tells us which model we should pick as 

the final model for the testing phase. To select the best model, we followed the following logic. 

If the model accuracy is higher than a threshold (60%) over the validation-set during training, 

then we save the model. We follow this approach but each time our model gets better accuracy 

we raise the threshold and save the new model too. 

For example, if in the next run the accuracy of the model over the validation-set becomes 70% 

the threshold would be raised to 70%, and we save the new model too, and so on and so forth.  

Then finally we would select models that have higher accuracy on validation to test them on 

the test-set. It should be noted that if we have multiple models with the same validation 

accuracy (i.e., 100%) then we would keep saving the last 5 models during the training. We 

explain this procedure in the form of a pseudo code in the next section. 
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7.2 Pseudocode for training and validation: 

Here, we modularized the training the model and validation of the model in two functions. First 

function is N_way_validation assigns an accuracy to the trained model.  The trained model is 

obtained by train_and_validate function which is the second function we mention here. 

train_and_validate function trains the model, passes it to the N_way_validation function to 

evaluate its accuracy over the validation-set, saves the model if its accuracy is above the 

threshold, and increases the threshold incrementally to keep the models with highest accuracy. 

 

Pseudo code 1  

# N is number of classes of signatures exists in validation-set  

# The model is already trained over the training-set. 

# k is a fixed number like 20 or 100. 

 

 Function N_way_Validation (Number_of_classes = N, model): 

   correct_classification_counter = 0 

    Repeat K times: 

-       Randomly select an image A in the validation-set. 

-       Create N pairs from N different classes of validation-set. 

-       Evaluate each pair with the currently trained model. 

-       if model classify image A correctly among N classes: 

o   correct_classification_counter += 1 

    validation_accuracy = correct_classification_counter / K 

     Return validation_accuracy 
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Pseudo code 2 

# This function trains the model on training set and keeps track of the model accuracy, if newly 

trained model at every 5 iterations (user can change this value) has higher accuracy than the 

previous trained model’s accuracy, it is saved and the accuracy threshold is updated to the latest 

highest accuracy.  

# number_of_iterations, is how many times we run and fit the model over randomly    selected 

32 batches of pairs of images from the training-set. 

# N is the number of classes of signatures that the model is training on. 

  

Function train_and_validate (number_of_iterations, N = number_of_classes): 

   accuracy_threshold = 60% 

   For 0 to number_of_iterations do: 

  -   Randomly create a batch of 32 pairs of images from  training_set. 

-   Train the model with these 32 pairs of images. 

  -   Every 5 iterations do: 

-    validation_accuracy =  N_way_Validation(N, model) 

-    If (validation_accuracy > accuracy_threshold): 

     then: 

o   A good candidate model is trained, save this model. 

o   Update the accuracy_threshold = validation_accuracy 

 

  

7.3 Conclusion of training and validation  

 
Siamese-nets are pairwise models. Hence, to train them we need a pair of images. Output or 

target is set to either one or zero, if the input images respectfully belong to the same class or 

not.  To be able to train, test and validate, we advise an approach (N-Way comparison) to 

measure the performance metric. To see if a model can classify a given query image, we need 
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to have a reference sample of each of the existing classes to compare the query image against 

it.  Hence, N-way comparison is used to compare the query image with N other classes. In this 

Approach N pairs of images have been constructed. Among those N pairs, only one pair has 

both the query and the reference image from the same class of signatures. The rest of the N-1 

pairs have pairs of different classes. So, the target values used to train these sets would have 

only 1 value equal to one and the rest of the N-1 target values are equal to zero. 

 
For example, in case we want to train over the total number of classes (N = 55), first we make 

55 pairs of images where only one pair of classes matches. Then we randomly select a batch. 

For example, for a batch of 32 we would randomly create 55 pairs of images then select 32 of 

these pairs randomly.
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8. Results and analysis 
 

8.1 Baseline 

To evaluate the performance of the method we used the Convolutional Neural Network as the 

baseline classification model for our signature’s classification. CNN can be one of the efficient 

tools for extracting the common features among different classes [53].  So, we decided to run 

a test on a simple CNN structure for classification purposes. Training is done from scratch like 

the Siamese network. 

