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Abstract

Carreau fluids are a source of research from both theoretical and applied approaches.
They have been considered to model different non-newtonian phenomena such as
blood flow, plasma and viscoeslastic materials. The purpose of this study is to
develop the global regularity criteria for a Carreau fluid in two dimensions flowing
in a strip. Firstly, a regularity criteria is shown for the initial set (u 10 uzo) € H(Q)
where Q = [0, L]X [0, o). Secondly, the analysis focuses on a regularity criteria
when  (uyg,uy) € L*(Q) and, lastly, similar results are obtained for

(”10’ “20) € H?*(Q) while the fluid velocity vertical component, u,(x, y), is such that

% g 1Y(Q)and ( oo, Au2> € 1X(Q).
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1 Introduction

Most of the fluid conceptions used to model flows in typical media like air, water
or oil, are based on a Newtonian description. In an important number of cases, the
supposition of Newtonian behavior does not seem to be accurate enough, leading
to expand the theory to introduce additional rheological properties that end in
non-Newtonian descriptions. As a set of examples that preclude its ubiquity, the
non-Newtonian flow is experienced in industries of mines, where sludges and
muds are frequently dealt, in lubrication and biomedical flows.

The non-Newtonian fluids are characterized in different types depending on
their rheological characteristics. One of such types is known as Carreau fluid (see
[1-17] for few relevant studies). More particularly, an interesting research on
Carreau fluids is given in [4] where the fluid is analyzed over a shrinking surface
in presence of an infinite shear rate viscosity. In addition, the study of Carreau
flows in spheres are widely analyzed in [5, 6].

Currently, there is not a wide literature focused on developing the regularity
criteria for equations obtained upon a Carreau fluid. Nonetheless, there exists an
extensive literature developing the regularity criteria for Navier—Stokes equations
(see [18-23]). Motivated by such facts, our intention in this study is to develop
global regularity criteria for a magnetohydrodynamic (MHD) flow of Carreau
fluid equations. The fluid is considered to flow between two stationary plates.
Flow between the plates is induced by an initial velocity profile and a stationary
linear law at y =0 to the x-axis velocity component. In addition, a uniform
magnetic field is applied in the transverse direction to the flow.

The paper layout is as follows: Firstly, the Carreau fluid model is discussed
based on the general theory of fluid dynamics of non-Newtonian flows. In
addition, some preliminary required results are introduced. Afterwards the
theorems on existence of regular solutions are presented. The paper introduces
progressively, in different sections, each of the required proofs for each of the
regularity Theorems together with the supporting information required.

2 Model Proposal

We consider the two dimensional incompressible fluid flow equations of a
Carreau fluid. The fluid is electrically conducting in the presence of an applied
magnetic field B,. The MHD flow is governed by the following set of equations:

V = (u;,u,0), V-V=0, Q.1
p%=V-T+JXB, 2.2)
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where V is the velocity field, ¢ the time, p is the fluid density, 7 is the Cauchy stress
tensor, J is the current density and B = B, + B, is the magnetic field for a Carreau
fluid, which is given by

T=-pl+nA,, (2.3)
with

n—1
2

=1+ (M) — 1) [1 + (F%)z] : 2.4)

where p is the pressure field, I the identity tensor, #, the zero-shear-rate viscosity, 7,
the infinite-shear-rate viscosity, I' a material time constant, and n express the power
law index (since it describes the slope of % in the power law region). The shear
. 0 o0
rate y is defined by

1 - 1 1
ZZ?’M‘ =Y S = EW(A%)- 2.5)

Here I is the second invariant strain rate tensor and A, is given by

A =(VV)+(VV), (2.6)
Note that () denotes the transpose of a matrix. From (2.1) to (2.6), the governing
equations in the absence of pressure gradient are given by

n—1

ou, ou; ou, *u, 5 [ Ouy 4
— U — tUy— =v—r- [ 1 + T2 —
ot 0x dy 0y? dy
n=3

92 9 2 F) 21 = oB2
+v(n—1)r2—”21<ﬂ) 1+r2<ﬂ> — 0,
ay* \ dy oy P
2.7

where v = "—; is the kinematic viscosity and o is related with the electrical charges

distribution.
Note that the subject boundary conditions are

u(x,y,t) =Ux, uy(x,y,t)=0 at y=0, (2.8)
u(x,y,0) =0, uy(x,y,0) =0 at y > oo, 2.9)

together with
u(x,y,0)=0, uy(x,y,0)=0 at x=0, x=L. (2.10)