 

8.1.1 - Dataset 

The Dutch dataset [52] has been used in this case. Here, we selected 55 different classes of 

signatures. In other words, it's a dataset of signatures of 55 different people. Number of 

signature samples for each class of signatures is around 12 images. The dataset containing the 

55 different classes of signatures is divided into 3 sets. Train, test, and validation. We assigned 

6 to train, 3 to validate, and 3 to test.  

 

8.1.2 - Structure of the network 

In Figure 14 A simple CNN’s structure is used for classification of 55 classes of signatures. 

The input sizes of the model changed for several experiments we did over input image sizes. 

We did experiments with input size of 32 pixels up until 100 pixels.  

This CNN structure is composed of the first two conv layers (conv2d_2 and conv_2d_3) that 

each are followed by a separate max pooling layer (max_pooling2d_2 and max_pooling2d_3). 

A third conv layer (conv2d_5) is used on top of the previous max pooling layers and its output 

is flattened to a one-dimensional vector. The length of this vector is again decreased over two 

dense layers (dence_2 and dence_3) of sizes of 64 and 55 to be able to classify the given images 

to one of 55 classes. 
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Figure 14: Structure of the simple CNN network for classification of 55 classes of signatures. 
for input images of 32x32 pixels. 

 

Also, for the sake of not losing any details in our images, we kept the color channels and 

avoided converting the images to grayscale mode. 
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8.1.3 - Training 

We divided the dataset to train, test and validation. In the train-set, each class has 6 images and 

the test and validation-set have 3 images. Here, we performed 3 different experiments and 

altered the training hyperparameters in terms of image input size, number of classes, and 

activation function to check accuracy of the model. 

We stopped the training after the accuracy of validation converged after 100 iterations. Here, 

iteration means the number of times the model is fitted over the given training-set. We see that 

in almost 40 iterations the model converges on its performance. We didn't go after 100 to 

prevent the model from beginning to remember the training-set and overfit. Overfitting is a 

concept in machine learning which happens when a model learns very well on the training set 

but performs poorly on test data. We were careful here knowing the training-set had only 6 

samples per class so stopping it early as soon as it reached its accuracy plateau to prevent the 

overfitting impact on the model.  

Experiment_1: image size 32x32 pixels 

 

Figure 15: The accuracy of the CNN model during the training for the classification of 55 
classes of signatures. Blue is the model accuracy. on the training-set and yellow is the model 

accuracy on the validation-set. Image size: 32x32, activation: Relu. 
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Experiment 2: Image size: 32 x 32 pixels, activation function: Sigmoid. 

In the model structure we had two dense layers dense_6 and dense_7 shown in Figure 14. at 

the end of the pipeline. For the dense layer right before the last layer (dense 6) we were using 

the Relu activation function. In the second experiment (next chapter), we changed it to change 

that to sigmoid to check the performance of the model accuracy. The last layer (dence_7) has 

a softmax activation function. Given an image as an input the Softmax function calculates the 

probability of classification of that image for each of 55 classes. 

We see an improvement of around 10% in validation accuracy while training the model with 

a sigmoid activation function.  

 

Figure 16: Mode’s accuracy of the model on training-set and validation-set on the 
classification of 55 classes with CNN. Image size 32x32 and activation function: sigmoid. 

 

 

Experiment 3: Image size: 100X100 pixels, activation function:  Sigmoid 

Now that we have selected our activation function, we can do an experiment on another 

parameter which is the input size of the CNN model. We increased the signature image to 

100x100 pixels. The training was done on the same dataset as before with 55 classes. Training 

accuracy on both training-set and validation-set has been converged after 30 iterations.  
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The Validation accuracy this time increased to 78%. That's the point where we stopped the 

training at the 100 iterations. The model reached its plateau of 78% accuracy on validation at 

around iteration 40 as shown in Figure 17. 

 

Figure 17: The model’s accuracy on training-set and validation-set on the classification of 
55 classes with CNN. Activation: sigmoid, size: 100x100. 