Where U is a constant. In addition, the following initial conditions hold
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U (x,9,0) = up(x,y)  up(x,y, 1) = tyg(x, ), (2.11)

such that (um(x, V), Uy (X, y)) corresponds to the vector of initial velocities. Note that
the domain is given as Q = {(x,y) € [0, L] X [0, 00)}.

In addition, consider that the shear stress is zero at y = 0. As a consequence, the
following holds

leading to % =0aty=0.

3 Preliminaries and Statement of Results
3.1 Previous Results

Consider the well-known norm ||-||;, in the Lebesgue functional space L,(€2)
together with the usual Sobolev order m functional space defined by

H"(Q) ={uel*Q): V"u) e L*(Q)}
with the norm
1
el gz = (utllZ, + V"2l 7).
In addition, the following lemma is also needed (refer to Lemma 1 in [23])
Lemma 1 The following anisotropic Sobolev inequality holds

1
2

1
Lloglz Ll on
hldxdy < C 2= T |
] vetasay < ot | 5| e |52
Q
3.2 Statement of Results
The main results are stated as follows:
du

Theorem 3.1 Assuming (u,y, ) € H'(Q), where |Vuy| =
has solutions on (0, T in the defined strip Q = [0, L]X [0, c0).

, the equation (2.7)

dy

Theorem 3.2 Assuming (“10”420) € L*(Q), then the system (2.7) has solutions on
(0, T in the defined strip Q = [0, L]1X [0, c0).
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Theorem 3.3 Assuming (“10’“20) € H*(Q), then the system (2.7) has solutions on

(0, T] when % e [*(Q) and (%, Au2> € LX(Q), in the defined strip Q = [0, L]x
[0, c0). “

4 Proof of Theorem 3.1
Firstly, the following proposition is required to be shown
Proposition 4.1 Assume u, is a solution departing from u, to the set of the equation

and conditions (2.7) to (2.11). Neglecting the higher powers of T'*, then u,(x,y, )
satisfies

T aul 2 5 T aul 4
sup ||ul||L2 +2v —|| dt+@m—-1nr —|| ar
0<t<T 0 Y 2 0 0y ||
T
1 4 Ml
+—m-3)2n-5wI —
1O(n )2n = 3S)v /0 o

where C, depends on a suitable constant M (to be defined in the proof) and T.

Proof Multiplying the Eq. (2.7) by u,, operating and neglecting higher power of T'*,
the following holds

ou, 5 dzul ()u1
- +I,=v uldxdy+ (n — 1wl — uldxdy
Q
0? 0
+ (n—3)(2n—5)v1'4// ! <ﬂ> u,dxdy
—MZ//u?dxdy,
Q

After using integration by parts

ou, ||

d 2
E””luy =2, -2v a—y

P
—(n—1wr2|| 2L
dy

116 “4.1
-1 - 2lelulll
16

L2

1
— g =320 -

2

where

ou, ou,
L=- [ u|u— P +uy— PR dxdy.

Q
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—l//u—zdxd
2

After using Eq. (2.1), the following reads

Integrating by parts

Integrating again we get (I 1= 0). Introducing the value of /; into Eq. (4.1) and after
Young’s inequality, the following applies

d 2 duy ||? 2| 9%
dt”ul |- +2v 3 |, + -1 o |
2
+ %(n — 320 - S| S| = —202 |y |

<[220 |-

The Grownwall’s inequality yields

T
sup ||u1||i2 + 2v/
0<t<T 0

T
+ 11_0(" -3)2n -5 i

2
ou,

y

T aul 4
dy

dr+ (n — HI'? dt

L? 0 L

ouy ||° ~
S = ol

where C, depends on M and T. O
In addition, the following Proposition is also required.