 

8.1.4 - Test CNN on 55 classes  

In previous sections we trained classification models. Now we are going to evaluate their 

performance on the test-set. The evaluation metric is accuracy, precision-recall, and F1 score. 

This accuracy is the ratio of all True positives over (TPs + TNs) that is mentioned in eq. 11.  

We calculate the metrics on all the previous experiments to select the best hyperparameters 

mentioned above.  

Experiment_1: Image size: 32x32 pixels, activation function: Relu 

Testing on the trained CNN model with 32x32 images results in an accuracy of 62% (Table 1). 

This makes sense as the number of training on images was so low that the model couldn't pick 

up meaningful features to discriminate the classes from one another.  

 



38 
 

Table 1. On 32x32 images, the Precision, and Recall related to the classification of 55 
classes with CNN. 

 Precision Recall F1-Score 

Accuracy   62% 

Macro Average 66% 62% 61% 

Weighted Average 67% 62% 61% 

 

 

Experiment_2: image size:32x32 pixels, activation function: Sigmoid 

Test results on the model that trained with 32x32 images but with activation function of 

sigmoid shows 10% improvement on classification accuracy over test-set (Table 2) in 

comparison with Relu activation function. 

 

 

Table 2. On 100x100 images the precision-Recall related to the classification of 55 
signatures with CNN. 

 Precision Recall F1-Score 

Accuracy   70% 

Macro Average 74% 69% 68% 

Weighted Average 73% 70% 67% 

 
 

Experiment_3: image size 100x100, activation function softmax 
 
Here, the model that is trained with images of sizes of 100x100 pixels and softmax activation 

function is tested. The accuracy was improved by 6% from 70% to 76% as shown in Table 3.  
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Table 3. On 100x100 images and activation function of sigmoid the precision-Recall related 
to the classification of 55 signatures with CNN. 

 Precision Recall F1-Score 

Accuracy   76% 

Macro Average 82% 76% 76% 

Weighted Average 82% 76% 76% 

 
 
 

8.1.5 - Baseline conclusion 

Based on the results, we found out that a CNN architecture has the potential of picking up 

meaningful and distinguishable features if the image size is increased to 100x100 pixels and 

softmax is used as an activation function. We could get up to 76% classification accuracy. It 

also shows that the limitations of CNN are that if we focus on similar features to classify the 

signatures, we need more images than just 6 samples per class. Also, we found out that by using 

the Sigmoid function instead of Relu in the last dense layers could increase the classification 

accuracy. 

 

8.2 - Our approach 

Our classification approach is based on training the model with pairs of images in the training-

set. The trained model would be a binary classification for each pair. Indicating if these two 

pairs belong to the same class or not. To find the best hyperparameters for training the model 

we ran several experiments that are explained in detail. 

On the inference side and testing, knowing every image's true class, we would compare each 

class image with the query image. Average of the similarity for each class would be the 

similarity of the quarry image with that class. Finally, the query image would be classified 

based on the highest similarity with each class. Here, this process is explained in detail.  

To find the best setup and hyperparameters for the Siamese nets, several experiments have been 

performed. We began with low values in hyperparameters (i.e. image and class sizes) and then 

increased them to track the performance of the model. For example, we began classification on 
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only 10 classes and then increased it to the maximum existing number of classes in our dataset 

(55). 

Here, we began with 32x32 then 70x70, and then 100x100 size for input images. Also, we did 

some experiments in terms of feeding the model with more pairs of the same class (sequential 

batches) vs more random pairs (random batches). It turns out that to get the optimal 

performance the best hyperparameters to train the model with are 100x100 pixels images in 

random pairs.  

8.2.1 Training  

We did our training based on what has been explained in Chapter 7. First, we trained our model 

with 32x32 pixels images. We began to track the accuracy of the model on validation-set while 

we were training the model on the training-set. This way we let the model continue learning 

and also continue the generalization over the validation-set. The metric used to evaluate the 

model on the validation-set is based on N_way_comparision which is explained in chapter 7.  