Proposition 4.2 Assume a solution u, to set of the equation and conditions (2.7)—
(2.11) departing from u,,. Then, neglecting higher powers of T*, L satisfies

2

ou, ||? T 0u, ’ azul ()ul
sup [[—|| +2v - dt+3(n— 1)l -
o<r<rll 9y Iz o |l 9 |2 o || oy
To%u, ( ou;\? ~ 19w |
+1(n—3)(2n—5)vr4/ —“21<ﬂ> dr < || 20
2 o |9 \ay/ | 9y llz2

where C, depends on M and T.

Proof Multiplying (2.7) by —';% and integrating by parts:
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n—1

v [ () [ ()| e

n-3

—v<n—nrz//<wl> () ()] oo
[

Expanding the term on the right side and neglecting the higher powers of T'*

d aul
dt

1
2

0 0? 0? 0
1d ﬂ = //( ul)dxdy——(n—l)vﬂ/( u1> < ul)dxdy
2dt
4 02141 z)u1
——(n—3)(2n—5)vF // dxd
—Mz// <ﬂ> dxdy,
ay
Q
4.2)
where
02
12—// P (V Vul)dxdy
’u; du u; du
= P L dxdy + o — Uy — PR dxdy.
Q Q
Integrating 7,

// 0u1 0u,
— u dx
dy dxady y
Q
// ou, dzuld ou, auldd +1// ou, Zau,dd
"3y oxay dy TS oy ) oax T
Q Q
ou, 0 ou, \20
_//ulﬂ “ g _l// o ﬂd dy,
dy 6x6y 2
Q

Q

where (2.1) has been employed. Now, integrating again we get I, = 0. Introducing 7/,
in Eq. (4.2) and applying Young’s inequality, the following holds
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2
11%2 - % ——(n—l) F26u10u1
2dt|| dy oy |, ay* 9y ||,
0%u, (ou ou, ||?
——(n—3)(2n—5)vF4// 1< 1) 2| 24
L2 dy
which implies that
2 2 2
|9 Pull” | g 2] L1 2
dt o |,z 0y? 0dy
0° 0 0
+ (n—3)(2n Sy // ”‘< ”1> < o || 28
12 ay
<2oMm? aul .
a_y 12
Now, applying Gronwall’s inequality
P T 6%u, g ’ N 0%u; ou, :
sup [[—|| +2v - dt+3(n— 1)l - o
o<r<rll 9y Iz o | 9 |2 o || 9 9y
T 62 d 2 ~ 2
+1(n—3)(2n—5)vr4/ —“21<ﬂ> dr < || 20l
2 o |9 \ay/ |, y
where C, depends on M and 7. O

Finally, note that the Theorem 3.1 is proved by using Propositions 4.1 and 4.2.

5 Proof of Theorem 3.2
To this end, the following Proposition is required

Proposition 5.1 Assume u, is a solution departing from u, to the set of the equation
and conditions (2.7) to (2.11). Neglecting the higher powers of T'*, then u,(x,y,t)
satisfies

6u1

1 0u,

1 dt
ay

T
dt+(n— 1)vr2/
0

6

T
sup [y [, + v/
0T 0

1 4 T 1ou ~ 4
0

1
3 1
10y 16

where Cs depends on M and T.
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Proof Multiplying the Eq. (2.7) by u}, operating, neglecting higher power of I'*, and
after using integration by parts

50U 3 5 0? ul 0u1 3
”‘1 % +L=v ujdxdy + (n — 1w udxdy
Q
0? 0
+ = (n - 3)2n - 5wr / “ < “ > 3d)cdy
—MZ//u?dxdy,
Q

Afer using integration by parts

2
—6(n— vI?||u

1 4
4
|L2=4]3—12V Uy — lza_y

ay

£
L r (5.1)

19
- %(n —3)2n - st fu 2L

6
— 2 2
dy ”L6 M ||u1

|12

where

// it My + // 1dxdy

Applying integration by parts on the second term in right side and making use of
Eq. (2.1)

Integrating again we get (13 = O). Introducing the value of /5 in Eq. (5.1) and after
Young’s inequality

Loy ||t

S+ vlu %Hz + (n— DvI?||u?
L léy 12 dy

E””l L
6

1
ALY T

+ %(n —3)2n = S| |u;

< 2222l

The Grownwall’s inequality yields
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T
sup ||u1||i4 + v/
0<i<T 0

T
+ 11—0(n —3)2n - 5w /0 u

T 1 au 4
dt+(n— 1)vr2/ w— |\ dt
0 0y ||za

ou, ||
u— 5

6

19 ~
VL dr < g
16

y

where C; depends on M and T. O

Note that the Theorem 3.2 is shown as per the Proposition 5.1 introduced and
proved.

6 Proof of Theorem 3.3
The Theorem is shown based on the coming Propositions.

Proposition 6.1 Assume u, is a solution departing from u, to the set of the equation
and condmons (2.7) to (2.11). In addition, assume the existence of Vi, in L*(Q)
and that — "2 € L*(Q). Neglecting the higher power of T* then

oV, ou, 0Vu, ||?

dy dy

T
dt +3(n— I /
0
<0u1 > ()Vul
ay L2

Proof Considering the inner product in Eq. (2.7) with Au, and integrating

ou,
—Auldxdy+ Au, ul +u2 o dxdy

2=l
2

// [ %)z] Ay

-3
Pu, [0 P 2
+v(n—1)F2// ”1< ”1> ll r2< “1>] Auyddy
dy
—Mz-//ulAuldxdy.
Q

sup || Ve[

0<t<T

+ = (n —3)2n = 5w /

12

di < Cyf| Va2

where C 4 depends on M and T.
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Expanding the term on the right side in the last equation and neglectng the higher
powers of I'*,

// —Auldxdy+l4 = v/ —Auldxdy
> 0? ul dul
+ (n —1pr Auldxdy
4 0? ul aul
+ = (n -3)2n - S)VF Auldxdy
—Mz//ulAuldxdy.
Q

Aplying interation by parts

vl -

]<0Vu1> 2//<6u1> <0Vu1>
dxdy — —(n — Iy dxdy
——(n—3>(2n—5>vr4 // (‘h”) (‘W”l) dxdy — M| Vi ..

which implies that

2dt

v ou, OV
T N A e I e
2dt a9y |2 dy 9y |2
6.1)
4= (n—3)(2n—5)vr4 <a”1> oV | =1, - M|V, ||}
ay ) oy |, Hie

where

I //A < oy aul)dd
= u | u + u,— ) dxdy.
4 1 la 2ay

Now, the intention is to further develop the integral /,, to this end
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ou,
Vu, vV ul L+ Uy— o dxdy
// AV //ulam AT / o1y 00, 005
0x ox 24 ox dy 0x
u, dul dul aul ou, o*u,
U dxdy — Uy —— dxdy
oxady 0x dy oxdy
dul 0u2 ou, 0%u,
—d dy — Uy— 3y o —dxdy,
=__“// 0141 dxdy //(h{l ou, 0u2 dxdy
ox dy ox
L () et f () S

From Egq. (2.1), the following holds

1 ou, 3 ou, ou,; du,
Iy =—= — | dxdy + — — ——dxdy.
2 ox dy dy ox
Q Q

Integrating again

1 ouy : 62u2 ou, ou, du,
14 = —5 E dxdy— a 2 ox d d - Mla—mdxd
0 0%u, @ 0 0
=——//< Ml) dxdy — //ul PR 22 6”2 //( u2> ﬂdxafy
/ u, 6u2d i
ulaxt)y ax
Q

where Eq. (2.1) has been used, therefore /, becomes
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1, <l oVu, 0u2
u =

4 = dy 2]l ox
€ oVu, || ” ” au2
=2\ oy Lz | "o | s

Introducing the assessed integral I, into Eq. (6.1) and after using Proposition 3
and =2 0”2 € LYQ)