Also, for sake of simplicity, we began our experiments with only 10 classes to classify with 

siamese-net then increased it to 55 classes after fine-tuning the model. Hence, we used 

10_way_comparision for the first iterations and then increased it to 55_way_comparision.  

As a reminder, N_Way_comparision was a method developed in previous sections to validate 

a siamese model. of sampling from the validation-set and calculating the model performance 

over the classification of N classes in the validation-set during the training phase. Obtained 

accuracy is called validation_accuracy and if the model trained at the designated epoch (i.e., 

every 20 epochs) has a higher than 60% threshold validtion_accuracy, the model is a good 

candidate and would be saved for the testing phase. 

We stopped the training procedure when the validation_accuracy reached 100% and we 

already saved 5 models with 100% validation_accuracy or we reached the maximum number 

of epochs. Meaning the model is doing well on the validation-set and we can stop training and 

proceed to the testing phase.  

Below we explain how we used similarity values for classification and later on we explained 

in detail how we have evaluated these classifications in terms of Precision-Recall and F-score.  

 



41 
 

8.2.1 - Similarity used for classification  

Having the Siamese model trained and saved in the training phase, we can evaluate its 

performance on unseen signatures in the test-set at the inference phase.   

For example, to decide if a query image belongs to class k or not, we compare the query 

signature with all the sample signatures in reference class k as follows. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑘 =
∑𝑛

𝑗=1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞𝑢𝑒𝑟𝑦 𝑖𝑚𝑎𝑔𝑒𝑗)

𝑛
      (Eq. 5) 

 

 Here, k is the class and j is the number of signature images that exist in the class k (1…n). In 

other words, similarity of a query image with a class is the average of similarity of query image 

with all the available images from that class. This strategy comes from the fact that in reality, 

we don't have lots of reference signatures of a person (a class) in our datasets (i.e., bank’s 

client’s signatures). Hence, to see if a new query signature belongs to a person (a class of 

signatures), we take the average of the similarity of that query image with all the signatures 

available for that specific person. In our cases the number of signatures per class is low, around 

3-6 images. 

After being able to assign a similarity of a query signature to a specific class. We followed the 

same procedure for all the 55 classes of signatures. We have to apply the eq.5 on all the 55 

classes (k =1…55). Then a class with the highest average of similarity is selected as the final 

class of the query image. This procedure is done by applying an argmax over calculated 

similarities for existing classes as shown in eq. 6. 

     (Eq. 6) 
      

In the test-set we have the actual class for every signature image which we use as the ground 

truth when we evaluate our model classification performance. We test the previously trained 

model (on training-set) against the test-set images by randomly selecting the images from the 

different classes. Then using the eq.5 and eq.6 to see if the model could classify the query 

correctly or not. Using this statistic we can calculate the model performance with a confusion 

matrix, the precision, and recall for each of the 10 classes of signatures. Below we directly 

mention the iterations we used for fine tuning the model in the test phase with the 



42 
 

hyperparameters we used for training in different experiments. Also, we explain the evaluation 

metrics. 

Experiment_1: 10 classes and image size 32x32 

We began our experiments with the small signature classes and signature sizes. This way it 

takes less time (in terms of training and evaluating each model) to find the best hyperparameters 

to get better accuracy for the classification models. The hyperparameters that are selected and 

changed are explained in the following experiments along with the model performance metrics. 

In this experiment, we trained a model to classify 10 randomly selected classes with signatures 

of 32x32 pixels. The model had around 60% of accuracy (eq.11). Then, we increased the image 

size to 70x70 pixels and redo the same experiment. 

Experiment_2: 10 classes and image size 70x70 

We increased the size of input images to 70x70 and redo the training with the previous setting. 

32 batch size, 1000 iterations, and 10_way_comparision at training time, also do the 

validation_accuary every 5 iterations. The accuracy obtained at this Experiment_2 was higher 

than Experiment_1. Hence, we performed a more detailed evaluation in terms of confusion 

matrix, Recall, and Precision too.  

8.2.2. Performance Metrics 

After classifying the test-set, to analyze the performance of the classification we adopt the 

following metrics.  