2

d 2 ()Vul 2 aul avul
—1|V + Qv — +3(n— 1
il Vel +@v=e PRl (e
ou, OVul 2
+ (n—3)(2n—5)vr4 ( ) < Cy ||V ||
ay ay o 16” 1”L2

From Grownwall’s inequality

2 awl 2 > [T |0y oVu, ||?
sup ||V || dt+3(n— vl —

0<I<T 12 o 119y 9y |2

2
6u 20Vu ~
+= (n -3)(2n - 5)vF4/ —L) =L a@r < Cf|Vuy)ps
dy 2
where C 4 depends on M and T. O

Proposition 6.2 Assume u, is a solution departing from u,, to the set of the equation
and conditions (2.7) to (2.11). assume that in the strip Q, there exists

(Aulo, %, Auz) € L*(Q). Neglecting the higher power of T'*, then

s + 30— vz [ |2 28
su u n—1yv —

O_E)T Hie o lldy oy I
2 2

aul 0Au,
+ 5 (n—3)(2n— —| 4
9y |-

Ay, P 2

+2(v— dts Cs||Auygl|;

12

where Cs depends on constants and T.

Proof Apply the monotone operator A to Eq. (2.7) and take inner product with Au,.
After integration by parts, the following reads
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()ul dul
AulA—dxdy + Al uy— o 2%y Adxdy

n—1

0u, 5 { Ouy 21
= v// < > 1+T <—> Au,dxdy
dy
2 2 2 %
+v(n—1)F2// <a ”1><%> l1+r2<%>] Au,dxdy
dy dy

v ou, \’ T
—7“//A l1+l“2<a—l> ] u Auldxdy—Mz//AulAuldxdy.
y
Q Q

Expanding the terms on the right side and neglecting the higher powers of I'%,

u
2dt_// Aul dxdy 15—\// o Auldxdy
0 0
+2(n—1)vr2// < ”1< ”‘) )Auldxdy
4 azul du] ’
+ (n—3)(2n—5)vF Au,dxdy — M Aul dxdy

After Integration

0Au, ||?
dy

1d
alml =15 —v L3 (n—l)vF216

| (2.13)
+ (1 =3)@n = SV — M| Ay I17.,

where
ou, ou,
== +uy— PR Au,dxdy,
0? ul dul
Iy = Auldxdy,
0%u, [ Ju, 4
I, = Al — | — Au,dxdy.
ay* \ 9y
Q
Now for I
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()ul dul
Uy — — ) Au,dxdy
ox ay
dul u, 02u1 ou, [ *u, 0%u,
+— + — | | Au,dxdy
0x? ()y2 oy \ o0x? 0y>

dul 02u1 ou, dzul ou, 02141 ou, 0%u,
+2— +2— +2— Auydxdy

ax o2 dy 6xay 0x dxdy dy dy 2
63u1 ’u, 03u1 03 A
e TMavrax T axay T2 gy 5 ) Awdrdy.
Applying integration by parts and continuity

63u1 03141 03141 A u,
u + U, Audxdy = 0.
6x3 ()yzax (3x20y 0y?
Q

Then

ou, ou, ou, 0%u,
Is=— AulaAuldxdy - Aula—yAuzdxdy -2 [ Auj— o ?dxdy
Q Q Q
ou, o*u, ou, 0*u, ou, 0%u,
-2 Auyj— dxdy — 2 U — dxdy — 2 Ay, — ——dxdy
0y 0xdy 0x 0xdy dy 0y?
Q Q Q

=k +ky + ks + kg + ks + kg.

6.2)

In order to solve the above six terms, the Lemma 1 is employed so that
// Ay 24 A dd
5y Dthidxdy
Q

0%u
< CoIIAulllellAullle ;

0x2

6Au1
dy

ou,
ox

L2 12

0w, ||? (6.3)

6x6y

6Aul
ay

()Aul
dy

3

ou,
ox

= Col|Auy |2

L2 L2

0141
ox

6Vu2
dy
oVu, ||3
dy

< Colls 5

L2 L2 L2

ou,

ox

€

H()Aul 2
<e
dy

N

L2 L 12
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ou,
k, = — Au; — Au,dxdy
ay