Confusion matrix 

Confusion matrix is a table that explains the performance of a model in classification. Each 

row indicates the classes to classify and each column shows the classes that model predicted.  

In our case we intend to classify samples of 10 classes. Hence, our confusion matrix is 10 by 

10. For example, for images that belong to class 1 (row 1), shows that there was a total of 6 

images in class 1 and the model classifies all the 6 images correctly as class 1 (put all the 6 

images in column 1). Another example, for images belonging to class 3 (row 3) we see that the 

model classifies 2 of them as class 3 (put them in column 3) and 1 of the images as class 8 (1 

record is mentioned in column 8).  So, if the model is more populated in the diagonal part of 
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the confusion matrix, it says that the model is less confused and could predict most of the 

classes correctly as we see in the Table. 4.  

 

Table 4. Confusion matrix over 10 different classes with batch training of (70x70) samples. 

 

 

Table 5. Performance of the model over the 10 classes with sequential batch training of 
(70x70) samples. 

 Precision Recall F1-Score 

Accuracy   85% 

Macro Average 88% 83% 83% 

Weighted Average 89% 85% 85% 

 

Precision 

Precision shows how precise is the model in classification and is calculated as follows: 

Precision = TP/(TP+FP)           (Eq. 7) 

In this equation, TP is True Positive (in this case signature is correctly classified) and FP stands 

for False Positive (cases that model wrongly classified as a correct class) in other words 

misclassifications. As we see in Table 5 the precision is above 80%. Overall precision is 

depicted by macro and weighted average precisions of all the classes. Weighted average 
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precisions consider the number of the images in the dataset too. This means that the model is 

accurate at 83% of its classification.  

Recall 

The Recall is basically the detection rate or the ability of the model to identify and classify all 

the samples of relevant class and is calculated as follows.  

Recall = TP/(TP+FN)          (Eq. 8) 

In this formula, FN is False Negative and are those positive samples of each class that the 

model missed or couldn’t classify correctly. Table 5 shows that the model performs well in 

finding all the samples. In another word, we have fewer False Negatives or missing some cases 

by misclassifying them to another class. We observe that the model could detect 83% of the 

signatures of each person on average. 

Macro Average:  

Macro average here is basically the simple average or arithmetic mean of all the values of 

Precision and Recalls. 

 

Weighted Average: 

Macro average is a simple average of all the precision and recalls over 10 classes. Whereas, 

Weighted average is a weighted average. This metric considers how many samples of each 

class were present in its calculation. So, fewer samples of one class means that its 

precision/recall/F1 score has less of an impact on the weighted average for each of those 

metrics. The Weighted average is the average calculation based on the number of images 

(support) as follows:  

𝑊 =
∑𝑛

𝑖=1 𝑤𝑖𝑋𝑖

∑𝑛
𝑖=1 𝑤𝑖

        (Eq. 9) 

 

Here, in this equation 𝑤𝑖 is the number of images in the class i and X is the Precision or 

Recall. 
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F1 score 

F1 score is the harmonic average of recall and precision. F1 score shows the balance between 

Precision and Recall. It tells you how precise your classifier is (how many instances it classifies 

correctly). F1 Score tries to find the balance between precision and recall. Usually, there is a 

trade-off between precision and recall. the F1 Score is a combination of these two as follows: 

F1 score = 2 x [ (precision x recall) / (precision+recall)]        (Eq. 10) 
 

A higher value of F1 Score means that the model performs well in both finding all the samples 

and also performs well in distinguishing them from other classes. The range for F1 Score is [0, 

1]. When both precision and recall is zero, we have minimum value for F1 score and when both 

precision and recall are 1, meaning the model has neither False Positive nor False Negative. 

 

Accuracy 

Accuracy simply is the ratio of correctly predicted observations to the total observations. One 

For our model, we have got 84% which means our model is 84% accurate in drawing the line 

between classes.  