Q
2
<Coll Ao e [ | 222 L 6.4)
oy |2 6y 2| 9x9y ||
< 2] s e %l panli | S| + ol
c i § u - Uy |72
- 9y Il oy Il Hiez 9y i ‘ 2
auz 02u1
ky=2 [ Au—= 3y o —dxdy
Q
Pu, OBu, |13 [ 9w, |3 || 0%, ||
<Gl == ||Au 1||Lz oy a3y || .|l axay
ox |, Yy Azl 0Y gz || 0X0Y || 2 (6.3)
0Au, ouy ||z || oVu, ||2
<C0||AM1|| 5.
y 12 dx 12 ay 12
oAu, || ou oVu
<e Ho+C5E ||A”1||L2 —1 -
9y iz % iz
// ou, 02141 dxd
Oy away -y
1
aul ()Aul ()2141 03’/‘1 :
<Gy FS “AMIHLZ 0x0 2
y y 12 X y 12 ax ay 12 (66)
ou, aAul oVu,
SCQ .. ”Aullle
()y L ay 2 ()y L2
IAu, |2 au1 oVu, ||°
<e +C, ||A“1||L2 Ce :
9y |l 9y ez
aul 2u,
=-2 Auldxdy
Ox Ox dy
Q
1 1
ou, oAu, ||2 || 0%u, ||? || 0%u, ||?
<Gl|== ||Au1||L2 2
ox ||z 9y 2| 0x0y ||, || 0x>y | ., (6.7)
< aul ||A ” 6Au1 oVu,
u
=L ax L2 y 2 ay 12
0Au, p oy ||* 5 oVu, ||
S€H +Ce|[ 52| NAu [l +Ce :
ay 12 0 12 ay 12
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ou, 0*u,
=2 — Au,dxdy
dy 0y?
Q

o1
2=

0u2 3 *u, u, ||? || 0%y,
<Coll Al axay|[ .|| 02 || .|| oy
1? y 12 y y (68)
2 oVu, ||2 || 0Ay, ||>
<CyllAu, |||l — —
B 0” 1”1‘2 x ’U 9y lizll 9y iz
oAu, ||? ou oVu, |5
e R A e
0y |2 0x |12 0y |l
Integrating I, we have
0u1 oVu, 0Au1 0u1 0Au1
— dxdy — dxdy
dy
(6.9)
0Au, |I? ou, { 0Vu, Juy 0Au, ||?
Se C€ - s
ay i dy \ 0y p oy oy i
where we made use of the Young’s inequality. Similarly to solve I,
2
0Au, |2 ou; \* [ 0Vu, \* ou; \ > 0Au,
I, <e L — — ] — . 2:22)
9y i dy dy o dy 9y |

Combining Eq. (2.13) to Eq. (2.22), After using Proposition 1, Proposition 2,
Proposition 3 and Au,, 0::2 € L*(Q), we get

ou, 0A 2
s [ + 30— 2| 2 28
dt > o |
9 20A 2
u u
+ l(n - 3)(2n - Spr* <_1> 1
2 dy 9y ||
dAu, ||? 5
+2(v — 8¢) ’ < G l|au |},
oy |2

where C, is suitable constant. Applying Grownwall’s inequality again
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ou; 0Au, ||?

dy dy

2 3 2 T
sup ||Au]|;. + E(n — I /
0

0<t<T

12

TN/ au, \2oAu, ||’
+ X = 3)2n—spr / <ﬁ> Yl ar
4 0 ay ay LZ

T 0Au, ||? ~ )
+ (v —8¢) dt < Cs||Auy||;2»
0 9y 2
where C5 depends on suitable constants and 7. O

Finally, the Theorem 3.3 is shown by using Proposition 6.1 and Proposition 6.2.

7 Conclusion

The proposed Theorems 3.1, 3.2 and 3.3 have been shown in the different supporting
propositions. Such Theorems lead to confirm on the existence of regular solutions
departing from an initial data generalized under the defined functional spaces. The
shown solutions are applicable to the two dimensional Carreau fluid on the defined
strip Q = [0, L] X [0, o0).
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