 Accuracy score = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (Eq. 11) 

 

8.2.3. Experiment_3: Sequential batch training 

Here, we made another experiment that instead of randomly creating the pairs for Siamese net 

to train on, for a 32-batch of pairs, we made sure that half of it contains pairs of the same class 

and the other half pairs of negative classes. But the accuracy of the model over the test-set 

decreased to around 70%. So, we went back to training over random pairs and the performance 

increased. This is explained in the following section in detail. 

 

8.2.3. Experiment_4: Random batch training 

Unlike the previous section here we completely randomly select the 32 batches of pairs over 

all the classes of signatures. As our dataset is balanced, we got better results. 

The confusion matrix over 10 classes of signatures is as follows: 
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Table 6. Confusion matrix over 10 classes of signatures with random batch training of 
(70x70) samples. 

 

 

Table. 6 shows that the model is less confused in the classification of a given new signature in 

comparison with sequential batch training. Also, the accuracy score has improved from 3% to 

87%.  

 

Table 7. Precision and recall for all of the 10 classes of signatures with random batch 
training of (70x70) samples. 

 Precision Recall F1-Score 

Accuracy   88% 

Macro Average 91% 87% 85% 

Weighted Average 92% 88% 86% 

 

As shown in Table 7 the average micro-precision of this model has also improved to around 

91%. Meaning that model is doing better in terms of encountering fewer False Positives and 

classifying each new signature. We also observe an increase in the macro average of recalls 

over all the 10 classes to 87%. 

Results have improved in comparison with the previous iteration. This indicates that the model 

is doing well with maximizing the distance between dissimilar images. Because in the case of 

random pairs, the model is presented mostly with the different class pairs and the whole 

Siamese net approach tries to classify the pairs over the distance space. It shows that the model 

is doing better on learning the distances between signatures rather than similarities. 
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8.2.4. Experiment_4: image size 100x100 

Following the trend in previous iterations, increasing the image dimensions was improving the 

model’s accuracy. Hence, we did another iteration with (100 x 100) pixels and we trained them 

with the same training hyperparameters like 1000 epochs and random 32 batch size. The model 

loss at each iteration is depicted in Figure 18. 

 

Figure 18: Training loss for 10 classes. 

Results show that increasing the sample sizes helps the model to get less confused between the 

classes of signatures. This yields higher accuracy in terms of classification to 94% as shown in 

Table 8. 

 
 

Table 8. Confusion matrix over 10 classes of signatures with random batch training of 
(100x100) samples. 
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Model performance in terms of precision and recall is also improved as shown in Table 9. The 

macro average of both is over 93% which yields the F1 Score to improve also to 93%. 

 

Table 9. Precision and recall for all of the 10 classes of signatures with random batch 
training of (100x100) samples. 

 Precision Recall F1-Score 

Accuracy   94% 

Macro Average 96% 93% 93% 

Weighted Average 96% 94% 94% 

 

8.2.5. Experiment_5: Increasing the number of classes to 55 

In previous sections we were fine tuning a model with smaller sample size, and smaller 

iterations. After finding the hyperparameters that result in higher performance, the model will 

be trained for the maximum number of classes to see how our classification method performs 

over 55 classes and 4000 iterations.  

 

So, we increase the N_way comparison to 55_way_comparison at the validation phase. The 

validation process repeats every 20 iterations and the model with the best performance would 

be saved (eq.4) as explained in Chapter 7. 

 

Results of the signature classification over Dutch dataset with 55 classes are shown in Table 

10. As we can see the accuracy (eq.11) is 90% whereas baseline has the accuracy of 76% in 

chapter 8.1.4. 

 
 

Table 10. Model performance of classification over 55 classes. 

 Precision Recall F1-Score 

Accuracy   89% 

Macro Average 85% 89% 86% 

Weighted Average 85% 89% 86% 
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8.2.6 Test on Chinese dataset and comparisons 

 
We tested our approach with another dataset that was collected from Chinese signatures [54].  

It has 20 different classes, which contain 240 samples. A sample of it is shown in Figure 19.  

 

 
Figure 19: Samples of signatures from the Chinese signature dataset. 

 
 
For each class, we assigned 6 images for the training and 3 for tests, and 3 images per class for 

validation.  Our model’s classification performance is presented in Table 11. 

  

 

 

Table 11. Model performance of classification Chinese signatures dataset 

 Precision Recall F1-Score 

Accuracy   84% 

Macro Average 76% 84% 79% 

Weighted Average 76% 84% 79% 

 

 
Table 11 shows Siamese-net performance on classification of the second dataset (Chinese 

signature dataset). The model had a high accuracy of 84% and F1 score of 79%.  
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8.3 Conclusion of our approach 

 
On the training side, best hyperparameters for training the model are found over an experiment 

of classifying only 10 classes of signatures. Using these hyperparameters we trained the model 

over the whole 55 classes on Dutch dataset and 20 classes on the Chinese dataset.  

 

On inference phase, the results of the model’s accuracy on test-set for Dutch dataset was  

89% and 84% on the Chinese test-set. Process of classification over N classes is based on 

comparing the query image with those classes. Each class contains several (3 - 6) images. So, 

the similarity of the query signature is determined by the average of the similarity of the query 

with all the images in that class (3-6) eq 5. Finally, the class with maximum similarity would 

be selected as the signer of the query image, like Figure 13, eq 6. The performance of the 

Siamese-net is compared with the base model in next chapter. 
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9. Comparison 
 

In previous experiments the models have been fine tuned so best hyperparameters in training 

were selected. Here, to simplify the comparison of baseline (CNN classification) and our 

approach we summarize the performances mentioned in previous tables (Tables 3,10,11). 

Among the metrics in those tables the accuracy metric has been selected to summarize and 

compare the performance of the models in previous experiments. Accuracy metric explains 

the model performance as the ratio of the all the True classifications (True Positives + True 

Negatives) to all the dataset which contains the False Negatives and False Positives (TP + TN 

+ FP + FN) eq.11.  
 

Table 12. Comparison results between Dutch and Chinese dataset. 

 Accuracy 

 Dutch  Chinese  

Siamese-net 89% 84% 

CNN (Base 

line) 

76% 78% 

 
 In Table 12 we observe that Siamese-net could improve the performance of classification on 

both datasets. Reason is that simple CNN architecture only relies on similar features of intra 

class signatures. On the other hand, Siamese networks leverage the pairwise training to focus 

on extracting features that minimizes the distance for intra class samples (similar signatures) 

and maximizes the distance between inter signatures (non similar signatures). Hence not only 

focuses on similarity of images but also leverages the dissimilarity of them for classification.



10. Conclusion and Future works 
Our experiments show that Siamese networks could perform well in the classification of offline 

signatures with a low (3 to 6) number of samples per class. In this thesis, we could reach 89% 

accuracy in offline signature classification using Siamese nets on Dutch dataset and 84% on 

Chinese dataset. Model is trained to extract features that maximises the distance between 

features of inter-class images and minimizes the feature distances between intra-class images. 

Tuning the model plays an important role in optimal performance. Experiments show that 

having larger sizes of samples around 100x100 pixels with random sampling to train the pairs 

improves the performance of classification. 

Here, it has been demonstrated that simple CNN (base line) has a problem picking meaningful 

similarities for classification purposes. Whereas, the Siamese network is a more reliable 

method to do classification over a small or large number of classes with a low amount of 

training pics like 6 images per class.  

Advantage of Siamese-net classification is that one model can be trained for all the users, one 

model per user and still have a high level of accuracy around 90%. Also, as the classification 

is decided based on distances between two signatures (reference and query signatures), models 

trained with Siamese-net would be scalable. In this sense that in case a new class is added to 

the dataset that is not trained on we can still use the Siamese net to calculate the similarity of 

the query image with the new class. 

For future works, one can use this approach to measure the similarity of the query signatures 

with the reference signatures to determine the authenticity of the query signature. Also, one 

can use the transfer of learning of currently learned weights across all the classes. This means 

that we can use the weights of the model trained in the first task (signature classification) as an 

initialization of the second model (signature authentication) in case of training a writer 

dependent model per user, instead of training it from scratch. 
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